JP3542312B2 - 電子的撮像装置 - Google Patents

電子的撮像装置 Download PDF

Info

Publication number
JP3542312B2
JP3542312B2 JP2000053671A JP2000053671A JP3542312B2 JP 3542312 B2 JP3542312 B2 JP 3542312B2 JP 2000053671 A JP2000053671 A JP 2000053671A JP 2000053671 A JP2000053671 A JP 2000053671A JP 3542312 B2 JP3542312 B2 JP 3542312B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
imaging
transfer unit
image
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000053671A
Other languages
English (en)
Other versions
JP2000324378A (ja
Inventor
仁史 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000053671A priority Critical patent/JP3542312B2/ja
Priority to US09/519,031 priority patent/US6876391B1/en
Publication of JP2000324378A publication Critical patent/JP2000324378A/ja
Application granted granted Critical
Publication of JP3542312B2 publication Critical patent/JP3542312B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CCD二次元イメージセンサのような固体撮像素子を用いて撮像を行う電子的撮像装置に係り、特に高速動作を可能とした自動焦点調節システムに関する。
【0002】
【従来の技術】
被写体像を撮像光学系により固体撮像素子、例えばCCD二次元イメージセンサ上に結像して電気信号に変換し、これにより得られた画像信号を半導体メモリや磁気ディスクのような記録媒体に記録する電子的撮像装置、いわゆる電子スチルカメラが広く普及しつつある。
【0003】
このような電子スチルカメラにおいては、一般に撮像光学系のフォーカスレンズの焦点誤差を検出し、この焦点誤差の情報に基づいてフォーカスレンズを光軸方向に移動させて自動的に焦点調節を行うオートフォーカス(AF)システムが設けられる。電子スチルカメラにおけるAFシステムの一つとして、撮像素子によって撮像された被写体のコントラストに基づいて焦点誤差を検出して合焦位置を判定するイメージャAF方式が知られている。
【0004】
より具体的には、イメージャAF方式ではフォーカスレンズを光軸方向にステップ的に移動させながら、撮像素子により得られる画像信号からハイパスフィルタにより高周波成分を抽出する。それは、焦点が正しく調節されたときに被写体像のコントラストが最大となり、同時に画像信号の高周波成分も最大となるからである。そして、各フォーカスレンズ位置に対応する高周波成分量(例えば、高周波成分の累積加算値)を比較して、高周波成分量がピークを示す最大コントラスト点を合焦位置と判定し、この合焦位置にフォーカスレンズ群を移動させる。このAF方式は、いわゆる山登り方式と呼ばれる。このような従来のAFシステムは、例えば特開平9−168113号公報、特開平9−200597号公報等に開示されている。
【0005】
しかし、従来のAFシステムにおいては、複数のフォーカスレンズ位置での焦点誤差を検出して合焦位置を判定するために、各フォーカスレンズ位置毎に1画面分(1フレームまたは1フィールド)の画像信号を必要とし、AF動作に必要な時間が長くなってしまうという問題点がある。
【0006】
例えば、フォーカスレンズ位置を24ステップに設定した場合には、AFのために24画面分の画像信号を撮像素子によって取得する必要があり、AF動作に必要な時間は24フレーム期間または24フィールド期間にもなる。従って、高速で動く被写体を十分に追従できない。フォーカスレンズ位置のステップ数を少なくすれば、AF動作の所要時間は短縮されるが、AF精度がそれだけ低下してしまう。
【0007】
【発明が解決しようとする課題】
上述したように、従来の電子スチルカメラにおけるAFシステムでは、焦点誤差を検出し、合焦位置を判定するために各フォーカスレンズ位置毎に1画面分の画像信号を必要とすることから、高速のAF動作を行うことができず、またAF動作を高速化するためにフォーカスレンズ位置のステップ数を少なくするとAF動作の精度が低下するという問題点があった。
【0008】
【課題を解決するための手段】
本発明は、1画面の画像信号から複数のレンズ位置にそれぞれ対応した焦点誤差を検出して合焦位置を判定できるようにして、高速かつ高精度の自動焦点調節を行うことができる電子的撮像装置を提供することを目的とする。
【0009】
本発明に係る電子的撮像装置は、被写体像を撮像面に結像させる撮像レンズと、複数の光電変換素子が2次元アレイ状に配列されると共に、所定間隔で配置された複数ラインの組み合わせからなる複数の光電変換素子群に分割され、前記各光電変換素子に蓄積された電荷を垂直方向に転送する垂直転送部と、当該垂直転送部により転送された電荷を水平方向に転送する水平転送部と、前記複数の光電変換素子と前記垂直転送部との間に前記各光電変換素子に対応して個別に設けられ、移送パルスに応答して前記各光電変換素子に蓄積された電荷を前記垂直転送部に転送する転送ゲートと、を有し、前記撮像レンズにより撮像面に結像された被写体像に対応した電荷を蓄積する撮像素子と、前記撮像素子の同一の光電変換素子群に属する光電変換素子は同一のタイミングで電荷蓄積を開始し、異なる光電変換素子群に属する光電変換素子は互いに異なるタイミングで電荷蓄積を開始するように前記撮像素子の電荷蓄積開始並びに終了タイミングを制御し、前記転送ゲートは前記各光電変換素子の電荷蓄積開始から所定時間に亘って当該各光電変換素子に蓄積された電荷を前記垂直転送部へ転送するように、前記所定時間間隔で前記移送パルスを発生することで、一回の撮像動作において露光量が略同一でサンプルタイミングが相互に異なる複数の画像信号を出力する制御手段と、前記撮像素子の各光電変換素子群からそれぞれ読み出された画像信号に基づいて前記撮像素子の各光電変換素子群の電荷蓄積開始タイミングに同期して前記撮像レンズを合焦駆動する駆動手段と、を備えたことを特徴とする。
【0010】
このように本発明では、撮像素子の分割された各光電変換素子群に互いに異なるタイミングで蓄積が開始された信号電荷を画像信号として読み出すため、各光電変換素子における信号電荷の蓄積動作を撮像レンズを光軸方向に移動させながら行うことにより、各光電変換素子群から読み出された各画像信号に基づき撮像レンズの異なる複数の位置における焦点誤差情報が得られ、これに基づいて合焦位置を判定できる。
【0011】
すなわち、撮像素子の1回の撮像によって得られる1画面分の画像信号から合焦位置を判定することきができ、この合焦位置に撮像レンズを移動させることにより、AF(自動焦点調節)動作の高速化が可能である。また、AF動作の高速化のために撮像レンズ位置のステップ数を少なくする必要がないので、AF動作の精度も確保される。より具体的には、インターライン転送撮像素子を用いた場合、撮像レンズを駆動しつつ撮像を行い、電荷蓄積開始タイミングと転送タイミングとを相互にずらすことにより、異なるレンズ位置における出力信号を一括して取り込むようにしている。この様な構成により、同一のフレームレートにおいても、焦点調整データのサンプル数を実質的に増加させることができ、焦点調整に要する時間を短縮することができる。
【0012】
ここで、駆動手段は撮像素子の各光電変換素子群の電荷蓄積開始タイミングに同期して撮像レンズを所定位置に駆動することが好ましい。この場合、撮像レンズの各位置において各光電変換素子群から読み出された画像信号の高周波成分を比較し、その相互比較結果に基づき合焦位置を判定して撮像レンズを合焦位置に駆動するようにすればよい。このようにすると、電荷蓄積時間と撮像レンズの位置が対応するため、画像信号からより正確に合焦位置を判定することができ、AF動作の精度がさらに向上する。
【0013】
また、駆動手段において各光電変換素子群の電荷蓄積開始タイミングに同期したタイミングで駆動されたレンズ位置のいずれかの位置を合焦位置として、この合焦位置に撮像レンズを駆動するようにすることにより、これらのレンズ位置以外の位置を含めて合焦位置の候補を設定した場合に比較して、少ない演算量で簡単に合焦位置を判定して、高速に撮像レンズを合焦位置に移動させることが可能となる。
【0014】
撮像素子は、例えば、前述の光電変換素子と、これらの光電変換素子に蓄積された電荷を垂直方向に転送する垂直転送部と、この垂直転送部により転送された電荷を水平方向に転送する水平転送部と、光電変換素子に蓄積された電荷を垂直転送部に転送するために光電変換素子と垂直転送部との間に各光電変換素子に対応して個別に設けられた転送ゲートとを有する。そして、転送ゲートは光電変換素子の電荷蓄積開始から所定時間に亘って所定時間間隔毎に移送パルスが与えられることにより、光電変換素子に蓄積された電荷を垂直転送部へ転送する。
【0015】
このように転送ゲートを個々の光電変換素子に対応して個別に設ければ、各光電変換素子群毎に転送ゲートへの移送パルスの印加タイミングを異ならせることで、前述のように各光電変換素子群の電荷蓄積タイミングを互いに異ならせることが可能となる。
【0016】
さらに、このような撮像素子において被写体の明るさに応じて転送ゲートへの移送パルスの印加期間を変化させるようにすれば、すなわち被写体が明るい場合は移送パルスの印加期間を短くし、被写体が暗い場合は移送パルスの印加期間を長くすれば、被写体の明るさによらず適正レベルの画像信号が得られるので、被写体の明るさによらず良好なAF動作が可能となる。
【0017】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0018】
図1は、本発明の一実施形態に係る電子的撮像装置の構成を示すブロック図である。図1において、被写体光は、図示しないレンズ鏡筒に設けられた撮像光学系1を構成するズームレンズ群2および撮像レンズであるフォーカスレンズ群3を通過した後、光量調節手段である絞り4を介して固体撮像素子、例えばCCD二次元イメージセンサ(以下、単にCCDという)5に入射する。これにより、CCD5の撮像面上に被写体像が結像される。
【0019】
CCD5は、画素と呼ばれる複数の光電変換素子を二次元のマトリクス状に配列して撮像面を構成し、さらに撮像面にカラーフィルタを配置したものである。CCD5は、CCDドライバ17によって駆動制御され、撮像光学系1および絞り4を通過した被写体光により撮像面に結像された被写体像に対応した信号電荷を蓄積する。このCCD5に蓄積された信号電荷は、画素信号と呼ばれる電気信号として読み出され、撮像回路6に入力される。撮像回路6において、CDS(相関二重サンプリング)、AGC(オートゲインコントロール)、その他の処理を施すことで、所定フォーマットの画像信号が生成される。
【0020】
撮像回路6において生成された画像信号は、A/D変換器7によりディジタル信号に変換された後、バッファメモリ8に一時的に記憶される。バッファメモリ8から読み出される画像信号は、D/A変換器9によりアナログ信号に戻され、さらに再生出力に適した形態に変換された後、LCD(液晶ディスプレイ)10に供給され、画像として表示される。
【0021】
バッファメモリ8にはさらに圧縮/伸長回路11が接続され、この圧縮伸長回路11には画像データおよび付随するデータを記録するための記録媒体である記録用メモリ12が接続される。
【0022】
圧縮伸長回路11は、圧縮回路部と伸長回路部とからなる。圧縮回路部は、バッファメモリ8に記憶された画像信号を読み出して圧縮(符号化)処理を行うことにより、記録用メモリ12への記録に適した形態とするための処理を行う。伸長回路部は、記録用メモリ12に記録された画像信号を読み出して伸長(復号化)処理を行うことにより、表示やプリント等の再生出力に適した形態とするための処理を行う。
【0023】
記録用メモリ12には、例えばフラッシュメモリのような固体型の半導体メモリや、カード形状またはスティック形状からなり装置に対して着脱可能に構成されたカード型フラッシュメモリのような半導体メモリのほか、ハードディスクやフロッピディスクのような磁気記録媒体等、種々の形態のものを使用できる。
【0024】
また、A/D変換器7から出力される画像信号は、AE処理部13およびAF処理部14に供給される。AE処理部13は、A/D変換器7より出力される画像信号を受け、各画素からの画素信号の累積加算を主体とする演算処理を実行する。そして、AE処理部13は、この累積加算値に基づき被写体の明るさに応じたAE評価値(測光値)を求めた後、このAE評価値に基づいてCPU15を介して露光量を自動的に調整する自動露出(AE)処理を実行する回路である。
【0025】
AF処理部14は、A/D変換器7より出力される画像信号を受けて、ハイパスフィルタ31によりその高周波成分を抽出する。そして、AF処理部14は、この高周波成分に対して累積加算処理を行うことによって被写体像の輪郭成分量に対応するAF評価値を算出した後、当該AF評価値に基づいてCPU15を介して自動焦点調節(AF)処理を実行する回路である。図1に示した電子的撮像装置では、ハイパスフィルタ31と、切替器32および累積加算部33により構成されたAF処理部14の例を示している。このAF処理部14の詳しい動作については、後述する。
【0026】
CPU15は撮像装置全体の制御を司るものである。例えば、CPU15は、上述したAE処理部13およびAF処理部14のほか、タイミング発生器16、第1モータドライバ18、第2モータドライバ19、第3モータドライバ20、操作部24、EEPROM25、および電池26が接続されている。タイミング発生器16は、CPU15、CCDドライバ17および撮像回路6に供給する各種のタイミング信号を発生する。
【0027】
第1モータドライバ18は、絞り4を駆動する絞り駆動モータ21の駆動制御を行う。CPU15は、AE処理回路13で算出されたAE評価値に基づいて、この第1モータドライバ18を制御することにより、適正な露光量が得られるように絞り4の絞り量を調整するAE制御を行う。
【0028】
第2モータドライバ19は、フォーカスレンズ群3を駆動するフォーカスモータ22の駆動制御を行う。CPU15は、AF算出回路14で算出されたAF評価値に基づいて、この第2モータドライバ19を制御することにより、合焦状態が得られるようにフォーカスレンズ群3を光軸方向に移動させるAF制御を行う。
【0029】
第3モータドライバ20は、ズームレンズ群2を駆動するズームモータ23の駆動制御を行う。CPU15は、後述する操作部24内のズームスイッチが操作されたとき、このズームスイッチからの指令信号に従って第3モータドライバ20を制御することにより、所望の変倍動作が得られるようにズームレンズ群2を光軸方向に移動させるズーム制御を行う。
【0030】
操作部24は、各種の動作を行わせるための指令信号を発生してCPU15に伝達する複数の操作スイッチ群からなる。具体的には、操作部24は、例えば撮像装置を起動させて電源供給を行わせるための指令信号を発生させる主電源スイッチと、撮影/記録動作を開始させるための指令信号を発生させるレリーズスイッチと、再生動作を開始させるための指令信号を発生させる再生スイッチと、ズームレンズ群2を移動させて変倍動作を開始させるための指令信号を発生させるズームスイッチ(ズームアップスイッチおよびズームダウンスイッチ)等を備えている。
【0031】
レリーズスイッチは、撮影動作に先立って行うAE処理およびAF処理を開始させる指令信号を発生させる第1段レリーズスイッチと、この第1段レリーズスイッチにより発生される指令信号を受けて実際の撮像動作を開始させる指令信号を発生させる第2段レリーズスイッチとからなる。
【0032】
EEPROM25は電気的に書き換え可能なメモリであり、各種の制御プログラムや各種の動作を行わせるために使用するデータを予め記憶している。
【0033】
電池26は、CPU15によって制御され、撮像装置の各部への電源供給を行う。
【0034】
次に、本実施形態におけるAFシステムについて詳細に説明する。
【0035】
図2は、本実施形態におけるCCD5の構成を示す図である。このCCD5はインターライン転送型CCDであり、二次元アレイ状に配列された光電変換素子であるフォトダイオード41、転送ゲート42、垂直転送部43、水平転送部44および出力増幅器45からなる。
【0036】
フォトダイオード41に蓄積された信号電荷は、転送ゲート42を介してCCDで構成された垂直転送部43に転送され、この垂直転送部43により垂直方向に転送される。そして、信号電荷は、垂直転送部43同じくCCDで構成された水平転送部44により水平方向に転送され、水平転送部44の出力部に接続された出力増幅器45により電流−電圧変換され、出力端子46より画像信号として取り出される。
【0037】
ここで、フォトダイオード41は、垂直方向に所定間隔で配置された複数ラインの組み合わせからなる複数の群に分割されている。すなわち、垂直方向に所定間隔で配置された複数ラインのうちの同一ラインに接続された各フォトダイオード41は、同一の群として扱われる。そして、同一群に属するフォトダイオード41は、電荷蓄積に関して、同一の制御が施される。この電荷蓄積制御については、後で詳しく説明する。図2は、3ラインおきの組み合わせからなる4つの群41A,41B,41C,41Dに分割されているフォトダイオード41の例を示している。同図では、フォトダイオード41を表す各ブロックの内部に記載されたA,B,C,Dが、群41A,41B,41C,41Dに属するフォトダイオードであることを示している。
【0038】
一方、転送ゲートについては、通常はフォトダイオードの垂直方向の並びに対して共通に設けられるが、本実施形態における転送ゲート42は、個々のフォトダイオード41に1:1対応で分離して形成されている。さらに、これらの転送ゲート42はフォトダイオード41の群41A,41B,41C,41D毎に共通接続線46によって共通に接続されており、これらの共通接続線46を介して図1のCCDドライバ17から移送パルスSA,SB,SC,SDがそれぞれ供給される。
【0039】
この供給された移送パルスSA,SB,SC,SDにより、同一の群に属する各フォトダイオードは、同一タイミングで信号電荷の蓄積を開始するように、かつ、異なる群に属する各フォトダイオードは、互いに異なるタイミングで信号電荷の蓄積を開始するように制御される(すなわち、例えばフォトダイオード群41Aに属する各フォトダイオードは、同一のタイミングで蓄積を開始するように制御される。一方、例えばフォトダイオード群41Aに属する各フォトダイオードとフォトダイオード群41Bに属する各フォトダイオードとは、異なるタイミングで蓄積を開始するように制御される。)。そして、フォトダイオード41から転送ゲート42、垂直転送部43、水平転送部44および出力増幅器45を介して読み出された画像信号は、撮像回路6、A/D変換器7を介してAF処理部14に入力される。
【0040】
AF処理部14では、ハイパスフィルタ31によりA/D変換器7より入力された画像信号から高周波成分が抽出される。そして、各フォトダイオード群41A,41B,41C,41Dに対応する高周波成分が、切替器32を介して累積加算部33に入力され、各高周波成分毎の累積加算値がAF評価値として求められる。そして、このAF評価値に基づき、CPU15、第2モータドライバ19およびフォーカスモータ22を介してフォーカスレンズ群3が光軸方向に移動されることによって、AF動作が行われる。
【0041】
図3は、CCD5における信号電荷の蓄積/読み出し動作を示す図である。すなわち、移送パルスSA,SB,SC,SDと、フォトダイオード41に蓄積されている信号電荷を一斉に掃き出すためのSUB抜きパルスと、各フォトダイオード群41A,41B,41C,41Dの露光期間(信号電荷の実質的な蓄積期間)を表している。また、同図において、状態a,b,c,d,e,fは、図4に示すCCD5の各状態のタイミングに対応している。
【0042】
図4は、CCD5での内部動作の各状態を模式的に示している。図4において、記号A,B,C,Dは、各々フォトダイオード41が属する群を表すとともに、フォトダイオード41に蓄積された信号電荷および垂直転送部43内の信号電荷の電荷量も表現している。
【0043】
図3、図4を参照して、以下CCD5における一連の内部動作について説明する。
【0044】
図4に示す状態aにおいて、全てのフォトダイオード41に蓄積されている信号電荷は、SUB抜きパルスにより掃き出される。その後、状態bにおいて、移送パルスSAによりフォトダイオード群41Aに接続されている転送ゲート42が開かれ、フォトダイオード群41Aに蓄積された信号電荷Aが垂直転送部43に転送され、その直後に再び全てのフォトダイオード41に蓄積されている信号電荷がSUB抜きパルスにより掃き出される。
【0045】
次に、状態cにおいて、移送パルスSA,SBによりフォトダイオード群41A,41Bに接続されている転送ゲート42が開かれ、フォトダイオード群41A,41Bに蓄積された信号電荷A,Bが垂直転送部43に転送され、その直後に再び全てのフォトダイオード41に蓄積されている信号電荷がSUB抜きパルスにより掃き出される。このとき、フォトダイオード群41Aに蓄積された信号電荷Aは、状態bと状態cで2回にわたって垂直転送部43に転送されるため、垂直転送部43内では2倍の電荷量(A*2)となっている。すなわち、フォトダイオード群41Aの露光期間は図3に示すT1となり、SUB抜きパルスの周期の2倍となる。
【0046】
次に、状態dにおいて、移送パルスSB,SCによりフォトダイオード群41B,41Cに接続されている転送ゲート42が開かれ、フォトダイオード群41B,41Cに蓄積された信号電荷B,Cが垂直転送部43に転送され、その直後に再び全てのフォトダイオード41に蓄積されている信号電荷がSUB抜きパルスにより掃き出される。
【0047】
このとき、上記と同様にフォトダイオード群41Bに蓄積された信号電荷Bは、状態cと状態dで2回にわたって垂直転送部43に転送されるため、垂直転送部43内では2倍の電荷量となる。従って、フォトダイオード群41Bの露光期間は図3に示すT2となる。同図に示すように、露光期間T2の前半の半周期は、露光期間T1の後半の半周期とオーバラップしている。
【0048】
以下、状態e,状態fにおいても同様の動作が行われる。その結果、状態fにおける垂直転送部43内の信号電荷は、フォトダイオード群41A,41B,41C,41Dにそれぞれ蓄積された信号電荷の2倍の電荷量となり、フォトダイオード群41A,41B,41C,41Dはそれぞれ半周期分ずつオーバラップした期間T1,T2,T3,T4にわたって露光されたことになる。
【0049】
このように本実施形態では、CCD5のフォトダイオード41を複数のフォトダイオード群41A,41B,41C,41Dに分割し、これらの各フォトダイオード群41A,41B,41C,41Dにおいて互いに異なるタイミングで信号電荷の蓄積を開始するようにしている。
【0050】
従って、以下に述べるように、フォーカスレンズ群3を光軸方向に移動させながら各フォトダイオード群41A,41B,41C,41Dにおける信号電荷の蓄積動作を行うことによって、各フォトダイオード群41A,41B,41C,41Dからそれぞれ読み出される画像信号に基づきフォーカスレンズ群3の異なる複数の位置における焦点誤差情報を得ることができる。そして、この異なる複数の位置における焦点誤差情報により、高速な合焦位置が判定可能となる。
【0051】
また、このようにすると各々のフォトダイオード群41A,41B,41C,41Dでの信号電荷の蓄積時間は、複数のレンズ位置の焦点誤差情報をそれぞれ1画面の画像信号から求める従来のAFシステムに比較して短くなる。しかし、前述したように、本実施形態ではフォトダイオード群41A,41B,41C,41Dが半周期分ずつオーバラップした期間T1,T2,T3,T4にわたって露光されるため、電荷蓄積時間を比較的長くとることができる。従って、各フォトダイオード群41A,41B,41C,41Dからそれぞれ読み出される画像信号のレベル低下を補い、焦点誤差情報の検出とこれに基づくAF評価値の算出および合焦位置の判定を確実に行うことができる。
【0052】
次に、上述したCCD5の電荷蓄積/読み出し動作を踏まえて、本実施形態におけるAF動作の具体的な実施例について説明する。
【0053】
(実施例1)
図5は、実施例1におけるAF動作を説明するためのタイムチャートの例と、当該タイムチャートに対応したフォーカスレンズ群3のレンズ位置を示している。なお、フォーカスレンズ群3は単焦点レンズもしくは比較的短い焦点距離のレンズとし、その繰り出し量(光軸方向の移動量)は比較的小さく、繰り出し量は3ステップ(フォーカスレンズ群3の停止位置が4箇所)にわたりステップ的に変化するものとする。また、図5に示す移送パルスSA,SB,SC,SD、SUB抜きパルスおよび各露光期間は、図3と同様である。
【0054】
図5のモータ駆動タイムチャートに示すように、AF動作時においては、フォーカスモータ22が移送パルスSA,SB,SCの1回目の印加に同期してステップ的に駆動される。この駆動に連動して、フォーカスレンズ群3のレンズ位置は、図5に示すようにL1(無限遠)の位置からL2,L3,L4(最至近)の位置に順次停止する。
【0055】
このとき、露光期間T1,T2,T3,T4においては、AF処理部14内の累積加算部33により、フォトダイオード群41A,41B,41C,41Dに蓄積された信号電荷に対応する画像信号の高周波成分の累積加算値がレンズ位置L1,L2,L3,L4に対応するAF評価値1,AF評価値2,AF評価値3,AF評価値4としてそれぞれ求められる。
【0056】
これらのAF評価値1,2,3,4の大小関係に基づいて、CPU15で合焦位置が求められる。この実施例1の場合の合焦位置の決定法を以下に示す。
【0057】
・AF評価値1が最大→合焦位置=レンズ位置L1
・AF評価値1,2が大(いずれもAF評価値3,4より大)
→合焦位置=レンズ位置L2
・AF評価値2,3が大(いずれもAF評価値1,4より大)
→合焦位置=レンズ位置L3
・AF評価値4が最大→合焦位置=レンズ位置L4
こうして合焦位置が求まると、CPU15は、フォーカスレンズ群3を合焦位置であるレンズ位置L1,L2,L3,L4のいずれかに固定させ、この状態で撮像を行うように各部を制御する。
【0058】
(実施例2)
図6は、実施例2におけるAF動作を説明するためのタイムチャートの例と、当該タイムチャートに対応したフォーカスレンズ群3のレンズ位置を示している。なお、実施例2においては、フォーカスレンズ群3は比較的焦点距離の長いレンズとし、その繰り出し量は比較的大きく、7ステップ(フォーカスレンズ群3の停止位置が8箇所)にわたりステップ的に変化するものとする。また、図6に示す移送パルスSA,SB,SC,SD、SUB抜きパルスおよび各露光期間は、図3及び図5と同様である。
【0059】
図6のモータ駆動タイムチャートに示すように、フォーカスモータ22は、各移送パルスSA,SB,SCの1回目の印加に同期して2ステップずつステップ的に駆動される。そして、フォーカスレンズ群3は、ファーカスモータ22が移送パルスSDの1回目の印加に同期して1ステップ分駆動されることにより、図6のレンズ位置に示すようにL1(無限遠位置)からL2,L3,L4,L5,L6,L7,L8(最至近位置)に順次停止する。
【0060】
このとき、図6に示す各露光期間T1,T2,T3,T4においては、AF処理部14内の累積加算部33によりフォトダイオード群41A,41B,41C,41Dに蓄積された信号電荷に対応する画像信号の高周波成分の累積加算値がレンズ位置L1〜L3,L2〜L5,L4〜L7,L6〜L8に対応するAF評価値1,AF評価値2,AF評価値3,AF評価値4としてそれぞれ求められる。
【0061】
これらのAF評価値1,2,3,4の大小関係に基づいて、CPU15は、合焦位置を求める。実施例2の場合の合焦位置の決定法を以下に示す。
【0062】
・AF評価値1が最大→合焦位置=レンズ位置L1
・AF評価値1>AF評価値2>AF評価値3,4
→合焦位置=レンズ位置L2
・AF評価値2>AF評価値1>AF評価値3,4
→合焦位置=レンズ位置L3
・AF評価値2>AF評価値3>AF評価値1,4
→合焦位置=レンズ位置L4
・AF評価値3>AF評価値2>AF評価値1,4
→合焦位置=レンズ位置L5
・AF評価値3>AF評価値4>AF評価値1,2
→合焦位置=レンズ位置L6
・AF評価値4>AF評価値3>AF評価値1,2
→合焦位置=レンズ位置L7
・AF評価値4が最大→合焦位置=レンズ位置L8
CPU15は、このようにして合焦位置が求まると、実施例1と同様にフォーカスレンズ群3を合焦位置であるレンズ位置L1,L2,L3,L4,L5,L6,L7,L8のいずれかに固定させ、この状態で撮像を行うように各部を制御する。
【0063】
(実施例3)
図7は、実施例3におけるAF動作を説明するためのタイムチャートであり、被写体の明るさ(照度)が比較的低い場合に適した例である。
【0064】
図7に示す移送パルスSA,SB,SC,SDは、図3および図4に示したCCD5の動作例および図5、図6に示した実施例1,2と異なり、連続して3回印加される。すなわち、CCD5においてフォトダイオード41の各々に蓄積された信号電荷は、転送ゲート42を介して垂直転送部43に3回ずつ転送される。従って、図7に示す露光期間T1,T2,T3,T4は、図3〜図6の場合の1.5倍と長くなるので、被写体が暗い場合でも十分な露光量が確保され、AF評価値1,2,3,4として信頼性の高い値が得られる。
【0065】
本実施例3におけるAF評価値1,2,3,4に基づく合焦位置の決定法は、実施例1,2と同様でよい。また、被写体の明るさに応じて移送パルスの印加周期をさらに多段階に変化させるようにしてもよい。
【0066】
このように被写体の明るさに応じて移送パルスの印加期間を変化させることにより(すなわち、被写体が明るい場合は移送パルスの印加期間を短くし、被写体が暗い場合は移送パルスの印加期間を長くすることにより)、被写体の明るさによらずAF処理部14での処理が可能な適正レベルの画像信号を得ることができ、被写体の明るさによらず良好なAF動作が可能となる。
【0067】
ところで、市販されているカムコーダでは、手振れによって数ラインずれた画像データを使っていても、AF動作性能上には全く支障がない。また、NTSCのカムコーダはインターレースであるから、順次出力されるフィールド画像データは1ラインずれている画像データである。しかし、1ラインずれて交互に出力される画像データを使用しても、同じくAF動作性能上には全く支障はない。
【0068】
一方、上記実施例1、実施例2、実施例3において説明したAF動作は、フォトダイオード群41A,41B,41C,41Dに蓄積された各信号電荷に対応する各画像信号に基づいて実行された。この4つのフォトダイオード群41A,41B,41C,41Dは、各フォトダイオード41を3ラインおきに組み合わせることで分割されたものであった。従って、各実施例におけるAF動作は、以下に示すように順次出力される複数ラインの組み合わせ毎のデータを使用している。
【0069】
・第1出力画像(0ライン、4ライン、8ライン、 ・・・4*nライン)
・第2出力画像(1ライン、5ライン、9ライン、 ・・・4*nライン)
・第3出力画像(2ライン、6ライン、10ライン、・・・4*nライン)
・第4出力画像(3ライン、7ライン、11ライン、・・・4*nライン)
・第5出力画像(0ライン、4ライン、8ライン、 ・・・4*nライン)
従って、順次出力される各画像データは、別の位置のデータであることを意味している。
【0070】
すなわち、上述した各実施例においては、4ラインとばしの画像データが使用されているが、CCD5がNTSCに比べ非常に高画素であれば、特に問題は生じない。換言すれば、上記各実施例においてCCD5を高画素とすることで、NTSC並の実力を確保することができる。
【0071】
また、各実施例で説明したAF動作において、露光量(露光時間)を稼ぐために、順次出力される複数ラインの組み合わせ毎のデータは、露光が重なるように読み出されている。これに対し、露光量の減少を伴うが、図8に示すように各データが重ならないように読み出すことも可能である。
【0072】
【発明の効果】
以上述べたように、本発明によれば、撮像素子の光電変換素子を所定間隔で配置した複数ラインの組み合わせからなる複数の群に分割した上で、同一の群に属する光電変換素子は同一タイミングで、異なる群に属する光電変換素子は互いに異なるタイミングで電荷蓄積を開始するように電荷蓄積開始タイミングを制御し、これらの各光電変換素子群から読み出された画像信号に基づいて、撮像素子の1回の撮像によって合焦位置を判定することが可能であり、この合焦位置に撮像レンズを移動させることにより、AF動作の精度を維持しつつ高速化を達成することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電子的撮像装置の構成を示すブロック図
【図2】同実施形態におけるCCDの構成を模式的に示す図
【図3】同実施形態におけるCCDの動作を説明するためのタイムチャート
【図4】同実施形態におけるCCDの内部動作を説明するための模式図
【図5】同実施形態におけるAF動作を説明するためのタイムチャート
【図6】同実施形態における他のAF動作を説明するためのタイムチャート
【図7】同実施形態におけるさらに別のAF動作を説明するためのタイムチャート
【図8】同実施形態における他のAF動作を説明するためのタイムチャート
【符号の説明】
1…撮像光学系
2…ズームレンズ群
3…フォーカスレンズ群
4…絞り
5…CCD(撮像素子)
6…撮像回路
7…A/D変換器
8…バッファメモリ
9…D/A変換器
10…LCD(液晶ディスプレイ)
11…圧縮/伸長回路
12…記録用メモリ(記録媒体)
13…AE処理部(自動露出処理部)
14…AF処理部(自動焦点調整処理部)
15…CPU
16…タイミング発生器
17…CCDドライバ
18〜20…モータドライバ
21…絞りモータ
22…フォーカスモータ
23…ズームモータ
24…操作部
25…EEPROM
31…ハイパスフィルタ
32…切替器
33…累積加算部
41…フォトダイオード(光電変換素子)
42…転送ゲート
43…垂直転送部
44…水平転送部
45…出力増幅器

Claims (2)

  1. 被写体像を撮像面に結像させる撮像レンズと、
    複数の光電変換素子が2次元アレイ状に配列されると共に、所定間隔で配置された複数ラインの組み合わせからなる複数の光電変換素子群に分割され、前記各光電変換素子に蓄積された電荷を垂直方向に転送する垂直転送部と、当該垂直転送部により転送された電荷を水平方向に転送する水平転送部と、前記複数の光電変換素子と前記垂直転送部との間に前記各光電変換素子に対応して個別に設けられ、移送パルスに応答して前記各光電変換素子に蓄積された電荷を前記垂直転送部に転送する転送ゲートと、を有し、前記撮像レンズにより撮像面に結像された被写体像に対応した電荷を蓄積する撮像素子と、
    前記撮像素子の同一の光電変換素子群に属する光電変換素子は同一のタイミングで電荷蓄積を開始し、異なる光電変換素子群に属する光電変換素子は互いに異なるタイミングで電荷蓄積を開始するように前記撮像素子の電荷蓄積開始並びに終了タイミングを制御し、前記転送ゲートは前記各光電変換素子の電荷蓄積開始から所定時間に亘って当該各光電変換素子に蓄積された電荷を前記垂直転送部へ転送するように、前記所定時間間隔で前記移送パルスを発生することで、一回の撮像動作において露光量が略同一でサンプルタイミングが相互に異なる複数の画像信号を出力する制御手段と、
    前記撮像素子の各光電変換素子群からそれぞれ読み出された画像信号に基づいて前記撮像素子の各光電変換素子群の電荷蓄積開始タイミングに同期して前記撮像レンズを合焦駆動する駆動手段と、
    を備えた電子的撮像装置。
  2. 被写体の明るさに応じて前記移送パルスの印加期間を変化させる手段を備えたことを特徴とする請求項1記載の電子的撮像装置。
JP2000053671A 1999-03-05 2000-02-29 電子的撮像装置 Expired - Fee Related JP3542312B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000053671A JP3542312B2 (ja) 1999-03-05 2000-02-29 電子的撮像装置
US09/519,031 US6876391B1 (en) 1999-03-05 2000-03-03 Imaging device and control method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-58530 1999-03-05
JP5853099 1999-03-05
JP2000053671A JP3542312B2 (ja) 1999-03-05 2000-02-29 電子的撮像装置

Publications (2)

Publication Number Publication Date
JP2000324378A JP2000324378A (ja) 2000-11-24
JP3542312B2 true JP3542312B2 (ja) 2004-07-14

Family

ID=26399586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053671A Expired - Fee Related JP3542312B2 (ja) 1999-03-05 2000-02-29 電子的撮像装置

Country Status (2)

Country Link
US (1) US6876391B1 (ja)
JP (1) JP3542312B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133077B2 (en) * 2001-07-02 2006-11-07 Canon Kabushiki Kaisha Auto focus camera, lens apparatus and camera system with a vibration motor drive
JP3920659B2 (ja) * 2002-02-26 2007-05-30 株式会社メガチップス Af評価値算出装置
JP4543602B2 (ja) * 2002-04-17 2010-09-15 株式会社ニコン カメラ
JP2004077959A (ja) * 2002-08-21 2004-03-11 Nikon Corp 焦点調節方法およびカメラ
US20080037972A1 (en) * 2003-09-22 2008-02-14 Sharp Kabushiki Kaisha Photographing Lens Position Control Device
JP2005156900A (ja) * 2003-11-26 2005-06-16 Kyocera Corp 焦点検出用センサ−とその焦点検出用センサ−を有する焦点検出装置及び焦点検出方法並びに電子撮像装置
JP2007010908A (ja) 2005-06-29 2007-01-18 Canon Inc 焦点調節方法及び装置
JP5171433B2 (ja) * 2008-01-22 2013-03-27 キヤノン株式会社 撮像装置、およびレンズ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031048A (en) * 1988-08-09 1991-07-09 Minolta Camera Kabushiki Kaisha Electric shutter control device for use in a still video camera, for example, and a method of controlling same
US5615399A (en) * 1991-08-28 1997-03-25 Canon Kabushiki Kaisha Focus detecting apparatus having photoelectric area sensors
JP2888719B2 (ja) * 1993-02-15 1999-05-10 株式会社東芝 固体撮像装置の駆動方法
JPH06288821A (ja) * 1993-03-30 1994-10-18 Nikon Corp カメラの測光装置
US5452004A (en) * 1993-06-17 1995-09-19 Litton Systems, Inc. Focal plane array imaging device with random access architecture
JP3687124B2 (ja) * 1995-02-23 2005-08-24 三菱電機株式会社 固体撮像素子及びその駆動方法
US6373524B2 (en) * 1995-06-22 2002-04-16 Canon Kabushiki Kaisha Interchangeable lens video camera system
JPH09322191A (ja) * 1996-03-29 1997-12-12 Ricoh Co Ltd 画像入力装置
US6278490B1 (en) * 1996-05-23 2001-08-21 Olympus Optical Co., Ltd. Exposure control for an image pickup apparatus that uses an electronic flash
DE19730976C2 (de) * 1996-07-19 2003-12-24 Pentax Corp Einrichtung zum Scharfstellen des Objektivs einer Kamera
EP0910209B1 (en) * 1997-10-17 2010-04-14 Panasonic Corporation A video camera having an increased dynamic range
JP2000002833A (ja) * 1998-06-16 2000-01-07 Minolta Co Ltd カメラ

Also Published As

Publication number Publication date
US6876391B1 (en) 2005-04-05
JP2000324378A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
JP4797522B2 (ja) 撮像装置及びそのプログラム
US8890995B2 (en) Image pickup apparatus, semiconductor integrated circuit and image pickup method
JP5002412B2 (ja) 撮像装置
US20040212723A1 (en) Image pickup apparatus and operating method
JP3542312B2 (ja) 電子的撮像装置
JP2002320143A (ja) 撮像装置
JP4540650B2 (ja) 撮影装置
JP4338156B2 (ja) 撮像装置及び撮像方法及び記憶媒体
JP2001346095A (ja) デジタルスチルカメラ
JPH0943507A (ja) 電子スチルカメラおよびそのフォーカス制御方法
JP4311776B2 (ja) 撮像装置
JP2003259382A (ja) デジタルカメラ
CN111800591A (zh) 摄像元件及其控制方法和摄像装置
JP4464006B2 (ja) 撮像装置および露光方法
JP2008187614A (ja) 撮影装置
JP2010107662A (ja) 撮像装置、測距装置および測距方法
JP6672006B2 (ja) 撮像装置
JP2005217955A (ja) 撮像装置及びその制御方法及びプログラム及び記憶媒体
JP4199381B2 (ja) 固体撮像装置および固体撮像素子駆動方法
JP2010074547A (ja) 撮像素子駆動ユニットおよび撮像装置
JP2008270832A (ja) 固体撮像素子及び撮像装置
JP3907343B2 (ja) 撮像装置
JPH0140547B2 (ja)
JP2006237764A (ja) ビデオカメラ
JP2003046860A (ja) 撮像装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees