JP3541635B2 - 車両ヨーイング制御装置 - Google Patents

車両ヨーイング制御装置 Download PDF

Info

Publication number
JP3541635B2
JP3541635B2 JP22381197A JP22381197A JP3541635B2 JP 3541635 B2 JP3541635 B2 JP 3541635B2 JP 22381197 A JP22381197 A JP 22381197A JP 22381197 A JP22381197 A JP 22381197A JP 3541635 B2 JP3541635 B2 JP 3541635B2
Authority
JP
Japan
Prior art keywords
wheel
wheels
control
torque
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22381197A
Other languages
English (en)
Other versions
JPH1159363A (ja
Inventor
昭裕 大朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22381197A priority Critical patent/JP3541635B2/ja
Publication of JPH1159363A publication Critical patent/JPH1159363A/ja
Application granted granted Critical
Publication of JP3541635B2 publication Critical patent/JP3541635B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車両のヨーイングを制御する車両ヨーイング制御装置に関するものである。
【0002】
【従来の技術】
車両のヨーイングを制御する車両ヨーイング制御装置の一例が特開平8─91197号公報に記載されている。この車両ヨーイング制御装置においては、車両のヨーイングが、車輪に加わる液圧制動トルクの大きさを制御することによって制御されている。旋回中に車両の走行状態がドリフトアウト状態であると推定された場合には、ドリフトアウト抑制制御が行われるが、このドリフトアウト抑制制御においては、左右前輪の液圧制動トルクと後輪側の旋回内輪の液圧制動トルクとが増加させられる。その結果、車両が減速させられるとともに、車両に旋回方向と同じ方向のヨーイングモーメントが加えられてアンダステア傾向が減少させられ、操縦安定性が向上させられる。このように、ヨーイング制御を液圧制動トルクの制御のみによって行い得るようにすると、液圧ブレーキ回路の構造が複雑となり、車両ヨーイング制御装置のコストが高くなるという問題が生じる。
【0003】
【発明が解決しようとする課題,解決手段,作用および効果】
そこで、本発明の課題は、液圧ブレーキ回路の構造を簡単にし、車両ヨーイング制御装置のコストダウンを図ることである。
上記課題は、車両ヨーイング制御装置を下記の態様とすることによって解決される。なお、以下の説明において、本発明の各態様は、請求項と同様に、それぞれ項に分け、項番号を付し、必要に応じて他の項の番号を引用する形式で記載する。各項に記載の特徴を組み合わせて採用することの可能性を明示するためである。
(1)左駆動輪と右駆動輪とを含む4つ以上の車輪を備えた車両のヨーイングを制御する車両ヨーイング制御装置であって、
前記左駆動輪と右駆動輪とに接続された少なくとも1個の電動モータを含み、その電動モータの出力トルクを左駆動輪と右駆動輪とに付与する電動トルク付与装置と、
前記4つ以上の車輪のうち少なくとも1つずつの左車輪および右車輪と共に回転するブレーキ回転体の各々に摩擦部材を押し付けるホイールシリンダを含み、それらホイールシリンダの液圧に応じた液圧制動トルクを車輪に加える液圧制動装置と、
前記電動モータを制御することによって、その電動モータに接続された駆動輪に加わるトルクを制御するとともに、前記ホイールシリンダの少なくとも1つの液圧を制御することによって対応する車輪に加わる液圧制動トルクを制御し、前記車両のヨーイングを制御する共同制御ヨーイング制御手段と
を含む車両ヨーイング制御装置
車両のヨーイング制御は、車両の左側に位置する1個以上の車輪のトルクと右側に位置する1個以上の車輪のトルクとの差の制御により行われるが、本項に記載の車両ヨーイング制御装置においては、トルク差の制御が、ホイールシリンダ液圧の制御と、電動モータの制御との両方によって行われる。ここで、車両の片側の1個以上の車輪のトルクは、1個以上の車輪各々のトルクの平均的な値であっても代表的な値であってもよい。代表的な値としては、例えば、車両の前後方向軸に対して対称な位置にある車輪のトルク値,路面の摩擦係数が高い部分に接触している側の車輪のトルク値,車輪に対する荷重が大きい側の車輪のトルク値等を採用し得る。車輪のトルクは、駆動トルクを正、制動トルクを負で表すこととする。また、電動トルク付与装置によって駆動輪に加えられるトルクは、駆動トルクの場合と回生制動トルクの場合とがある。電動モータの出力トルクが駆動トルクであれば駆動トルクが加えられ、回生制動トルクであれば回生制動トルクが加えられるのであり、これら車輪のトルクが電動モータの制御により制御される。
いずれにしても、左側車輪のトルクが右側車輪のトルクより大きくされれば、右方向のヨーイングモーメントが発生させられ、小さくされれば左方向のヨーイングモーメントが発生させられる。換言すれば、旋回中の車両に、その旋回方向と同じ方向のヨーイングモーメントを加えたり、旋回方向と反対方向のヨーイングモーメントを加えたりすることができるのである。
このように、本項に記載の車両ヨーイング制御装置によれば、ヨーイングが、ホイールシリンダ液圧の制御と電動モータの制御との両方によって制御されるため、ホイールシリンダ液圧の制御のみによって制御される従来の車両ヨーイング制御装置に比較して、液圧ブレーキ回路の構造を簡単にすることができ、車両ヨーイング制御装置のコストダウンを図ることができる。そのために、電動トルク付与装置が必要となるが、電動トルク付与装置は、本来、左右駆動輪にトルクを付与するために設けられるもので、車両のヨーイングを制御するために特別に設けられるものではない。したがって、電動トルク付与装置によって車両ヨーイング制御装置のコストが高くなることはないのである。
電動モータの制御によりトルクが制御される車輪(トルクが制御される車輪を制御対象輪と総称する。制御対象輪のトルクは電動モータの制御により制御される場合と、ホイールシリンダ液圧の制御により制御される場合とがある。また、トルクが制御されない車輪を非制御対象輪と称する。)のホイールシリンダについては液圧制御を行う必要がないため、ホイールシリンダ液圧を増圧,減圧するための液圧制御弁装置等が不要となったり、後述するように、一部マスタ連通状態を形成する必要がなくなるため、アンチロック制御用液圧ブレーキ回路をそのまま使用することが可能となって、回路の複雑化を回避しつつヨーイング制御を行うことが可能となったりするのである。例えば、液圧制動装置が、マスタシリンダの2つの加圧室に2つずつのホイールシリンダが接続された2系統の液圧ブレーキ回路を含む場合において、これら2系統の液圧ブレーキ回路の一方に属する2つのホイールシリンダの一方の液圧のみを制御する場合、すなわち、2つのホイールシリンダ各々に対応する2つの車輪の一方が制御対象輪であり、他方が非制御対象輪である場合には、アンチロック制御においては、両方のホイールシリンダがマスタシリンダから遮断された状態に保たれるか、両方のホイールシリンダがマスタシリンダに連通させられた状態に保たれるかのいずれかとされるが、ヨーイング制御においては、上述の液圧が制御される1つのホイールシリンダが他のホイールシリンダからもマスタシリンダからも遮断され、かつ、他のホイールシリンダがマスタシリンダに連通させられた状態に保たれる。他のホイールシリンダがマスタシリンダに連通させられるのは、ヨーイング制御中に、ブレーキ操作部材が操作された場合に、直ちにマスタシリンダの作動液を非制御対象輪のホイールシリンダに流入させることが望ましいからである。このような状態を一部マスタ連通状態と称することとするが、液圧ブレーキ回路をヨーイング制御可能な回路とするには、一部マスタ連通状態を実現し得る回路にしなければならないため、回路の構造が複雑となるのである。
それに対して、本項に記載の車両ヨーイング制御装置において、制御対象輪が駆動輪である場合には、その駆動輪のトルクが電動モータの制御により制御されることになるため、その駆動輪に対応する液圧ブレーキ回路に属する2つのホイールシリンダの液圧はいずれも制御されないことになる。そのため、ヨーイング制御中に、これら両ホイールシリンダが互いに連通させられていても、マスタシリンダに連通させられていても差し支えないのであり、一部マスタ連通状態を形成する必要がないのである。その結果、液圧ブレーキ回路の構造を、従来の車両ヨーイング制御装置におけるそれより簡単にすることができる。また、液圧制御弁装置が複数個の電磁弁を含む場合には、電磁弁の作動回数を減らすことができ、作動騒音を低減することができる。
なお、液圧制動トルクが制御される車輪は、駆動輪であっても非駆動輪であってもよい。例えば、車両が4輪駆動車の場合には、4つの駆動輪のうちの2つの駆動輪については電動モータの制御によりトルクが制御され、他の2つの駆動輪についてはホイールシリンダ液圧の制御により液圧制動トルクが制御されるようにすることができる。
(2)前記4つ以上の車輪のうちの少なくとも2つが非駆動輪であり、前記電動モータが前記左,右駆動輪に差動装置を介して接続されており、前記液圧制動装置において、前記左,右駆動輪の一方に対応するホイールシリンダと前記少なくとも2つの非駆動輪のうちの1つに対応するホイールシリンダとが、マスタシリンダの同じ加圧室に接続されており、かつ、前記共同制御ヨーイング制御手段が、前記左,右駆動輪のトルクを前記電動モータの制御により制御するとともに、前記少なくとも2つの非駆動輪のうちの少なくとも1つの非駆動輪の液圧制動トルクをそれに対応するホイールシリンダの液圧を制御することにより制御する駆動輪・非駆動輪共同ヨーイング制御手段を含む(1) 項に記載の車両ヨーイング制御装置(請求項)。
本車両ヨーイング制御装置においては、左,右駆動輪のトルクが電動モータの制御により制御されるとともに、少なくとも1つの非駆動輪の液圧制動トルクがホイールシリンダ液圧の制御により制御される。電動モータは差動装置を介して左,右駆動輪に接続されているため、左,右駆動輪に付与されるトルクはそれぞれ同じ大きさとなる。そのため、左側車輪と右側車輪とのトルク差は、ホイールシリンダ液圧の制御により制御されることになる。ホイールシリンダ液圧の制御により、左側車輪の液圧制動トルクが右側車輪のそれより大きくされれば、車両には、左方向のヨーイングモーメントが加えられ、小さくされれば右方向のヨーイングモーメントが加えられる。
本項に記載の車両ヨーイング制御装置の液圧制動装置においては、マスタシリンダの同じ加圧室に接続されている2つのホイールシリンダが、駆動輪のホイールシリンダと非駆動輪のホイールシリンダとであり、液圧制動装置を、例えば、X配管の2系統液圧ブレーキ回路を含むものとすることができる。2系統の液圧ブレーキ回路各々においては、2つのホイールシリンダが、トルクが電動モータの制御によって制御される駆動輪(電動モータの制御によりトルクが制御される車輪は駆動輪であるため、制御対象駆動輪と称する)のホイールシリンダとトルクが液圧の制御により制御される非駆動輪(ホイールシリンダ液圧の制御によりトルクが制御される車輪は非駆動輪であるため、制御対象非駆動輪と称する)のホイールシリンダとである場合と、制御対象駆動輪のホイールシリンダと非制御対象非駆動輪のホイールシリンダとである場合とがある。後者の制御対象駆動輪のホイールシリンダと非制御対象非駆動輪のホイールシリンダとである場合においては、(1) 項に関して記載したように、従来の車両ヨーイング制御装置に比較して、液圧ブレーキ回路の構造を簡単にすることができる。前者の制御対象駆動輪のホイールシリンダと制御対象非駆動輪のホイールシリンダとである場合においては、非駆動輪のホイールシリンダの液圧を制御する際に、非駆動輪のホイールシリンダをマスタシリンダからも駆動輪のホイールシリンダからも遮断する必要があるが、前述した従来の車両ヨーイング制御装置と同様な制御を行い得るようにするためにマスタシリンダに連通させる必要があるのは非制御対象輪であり、ここでは、駆動輪は制御対象輪である。そのため、駆動輪のホイールシリンダをマスタシリンダに連通させる必要がなく、駆動輪のホイールシリンダを非駆動輪のホイールシリンダと共にマスタリンダから遮断することができるため、一部マスタ連通状態を実現する必要がない。
なお、駆動輪のホイールシリンダと非駆動輪のホイールシリンダとは互いに遮断することが必要であるが、この遮断はアンチロック制御用の制御弁を利用して実現することができる。例えば、ホイールシリンダをマスタシリンダから遮断した状態でアンチロック制御を行う液圧ブレーキ回路には、主液通路遮断弁や液圧制御弁装置等が設けられる。そのため、例えば、主液通路遮断弁を遮断状態に切り換えるとともに、液圧制御弁装置に含まれる増圧開閉弁を閉状態に切り換えれば、非駆動輪のホイールシリンダをマスタシリンダと駆動輪のホイールシリンダとの両方から遮断することができる。駆動輪のホイールシリンダの液圧は制御されるわけではないため、ヨーイング制御中に駆動輪のホイールシリンダに対して設けられた増圧開閉弁を閉状態に保っても差し支えないのである。
いずれにしても、本項に記載の車両ヨーイング制御装置においては、液圧ブレーキ回路として、アンチロック制御用液圧ブレーキ回路をそのまま使用できるため、ヨーイング制御のために特別に複雑にする必要がないのであり、従来の車両ヨーイング制御装置における場合より、液圧ブレーキ回路の構造を簡単にすることができる。
本発明を適用しない場合の具体例を、図9,10に基づいて説明する。
図9に示す車両ヨーイング制御装置においては、バイパス通路400およびバイパス遮断弁402が設けられている。この車両ヨーイング制御装置における液圧ブレーキ回路はX配管式であり、右前輪404のホイールシリンダ406と左後輪408のホイールシリンダ410とがマスタシリンダ412の同じ加圧室に接続されている。また、この車両ヨーイング制御装置によってヨーイングが制御される車両は前輪駆動車である。
ここで、ヨーイング制御の一態様であるドリフトアウト抑制制御が行われる場合について説明する。車両が左旋回中に、走行状態がドリフトアウト状態であると推定された場合には、左右前輪および左後輪のトルクが、各々のホイールシリンダの液圧が増圧されることによって小さくされる。左方向のヨーイングモーメントが増加させられてドリフトアウト傾向が小さくされるのであり、操縦安定性が向上させられる。本液圧ブレーキ回路の図示の部分においては、両ホイールシリンダ406,410がマスタシリンダ412から遮断された状態で、それら両ホイールシリンダ406,410の液圧が、高圧源417の液圧を利用して、液圧制御弁装置414,416によって互いに独立に制御され得る。主液通路遮断弁418およびバイパス通路遮断弁402が共に閉状態に保たれるのである。
右旋回中にドリフトアウト状態にあると推定された場合には、左右前輪および右後輪のトルクが小さくされる。図示の液圧ブレーキ回路においては、ホイールシリンダ406の液圧は制御されるが、ホイールシリンダ410の液圧は制御されない。そのため、ホイールシリンダ406はホイールシリンダ410からもマスタシリンダ412からも遮断され、ホイールシリンダ410はマスタシリンダ412に連通した状態に保たれる。主液通路遮断弁418が閉状態に、バイパス遮断弁402が開状態に、増圧開閉弁420が閉状態に保たれるのである。したがって、ヨーイング制御中にブレーキ操作部材422が操作された場合には、マスタシリンダ412の作動液が開状態にあるバイパス遮断弁402を経て非制御対象輪である左後輪408のホイールシリンダ410に流入させられ、左後輪408に運転者の意図に応じた液圧制動トルクが加えられる。このように、1系統の液圧ブレーキ回路に含まれる2つのホイールシリンダが、制御対象輪のホイールシリンダと非制御対象輪のホイールシリンダとである場合には、一部マスタ連通状態を実現しなければならないため、バイパス通路400およびバイパス遮断弁402が不可欠である。
また、この車両ヨーイング制御装置においてはアンチロック制御も行われる。主液通路遮断弁418,バイパス遮断弁402が閉状態に切り換えられた状態で、液圧制御弁装置414,416が制御されることにより、ホイールシリンダ406,410の液圧が、車輪404,408の制動スリップ状態がほぼ適正状態に保たれるように制御されるのである。
それに対して、本項に記載の車両ヨーイング制御装置におけるように、駆動輪のトルクが電動モータの制御により制御される場合には、バイパス通路400およびバイパス遮断弁402は不要となる。左旋回中にドリフトアウト抑制制御が行われる場合には、本液圧ブレーキ回路の図示の部分においては、左後輪408のトルクがホイールシリンダ410の液圧の制御により制御され、右前輪404のトルクは電動モータの制御により制御される。ホイールシリンダ410は、ホイールシリンダ406からもマスタシリンダ412からも遮断された状態で、液圧が液圧制御弁装置416により制御される。バイパス遮断弁402および主液通路遮断弁418が閉状態とされるとともに、増圧開閉弁424が閉状態に保たれる。増圧開閉弁424が閉状態に切り換えられるのは、ホイールシリンダ410をホイールシリンダ406から遮断するためである。ここで、右前輪404は制御対象駆動輪であるため、ホイールシリンダ406をマスタシリンダ412に連通させておく必要がない。また、ホイールシリンダ406の液圧は制御されるわけではない。そのため、ホイールシリンダ406について設けられた増圧開閉弁424をヨーイング制御中に閉状態に保つことが可能なのである。
右旋回中にドリフトアウト抑制制御が行われる場合には、本液圧ブレーキ回路の図示の部分においては、右前輪404のトルクが電動モータの制御により制御されるが、ホイールシリンダ406の液圧もホイールシリンダ410の液圧も制御されるわけではない。ホイールシリンダ406,410が、マスタシリンダ412に連通させられていても、ホイールシリンダ406,410が互いに連通させられていても差し支えないのであり、主液通路遮断弁418を閉状態に切り換える必要も、液圧制御弁装置414,416を制御する必要もない。ブレーキ操作部材422が操作された場合には、マスタシリンダ412の作動液が開状態にある主液通路遮断弁418,増圧開閉弁420,424を経て両ホイールシリンダ410,406に流入させられる。この場合には、バイパス遮断弁402は閉状態に保っておけばよい。
以上の説明から明らかなように、本項に記載の車両ヨーイング制御装置においては、液圧ブレーキ回路を一部マスタ連通状態を実現し得るものとする必要がないため、従来の車両ヨーイング制御装置においては必要であったバイパス通路400およびバイパス遮断弁402が不要となる。また、アンチロック制御用の液圧ブレーキ回路をそのまま使用することができるのであり、ヨーイング制御のために特別に複雑にする必要がないのである。
さらに、図10に示す車両ヨーイング制御装置においては、右前輪404のホイールシリンダ406と左後輪408のホイールシリンダ410とを互いに連通させたり、遮断したりするホイールシリンダ間遮断弁450が設けられている。この液圧ブレーキ回路はX配管式であり、この車両ヨーイング制御装置が搭載された車両は前輪駆動車である。
車両が左旋回中に、走行状態がドリフトアウト状態であると推定された場合には、前述のように、左右前輪および左後輪のトルクが制御される。液圧ブレーキ回路の図示の部分においては、両ホイールシリンダ406,410の液圧が制御される。そのために、主液通路遮断弁418が閉状態に、ホイールシリンダ間遮断弁450が開状態に保たれる。
右旋回中にドリフトアウト状態にあると推定された場合には、左右前輪および右後輪のトルクが制御される。液圧ブレーキ回路の図示の部分においては、ホイールシリンダ406の液圧が、ホイールシリンダ間遮断弁450を閉状態に保った状態で制御される。主液通路遮断弁418が開状態に、増圧開閉弁420が開状態に保たれ、ホイールシリンダ410がマスタシリンダ412に連通させられた状態に保たれる。そのため、ヨーイング制御中にブレーキ操作部材422が操作されれば、マスタシリンダ412の作動液が、開状態にある主液通路遮断弁418,増圧開閉弁420を経てホイールシリンダ410に流入させられる。このように、一部マスタ連通状態を実現するために、ホイールシリンダ間遮断弁450は不可欠なのである。
それに対して、右前輪404のトルクが電動モータの制御により制御される場合には、ホイールシリンダ406の液圧を制御する必要がなくなるため、ホイールシリンダ間遮断弁450は不要となる。ホイールシリンダ406とホイールシリンダ410との間を遮断する場合には、ホイールシリンダ406について設けられた増圧開閉弁424を閉状態に切り換えればよい。
(3)前記駆動輪が左,右前輪で、前記2つの非駆動輪が左後輪および右後輪であり、前記共同ヨーイング制御手段が、前記電動モータの制御により前記左,右前輪のトルクを小さくするとともに、前記左,右後輪の旋回内輪に対応するホイールシリンダの液圧を大きくすることにより液圧制動トルクを大きくするドリフトアウト抑制制御手段を含む(2) 項に記載の車両ヨーイング制御装置。
車両の旋回中の走行状態がドリフトアウト状態であると推定された場合には、左,右前輪のトルクが均等に減少させられるとともに、後ろ側の旋回内輪の液圧制動トルクが増加させられる。その結果、旋回方向と同じ方向のヨーイングモーメントが大きくされてドリフトアウト傾向が軽減され、操縦安定性が向上させられる。ドリフトアウト状態にある場合には、前輪に横滑りが生じていると推定されるため、左,右前輪のトルクを等しく減少させることにより車両を減速させつつ、後輪側においてトルク差を制御することが望ましい。
ドリフトアウト抑制制御が、ブレーキ操作部材もアクセルペダルも操作されていない状態で行われる場合には、左,右前輪には回生制動トルクが加えられ、後輪側の旋回内輪には液圧制動トルクが加えられる。ブレーキ操作部材が操作され、アクセルペダルが操作されていない場合には、回生制動トルクおよび液圧制動トルクが増加させられ、逆に、アクセルペダルが操作され、ブレーキ操作部材が操作されていない場合には、駆動トルクが減少させられ、液圧制動トルクが加えられる。
(4)前記4つ以上の車輪のうちの少なくとも2つが非駆動輪であり、前記電動モータが前記左,右駆動輪各々に1つずつ接続されており、前記液圧制動装置において、左駆動輪のホイールシリンダと右駆動輪のホイールシリンダとが、マスタシリンダの同じ加圧室に接続されており、かつ、前記共同ヨーイング制御手段が、前記2つの電動モータのうちの少なくとも一方の制御により左,右駆動輪のトルク差を制御するとともに、2つの非駆動輪のホイールシリンダの液圧を共に増加させることによりそれら非駆動輪の液圧制動トルクを増加させるドリフトアウト抑制制御手段を含むことを特徴とする請求項1に記載の車両ヨーイング制御装置(請求項)。
2つの電動モータのうちの少なくとも一方の制御により、左,右駆動輪のトルク差が制御されるが、車両が左旋回中において、右駆動輪のトルクが大きくされれば、旋回方向と同じ左方向のヨーイングモーメントが増加させられ、ドリフトアウト傾向が軽減され、操縦安定性が向上させられる。右旋回中においては、左駆動輪のトルクが大きくされ、ドリフトアウト傾向が軽減される。(3) 項において記載したように、トルク差の制御は後輪側において行われることが望ましいが、不可欠ではない。なお、左,右駆動輪のトルク差を制御する場合に、制御対象である電動モータは2つであっても、1つであってもよい。
本項に記載の車両ヨーイング制御装置の液圧制動装置においては、左,右駆動輪のホイールシリンダが同じ加圧室に接続され、左,右非駆動輪のホイールシリンダが同じ加圧室に接続されて、液圧制動装置は、例えば、前後配管の2系統の液圧ブレーキ回路を含むものとなる。ドリフトアウト抑制制御が行われる場合には、非駆動輪の2つのホイールシリンダを含む液圧ブレーキ回路においては、従来の車両ヨーイング制御装置における場合と同様に、少なくとも1つのホイールシリンダの液圧が制御されることになるが、駆動輪の2つのホイールシリンダを含む液圧ブレーキ回路においては、少なくとも一方の駆動輪のトルクは制御されるが、電動モータの制御により制御されるのであり、ホイールシリンダ液圧の制御により制御されるわけではない。そのため、ホイールシリンダの液圧を制御するための液圧制御弁装置等が不要となる。
本発明を適用しない場合の具体例を、図11,12に基づいて説明する。
図11に示す車両ヨーイング制御装置においては、図9に示す車両ヨーイング制御装置における場合と同様に、バイパス通路460,462およびバイパス遮断弁464,466が設けられている。図11に示す車両ヨーイング制御装置における液圧ブレーキ回路は前後配管式であり、左右駆動輪としての左右後輪468,470のホイールシリンダ472,474がマスタシリンダ412の同じ加圧室に接続されている。
ここで、前述の場合と同様に、左旋回中にドリフトアウト状態であると推定された場合には、左右前輪および左後輪468の液圧制動トルクが増加させられる。駆動輪としての後輪側の液圧ブレーキ回路においては、左後輪468のホイールシリンダ472の液圧制御が液圧制御弁装置476の制御により行われ、右後輪470のホイールシリンダ474の液圧制御は行われない。主液通路遮断弁418が閉状態に、バイパス遮断弁464が閉状態に、バイパス遮断弁466が開状態にされるとともに、増圧開閉弁482が閉状態に保たれる。ヨーイング制御中にブレーキ操作部材422が操作されれば、マスタシリンダ412の作動液は、バイパス通路462を経て非制御対象輪である右後輪470のホイールシリンダ474に流入させられる。
逆に、右旋回中にドリフトアウト状態であると推定された場合には、右後輪470のホイールシリンダ474の液圧制御が液圧制御弁装置478の制御により行われるが、左後輪468のホイールシリンダ472の液圧制御が行われない。主液通路遮断弁418が閉状態に、バイパス遮断弁466が閉状態に、バイパス遮断弁464が開状態にされるとともに、増圧開閉弁480が閉状態に保たれる。ブレーキ操作部材422が操作されれば、マスタシリンダ412の作動液がバイバス通路460を経て左後輪468のホイールシリンダ472に流入させられる。このように、液圧ブレーキ回路を、一部マスタ連通状態を実現し得る回路とするためには、バイパス通路460,462およびバイパス遮断弁464,466が不可欠なのである。
それに対して、左右後輪468,470のトルクが電動モータの制御により制御されるようにすれば、図示する液圧ブレーキ回路においてはホイールシリンダ472,474の液圧を制御する必要がなくなる。そのため、液圧ブレーキ回路を、一部マスタ連通状態を実現し得る回路とする必要がなくなり、バイパス通路460,462およびバイパス遮断弁464,466が不要となる。また、ヨーイング制御においてホイールシリンダの液圧制御が行われることがないため、高圧源417,主液通路遮断弁418および液圧制御弁装置476,478も不要となる。液圧ブレーキ回路をアンチロック制御可能な回路するためには、これら高圧源417,主液通路遮断弁418および液圧制御弁装置476,478は必要であるが、バイパス通路およびバイパス遮断弁は不要であり、ヨーイング制御のために特別に複雑にする必要がない。
また、図12に示す車両ヨーイング制御装置においては、方向切換弁490,492が設けられている。方向切換弁490,492の切換えにより、左,右後輪468,470のホイールシリンダ472,474をそれぞれ独立にマスタシリンダ412に連通させたり、マスタシリンダ412から遮断して液圧制御弁装置476,478に連通させたりするとともに、2つのホイールシリンダ472,474を互いに連通させたり、遮断したりすることが可能となる。
右後輪468のホイールシリンダ472の液圧が制御され、左後輪470のホイールシリンダ474の液圧が制御されない場合には、方向切換弁490は切り換えられるが、方向切換弁492は図示する状態に保たれる。ホイールシリンダ472は液圧制御弁装置476に連通させられ、ホイールシリンダ474は方向切換弁492を介してマスタシリンダ412に連通させられる。また、ホイールシリンダ472,474間は遮断される。逆に、右後輪470のホイールシリンダ474の液圧が制御され、左後輪468のホイールシリンダ472の液圧が制御されない場合には、方向切換弁492が切り換えられ、方向切換弁490は図示する状態に保たれる。ホイールシリンダ474が液圧制御弁装置478に連通させられ、ホイールシリンダ472がマスタシリンダ412に連通させられる。
それに対して、左,右後輪468,470のトルクがそれぞれ電動モータの制御により制御される場合には、左,右後輪468,470のホイールシリンダ472,474の液圧を制御する必要がなくなり、一部マスタ連通状態を実現する必要もなくなる。そのため、方向切換弁490,492および液圧制御弁装置476,478等が不要となる。アンチロック制御を可能とする場合には、液圧制御弁装置476,478は必要であるが、方向切換弁をホイールシリンダ毎に設ける必要はなく、共通とすることができる。
(5)少なくとも2つの駆動輪を備えた車両のヨーイングを制御する車両ヨーイング制御装置であって、
前記2つの駆動輪に接続された少なくとも1個の電動モータを含み、その電動モータの出力トルクを駆動輪にそれぞれ付与する電動トルク付与装置と、
前記駆動輪に付与されるトルクを前記電動モータを制御することにより制御して、前記車両のヨーイングを制御する電動モータ依拠ヨーイング制御手段と
を含む車両ヨーイング制御装置。
本項に記載の車両ヨーイング制御装置においては、車両のヨーイング制御が、電動モータの制御により行われる。車両が4輪駆動車の場合には、すべての車輪のトルクが電動モータの制御によって制御されるようにすることもできる。
ヨーイング制御においては、左側車輪と右側車輪とのトルク差が制御されることになるが、トルクが制御される車輪の個数は1個であっても、2個以上であってもよく、換言すれば、制御される電動モータの個数は1個であっても、2個以上であってもよい。
なお、ヨーイング制御は電動モータの制御のみによって行われても、ホイールシリンダ液圧の制御も合わせて行われてもよいが、いずれにしても、電動モータの制御が行われる分、当該車両ヨーイング制御装置を搭載した車両に備えられる液圧ブレーキ回路の構造を簡単にすることができる。
(6)左右駆動輪と左右非駆動輪との4輪各々に対応する4つのホイールシリンダのうちの2つずつが、ブレーキ操作部材の操作力に応じた液圧を発生させるマスタシリンダの2つの加圧室の各々に接続された2系統の液圧ブレーキ回路を備え、前記4輪のうちの少なくとも1つの制御対象輪のトルクを、その制御対象輪を除く車輪に対応するホイールシリンダをマスタシリンダに連通させた状態で制御することにより、車両のヨーイングを制御する車両ヨーイング制御装置であって、
前記2系統の液圧ブレーキ回路の少なくとも一方において、その少なくとも一方に属する前記2つのホイールシリンダの少なくとも一方が、前記左右駆動輪のいずれかに対応するホイールシリンダであり、かつ、当該車両ヨーイング制御装置が、▲1▼前記左右駆動輪に接続された少なくとも1つの電動モータと、▲2▼前記制御対象輪を、前記左右駆動輪の少なくとも一方である制御対象駆動輪および前記左右非駆動輪の少なくとも一方である制御対象非駆動輪とし、制御対象駆動輪のトルクを前記少なくとも1つの電動モータの制御により制御するとともに、前記制御対象非駆動輪のトルクを、対応するホイールシリンダの液圧を制御することにより制御する共同ヨーイング制御手段とを含む車両ヨーイング制御装置(請求項)。
本項に記載の車両ヨーイング制御装置においては、ヨーイング制御が行われる間も、非制御対象輪のホイールシリンダがマスタシリンダに連通させられた状態が保たれる。その結果、ヨーイング制御中にブレーキ操作部材が操作されれば、非制御対象輪のホイールシリンダにマスタシリンダの作動液が直ちに流入させられる。ブレーキ操作部材が操作された場合に、ヨーイング制御を終了させるようにすれば、4輪すべてのホイールシリンダにマスタシリンダの作動液を流入させることが可能であるが、非制御対象輪のホイールシリンダをヨーイング制御中もマスタシリンダに連通させておけば、作動液の供給遅れを小さくすることができる。
ここで、2系統の液圧ブレーキ回路のうちの一方に含まれる2つのホイールシリンダの組合わせは、駆動輪のホイールシリンダと非駆動輪のホイールシリンダとの組合わせ(X配管)か、2つの駆動輪のホイールシリンダの組合わせ(前後配管)かのいずれかである。いずれの場合においても、ヨーイング制御において、駆動輪のホイールシリンダの液圧を制御する必要がないため、液圧ブレーキ回路の構造を簡単にし得る。
例えば、図9,10に示す車両ヨーイング制御装置におけるように、X配管の液圧ブレーキ回路を含む場合には、従来は不可欠であったバイパス通路400,バイパス遮断弁402およびホイールシリンダ間遮断弁450が不要となる。また、図11に示す車両ヨーイング制御装置におけるように、前後配管の液圧ブレーキ回路を含む場合には、バイパス通路460,462およびバイパス遮断弁464,466が不要となり、図12に示す車両ヨーイング制御装置においては、方向切換弁490,492を共通にすることができるのである。
(7)左右駆動輪を含む4輪各々に対応する4つのホイールシリンダのうちの2つずつが、ブレーキ操作部材の操作力に応じた液圧を発生させるマスタシリンダの2つの加圧室の各々に接続された2系統の液圧ブレーキ回路を備え、前記4輪のうちの少なくとも1つの制御対象輪のトルクを、その制御対象輪を除く車輪に対応するホイールシリンダをマスタシリンダに連通させた状態で制御することにより、車両のヨーイングを制御する車両ヨーイング制御装置であって、
前記2系統の液圧ブレーキ回路の一方において、2つのホイールシリンダの少なくとも一方が、前記左右駆動輪のいずれか一方に対応するホイールシリンダであり、かつ、当該車両ヨーイング制御装置が、▲1▼前記左右駆動輪に接続された少なくとも1つの電動モータと、▲2▼前記1系統の液圧ブレーキ回路に含まれるホイールシリンダに対応する左右駆動輪のいずれか一方を前記制御対象輪のうちの1つとして、その駆動輪のトルクを、前記電動モータを制御することにより制御する電動モータ依拠車両ヨーイング制御手段を含む車両ヨーイング制御装置。
(6) 項に記載の車両ヨーイング制御装置における場合と同様に、非制御対象輪のホイールシリンダがマスタシリンダに連通させられた状態で制御対象輪のトルクが制御されることにより、ヨーイング制御が行われる。また、本項に記載の車両ヨーイング制御装置においては、ヨーイング制御が電動モータの制御によって行われるが、電動モータの制御にホイールシリンダの液圧制御が付加されてもよい。
(8)さらに、前記ホイールシリンダの液圧を、それに対応する車輪の制動スリップ状態がほぼ適正状態に保たれるように制御するアンチロック制御手段を含む(1) ないし(7) 項のいずれか1つに記載の車両ヨーイング制御装置。
車両ヨーイング制御装置に含まれる液圧ブレーキ回路の構造によっては、アンチロック制御を行うことが可能な場合がある。見方を変えれば、アンチロック制御を行い得る液圧ブレーキ装置を、そのまま(複雑化させることなく)車両ヨーイング制御装置の構成要素として利用し得る場合があるのである。
【0004】
【発明の実施の形態】
以下、本発明の一実施形態である車両ヨーイング制御装置について図面に基づいて詳細に説明する。図1に示すように、本車両ヨーイング制御装置が搭載された車両はハイブリッド車であり、駆動輪としての前輪10,12は、電気的駆動装置14と図示しない内燃駆動装置とによって駆動される。電気的駆動装置14は、2つの電動モータ16,18を含むものであり、電動モータ16,18の駆動トルクは、それぞれ車輪10,12に加えられる。本実施形態においては、車輪毎に電動モータが設けられており、これら電動モータ16,18を別個に制御することにより、車輪10,12各々に加えられるトルクの大きさを別個に制御することが可能となる。電気的駆動装置14は、電動モータ16,18の回生制動により車輪10,12に回生制動トルクを加える回生制動装置でもある。車輪10,12各々に加えられる回生制動トルクも別個に制御される。このように、電動モータ16,18の制御により、車輪10,12には駆動トルクが付与されたり、制動トルクが付与されたりするため、上述の電気的駆動装置でも、回生制動装置でもある装置を、以下、電動トルク付与装置14と称することとする。
上記車両には、摩擦制動装置としての液圧制動装置20が設けられている。上記右駆動輪10および左駆動輪12各々と共に回転するブレーキ回転体としてのロータに摩擦部材としてのパッドがホイールシリンダ22,24に液圧が伝達されることにより押し付けられ、駆動輪10,12に液圧制動トルクが加えられる。駆動輪10,12には、液圧制動装置20による液圧制動トルクと電動トルク付与装置14による回生制動トルクとの少なくとも一方を加えることができる。
【0005】
電動トルク付与装置14は、上記電動モータ16,18の他、電力変換装置30,32、変速器34,36、蓄電装置38、電動モータ制御装置42等を含むものである。電動モータ16,18には、蓄電装置38に蓄えられた直流電流が電力変換装置30,32により交流に変換されて供給される。電力変換装置30,32は、インバータ等を含むものであり、電動モータ制御装置42によって制御される。インバータにおけるすべり周波数制御やベクトル制御等の電流制御により、電動モータ16,18の駆動トルクや回生制動トルクの大きさが制御される。電力変換装置30,32が電動モータ16,18各々に対応して設けられているため、電動モータ16,18は電力変換装置30,32によって別個に制御され、車輪10,12に加えられる駆動トルクや回生制動トルクの大きさが別個に制御されることになる。電動モータ制御装置42は、電力変換装置30,32を、アクセルペダル44(図2参照)の操作状況に応じた大きさの駆動トルクが得られるように制御したり、車両走行制御装置46からの指令に従って制御したりする。車両走行制御装置46からは、電動モータの出力トルク目標値を表す情報等が供給されるため、電動モータ16,18によって実際に出力される実出力トルクが出力トルク目標値に近づくように制御されるのである。出力トルク目標値は、回生制動トルク目標値であったり、駆動トルク目標値であったりする。なお、回生制動トルクの大きさは、変速器34,36における変速段を変えることによっても制御し得る。
【0006】
液圧制動装置20は、上記前輪10,12のホイールシリンダ22,24の他、後輪50,52のホイールシリンダ53,54、図2に示すマスタシリンダ56、液圧制御弁装置58,60,リニアバルブ装置62等を含むものである。液圧制動装置20に含まれる2系統の液圧ブレーキ回路はX配管式であり、上記右前輪10のホイールシリンダ22と左後輪52のホイールシリンダ54とが、図2に示すように、主液通路64を介してマスタシリンダ56の同じ加圧室に接続され、左前輪12のホイールシリンダ24と右後輪50のホイールシリンダ53とが、図示しないが、他方の同じ加圧室に接続されている。
マスタシリンダ56には、ブースタ66を介してブレーキ操作部材としてのブレーキペダル68が接続されており、ブレーキペダル68が踏み込まれると、それに応じた液圧がマスタシリンダ56の各々の加圧室に発生させられて、図2に示す液圧ブレーキ回路においては、各ホイールシリンダ22,54に伝達される。回生制動協調制御が行われる場合には、加圧室に発生させられた液圧が後述するリニアバルブ装置62において制御されて、ホイールシリンダ22,54に伝達される。
【0007】
主液通路64のリニアバルブ装置62のホイールシリンダ側には、主液通路遮断弁72が設けられている。主液通路遮断弁72は、ホイールシリンダ22,54をマスタシリンダ56に連通させたり、遮断したりするものである。主液通路遮断弁72をバイパスするバイパス通路74の途中には逆止弁76が設けられている。逆止弁76は、逆止弁76のマスタシリンダ側の液圧がホイールシリンダ側の液圧より設定液圧以上大きくなると、マスタシリンダ56からホイールシリンダ22,54に向かう方向の作動液の流れを許容するが、逆向きの流れを阻止するものである。この逆止弁により、主液通路遮断弁72が閉状態にある間に、ブレーキペダル68が踏み込まれて液圧が設定液圧以上になると、マスタシリンダ56の作動液がホイールシリンダ22,54に供給される。
【0008】
主液通路64は、主液通路遮断弁72のホイールシリンダ側において分岐させられ、それぞれの液通路の先端に、ホイールシリンダ22,54が設けられている。主液通路遮断弁72とホイールシリンダ22,54との間には、増圧開閉弁82,84が設けられ、ホイールシリンダ22,54とリザーバ86との間には、減圧開閉弁88,90が設けられている。増圧開閉弁82,84をバイパスするバイパス通路の途中には、ホイールシリンダ22,54からマスタシリンダ56へ向かう向きの作動液の流れを許容するが、逆向きの流れを阻止する逆止弁92,94が設けられ、増圧開閉弁82,84が閉状態にある場合にブレーキペダル68の踏込みが緩められた場合にホイールシリンダの作動液をマスタシリンダ56に戻すことが可能とされている。ここで、ホイールシリンダ22に対応して設けられた増圧開閉弁82および減圧開閉弁88等によって前述の液圧制御弁装置58が構成され、ホイールシリンダ54に対応して設けられた増圧開閉弁84および減圧開閉弁90等によって前述の液圧制御弁装置60が構成される。
【0009】
リザーバ86からはポンプ通路102が延び出させられており、ポンプ通路102の途中には、逆止弁104,106およびポンプ108が設けられている。ポンプ108は、電動モータ110により駆動させられる。ポンプ108の吐出口は、主液通路64の主液通路遮断弁72と上述の分岐点との間において接続され、ポンプ108から吐出された作動液が、ホイールシリンダ22,54各々に供給可能とされている。ポンプ108の吐出口は、また、リリーフ弁112を介してマスタシリンダ56に接続されている。ポンプ108の吐出圧がリリーフ弁112の設定圧以上になると、作動液がマスタシリンダ56に戻される。これらポンプ108,モータ110等により高圧源114が構成される。
【0010】
リザーバ86からは、リザーバ通路118も延び出させられており、流入制御弁120を介してマスタシリンダ56に接続されている。リザーバ室122に作動液が設定量以上収容されている場合には、流入制御弁120は閉状態にあるが、作動液がポンプ108によりくみ上げられてリザーバ室122が負圧にされると、ピストン124が移動させられ、開弁部材126により流入制御弁120が開状態に切り換えられる。それにより、マスタシリンダ56の作動液がリザーバ室122に供給されることになる。
【0011】
前記リニアバルブ装置62は、図3に示すように、増圧リニアバルブ150,減圧リニアバルブ152,減圧用リザーバ154および逆止弁156,158を含むものである。増圧リニアバルブ150は、主液通路64の途中に設けられ、減圧リニアバルブ152は、主液通路64と減圧用リザーバ154とを接続する液通路160の途中に設けられている。増圧リニアバルブ150をバイパスするバイパス通路の途中には、上述の逆止弁156が、ホイールシリンダからマスタシリンダ56に向かう作動液の流れは許容するが、その逆の流れは阻止する向きに設けられている。減圧リニアバルブ152をバイパスするバイパス通路の途中には、上記逆止弁158が減圧用リザーバ154からマスタシリンダ56に向かう作動液の流れは許容するが、その逆の流れは阻止する向きに設けられている。
【0012】
増圧リニアバルブ150は、シーティング弁190と、電磁付勢装置194とを含むものである。シーティング弁190は、弁子200,弁座202,弁子200と一体的に移動する被電磁付勢体204,弁子200が弁座202に着座する向きに被電磁付勢体204を付勢する付勢手段としての弾性部材としてのスプリング206等を含むものである。また、電磁付勢装置194は、ソレノイド210,そのソレノイド210を保持する樹脂製の保持部材212,第一磁路形成体214,第二磁路形成体216等を含むものである。ソレノイド210の巻線の両端に電圧が印加されると、ソレノイド210の巻線に電流が流れ、磁界が形成される。磁束は、その多くが、第一磁路形成体214,被電磁付勢体204,第二磁路形成体216と被電磁付勢体204との間のエアギャップおよび第二磁路形成体216を通る。ソレノイド210の巻線に印加される電圧を変化させれば、被電磁付勢体204と第二磁路形成体216との間に作用する磁気力も変化する。この磁気力の大きさは、ソレノイド210の巻線に印加される電圧の大きさと共に増加し、それら印加する電圧と磁気力との関係は予め知ることができる。したがって、印加電圧をその関係に従って連続的に変化させることにより、被電磁付勢体204を付勢する力の大きさを任意に変更することができる。この被電磁付勢体204を付勢する力は、上述の磁気力のうちの被電磁付勢体204を第二磁路形成体216に接近させる方向の力のことであり、以下、電磁駆動力と称する。電磁駆動力は、スプリング206の付勢力とは反対向きの力である。なお、被電磁付勢体204の第一磁路形成体216に対向する面には、係合突部220が形成され、それに対する第一磁路形成体216の被電磁付勢体204に対向する部分には、係合凹部222が形成されており、被電磁付勢体204と第一磁路形成体216との相対位置の変化に応じて係合突部220と係合凹部222との間の対向部の面積が変化させられる。
【0013】
被電磁付勢体204と第二磁路形成体216とによって形成される磁路の磁気抵抗は、被電磁付勢体204と第二磁路形成体216との軸方向の相対的な位置に依存して変化する。その結果、ソレノイド210に印加される電圧がそれほど大きくない範囲内において一定であれば、被電磁付勢体204を第二磁路形成体216方向へ付勢する電磁駆動力が、被電磁付勢体204と第二磁路形成体216との軸方向の相対的な位置に関係なくほぼ一定となる。一方、スプリング206による被電磁付勢体204を第二磁路形成体216から離間する方向へ付勢する付勢力(スプリングの付勢力)は、被電磁付勢体204と第二磁路形成体216との接近に伴って増大する。したがって、弁子200に、入口側液圧と出口側液圧との液圧差に基づく付勢力(差圧作用力)が作用していない状態では、被電磁付勢体204の第二磁路形成体216方向への移動が、上記スプリング206の付勢力と電磁駆動力とが等しくなることにより停止することとなる。
このように、印加電圧を増加させると被電磁付勢体204に作用する弁子200を弁座202に押し付ける向きの力(電磁駆動力とスプリングの付勢力との合力)が小さくなり、弁子200が弁座202から離間し易くなるのである。
【0014】
減圧リニアバルブ152についても同様であるが、これら増圧リニアバルブ150と減圧リニアバルブ152とでは、弁子200を弁座202に接近させる方向に付勢するスプリングの付勢力が異なる。減圧リニアバルブ152におけるスプリング224の方が増圧リニアバルブ150におけるスプリング206より大きくされている。ホイールシリンダ液圧が高くなっても、作動液が、減圧リニアバルブ152を経て減圧用リザーバ154へ流れることが回避されているのである。
【0015】
いずれにしても、増圧リニアバルブ150,減圧リニアバルブ152の各ソレノイド210に印加される電圧に応じてリニアバルブ装置62によって出力される液圧を制御することが可能となる。増圧リニアバルブ150のソレノイド210に印加される電圧が大きくされると、スプリング206の付勢力と反対方向の電磁駆動力が大きくされ、シーティング弁190において弁子200が弁座202から離間し易くなる。増圧リニアバルブ150から出力される作動液がホイールシリンダ22,54に供給されれば、液圧が大きくなり、液圧制動トルクが大きくなる。リニアバルブ装置62のホイールシリンダ側液圧が出力液圧センサ230によって検出され、マスタシリンダ側液圧が入力液圧センサ232によって検出される。
同様に、減圧リニアバルブ152のソレノイドに印加される電圧が大きくされると、シーティング弁190が開き易くなる。ホイールシリンダ22,54から作動液が流出させられれば、液圧が小さくなり、液圧制動トルクが小さくなる。このように、増圧リニアバルブ150,減圧リニアバルブ152の各ソレノイド210への印加電圧に応じてホイールシリンダ液圧が制御されるのであり、増圧リニアバルブ150のソレノイド210,減圧リニアバルブ152のソレノイド210への印加電圧を制御することを、本明細書において、リニアバルブ装置62を制御すると略称することとする。
【0016】
前記車両走行制御装置46は、コンピュータを主体とするもので、入力部,出力部,ROM,RAM等を含むものである。入力部には、上記出力液圧センサ230,入力液圧センサ232の他、車輪10,52の回転速度を検出する車輪速センサ250,252、図示しないステアリングホイールの操舵角を検出する操舵角センサ254,車両の実際のヨーレートを検出するヨーレートセンサ256,横Gセンサ258,アクセルペダル44の操作状況としての操作量を検出するアクセル操作量センサ260,蓄電装置38の充電状況を検出する充電状況検出装置262,電動モータ16,18の回転数をそれぞれ検出する回転数検出装置264,266等が接続されている。入力液圧センサ232によって検出された液圧は、運転者のブレーキペダル68の操作力に応じた液圧であるため、運転者が所望する制動力に応じた液圧とすることができ、この入力液圧が後述する目標液圧とされる。また、入力液圧が0(大気圧)より大きくなれば、ブレーキペダル68が踏み込まれたことを検出することができる。同様に、アクセル操作量センサ260によって検出される操作量が0より大きくなれば、アクセルペダル44が操作されたことを検出することができる。それに対して、出力部には、電動モータ制御装置42の他、主液通路遮断弁72,液圧制御弁装置58,60等を含む各電磁開閉弁のソレノイド、リニアバルブ装置62のソレノイド210等が駆動回路268を介して接続されている。ROMには、回生制動協調制御プログラム,アンチロック制御プログラム,車両ヨーイング制御プログラム等複数のプログラムやテーブル等が格納されている。
【0017】
電動モータ制御装置42も、コンピュータを主体とするもので、入力部には、上述のアクセル操作量センサ260,回転数検出装置264,266等が接続され、出力部には、電力変換装置30,32等が接続されている。電動モータ制御装置42と車両走行制御装置46との間においては情報の交換が行われる。車両走行制御装置46から電動モータ制御装置42には、出力トルク目標値を表す情報等が供給され、電動モータ制御装置42から車両走行制御装置46へは、実トルクを表す情報等が供給される。実トルクを表す情報は、実駆動トルクを表す情報である場合や、実回生制動トルクを表す情報である場合等がある。
電動モータ制御装置42は、車両走行制御装置46から供給された出力トルク目標値を表す情報に基づいて電力変換装置30,32を制御し、車両走行制御装置46は、電動モータ制御装置42から供給された情報に対応する実トルクに基づいて、リニアバルブ装置62や液圧制御弁装置58,60等を制御する。
【0018】
以下、作動を説明する。
通常走行時には、電動モータ制御装置42により、アクセルペダル44の操作量に応じた駆動トルクが出力されるように電力変換装置30,32が制御される。駆動輪10,12には、電動モータ16,18によって出力された駆動トルクが加えられる。
制動時には、マスタシリンダ56の作動液がホイールシリンダ22,54に伝達されるが、回生制動協調制御が行われる場合には、マスタシリンダ56の液圧がリニアバルブ装置62において制御されてホイールシリンダ22,54に供給される。車両走行制御装置46においては、入力液圧に基づいて目標液圧が求められるとともに回生制動トルク目標値が決定される。回生制動トルク目標値を表す情報が電動モータ制御装置42に供給される。電動モータ制御装置42は、供給された情報に対応した回生制動トルク目標値とほぼ同じ大きさの実回生制動トルクが出力されるように、電力変換装置30,32を制御する。そして、実際に出力された実回生制動トルクを表す情報が車両走行制御装置46に出力される。車両走行制御装置46は、その実回生制動トルクを目標液圧に対応する目標総制動トルクから引いた大きさの液圧制動トルクが得られるようにリニアバルブ装置62を制御する。
【0019】
回生制動トルク目標値は、蓄電装置38における蓄電状況,電動モータ16,18の回転状況等に基づいて、運転者が意図する制動トルクを越えない範囲における上限値に決定される。回生制動トルク目標値が上記上限値に決定されれば、運動エネルギを最も効率よく蓄えることができため、この上限値を最大エネルギ効率対応上限値と称することができる。回生制動協調制御が行われる場合には、主液通路遮断弁72,液圧制御弁装置58,60は図示した状態に保たれたまま、リニアバルブ装置62が制御される。ホイールシリンダ22,54には、ほぼ同じ液圧の作動液が供給されることになる。
【0020】
アンチロック制御時には、主液通路遮断弁72が閉状態に切り換えられた状態において、増圧開閉弁82,84および減圧開閉弁88,90が開閉させられることにより、ホイールシリンダ22,54の液圧が、各車輪10,52の制動スリップ状態が適正状態に保たれるように制御される。ホイールシリンダ22,54の液圧は、高圧源114から供給される作動液に基づいて制御される。アンチロック制御中においては、回生制動トルクが加えられても加えられなくてもよい。
【0021】
車両ヨーイング制御としては、本実施形態においては、スピン抑制制御とドリフトアウト抑制制御とが行われる。車両がスピン状態(強いオーバーステア状態)にあると推定された場合にはスピン抑制制御が行われ、ドリフトアウト状態(強いアンダステア状態)にあると推定された場合にはドリフトアウト抑制制御が行われる。スピン抑制制御とドリフトアウト抑制制御とを合わせてビークルスタビリティ制御と称する場合がある。
【0022】
車両がスピン状態にあるか否かは、スピンバリューSVに基づいて推定される。
車輪の回転速度に基づいて推定された車体速度V、横Gセンサ258,ヨーレートセンサ256によって検出された横加速度Gy ,ヨーレートγから式(Vyd=Gy −V*γ)に従って横すべり加速度Vydが求められ、その横すべり加速度Vydを積分して横すべり速度Vy が求められる。この横すべり速度Vy をスピンバリューSVとし、スピンバリューSVの絶対値が設定値SV0 以上の場合には、スピン状態にあると推定される。
【0023】
また、車両がドリフトアウト状態にあるか否かは、ドリフトバリューDVに基づいて推定される。
上記車体速度V,操舵角センサ254によって検出された操舵角θ,スタビリティファクタKh,ステアリングギヤ比N,ホイールベースLから式
γt=(V*θ)/{(1+Kh*V2 )*N*L}
に従って目標ヨーレートγtが求められ、遅れ時定数Tr,ラプラスの演算子sを用いて目標ヨーレートの位相調整の処理が式
γti =γt/(1+Tr*s)
に従って行われる。その位相調整後の目標ヨーレートγtiと実ヨーレートγとの偏差{γ*(γti−γ)}が求められ、その偏差がドリフトバリューDVとされる。ドリフトバリューDVが設定値DV0 以上の場合には、ドリフトアウト状態にあると推定されるのである。
【0024】
スピン状態にあると推定された場合には、本実施形態においては、前輪10,12の旋回外輪のトルクが制御される。制御対象輪が駆動輪10,12の旋回外輪とされ、基準輪が非駆動輪の旋回内輪とされる。後述するように、制御対象輪の目標回転速度が基準輪の回転速度に基づいて求められ、実際の回転速度Vw がその目標回転速度Vtfout になるように、制御対象輪に加えられるトルクが決定される。この制御対象輪に加えられるトルクとして決定されたトルクの大きさをスピン抑制制御トルク目標値と称する。制御対象輪に対応する電動モータ16,18によって出力されるトルクが、スピン抑制制御トルク目標値に近づくように、その電動モータに対応する電力変換装置が制御されるのである。スピン抑制制御トルク目標値は、駆動トルク目標値の場合と回生制動トルク目標値の場合とがある。
【0025】
スピンバリューSVに基づいて図示しないテーブルからスピン制御量Scが求められ、そのスピン制御量Scに前輪係数Kfを掛けることにより回転速度対応制御量(Cf=Sc*Kf)が求められる。この回転速度対応制御量Cfおよび基準輪としての後輪の旋回内輪の車輪速Vrin に基づいて上記前輪の旋回外輪の目標車輪速度Vtfout が、式
Vtfout =(1−Cf)*Vrin
に従って求められる。ここで、回転速度対応制御量Cfは0から1までの大きさの値である。
スピン抑制制御が必要であるとされた場合に、アクセルペダル44が踏み込まれている場合には、駆動トルクが減少させられ、ブレーキペダル68が踏み込まれている場合には、回生制動トルクが増加させられ、アクセルペダル44もブレーキペダル68も踏み込まれていない場合には、回生制動トルクが加えられることになる。
【0026】
車両が左旋回中にスピン状態になったと推定された場合には、右前輪10が制御対象輪とされる。右前輪10のトルクが、電動モータ16の制御により制御される。電動モータ制御装置42は、電動モータ16の出力トルクが、車両走行制御装置46から供給された情報に対応するスピン抑制制御トルク目標値に近づくように、電力変換装置30を制御するのである。その結果、車両の旋回方向と反対方向のヨーイングモーメント、すなわち、スピン状態を抑制する方向のヨーイングモーメントが発生させられ、車両の操縦安定性が向上させられる。また、ホイールシリンダ22の液圧が制御されるわけではないため、主液通路遮断弁72、液圧制御弁装置58,60は、図2に示す状態に保たれる。その結果、スピン抑制制御中にブレーキペダル68が踏み込まれた場合には、マスタシリンダ56の作動液は、開状態にある主液通路遮断弁72を経てホイールシリンダ22,54に供給される。また、逆止弁76のマスタシリンダ側の液圧がホイールシリンダ側の液圧より設定圧以上大きくなれば、逆止弁76を経てマスタシリンダ56の作動液がホイールシリンダ22に供給される。
【0027】
このように、本実施形態においては、スピン抑制制御において右前輪10のトルクを制御する際に、電動モータ16が制御されるのであり、ホイールシリンダ22の液圧が制御されるわけではない。そのため、ホイールシリンダ22をマスタシリンダ56やホイールシリンダ54から遮断する必要がなくなる。ホイールシリンダ22,54をマスタシリンダ56に連通させておいても、ホイールシリンダ22,54を互いに連通させておいてもよいのである。そのため、ヨーイング制御中に、ブレーキペダル68が踏み込まれた場合には、マスタシリンダ56の作動液を非制御対象輪52のホイールシリンダ54のみでなく、制御対象輪10のホイールシリンダ22にも供給することが可能となり、運転者の意図に応じた液圧制動トルクを、右前輪10と左後輪52との両方に加えることが可能となる。
【0028】
一方、ドリフトアウト状態にあると推定された場合には、左右前輪12,10に加えられるトルクが制御されるとともに後輪の旋回内輪のトルクが制御される。制御対象輪が左右前輪および後輪の旋回内輪とされ、基準輪が後輪の旋回外輪とされるのであり、各車輪速度が後述する目標車輪速度に近づくように、前輪12,10側においては、電動モータ18,16が制御され、後輪側においては、ホーイルシリンダ液圧が制御される。
上記スピン抑制制御と同様に、ドリフトアウトバリューDVに基づいて図示しないテーブルからドリフト制御量Dcが求められ、そのドリフト制御量Dcに基づく回転速度対応制御量Cf,Crが、左右前輪については、ドリフト制御量Dcに前述の前輪係数Kfを掛けることにより、式Cf=Dc*Kfに従って求められ、後輪については、ドリフト制御量Dcに後輪係数Krを掛けることにより、式Cr=Dc*Krに従って求められる。
次に、回転速度対応制御量Cf,Crおよび基準輪の車輪速Vroutに基づいて制御対象輪の目標車輪速度Vtfout ,VtfinおよびVtrinが、それぞれ、式
Vtfout =(1−Cf)*Vrout
Vtfin =(1−Cf)*Vrout
Vtrin =(1−Cr)*Vrout
に従って求められる。各車輪の回転速度が上述の目標車輪速度となるように各車輪のトルクが決定されるのであり、この決定されたトルクをドリフトアウト抑制制御トルク目標値と称することとする。
【0029】
ドリフトアウト抑制制御においては、上述のように、制御対象輪が前輪10,12および後輪50,52の一方とされる。その結果、1系統の液圧ブレーキ回路に含まれる2つのホイールシリンダが、2つの制御対象輪のホイールシリンダ、すなわち、液圧が制御される後輪のホイールシリンダおよび電動モータの制御によりトルクが制御される前輪のホイールシリンダとされ、他方の系統の液圧ブレーキ回路に含まれる2つのホイールシリンダが、非制御対象輪のホイールシリンダおよび制御対象輪のホイールシリンダ、すなわち、液圧が制御されない後輪のホイールシリンダおよび電動モータの制御によりトルクが制御される前輪のホイールシリンダとされる。
【0030】
具体的には、左旋回中にドリフトアウト状態にあると推定された場合には、制御対象輪が左右前輪12,10および左後輪52とされ、基準輪が右後輪50とされる。図示する液圧ブレーキ回路においては、主液通路遮断弁72および増圧開閉弁82が閉状態に保たれた状態で、液圧制御弁装置60の制御により、ホイールシリンダ54の液圧が制御される。また、右前輪10のトルクは、電動モータ16の制御により制御される。ここで、右前輪10のホイールシリンダ22に対応する増圧開閉弁82が閉状態とされるのは、ホイールシリンダ54をホールシリンダ22から遮断するためである。右前輪10のトルクがホイールシリンダ22の液圧の制御により制御される場合には、ヨーイング制御中に、増圧開閉弁82を閉状態に保つことは不可能であるが、本実施形態においては、ホイールシリンダ22の液圧が制御されることがないため閉状態に保つことが可能となるのである。増圧開閉弁82を閉状態に切り換えるのは、高圧源114からの作動液がホイールシリンダ22が流入しないようにするためでもある。
【0031】
右旋回中にドリフトアウト状態であると推定された場合には、制御対象輪が左右前輪12,10および右後輪50とされ、基準輪が左後輪52とされる。図2に示す液圧ブレーキ回路においては、右前輪10のトルクのみが電動モータ16の制御により制御される。この場合には、ホイールシリンダ22,54の液圧が制御されることがないため、主液通路遮断弁72を閉状態に切り換える必要も、液圧制御弁装置58,60を制御する必要もなく、図示する状態に保たれる。ヨーイング制御中にブレーキペダル68が踏み込まれれば、マスタシリンダ56の作動液は開状態にある主液通路遮断弁72,増圧開閉弁82,84を経てホイールシリンダ22,54に供給される。
【0032】
上記ドリフトアウト抑制制御について、図4のフローチャートに基づいて説明する。ステップ10(以下、S10と略称する。他のステップについても同様とする)において、制御許可状態にあるか否かが判定される。各電磁開閉弁,センサの出力状態が正常か否かが判定され、異常な場合には、制御禁止状態とされ、ドリフトアウト抑制制御が開始されないようにされている。制御許可状態にある場合には、S11において、各センサの出力信号が読み込まれ、S12において、ドリフトアウト状態にあるか否かが推定される。ドリフトアウト状態にあると推定された場合には、S13,14において、前輪側に加えられる制動トルクが制御され、S15,16において、後輪側に加えられるヨーイング制御のための要求トルクが制御される。
【0033】
詳述すれば、前輪10,12に加えられるドリフトアウト抑制制御トルク目標値が決定され、電動モータ制御装置42にその目標値を表す情報が供給される。電動モータ制御装置42においては、その目標値に対応した実トルクが得られるように、電力変換装置30,32がそれぞれ制御される。また、後輪側の旋回内輪(左後輪52)に加えられるドリフトアウト抑制制御トルク目標値が決定され、ホイールシリンダの液圧が、そのトルク目標値に応じた大きさとなるように、増圧開閉弁84,減圧開閉弁90を含む液圧制御弁装置60への制御指令が発せられるのである。
このように、ヨーイング制御においては、左右前輪のトルクが共に小さくされることにより車両が減速させられ、左右後輪の一方のトルクが小さくされることにより左側車輪と右側車輪とのトルク差が制御されるのである。
【0034】
以上のように、左右前輪12,10のトルクが電動モータ18,16の制御により制御されるようにすれば、図示するブレーキ回路において、前輪10が制御対象駆動輪で、後輪52が非制御対象非駆動輪である場合においても、制御対象駆動輪のホイールシリンダ22をホイールシリンダ54やマスタシリンダ56から遮断したりする必要がないため、非制御対象非駆動輪のホイールシリンダ54のみをマスタシリンダ56に連通させるのに、液圧ブレーキ回路を複雑にする必要がなく、図9に示す車両ヨーイング制御装置におけるバイパス通路400およびバイパス遮断弁402が不要となる。前述の一部マスタ連通状態を形成し得る液圧ブレーキ回路の構成とする必要がないのである。
【0035】
また、前輪10および後輪52の両方が制御対象輪である場合においては、後輪52のホイールシリンダ54を前輪10のホイールシリンダ22から遮断する必要があるが、前輪10のホイールシリンダ22の液圧は制御されないため、増圧開閉弁82を利用して、これらを遮断することができる。そのため、図10に示すホイールシリンダ間遮断弁450が不要となる。
いずれにしても、従来の車両ヨーイング制御装置における場合より液圧ブレーキ回路の構造を簡単し得、コストダウンを図ることができる。アンチロック制御可能な液圧ブレーキ回路をそのまま使用することができ、ヨーイング制御を可能にするために複雑にする必要がなくなるのである。
さらに、車輪に加わるトルクが電動モータの制御により制御される場合には、液圧制御弁装置を制御する必要がなくなるため、増圧開閉弁,減圧開閉弁の開閉の作動回数を減らすことができ、作動音を低減することができる。
【0036】
以上のように、本実施形態においては、車両走行制御装置46および電動モータ制御装置42に共同ヨーイング制御手段が含まれる。また、共同車両ヨーイング制御手段には、駆動輪・非駆動輪共同ヨーイング制御手段やドリフトアウト抑制制御手段が含まれることになる。
【0037】
なお、上記実施形態においては、液圧制動装置30にディスクブレーキが設けられていたが、ドラムブレーキとすることもできる。ドラムブレーキとした場合には、ドラムの内部に電動モータ(インホイールモータ)を配設することが可能となり、その分省スペースを図ることが可能となる。また、電動トルク付与装置14において、電動モータ18,16が左,右駆動輪12,10毎に設けられていたが、車輪毎に設けることは不可欠ではなく、左,右駆動輪12,10に共通とすることもできる。図5に示す電動トルク付与装置280においては、1つの電動モータ282が、差動装置284、ドライブシャフト286,288を介して、前輪10,12に接続されている。電動モータ282のトルクは、差動装置284により、前輪10,12に均等に分配されるため、前輪10,12に加えられるトルクは同じ大きさとされる。電動トルク付与装置280には、電動モータ282が1つしか設けられていないため、電力変換装置290,変速器292も1つづつである。本実施形態においては、前輪10,12に加えられるトルクは同じ大きさとされるため、電動モータ282の制御のみによって左側車輪と右側車輪とのトルク差を制御することはできないが、左,右後輪52,50に加わる液圧制動トルクの制御により、トルク差が制御されることになる。
本実施形態における車両ヨーイング制御装置においては、ドリフトアウト抑制制御において、1つの電動モータ282の制御により、前輪10,12に加わるトルクを共通に制御することができるという利点がある。
【0038】
また、上記各実施形態においては、液圧制動装置20における液圧ブレーキ回路がX配管式であったが、前後配管式とすることもできる。また、駆動輪が後輪である車両のヨーイングを制御する場合にも適用することができる。図6に示すように液圧制動装置300においては、非駆動輪である左,右前輪12,10のホイールシリンダ24,22が同じ加圧室に接続され、駆動輪である左,右後輪52,50のホイールシリンダ54,53が同じ加圧室に接続される。また、図示しないが、電動モータが、左,右後輪52,50毎にそれぞれ1つずつ設けられることになる。
【0039】
液圧制動装置300の前輪側の液圧ブレーキ回路においては、ホイールシリンダ24,22とマスタシリンダ56とを接続する液通路の途中に主液通路遮断弁302および液圧制御弁装置304,306が設けられている。また、後輪側の液圧ブレーキ回路においては、主液通路遮断弁308および液圧制御弁装置310,312が設けられている。後輪側に設けられた主液通路遮断弁308は、トラクション制御時にホイールシリンダ54,53をマスタシリンダ56から遮断するために設けられたものであり、ヨーイング制御時には、開状態に保たれる。トラクション制御が行われない回路とする場合には、主液通路遮断弁308は不要となる。
また、高圧源314は、リザーバ316,ポンプ318等を含むものであり、リザーバ316の作動液がポンプ318によって加圧される。リザーバ316とマスタリザーバ320とを接続するリザーバ通路322の途中には作動液供給弁324が設けられている。作動液供給弁324は常には閉状態に保たれるが、リザーバ318に収容された作動液量が設定量より少なくなると開状態に切り換えられる。作動液供給弁324は、トラクション制御開始時、ヨーイング制御開始時等に開状態に切り換えられることになる。なお、ポンプ318の駆動は、モータ326の制御によって制御される。
【0040】
トラクション制御が行われる場合には、駆動輪としての後輪側に設けられた主液通路遮断弁308が閉状態に切り換えられた状態で、液圧制御弁装置310,312の制御により、ホイールシリンダ54,53の液圧が、後輪52,50の駆動スリップ状態がほぼ適正状態に保たれるよに制御される。トラクション制御中にブレーキペダル68が踏み込まれれば、トラクション制御は終了させられ、主液通路遮断弁308が開状態に切り換えられるが、逆止弁328のマスタシリンダ側とホイールシリンダ側との圧力差が設定圧力以上になれば、マスタシリンダ56の作動液が逆止弁328を経てホイールシリンダ側に供給される。
【0041】
ドリフトアウト抑制制御が行われる場合においては、左,右前輪12,10の液圧制動トルクが共に増加させられるとともに、左,右後輪52,50の旋回内輪のトルクが電動モータの制御により小さくされる。前輪側の液圧ブレーキ回路においては、主液通路遮断弁302が閉状態に保たれた状態で、液圧制御弁装置304,306の制御に基づいて高圧源314の作動液によりホイールシリンダ24,22の液圧が制御される。後輪側の液圧ブレーキ回路においては、主液通路遮断弁308,液圧制御弁装置310,312はそのままで、電動モータの制御により、後輪側の旋回内輪のトルクが制御される。トラクション制御中にブレーキペダル68が踏み込まれれば、マスタシリンダ56の作動液は、開状態にある主液通路遮断弁308,増圧開閉弁330,332を経てホイールシリンダ54,53に供給される。
図7のフローチャートで表されるように、ドリフトアウト状態であると推定された場合には、S23〜26において左,右前輪12,10に加わる液圧制動トルクの大きさが決定され、主液通路遮断弁302を閉状態に切り換える指令および、液圧制御弁装置304,306への制御指令が発せられる。また、後輪50,52の旋回内輪に加えられるドリフトアウト抑制制御トルク目標値が決定され、それを表す情報が電動モータ制御装置42に供給される。電動モータ制御装置42は、電動モータの実出力トルクがそのドリフトアウト抑制制御トルク目標値に近づくように電力変換装置が制御されるのである。
【0042】
このように、本実施形態における車両ヨーイング制御装置においては、後輪側については、ホイールシリンダ液圧の制御が行われないため、図11に示すバイパス通路460,462およびバイパス遮断弁464,466が不要となる。また、アンチロック制御やトラクション制御が不可能な液圧ブレーキ回路においては、主液通路遮断弁418,液圧制御弁装置476,478および高圧源417等も不要となる。また、図12に示す車両ヨーイング制御装置においても、液圧ブレーキ回路をアンチロック制御やトラクション制御が可能な回路とする場合には、方向切換弁を共通にすればよい。また、アンチロック制御やトラクション制御が不可能な回路とする場合には、液圧制御弁装置476,478も方向切換弁490,492も不要となる。
【0043】
さらに、液圧制動装置300を備え、かつ、駆動輪が前輪であり、左,右前輪毎に電動モータが設けられている車両のヨーイングを制御する場合にも適用することができる。
スピン抑制制御が行われる場合には、前輪側の旋回外輪のトルクが電動モータの制御により制御されるのであり、ホイールシリンダの液圧制御により制御されるわけではない。そのため、第一実施形態において記載したように、液圧ブレーキ回路の構造を簡単にし得る。
以上各実施形態をまとめて図8に示す。このように、本発明は、種々の液圧制動装置および電動モータ付与装置を備えた車両ヨーイング制御装置に適用することが可能でなのである。
【0044】
さらに、スピン抑制制御,ドリフトアウト抑制制御に限らず、実ヨーレートを目標ヨーレートに近づける制御等他の車両ヨーイング制御も、本発明の効果を享受しつつ、実行することが可能である。また、スピン抑制制御,ドリフトアウト抑制制御の制御態様については上記実施形態における場合に限らず、他の制御態様とすることができる。例えば、スピン抑制制御においては、制御対象輪を前輪の旋回外輪のみでなく、左,右後輪も加えたり、制御対象輪を後輪の旋回外輪としたりすることもできる。ドリフトアウト抑制制御においても、制御対象輪を左右前輪と後輪の旋回内輪でなく、左右後輪と前輪の旋回内輪とすることもできる。その場合には、図8に示した組合わせ以外の組合わせについても、本発明の適用が可能となる。さらに、制御対象輪のトルクを小さくすることによってトルク差が制御されるようにされていたが、トルクを大きくすることによってトルク差が制御されるようにしてもよい。この場合には、制御対象輪が左右逆になる。また、左側車輪および右側車輪の両方のトルクを制御することによってトルク差を制御することもできる。例えば、旋回内輪のトルクを旋回外輪のトルクより大きくする場合には、旋回内輪のトルクを大きくして旋回外輪のトルクを小さくするのである。この場合には、車両全体としてのトルクの変化量を小さくすることができ、ヨーイング制御時の車速の変化を小さくすることができる。また、トルクの変化量の小さくすることができるという利点もある。それに対して、旋回内輪のトルクも旋回外輪のトルクも小さくする際に、その減少量を、旋回外輪のそれを大きくすることもできる。旋回外輪のトルクの増加量を旋回内輪のそれより大きくしても同様の制御を行うことができる。また、これらヨーイング制御において、内燃機関の制御も加える等種々の態様の制御とすることができる。
【0045】
さらに、液圧制動装置も、上記実施形態における液圧制動装置20,300に限らず、他の態様の装置とすることもできる。例えば、アンチロック制御可能な回路とする必要は必ずしもなく、車両ヨーイング制御のみが可能な回路とすることもできる。また、リニアバルブ装置62も不可欠ではなく、回生制動協調制御時に必要な大きさの液圧制動トルクが得られるように、液圧制御弁装置が制御されるようにすることも可能である。さらに、マスタシリンダ内にリニアバルブ装置を設けることもできる。
さらに、4輪駆動車に搭載することも、電気自動車に搭載することもできる。電動モータの制御のみによって車両ヨーイング制御,アンチロック制御等が行われる場合には、液圧制御弁装置,主液通路遮断弁等も不要となる。
【0046】
その他、いちいち例示することはしないが、特許請求の範囲を逸脱することなく当業者の知識に基づいて種々の変形,改良を施した態様で本発明を実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である車両ヨーイング制御装置によってヨーイング制御される車両全体を表す概略図である。
【図2】上記車両ヨーイング制御装置に含まれる液圧制動装置の回路図である。
【図3】上記液圧制動装置に含まれるリニアバルブ装置の一部断面図である。
【図4】上記車両ヨーイング制御装置に含まれる車両走行制御装置のROMに格納されたドリフトアウト抑制制御プログラムを表すフローチャートである。
【図5】本発明のさらに別の一実施形態である車両ヨーイング制御装置によってヨーイングが制御される車両全体を表す図である。
【図6】上記車両ヨーイング制御装置に含まれる液圧制動装置の回路図である。
【図7】上記車両ヨーイング制御装置に含まれる車両走行制御装置のROMに格納されたドリフトアウト抑制制御プログラムを表すフローチャートである。
【図8】本発明の車両ヨーイング制御装置に含まれる液圧制動装置と電動トルク付与装置とを模式的に示した図である。
【図9】本発明の課題を説明するための従来の車両ヨーイング制御装置に含まれる液圧制動装置の回路を示す図である。
【図10】本発明の課題を説明するための別の従来の車両ヨーイング制御装置に含まれる液圧制動装置の回路を示す図である。
【図11】本発明の課題を説明するためのさらに別の従来の車両ヨーイング制御装置に含まれる液圧制動装置の回路を示す図である。
【図12】本発明の課題を説明するためのさらに別の従来の車両ヨーイング制御装置に含まれる液圧制動装置の回路を示す図である。
【符号の説明】
14,280 電動トルク付与装置
16,18,284 電動モータ
20,300 液圧制動装置
22,24,53,54 ホイールシリンダ
30,32,290 電力変換装置
38 蓄電装置
42 電動モータ制御装置
46 車両走行制御装置
58,60 液圧制御弁装置

Claims (3)

  1. 左駆動輪および右駆動輪と、少なくとも2つの非駆動輪とを含む4つ以上の車輪を備えた車両のヨーイングを制御する車両ヨーイング制御装置であって、
    前記左駆動輪と前記右駆動輪とに差動装置を介して接続された1つの電動モータを含み、その電動モータの出力トルクを前記左駆動輪と前記右駆動輪とに付与する電動トルク付与装置と、
    前記4つ以上の車輪各々と共に回転するブレーキ回転体の各々に摩擦部材を押し付けるホイールシリンダを含むとともに、前記左,右駆動輪の一方に対応するホイールシリンダと前記少なくとも2つの非駆動輪のうちの1つに対応するホイールシリンダとが、マスタシリンダの同じ加圧室に接続され、それらホイールシリンダの液圧に応じた液圧制動トルクを各車輪に加える液圧制動装置と、
    前記電動モータの制御により前記左,右駆動輪のトルクを制御するとともに、前記少なくとも2つの非駆動輪のうちの少なくとも1つの非駆動輪の液圧制動トルクをそれに対応するホイールシリンダの液圧を制御することにより制御して、前記車両のヨーイングを制御する共同ヨーイング制御手段と
    を含むことを特徴とする車両ヨーイング制御装置。
  2. 左駆動輪および右駆動輪と、少なくとも2つの非駆動輪とを含む4つ以上の車輪を備えた車両のヨーイングを制御する車両ヨーイング制御装置であって、
    前記左駆動輪と前記右駆動輪とにそれぞれ接続された2つの電動モータを含み、それら電動モータの出力トルクを、それぞれ、左駆動輪と右駆動輪とに付与する電動トルク付与装置と、
    前記4つ以上の車輪各々と共に回転するブレーキ回転体の各々に摩擦部材を押し付けるホイールシリンダを含むとともに、前記左駆動輪のホイールシリンダと右駆動輪のホイールシリンダとが、マスタシリンダの同じ加圧室に接続されており、それらホイールシリンダの液圧に応じた液圧制動トルクを各車輪に加える液圧制動装置と、
    前記2つの電動モータのうちの少なくとも一方の制御により前記左,右駆動輪 のトルク差を制御するとともに、前記少なくとも2つの非駆動輪のホイールシリンダの液圧を共に増加させることによりそれら非駆動輪の液圧制動トルクを増加させるドリフトアウト抑制制御手段と
    を含むことを特徴とする車両ヨーイング制御装置。
  3. 左右駆動輪と左右非駆動輪との4輪各々に対応する4つのホイールシリンダのうちの2つずつが、ブレーキ操作部材の操作力に応じた液圧を発生させるマスタシリンダの2つの加圧室の各々に接続された2系統の液圧ブレーキ回路を備え、前記4輪のうちの少なくとも1つの制御対象輪のトルクを、その制御対象輪を除く車輪に対応するホイールシリンダをマスタシリンダに連通させた状態で制御することにより、車両のヨーイングを制御する車両ヨーイング制御装置であって、
    前記2系統の液圧ブレーキ回路の少なくとも一方において、その少なくとも一方に属する前記2つのホイールシリンダの少なくとも一方が、前記左右駆動輪のいずれかに対応するホイールシリンダであり、かつ、当該車両ヨーイング制御装置が、(a)前記左右駆動輪に接続された少なくとも1つの電動モータと、(b)前記制御対象輪を、前記左右駆動輪の少なくとも一方である制御対象駆動輪および前記左右非駆動輪の少なくとも一方である制御対象非駆動輪とし、制御対象駆動輪のトルクを前記少なくとも1つの電動モータの制御により制御するとともに、前記制御対象非駆動輪のトルクを対応するホイールシリンダの液圧を制御することにより制御する共同ヨーイング制御手段とを含むことを特徴とする車両ヨーイング制御装置。
JP22381197A 1997-08-20 1997-08-20 車両ヨーイング制御装置 Expired - Lifetime JP3541635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22381197A JP3541635B2 (ja) 1997-08-20 1997-08-20 車両ヨーイング制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22381197A JP3541635B2 (ja) 1997-08-20 1997-08-20 車両ヨーイング制御装置

Publications (2)

Publication Number Publication Date
JPH1159363A JPH1159363A (ja) 1999-03-02
JP3541635B2 true JP3541635B2 (ja) 2004-07-14

Family

ID=16804100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22381197A Expired - Lifetime JP3541635B2 (ja) 1997-08-20 1997-08-20 車両ヨーイング制御装置

Country Status (1)

Country Link
JP (1) JP3541635B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223205B2 (ja) 2001-08-27 2009-02-12 本田技研工業株式会社 ハイブリッド車両の駆動力分配装置

Also Published As

Publication number Publication date
JPH1159363A (ja) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3442266B2 (ja) 車両用制動装置
JP3365301B2 (ja) 車両の制動エネルギー制御装置とその制御方法
JP3546277B2 (ja) 電気自動車の制動装置
JP4760246B2 (ja) 液圧ブレーキ装置
JP3416913B2 (ja) 電動車輌の制動装置
JP3763231B2 (ja) 制動装置
JP3972431B2 (ja) 四輪駆動車のトラクション制御装置
JP3541646B2 (ja) 制動力制御装置
JP3584725B2 (ja) 制動力制御装置
JPH10322803A (ja) 車両用制動装置
JPH10297462A (ja) 制動力制御装置
JPH11139273A (ja) 車両の制動制御装置
WO2013057823A1 (ja) 車両の制動制御装置
JPH09226557A (ja) 車輌の挙動制御装置
JP2001247025A (ja) 車両制動システムおよび複系統制動システム
JP3690034B2 (ja) 車輪駆動力制御装置
JP3468046B2 (ja) 車両ヨーイング制御装置
JP2880663B2 (ja) ブレーキ液圧制御装置
JP3541635B2 (ja) 車両ヨーイング制御装置
JP3611008B2 (ja) 車両用制動装置
JPS62275870A (ja) 車両のスキツド制御装置
JP3031016B2 (ja) 電気自動車の制動制御装置
JP2003264905A (ja) 車 両
JP3405147B2 (ja) 制動トルク制御装置
CN114206695B (zh) 车辆的制动控制装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term