JP3531475B2 - Flip chip type optical semiconductor device - Google Patents

Flip chip type optical semiconductor device

Info

Publication number
JP3531475B2
JP3531475B2 JP14187398A JP14187398A JP3531475B2 JP 3531475 B2 JP3531475 B2 JP 3531475B2 JP 14187398 A JP14187398 A JP 14187398A JP 14187398 A JP14187398 A JP 14187398A JP 3531475 B2 JP3531475 B2 JP 3531475B2
Authority
JP
Japan
Prior art keywords
layer
optical semiconductor
flip
chip type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14187398A
Other languages
Japanese (ja)
Other versions
JPH11340514A (en
Inventor
高岡  美和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP14187398A priority Critical patent/JP3531475B2/en
Publication of JPH11340514A publication Critical patent/JPH11340514A/en
Application granted granted Critical
Publication of JP3531475B2 publication Critical patent/JP3531475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は各種インジケータや
光プリンタのプリンタヘッド用など種々の発光素子や太
陽電池などの受光素子として利用可能なフリップチップ
型光半導体素子に係わり、特に、駆動基板上への配置に
おいても位置精度に関わりなく短絡が極めて少ない高輝
度フリップチップ型光半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type optical semiconductor device that can be used as various light-emitting devices such as various indicators and printer heads of optical printers and light-receiving devices such as solar cells, and more particularly to a drive substrate. The present invention also relates to a high-brightness flip-chip type optical semiconductor element in which short circuits are extremely small regardless of the positional accuracy.

【0002】[0002]

【従来技術】駆動基板の電極上にLEDチップの電極を
直接、Agペーストや半田などにより導通固定させるフ
リップチップ型光半導体素子がある。このようなLED
チップは、導通を取るためにワイヤを用いる必要がな
く、比較的簡単な工程で比較的小型なLEDチップを搭
載することができる。
2. Description of the Related Art There is a flip-chip type optical semiconductor device in which an electrode of an LED chip is directly fixed on an electrode of a driving substrate by Ag paste or solder. LED like this
The chip does not need to use a wire for electrical conduction, and a relatively small LED chip can be mounted by a relatively simple process.

【0003】このようなフリップチップ型光半導体素子
の模式的断面図を図4に示す。図4にはサファイア基板
404上にバッファ層405を介してn型窒化物半導
体、p型窒化物半導体が形成されたLEDチップが示さ
れている。半導体表面側から導通を取る為に半導体の一
部を除去してp型及びn型窒化物半導体の表面をそれぞ
れ露出させてある。p型及びn型窒化物半導体の表面に
はそれぞれ各p型電極411及びn型電極412を形成
してある。したがって、p型電極411及びn型電極4
12はそれぞれ同一平面側に形成されている。
A schematic sectional view of such a flip-chip type optical semiconductor device is shown in FIG. FIG. 4 shows an LED chip in which an n-type nitride semiconductor and a p-type nitride semiconductor are formed on a sapphire substrate 404 via a buffer layer 405. In order to establish conduction from the semiconductor surface side, part of the semiconductor is removed to expose the surfaces of the p-type and n-type nitride semiconductors. The p-type electrode 411 and the n-type electrode 412 are formed on the surfaces of the p-type and n-type nitride semiconductors, respectively. Therefore, the p-type electrode 411 and the n-type electrode 4
12 are formed on the same plane side.

【0004】LEDチップは予め駆動基板の電極パター
ン上にAgペーストなどを塗布した後、電極面を下にし
た状態でLEDチップを配置させる。Agペーストを硬
化させることで、LEDチップを固定すると共に駆動基
板の電極とLEDチップの各電極との導通を取ることが
できる。
For the LED chip, Ag paste or the like is applied on the electrode pattern of the driving substrate in advance, and then the LED chip is arranged with the electrode surface facing down. By curing the Ag paste, the LED chip can be fixed and the electrodes of the drive substrate and the electrodes of the LED chip can be electrically connected.

【0005】LEDチップは一片が350μm以下でL
EDチップ上の電極は一辺が約100μm程度と極めて
小さな場合がある。この場合、LEDチップをダイボン
ド機器を用いて精度良く配置させることが難しい。ま
た、上述のフリップチップ型光半導体素子は同一面側に
異なる極性を持った半導体接合が露出形成される場合が
ある。そのため、Agペーストなどを介してLEDチッ
プの電極と駆動基板の電極パターンとを接続する場合、
LEDチップの配置ずれによりAgペーストが半導体接
合間をショートしてしまう場合がある。また、Agペー
ストの粘度、LEDチップ表面との表面張力によりAg
ペーストが半導体接合箇所まで這い上がり、同様に半導
体接合間を短絡してしまう場合がある。短絡は発光輝度
の低下のみならず発光素子の破壊を生ずる。このよう
な、短絡は電極表面を除いて酸化珪素などの保護膜40
1を形成させることによりある程度制御することができ
る。
One piece of the LED chip is 350 μm or less and L
The electrodes on the ED chip may be extremely small with a side of about 100 μm. In this case, it is difficult to accurately arrange the LED chips using a die bond device. Further, in the above flip-chip type optical semiconductor device, semiconductor junctions having different polarities may be exposed and formed on the same surface side. Therefore, when the electrodes of the LED chip and the electrode pattern of the drive substrate are connected via Ag paste or the like,
The Ag paste may short-circuit between the semiconductor junctions due to the displacement of the LED chips. In addition, Ag viscosity depends on the viscosity of the paste and the surface tension with the LED chip surface.
The paste may crawl up to the semiconductor junctions and similarly short-circuit between the semiconductor junctions. The short circuit not only lowers the light emission brightness but also damages the light emitting element. Such a short circuit is caused by a protective film 40 such as silicon oxide except for the electrode surface.
By forming 1, it is possible to control to some extent.

【0006】しかしながら、より小型化かつ歩留まりの
高い光半導体素子が求められる現在においては十分では
なく、更なる改良が求められている。特に、絶縁性被膜
を成膜させると短絡を生ずる数が減るものの、いまだ十
分な歩留まりがあるフリップチップ型光半導体素子とす
ることができなかった。したがって、本発明はより短絡
の少ない高輝度発光可能なフリップチップ型光半導体素
子を提供することを目的とする。
However, it is not sufficient at present when there is a demand for a more compact and high-yield optical semiconductor element, and further improvement is required. In particular, when the insulating film is formed, the number of short circuits is reduced, but a flip chip type optical semiconductor device having a sufficient yield has not yet been obtained. Therefore, an object of the present invention is to provide a flip-chip type optical semiconductor device capable of emitting high-luminance light with less short circuit.

【0007】[0007]

【課題を解決するための手段】本発明は透光性絶縁基板
に形成された窒化物半導体の同一平面側に正と負の電極
が設けられ、該電極表面の露出部を除いて窒化物半導体
層表面を被覆した保護膜を有するフリップチップ型光半
導体素子である。特に、保護膜は絶縁性被膜からなる第
1層と、第1層上の金属層と、金属層上に絶縁性被膜か
らなる第2層の少なくとも3層構造からなる。
According to the present invention, positive and negative electrodes are provided on the same plane side of a nitride semiconductor formed on a translucent insulating substrate, and the nitride semiconductor is formed except for an exposed portion of the electrode surface. It is a flip-chip type optical semiconductor device having a protective film covering the layer surface. In particular, the protective film has at least a three-layer structure of a first layer made of an insulating film, a metal layer on the first layer, and a second layer made of an insulating film on the metal layer.

【0008】これにより、制御性よく絶縁被膜を半導体
接合部等に形成することができると共にフリップチップ
型光半導体素子の電気的接続時においても極めて短絡の
少ないものとし得る。即ち、金属層(合金を含む)を形
成させることにより、導電性ペーストを構成する導電性
部材が絶縁性被膜を介して進入することを防ぎ短絡を防
止することができる。また、発光素子で放出された発光
波長を効率よく外部に放出させることができる、或いは
外部からの光を半導体に効率よく吸収できる受光素子と
することができる。
As a result, the insulating coating can be formed on the semiconductor junction portion and the like with good controllability, and at the time of electrical connection of the flip-chip type optical semiconductor element, the number of short circuits can be extremely reduced. That is, by forming the metal layer (including the alloy), it is possible to prevent the conductive member forming the conductive paste from entering through the insulating film and prevent a short circuit. Further, it is possible to provide a light receiving element capable of efficiently emitting the emission wavelength emitted by the light emitting element to the outside, or capable of efficiently absorbing light from the outside into the semiconductor.

【0009】本発明の請求項2に記載の構成は、第1層
及び/又は第2層が酸化珪素、酸化チタン、酸化ニオ
ブ、酸化ハフニウム、酸化アルミニウム、酸化ジルコニ
ウム、窒化珪素及びポリイミドから選択される少なくと
も一種である。これにより、より信頼性の高いフリップ
チップ型光半導体素子とすることができる。
According to a second aspect of the present invention, the first layer and / or the second layer is selected from silicon oxide, titanium oxide, niobium oxide, hafnium oxide, aluminum oxide, zirconium oxide, silicon nitride and polyimide. At least one. Thereby, a more reliable flip-chip type optical semiconductor element can be obtained.

【0010】本発明の請求項1に記載に追加の構成は、
金属層が電極の一部を構成するものである。これによ
り、比較的簡単な構成で保護膜の工程を簡略化しつつ信
頼性の高いフリップチップ型光半導体素子とすることが
できる。
An additional configuration according to claim 1 of the present invention is as follows.
The metal layer constitutes a part of the electrode. This makes it possible to provide a highly reliable flip-chip type optical semiconductor device with a relatively simple structure while simplifying the process of forming the protective film.

【0011】[0011]

【発明の実施の形態】本発明者は種々の実験の結果、窒
化物半導体素子上を被覆する被膜を特定構造とすること
により、信頼性の高いフリップチップ型光半導体素子と
しうることを見出し本発明を成すに至った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of various experiments, the present inventor has found that a highly reliable flip-chip type optical semiconductor device can be obtained by forming a film covering the nitride semiconductor device with a specific structure. Invented the invention.

【0012】即ち、無機絶縁膜は緻密で欠陥のない薄膜
を形成することが難しいこと、及びフリップチップ型光
半導体素子の電気的接続に使用される導電性接着剤によ
り短絡すると考えられる。より具体的には導電性接着剤
を構成するAgなどの導電性部材は、周辺環境の水分等
によりイオン化される。イオン化された金属は、窒化物
半導体との通電に伴い無機絶縁膜内をマイグレーション
して短絡を生ずる場合がある。短絡に伴い半導体の機能
低下ばかりでなく、半導体素子が破壊される場合もあ
る。特に、半導体接合部での短絡は、窒化物半導体素子
に特に大きな影響を与えると考えられる。本発明は絶縁
膜間に金属膜を挟み込む保護膜の構成とすることによ
り、絶縁部材を通して半導体接合部などに形成される短
絡を防止し得るものである。なお、このような問題は発
光素子のみならず受光素子においても同様な問題であ
る。
That is, it is considered that it is difficult to form a dense, defect-free thin film for an inorganic insulating film, and a short circuit occurs due to a conductive adhesive used for electrical connection of flip-chip type optical semiconductor elements. More specifically, a conductive member such as Ag that constitutes the conductive adhesive is ionized by moisture in the surrounding environment. The ionized metal may migrate in the inorganic insulating film due to the energization with the nitride semiconductor to cause a short circuit. Due to the short circuit, not only the function of the semiconductor is deteriorated but also the semiconductor element may be destroyed. In particular, it is considered that the short circuit at the semiconductor junction has a particularly large influence on the nitride semiconductor device. The present invention can prevent a short circuit formed at a semiconductor junction or the like through an insulating member by forming a protective film in which a metal film is sandwiched between insulating films. It should be noted that such a problem applies not only to the light emitting element but also to the light receiving element.

【0013】以下、本発明の具体的実施態様例について
図1を用いて説明する。図1には、サファイア基板10
4上にn型窒化物半導体、p型窒化物半導体をそれぞれ
成膜させた後、p型窒化物半導体を部分的にエッチング
させn型窒化物半導体層の表面まで露出させる。p型及
びn型窒化物半導体上に電極110、111、112を
形成させた後、プラズマCVD法により酸化珪素を全面
に成膜する。酸化珪素をマスクを利用したエッチングに
より、電極表面の一部を露出させ第1層101としての
絶縁膜を形成させた。次に、白金をスパッタリング法に
より成膜させ、第1層上に金属層102を形成させる。
さらに、第1層101と同様にして、酸化珪素をプラズ
マCVD法により絶縁性の第2層103として成膜させ
三層構成の保護膜を形成させた。形成させたフリップチ
ップ型光半導体素子の電極と、駆動回路基板の電極パタ
ーンとをCu含有のエポキシ樹脂を用いて電気的に接続
させた。駆動回路から電流を供給するとLEDチップが
発光する。LEDチップからの光はサファイアを直接透
過して外部に取り出させるものの他、保護膜を形成する
金属層により反射されサファイア取り出されるものがあ
る。そのため、LEDチップからの発光波長を高効率で
放出することができる。以下、本発明の各構成について
詳述する。
A specific embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a sapphire substrate 10
After the n-type nitride semiconductor and the p-type nitride semiconductor are formed on 4 respectively, the p-type nitride semiconductor is partially etched to expose the surface of the n-type nitride semiconductor layer. After forming the electrodes 110, 111 and 112 on the p-type and n-type nitride semiconductors, a silicon oxide film is formed on the entire surface by a plasma CVD method. By etching using silicon oxide as a mask, a part of the electrode surface was exposed to form an insulating film as the first layer 101. Next, platinum is deposited by a sputtering method to form the metal layer 102 on the first layer.
Further, as in the case of the first layer 101, silicon oxide was deposited as the insulating second layer 103 by a plasma CVD method to form a protective film having a three-layer structure. The electrodes of the formed flip-chip type optical semiconductor element and the electrode patterns of the drive circuit board were electrically connected using a Cu-containing epoxy resin. When current is supplied from the drive circuit, the LED chip emits light. Light emitted from the LED chip may be directly transmitted through sapphire and extracted outside, or may be extracted by sapphire reflected by a metal layer forming a protective film. Therefore, the emission wavelength from the LED chip can be emitted with high efficiency. Hereinafter, each configuration of the present invention will be described in detail.

【0014】(保護膜)本発明の保護膜は、少なくとも
絶縁性被膜からなる第1層101、金属層102、絶縁
性被膜103からなる第2層で構成されている。特に、
保護膜は少なくとも光半導体素子の半導体接合部をフリ
ップチップ型光半導体素子の導通時に利用される導電性
ペーストや半田などの接触から防止するものである。し
たがって、各層は以下の如き特性を持っていることが好
ましい。
(Protective Film) The protective film of the present invention comprises at least a first layer 101 made of an insulating coating, a metal layer 102, and a second layer made of an insulating coating 103. In particular,
The protective film prevents at least the semiconductor junction of the optical semiconductor element from coming into contact with a conductive paste or solder used when the flip-chip type optical semiconductor element is conducted. Therefore, each layer preferably has the following characteristics.

【0015】(第1層101、201、301)第1層
としては窒化物半導体と接して形成することができるた
め、窒化物半導体との密着性が良いものが好ましい。ま
た、第1層101上に金属層102を形成するために絶
縁性の高い絶縁膜が好ましい。第1層101は発光素子
が発光する波長を効率よく反射する或いは、受光素子が
受光する波長に対して効率よく反射することで光利用効
率を高めることができる。具体的には、第1層101の
膜厚を発光素子の発光波長や受光素子の受光波長に対し
1/4倍の厚さとすることで反射率を向上させることが
できる。また、発光素子から放出された発光波長を金属
層102で反射させる場合は、第1層101が少なくと
も発光素子から放出される発光波長や受光素子で受光さ
れる受光波長に対して透光性の高い層とすることが好ま
しい。
(First Layer 101, 201, 301) Since the first layer can be formed in contact with the nitride semiconductor, it is preferable that the first layer has good adhesion to the nitride semiconductor. In addition, an insulating film having a high insulating property is preferable because the metal layer 102 is formed on the first layer 101. The first layer 101 can efficiently reflect the wavelength of light emitted by the light emitting element or efficiently reflect the wavelength of light received by the light receiving element, thereby improving the light utilization efficiency. Specifically, the reflectance can be improved by setting the film thickness of the first layer 101 to 1/4 times the light emitting wavelength of the light emitting element or the light receiving wavelength of the light receiving element. When the light emission wavelength emitted from the light emitting element is reflected by the metal layer 102, the first layer 101 is transparent to at least the light emission wavelength emitted from the light emitting element and the light receiving wavelength received by the light receiving element. Higher layers are preferred.

【0016】このような第1層101に用いられる材料
としては、酸化珪素、酸化チタン、酸化ニオブ、酸化ハ
フニウム、酸化アルミニウム、酸化ジルコニウム及び窒
化珪素などの金属酸化物や金属窒化物、さらにはポリイ
ミドなどの樹脂が好適に挙げられる。第1層101が無
機絶縁膜の場合はスパッタリング法や各種CVD法など
を利用することにより、小型な光半導体素子においても
制御性よく形成することができる。特に、緻密な無機絶
縁膜を成膜させるためはプラズマCVD法を利用するこ
とが好ましい。
Materials used for the first layer 101 include metal oxides and metal nitrides such as silicon oxide, titanium oxide, niobium oxide, hafnium oxide, aluminum oxide, zirconium oxide and silicon nitride, and further polyimide. Resins such as When the first layer 101 is an inorganic insulating film, it can be formed with good controllability even in a small optical semiconductor element by utilizing a sputtering method or various CVD methods. In particular, it is preferable to use the plasma CVD method for forming a dense inorganic insulating film.

【0017】(金属層102、202、302)金属層
102は導電時に保護膜を構成する第2層103を介し
て進入する外部などからの金属イオンなどを実質的に防
止する働きをするものである。金属層102は、スパッ
タリング法や真空蒸着法などにより薄膜、かつ制御性良
く形成することができる他、欠陥の少ない膜として形成
しやすい。また、第1層101を透過した波長を効率よ
く反射する金属(合金や積層物を含む)を選択すること
により、集光性等を高め光取りだし効率を高めることが
できる。
(Metal layers 102, 202, 302) The metal layer 102 has a function of substantially preventing metal ions or the like from the outside that enter through the second layer 103 constituting the protective film during conduction. is there. The metal layer 102 can be formed as a thin film with good controllability by a sputtering method, a vacuum evaporation method, or the like, and can be easily formed as a film with few defects. In addition, by selecting a metal (including an alloy or a laminate) that efficiently reflects the wavelength that has passed through the first layer 101, it is possible to improve the light-collecting property and the light extraction efficiency.

【0018】このような金属層102は外部からのイオ
ンの進入を止める。或いは、導電性ペースト、導電性ペ
ーストを構成するフィラや半田の進入を防止しうるもの
であれば種々の金属でも選択することができる。金属層
の具体的材料としては、ニッケル、白金、金、アルミニ
ウム、タングステン、モリブデンやこれらの合金や積層
物が好適に挙げられる。
Such a metal layer 102 blocks the entry of ions from the outside. Alternatively, various metals can be selected as long as they can prevent the conductive paste, the filler forming the conductive paste, and the solder from entering. Preferable examples of specific materials for the metal layer include nickel, platinum, gold, aluminum, tungsten, molybdenum, and alloys and laminates thereof.

【0019】金属層はイオンマイグレーションを好適に
防止しうるものであるため、金属層自体がイオン化し難
いものが好ましい。特に、銀は、導電性が高く、窒化物
半導体のバンドギャップに対応する光に対して反射性は
よい。しかし、イオンマイグレーションを起こしやすい
銀を除いた金属元素で構成することが好ましい。また、
金属層102の厚みは発光素子からの発光波長を反射及
び小型化などを考慮すると百Åから数ミクロン程度の厚
みで形成することが好ましい。金属層102は短絡しな
い限り、窒化物半導体の全周を被覆するように形成して
も良いし、複数に分割した形状で形成することもでき
る。
Since the metal layer can prevent ion migration, it is preferable that the metal layer itself is difficult to ionize. In particular, silver has high conductivity and good reflectivity for light corresponding to the band gap of a nitride semiconductor. However, it is preferable to be composed of a metal element excluding silver, which easily causes ion migration. Also,
The thickness of the metal layer 102 is preferably about 100 to several microns in consideration of reflection of the wavelength of light emitted from the light emitting element and miniaturization. The metal layer 102 may be formed so as to cover the entire circumference of the nitride semiconductor as long as it does not short circuit, or may be formed in a shape divided into a plurality of parts.

【0020】複数に分割された場合、p型或いはn型の
電極の一部を構成することもできる。これにより、電極
形成と同時に金属層302を形成することができる。そ
のため複数のマスクとエッチング工程を簡略して、工程
数を低減することができる。このような金属層302と
して具体的にはp型窒化物半導体の電極として機能させ
る場合は、オーミック接触等を考慮して、ニッケル、コ
バルト、金や白金などの金属元素で構成されていること
が好ましい。同様に、n型窒化物半導体の電極としても
機能させる場合は、タングステン、アルミニウムやチタ
ンなどの金属元素で構成されていることが好ましい。さ
らに、窒化物半導体を活性層を介してダブルへテロ構造
としたLEDに利用した場合、活性層の端面から放出さ
れる光が特に多いことから活性層を絶縁層を介した金属
層で被覆することにより、発光効率をより向上させるこ
とができる。
When divided into a plurality of parts, a part of the p-type or n-type electrode can be formed. Thereby, the metal layer 302 can be formed at the same time when the electrodes are formed. Therefore, the plurality of masks and the etching process can be simplified and the number of processes can be reduced. When specifically functioning as such a metal layer 302 as an electrode of a p-type nitride semiconductor, it may be composed of a metal element such as nickel, cobalt, gold or platinum in consideration of ohmic contact. preferable. Similarly, when functioning as an electrode of an n-type nitride semiconductor, it is preferably composed of a metal element such as tungsten, aluminum or titanium. Furthermore, when a nitride semiconductor is used for an LED having a double hetero structure with an active layer interposed, the active layer is covered with a metal layer via an insulating layer because the light emitted from the end face of the active layer is particularly large. As a result, the luminous efficiency can be further improved.

【0021】(第2層103)第2層103は金属層1
02を被覆する絶縁被膜であり外部と窒化物半導体とを
電気的に絶縁するために設けられるものである。したが
って、金属層102上に直接形成される場合は金属層1
02と密着性がよく絶縁性が高いことが求められる。第
2層103に用いられる材料としては、第1層101と
同様、種々の金属酸化物、金属窒化物などの無機物質の
他、有機樹脂を種々選択することができる。より具体的
には、酸化珪素、酸化チタン、酸化ニオブ、酸化ハフニ
ウム、酸化アルミニウム、酸化ジルコニウム、窒化珪素
及びポリイミド樹脂などを好適に挙げることができる。
第2層103が無機絶縁膜の場合は緻密に形成させるほ
ど短絡の傾向が減少するが、緻密に形成させるためには
成膜時間がかかる傾向にある。
(Second Layer 103) The second layer 103 is the metal layer 1
It is an insulating film for covering 02 and is provided to electrically insulate the outside from the nitride semiconductor. Therefore, when directly formed on the metal layer 102, the metal layer 1
No. 02 is required to have good adhesion and high insulation. As the material used for the second layer 103, as with the first layer 101, various organic materials can be selected in addition to inorganic materials such as various metal oxides and metal nitrides. More specifically, suitable examples include silicon oxide, titanium oxide, niobium oxide, hafnium oxide, aluminum oxide, zirconium oxide, silicon nitride, and polyimide resin.
If the second layer 103 is an inorganic insulating film, the tendency of short-circuiting decreases as it is densely formed, but it tends to take a long time to form it densely.

【0022】一方、第2層103はフリップチップ型光
半導体素子の最外郭に配置される場合がある。このよう
な、第2層103の場合は実装時における保護膜の損傷
を防止するため、ポリイミドなどの絶縁性有機物質を使
用することもできる。これにより、信頼性を更に向上さ
せることもできる。具体的には、窒化物半導体は、サフ
ァイア基板などの上に形成させた後、粘着シート上でス
クライブなどにより個々の窒化物半導体素子に分割され
る。分割された窒化物半導体素子が取り上げ可能なよう
に粘着シートをのばし、粘着シート下部から突き上げピ
ンによって個々の半導体素子を突き上げ、コレットに吸
着する。他方、搭載させる駆動基板側の電極にAgペー
ストなどの導電性ペーストを塗布する。コレットによっ
て吸着した窒化物半導体素子を導電性ペースト上に乗
せ、導電性接着剤を硬化させる。これによって、所望の
駆動基板上などに窒化物半導体素子を配置固定すること
ができる。
On the other hand, the second layer 103 may be arranged at the outermost part of the flip-chip type optical semiconductor device. In the case of the second layer 103, an insulating organic material such as polyimide may be used in order to prevent damage to the protective film during mounting. Thereby, the reliability can be further improved. Specifically, a nitride semiconductor is formed on a sapphire substrate or the like and then divided into individual nitride semiconductor elements by scribe or the like on an adhesive sheet. An adhesive sheet is extended so that the divided nitride semiconductor elements can be picked up, and individual semiconductor elements are pushed up from the bottom of the adhesive sheet by push-up pins and adsorbed to the collet. On the other hand, a conductive paste such as Ag paste is applied to the electrodes on the side of the drive substrate to be mounted. The nitride semiconductor element adsorbed by the collet is placed on the conductive paste, and the conductive adhesive is cured. As a result, the nitride semiconductor device can be arranged and fixed on a desired driving substrate or the like.

【0023】窒化物半導体素子の場合、比較的硬いサフ
ァイア基板などの上に窒化物半導体が形成される。その
ため、基板側においては比較的強度が高いものの、コレ
ットで吸着させる際、突き上げピンは絶縁被膜を形成さ
せた電極面側を突き上げる。そして半導体面(サファイ
ア基板に対して窒化物半導体側)を配線基板の導電部に
導電性接着剤を介してフリップチップボンディングさせ
る。
In the case of a nitride semiconductor device, the nitride semiconductor is formed on a relatively hard sapphire substrate or the like. Therefore, although the substrate has relatively high strength, the push-up pin pushes up the electrode surface side on which the insulating coating is formed when adsorbing with the collet. Then, the semiconductor surface (nitride semiconductor side with respect to the sapphire substrate) is flip-chip bonded to the conductive portion of the wiring substrate via a conductive adhesive.

【0024】この場合、短絡不良を防止するために窒化
物半導体面、窒化物半導体端面及び露出している基板面
等に絶縁膜を形成しているにも関わらず、短絡不良の発
生率がかなり高くなる傾向がある。この原因として、発
光面が基板面の時は基板が硬いために突き上げピンによ
って傷や割れが発生し難い。特に、窒化物半導体面側を
突き上げピンによって突き上げる場合は、保護膜に傷や
割れ等が発生し易くなるために短絡の発生率が高いもの
と考えられる。
In this case, although the insulating film is formed on the nitride semiconductor surface, the nitride semiconductor end surface, the exposed substrate surface, etc. in order to prevent the short circuit failure, the occurrence rate of the short circuit failure is considerably high. Tends to be high. As a cause of this, when the light emitting surface is the surface of the substrate, the substrate is hard, so that the push-up pin is unlikely to cause scratches or cracks. In particular, when the nitride semiconductor surface side is pushed up by the push-up pin, it is considered that the occurrence rate of short circuit is high because the protective film is likely to be damaged or cracked.

【0025】そこで、有機樹脂による絶縁被膜を特に第
2層103として形成させた場合はフリップチップボン
ディング形式の窒化物半導体素子において、突き上げピ
ンによる窒化物半導体面の傷及び絶縁膜の割れを防止
し、短絡不良がなく信頼性の高い窒化物半導体素子とす
ることができる。
Therefore, when an insulating film made of an organic resin is formed as the second layer 103 in particular, in a nitride semiconductor element of the flip chip bonding type, scratches on the nitride semiconductor surface due to push-up pins and cracks in the insulating film are prevented. It is possible to obtain a highly reliable nitride semiconductor element without a short circuit defect.

【0026】即ち、第2層103を有機絶縁膜とするこ
とにより、配線基板への実装時における粘着シート下部
からの突き上げピンの物理的衝撃を緩和し、短絡の原因
となる絶縁膜の割れ等を効果的に防止できるものであ
る。このような、第2層103にポリイミド系薄膜を利
用した場合における具体的な膜厚は、突き上げピンで突
き上げた時に受ける物理的力の緩和、及び絶縁膜の耐圧
の点で1〜10μmとすることが好ましい。また、ポリ
イミド系薄膜の発光主波長における透過率が60%以下
であると、窒化物半導体素子端面からの漏光を抑制、光
学特性のばらつきの軽減される。そのため、配光特性の
安定性が得られるためより好ましい。
That is, by using the organic insulating film as the second layer 103, the physical impact of the push-up pin from the lower part of the adhesive sheet at the time of mounting on the wiring board is mitigated, and the insulating film causing a short circuit or the like. Can be effectively prevented. When a polyimide-based thin film is used for the second layer 103, the specific film thickness is set to 1 to 10 μm in terms of the relaxation of the physical force received by the push-up pin and the breakdown voltage of the insulating film. It is preferable. When the transmittance of the polyimide-based thin film at the dominant wavelength of light emission is 60% or less, light leakage from the end surface of the nitride semiconductor element is suppressed and variations in optical characteristics are reduced. Therefore, the stability of the light distribution characteristics can be obtained, which is more preferable.

【0027】(光半導体素子)本発明の光半導体素子
は、窒化物半導体からなる受光素子や発光素子である。
透光性絶縁基板上に形成され少なくとも半導体接合を有
する窒化物半導体により構成することができる。具体的
には、透光性絶縁基板上にMOCVD法やHVPE法を
用いて窒化物半導体を形成させることができる。このよ
うな透光性絶縁基板としては、窒化ガリウム、サファイ
ア(Al23)やスピネル(MgAl24)などが挙げ
られる。半導体接合としては、MIS接合、PIN接合
の他、pn接合が挙げられる。また、光半導体素子の特
性により、ホモやダブルへテロ構造とすることができ
る。さらに、単一量子井戸構造や多重量子井戸構造とす
ることもできる。
(Optical Semiconductor Element) The optical semiconductor element of the present invention is a light receiving element or a light emitting element made of a nitride semiconductor.
A nitride semiconductor formed on a translucent insulating substrate and having at least a semiconductor junction can be used. Specifically, a nitride semiconductor can be formed over a light-transmitting insulating substrate by an MOCVD method or an HVPE method. Examples of such a translucent insulating substrate include gallium nitride, sapphire (Al 2 O 3 ) and spinel (MgAl 2 O 4 ). Examples of the semiconductor junction include a pn junction as well as a MIS junction and a PIN junction. Further, depending on the characteristics of the optical semiconductor element, a homo or double hetero structure can be obtained. Further, a single quantum well structure or a multiple quantum well structure can be used.

【0028】pin接合やpn接合が短絡することで、
半導体特性に大きな損傷が加わる。そのため、本発明が
有効に働くことになる。半導体の材料やその混晶度によ
って光半導体素子の発光波長及び受光波長を紫外光から
赤色領域まで種々選択することができる。
By short-circuiting the pin junction and the pn junction,
Greatly damages semiconductor characteristics. Therefore, the present invention works effectively. The emission wavelength and the reception wavelength of the optical semiconductor element can be variously selected from the ultraviolet light to the red region depending on the material of the semiconductor and the mixed crystallinity thereof.

【0029】なお結晶性の良い窒化物半導体を形成させ
るためにはサファイヤ基板を用いることが好ましい。こ
のサファイヤ基板上に格子不整合緩和のためにGaN、
AlN等のバッファー層を形成しその上にpn接合など
を有する窒化物半導体を形成させることにより半導体特
性の優れた発光素子や受光素子を構成させることができ
る。サファイアで基板を形成させると硬度が高く、基板
自体が透光性を持つと共に外部からの水分等の進入を防
ぐことができるため特に好ましい。
A sapphire substrate is preferably used to form a nitride semiconductor having good crystallinity. GaN on the sapphire substrate for relaxing the lattice mismatch,
By forming a buffer layer of AlN or the like and forming a nitride semiconductor having a pn junction or the like on the buffer layer, a light emitting element or a light receiving element having excellent semiconductor characteristics can be formed. It is particularly preferable to form the substrate with sapphire because the hardness is high, the substrate itself has a light-transmitting property, and moisture or the like can be prevented from entering from the outside.

【0030】窒化物半導体は、不純物をドープしない状
態でn型導電性を示すが、n型ドーパントとしてSi、
Ge、Se、Te、Sn等を適宜導入することが好まし
い。また、n型ドーパントと微量のp型ドーパントとを
ドーピングしたダブルドーピングすることもできる。こ
れらのドーパントの種類とドーピング量を変えることに
よってキヤリア密度を制御し電気抵抗を下げることがで
きる。一方、p型窒化物半導体を形成させる場合は、p
型ドーパントであるZn、Mg、Be、Ca、Sr、B
a等をドープさせる。窒化ガリウム半導体は、p型ドー
パントをドープしただけでは低抵抗化しにくいためp型
ドーパント導入後に、低速電子線照射、プラズマ照射や
熱処理等させることで低抵抗化処理することができる。
The nitride semiconductor shows n-type conductivity in a state where impurities are not doped, but Si as an n-type dopant is used.
It is preferable to appropriately introduce Ge, Se, Te, Sn and the like. Further, double doping in which an n-type dopant and a small amount of p-type dopant are doped can be performed. By changing the kind and doping amount of these dopants, the carrier density can be controlled and the electric resistance can be lowered. On the other hand, when forming a p-type nitride semiconductor, p
Type dopants Zn, Mg, Be, Ca, Sr, B
Dope a etc. Since it is difficult to reduce the resistance of a gallium nitride semiconductor simply by doping it with a p-type dopant, it is possible to reduce the resistance by performing low-speed electron beam irradiation, plasma irradiation, heat treatment, or the like after the introduction of the p-type dopant.

【0031】半導体露出面側に一対の電極を形成するた
めには各半導体を所望の形状にエッチングしてあること
が好ましい。エッチングとしては、ドライエッチング
や、ウエットエッチングがある。ドライエッチングとし
ては例えば反応性イオンエッチング、イオンミリング、
集束ビームエッチング、ECRエッチング等が挙げられ
る。又、ウエットエッチングとしては、硝酸と燐酸の混
酸を用いることができる。ただし、エッチングを行う前
に所望の形状に窒化珪素や酸化珪素等の材料を用いてマ
スクを形成することは言うまでもない。以下、本発明の
実施例について詳述するがこれのみに限定されるもので
ないことはいうまでもない。
In order to form a pair of electrodes on the semiconductor exposed surface side, each semiconductor is preferably etched into a desired shape. Examples of etching include dry etching and wet etching. Examples of dry etching include reactive ion etching, ion milling,
Focused beam etching, ECR etching, etc. are mentioned. For wet etching, a mixed acid of nitric acid and phosphoric acid can be used. However, it goes without saying that a mask is formed into a desired shape using a material such as silicon nitride or silicon oxide before etching. Hereinafter, examples of the present invention will be described in detail, but it goes without saying that the present invention is not limited thereto.

【0032】[0032]

【実施例】(実施例1)洗浄されたサファイアのC面を
成膜表面としてMOCVD法を用いて窒化物半導体を成
膜した。成膜装置内にサファイア基板104を配置し6
50℃に加熱すると共に、TMG(トリメチルガリウ
ム)ガス、窒素ガスを原料ガス、水素ガスをキャリアガ
スとして流しバッファ層105を形成させた。一旦、原
料ガスの導入を止めた後、成膜温度を1150℃に上げ
TMGガス、窒素ガス、水素ガスにn型ドーパントガス
としてシランを加えて厚さ5μmのn型窒化ガリウム層
106を成膜した。次に、TMGガスの供給を停止し、
成膜温度を800℃に低下させた後、TMGガス、TM
A(トリメチルアルミニウム)ガス、窒素ガス及び水素
ガスを供給させて厚さ3nmの窒化インジウムガリウム
を発光層107として成膜させた。
EXAMPLES Example 1 A nitride semiconductor was deposited by MOCVD using the cleaned C surface of sapphire as the deposition surface. The sapphire substrate 104 is placed in the film forming apparatus, and
While being heated to 50 ° C., TMG (trimethylgallium) gas and nitrogen gas were used as raw material gases and hydrogen gas as a carrier gas to form the buffer layer 105. After stopping the introduction of the raw material gas, the film formation temperature is raised to 1150 ° C. and silane is added as an n-type dopant gas to TMG gas, nitrogen gas and hydrogen gas to form an n-type gallium nitride layer 106 having a thickness of 5 μm. did. Next, stop the supply of TMG gas,
After lowering the film forming temperature to 800 ° C., TMG gas, TM
A (trimethylaluminum) gas, nitrogen gas, and hydrogen gas were supplied to deposit indium gallium nitride with a thickness of 3 nm as a light-emitting layer 107.

【0033】次に、原料ガスの供給を停止して成膜温度
を1050℃に上げた後、再び原料ガスとしてTMGガ
ス、TMAガス、窒素ガス、キャリアガスとして水素ガ
ス、不純物ガスとしてシクロペンタジエチルマグネシウ
ムを加えて厚さ300Åのp型クラッド層108を成膜
させる。
Next, after stopping the supply of the raw material gas and raising the film forming temperature to 1050 ° C., TMG gas, TMA gas, nitrogen gas as the raw material gas, hydrogen gas as the carrier gas, and cyclopentadiethyl as the impurity gas. Magnesium is added to form a p-type clad layer 108 having a thickness of 300Å.

【0034】p型クラッド層108上にTMAガスの供
給を停止した以外はp型クラッド層の形成と同様にして
厚さ1500Åのp型コンタクト層109を成膜させ
る。(なお、p型窒化物半導体となる半導体層は成膜後
400℃以上で熱処理してある。)こうして活性層を介
してダブルへテロ構造である窒化物半導体を成膜した。
半導体ウエハの同一面側に電極を形成させるため、マス
クを利用して、活性層、p型クラッド層、p型コンタク
ト層を一部残しつつn型コンタクト層まで、部分的にエ
ッチングさせてある。同様に各LEDチップとして分離
できる大きさでサファイア基板上までそれぞれエッチン
グしてある。エッチング後、サファイア基板上には島状
の窒化物半導体層が形成されることとなる。
A p-type contact layer 109 having a thickness of 1500 Å is formed on the p-type clad layer 108 in the same manner as the p-type clad layer except that the supply of TMA gas is stopped. (Note that the semiconductor layer to be a p-type nitride semiconductor is heat-treated at 400 ° C. or higher after film formation.) Thus, a nitride semiconductor having a double hetero structure is formed through the active layer.
In order to form electrodes on the same side of the semiconductor wafer, a mask is used to partially etch the n-type contact layer while leaving the active layer, the p-type cladding layer, and the p-type contact layer. Similarly, each LED chip is etched to a size such that it can be separated to the sapphire substrate. After etching, an island-shaped nitride semiconductor layer will be formed on the sapphire substrate.

【0035】p型コンタクト層109と接触し全面を被
覆する電極110として白金を500Åでスパッタリン
グ法を用いて成膜した。この電極110上には、100
μm角のp型電極111として白金を0.7μmで成膜
した。n型コンタクト層106上には直径100μmの
n型電極112としてタングステン/アルミニウムを2
00Å/0.7μmとして成膜した。これによって、島
状の窒化物半導体上には同一平面側に正負一対の電極1
11、112が形成されたことになる。
A platinum film was formed as an electrode 110 in contact with the p-type contact layer 109 so as to cover the entire surface with 500 Å by a sputtering method. On this electrode 110, 100
A 0.7 μm platinum film was formed as a p-type electrode 111 having a square shape. On the n-type contact layer 106, tungsten / aluminum is used as the n-type electrode 112 having a diameter of 100 μm.
The film was formed with a thickness of 00Å / 0.7 μm. As a result, a pair of positive and negative electrodes 1 are formed on the same plane side on the island-shaped nitride semiconductor.
11, 112 have been formed.

【0036】各窒化物半導体が形成されたp型及びn型
の各電極上に第1層101を形成すべく、半導体ウエハ
をプラズマCVD装置内に配置させた。シランガス及び
酸化窒素ガスを原料ガスとして酸化珪素膜を半導体ウエ
ハの全面に形成させた。酸化珪素膜を形成後、プラズマ
CVD装置から取り出し、レジストマスクを利用してド
ライエッチングさせることによりp型電極111及びn
型電極112の表面を露出させた。レジストマスクを除
去して半導体ウエハ上に第1層101となる酸化珪素膜
が形成させた。
A semiconductor wafer was placed in a plasma CVD apparatus in order to form the first layer 101 on the p-type and n-type electrodes on which the respective nitride semiconductors were formed. A silicon oxide film was formed on the entire surface of the semiconductor wafer using silane gas and nitric oxide gas as source gases. After the silicon oxide film is formed, it is taken out from the plasma CVD apparatus and dry-etched using a resist mask to form the p-type electrodes 111 and n.
The surface of the mold electrode 112 was exposed. The resist mask was removed, and a silicon oxide film to be the first layer 101 was formed on the semiconductor wafer.

【0037】続いて、半導体ウエハをスパッタリング装
置内に配置させ、ターゲットをプラチナとしスパッタリ
ングすることにより、金属層102となる厚さ500Å
のプラチナを成膜させた。リフトオフによりp型電極1
11及びn型電極112の表面を露出させた。さらに、
第1層101と同様の条件で再び第2層102の酸化珪
素を形成させる。その後、p型電極111及びn型電極
112に形成されたマスクを除去する。これにより、各
p型電極111、n型電極112の表面及びサファイア
基板104以外は窒化物半導体の表面には、酸化珪素1
01、プラチナ102、酸化珪素103の三層構成とな
る保護膜が形成される。半導体ウエハを分離することに
より、各々フリップチップ型LEDを得ることができ
る。
Subsequently, the semiconductor wafer is placed in a sputtering apparatus, and platinum is used as a target to perform sputtering, thereby forming a metal layer 102 having a thickness of 500Å.
Of platinum. P-type electrode 1 by lift-off
11 and the surface of the n-type electrode 112 were exposed. further,
Silicon oxide for the second layer 102 is formed again under the same conditions as for the first layer 101. After that, the masks formed on the p-type electrode 111 and the n-type electrode 112 are removed. As a result, silicon oxide 1 is formed on the surface of each p-type electrode 111 and the n-type electrode 112 and on the surface of the nitride semiconductor except the sapphire substrate 104.
A protective film having a three-layer structure of 01, platinum 102, and silicon oxide 103 is formed. By separating the semiconductor wafer, each flip-chip type LED can be obtained.

【0038】得られたLEDチップの内、1400個を
電極の間隔が約100μである一対の電極が形成された
駆動回路上にAgペーストを用いてダイボンディングさ
せた。各LEDに電流を流したところサファイア基板1
04を介して発光しており全て発光可能であった。
Of the obtained LED chips, 1400 pieces were die-bonded using Ag paste on a drive circuit in which a pair of electrodes having an electrode interval of about 100 μ was formed. Sapphire substrate 1 when current is applied to each LED
Light was emitted through 04 and all were capable of emitting light.

【0039】(比較例1)金属層、第2層を設けるかわ
りに第1層の厚みを実施例1の保護膜の厚みと同じ膜厚
とした以外は同様にして図4の如き、フリップチップ型
LEDを形成させた。実施例1と同様に駆動回路上にA
gペーストを用いて1400個のLEDをダイボンディ
ングさせた。各LEDに電流を流したところ不灯となっ
たものが5個あった。また、発光輝度が極端に暗くなっ
たものが8個あった。不灯となったものを集束イオンビ
ーム加工装置を用いて調べたところ、保護膜を介してA
gが貫通しているためにリークしていた。また、発光輝
度が極端に暗くなったものを除いた平均輝度を100と
した場合、実施例1の平均輝度は121であった。
(Comparative Example 1) A flip chip as shown in FIG. 4 was prepared in the same manner except that the thickness of the first layer was made the same as the thickness of the protective film of Example 1 instead of providing the metal layer and the second layer. Molded LEDs were formed. As in the first embodiment, A on the drive circuit
1400 LEDs were die bonded using g paste. When a current was applied to each LED, there were 5 lights that were not illuminated. Further, there were eight in which the emission brightness was extremely dark. When the non-lighted one was examined using a focused ion beam processing device, A
It leaked because g penetrated. Further, when the average luminance excluding the one in which the emission luminance was extremely dark was set to 100, the average luminance of Example 1 was 121.

【0040】(実施例2)実施例2は図2に示したLE
Dの如く、第2層203を酸化珪素で形成させるかわり
にポリイミド被膜とした。ポリイミド被膜を塗布硬化し
て第2層203を形成させた以外は、実施例1と同様に
してフリップチップ型LEDを構成させた。得られたL
EDを実施例1、比較例1と同様にして測定したところ
実施例1とほぼ同様の結果が得られた。なお、実施例2
は実施例1に対して経時劣化が少なくなる傾向にある。
(Embodiment 2) Embodiment 2 is the LE shown in FIG.
As in D, instead of forming the second layer 203 with silicon oxide, a polyimide coating was used. A flip-chip type LED was constructed in the same manner as in Example 1 except that the second layer 203 was formed by coating and curing the polyimide film. Obtained L
When the ED was measured in the same manner as in Example 1 and Comparative Example 1, almost the same results as in Example 1 were obtained. In addition, Example 2
Is less likely to deteriorate over time as compared with Example 1.

【0041】(実施例3)金属層302の厚みを0.7
μmとして図3の如く、p型電極として一体的に形成さ
せた以外は、実施例1と同様にしてフリップチップ型L
EDを形成させた。得られたLEDは工程を簡略化した
にもかかわらず、実施例1とほぼ同様の信頼性を得るこ
とができた。
Example 3 The thickness of the metal layer 302 is 0.7.
As shown in FIG. 3, a flip chip type L is formed in the same manner as in Example 1 except that the p type electrode is integrally formed.
The ED was formed. The obtained LED was able to obtain almost the same reliability as that of Example 1, even though the process was simplified.

【0042】[0042]

【発明の効果】本発明はサファイア基板上の窒化物半導
体を利用したフリップチップ型光半導体素子であり、特
に光半導体素子に設けられた半導体接合を少なくとも3
層構成の保護膜で被覆することにより発光輝度を向上さ
せると共に短絡の少ないフリップチップ型光半導体素子
とすることができる。
INDUSTRIAL APPLICABILITY The present invention is a flip-chip type optical semiconductor device using a nitride semiconductor on a sapphire substrate, and particularly at least three semiconductor junctions provided in the optical semiconductor device.
By covering with a protective film having a layered structure, it is possible to obtain a flip-chip type optical semiconductor device which improves emission luminance and has few short circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のフリップチップ型光半導体素子の模
式的断面図を示す。
FIG. 1 shows a schematic cross-sectional view of a flip-chip type optical semiconductor device of the present invention.

【図2】 本発明の別のフリップチップ型光半導体素子
を駆動基板上に配置させた模式的断面図を示す。
FIG. 2 is a schematic sectional view in which another flip-chip type optical semiconductor element of the present invention is arranged on a driving substrate.

【図3】 本発明の他のフリップチップ型光半導体素子
の模式的断面図を示す。
FIG. 3 shows a schematic sectional view of another flip-chip type optical semiconductor device of the present invention.

【図4】本発明と比較のために示すフリップチップ型光
半導体素子の模式的断面図を示す。
FIG. 4 shows a schematic cross-sectional view of a flip-chip type optical semiconductor device shown for comparison with the present invention.

【符号の説明】[Explanation of symbols]

100、200、300・・・光半導体素子 101、201、301・・・無機絶縁膜からなる第1
層 102、202・・・金属層 103、303・・・無機絶縁膜からなる第2層 104、204、304・・・透光性絶縁基板 105、205、305・・・バッファ層 106、206、306・・・n型コンタクト層 107、207、307・・・活性層 108、208、308・・・p型クラッド層 109、209、309・・・p型コンタクト層 110、210、310・・・p型半導体上に形成され
た電極 111、211・・・p型電極 112、212、312・・・n型電極 203・・・有機絶縁膜からなる第2層 214・・・駆動基板上に形成された電極パターン 215・・・駆動基板 302・・・p型電極を構成する金属層 400・・・光半導体素子 401・・・無機絶縁膜からなる第1層 404・・・透光性絶縁基板 405・・・バッファ層 406・・・n型コンタクト層 407・・・活性層 408・・・p型クラッド層 409・・・p型コンタクト層 410・・・p型半導体上に形成された電極 411・・・p型電極 412・・・n型電極
100, 200, 300 ... Optical semiconductor element 101, 201, 301 ... First made of inorganic insulating film
Layers 102, 202 ... Metal layers 103, 303 ... Second layers 104, 204, 304 ... Translucent insulating substrates 105, 205, 305 ... Buffer layers 106, 206 ... 306 ... N-type contact layers 107, 207, 307 ... Active layers 108, 208, 308 ... P-type cladding layers 109, 209, 309 ... P-type contact layers 110, 210, 310 ... Electrodes 111, 211 ... P-type electrodes 112, 212, 312 ... N-type electrode 203 ... Second layer 214 made of organic insulating film ... Formed on drive substrate Electrode pattern 215 ... drive substrate 302 ... metal layer 400 forming p-type electrode ... optical semiconductor element 401 ... first layer 404 composed of inorganic insulating film ... translucent insulating substrate 405 .... Buffer layer 406 ... N-type contact layer 407 ... Active layer 408 ... P-type cladding layer 409 ... P-type contact layer 410 ... Electrode 411 formed on p-type semiconductor. .P type electrode 412 ... n type electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−97742(JP,A) 特開 平11−150298(JP,A) 特開2000−36619(JP,A) 特開 平6−318731(JP,A) 特開 平5−160437(JP,A) 特開 平1−179469(JP,A) 特開 平6−268252(JP,A) 特開 平11−191641(JP,A) 特開 昭56−6417(JP,A) 特開 昭61−203503(JP,A) 特開 平9−116192(JP,A) 特開 平9−199787(JP,A) 実開 昭58−92751(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-11-97742 (JP, A) JP-A-11-150298 (JP, A) JP-A-2000-36619 (JP, A) JP-A-6-318731 (JP, A) JP 5-160437 (JP, A) JP 1-179469 (JP, A) JP 6-268252 (JP, A) JP 11-191641 (JP, A) Kai 56-6417 (JP, A) JP 61-203503 (JP, A) JP 9-116192 (JP, A) JP 9-199787 (JP, A) Actual JP Sho 58-92751 ( JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 33/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透光性絶縁基板に形成された窒化物半導
体の同一平面側に正と負の電極が設けられ、該電極表面
の露出部を除いて窒化物半導体層表面を被覆した保護膜
を有するフリップチップ型光半導体素子であって、 前記保護膜は絶縁性被膜からなる第1層と、該第1層上
の金属層と、該金属層上に絶縁性被膜からなる第2層の
少なくとも3層構造を有し、該金属層が前記電極の一部
を構成することを特徴とするフリップチップ型光半導体
素子。
1. A protective film in which positive and negative electrodes are provided on the same plane side of a nitride semiconductor formed on a translucent insulating substrate, and the surface of the nitride semiconductor layer is covered except the exposed portion of the electrode surface. A flip-chip type optical semiconductor device having: a protective layer comprising: a first layer made of an insulating coating; a metal layer on the first layer; and a second layer made of an insulating coating on the metal layer. A flip-chip type optical semiconductor device having at least a three-layer structure, wherein the metal layer constitutes a part of the electrode.
【請求項2】 前記第1層及び/又は第2層が酸化珪
素、酸化チタン、酸化ニオブ、酸化ハフニウム、酸化ア
ルミニウム、酸化ジルコニウム、窒化珪素及びポリイミ
ドから選択される少なくとも一種である請求項1に記載
のフリップチップ型光半導体素子。
2. The first layer and / or the second layer is at least one selected from silicon oxide, titanium oxide, niobium oxide, hafnium oxide, aluminum oxide, zirconium oxide, silicon nitride and polyimide. The flip-chip type optical semiconductor device described.
【請求項3】 前記第1層が無機絶縁膜で、前記第2層
が有機絶縁膜である請求項1又は2記載のフリップチッ
プ型光半導体素子。
3. The flip-chip type optical semiconductor device according to claim 1, wherein the first layer is an inorganic insulating film and the second layer is an organic insulating film.
【請求項4】 前記金属層が複数に分割した形状である
請求項1乃至3記載のフリップチップ型光半導体素子。
4. The flip-chip type optical semiconductor device according to claim 1, wherein the metal layer has a shape divided into a plurality of parts.
【請求項5】 前記光半導体素子が発光素子であり、該
発光素子から放出される光が第前記1層を透過して、前
記金属層で反射される請求項1乃至4記載のフリップチ
ップ型光半導体素子。
5. The flip-chip type according to claim 1, wherein the optical semiconductor element is a light emitting element, and light emitted from the light emitting element passes through the first layer and is reflected by the metal layer. Optical semiconductor device.
【請求項6】 前記光半導体素子が発光素子であり、該
発光素子が駆動基板に電極が接続され、配置されている
請求項1乃至5記載のフリップチップ型光半導体素子。
6. The flip-chip type optical semiconductor element according to claim 1, wherein the optical semiconductor element is a light emitting element, and the light emitting element is arranged with electrodes connected to a driving substrate.
JP14187398A 1998-05-22 1998-05-22 Flip chip type optical semiconductor device Expired - Fee Related JP3531475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14187398A JP3531475B2 (en) 1998-05-22 1998-05-22 Flip chip type optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14187398A JP3531475B2 (en) 1998-05-22 1998-05-22 Flip chip type optical semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003354383A Division JP4474892B2 (en) 2003-10-14 2003-10-14 Flip chip type LED

Publications (2)

Publication Number Publication Date
JPH11340514A JPH11340514A (en) 1999-12-10
JP3531475B2 true JP3531475B2 (en) 2004-05-31

Family

ID=15302155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14187398A Expired - Fee Related JP3531475B2 (en) 1998-05-22 1998-05-22 Flip chip type optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3531475B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694112A (en) * 2011-03-23 2012-09-26 丰田合成株式会社 Group iii nitride semiconductor light-emitting device
KR101900276B1 (en) * 2012-01-04 2018-09-20 엘지이노텍 주식회사 Light emitting device and light emitting apparatus having the same
KR101901839B1 (en) * 2012-01-03 2018-09-27 엘지이노텍 주식회사 Light emitting device, light emitting devicd package and light emitting module
KR101901845B1 (en) 2012-01-05 2018-09-27 엘지이노텍 주식회사 Light emitting device and light emitting device package and light emitting module
US10804451B2 (en) 2017-10-26 2020-10-13 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device and production method therefor

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514782B1 (en) * 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
JP4496596B2 (en) * 2000-03-27 2010-07-07 ソニー株式会社 Light emitting device
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6455878B1 (en) * 2001-05-15 2002-09-24 Lumileds Lighting U.S., Llc Semiconductor LED flip-chip having low refractive index underfill
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
JP2004343139A (en) * 2001-11-19 2004-12-02 Sanyo Electric Co Ltd Compound semiconductor light emitting element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
US6784462B2 (en) * 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
CA2492249A1 (en) * 2002-07-22 2004-01-29 Cree, Inc. Light emitting diode including barrier layers and manufacturing methods therefor
EP2290715B1 (en) 2002-08-01 2019-01-23 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
KR100489042B1 (en) * 2002-08-30 2005-05-11 엘지이노텍 주식회사 Reverse-pyramidal flip chip for high output led
JP4889193B2 (en) * 2003-07-23 2012-03-07 日亜化学工業株式会社 Nitride semiconductor light emitting device
KR100601143B1 (en) * 2003-07-30 2006-07-19 에피밸리 주식회사 Semiconductor Light Emitting Device
JP4661038B2 (en) * 2003-09-11 2011-03-30 セイコーエプソン株式会社 LIGHT SOURCE DEVICE, LIGHT SOURCE DEVICE MANUFACTURING METHOD, PROJECTION TYPE DISPLAY DEVICE
JP2005183757A (en) * 2003-12-22 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacturing method
JP2005228924A (en) * 2004-02-13 2005-08-25 Toshiba Corp Semiconductor light emitting element
JP4330476B2 (en) * 2004-03-29 2009-09-16 スタンレー電気株式会社 Semiconductor light emitting device
CN100487931C (en) 2004-09-27 2009-05-13 松下电器产业株式会社 Semiconductor light emitting element, manufacturing method and mounting method of the same and light emitting device
JP4622426B2 (en) * 2004-09-29 2011-02-02 豊田合成株式会社 Semiconductor light emitting device
CN100561758C (en) * 2004-10-22 2009-11-18 首尔Opto仪器股份有限公司 Gan compound semiconductor light emitting element and manufacture method thereof
KR100862453B1 (en) * 2004-11-23 2008-10-08 삼성전기주식회사 GaN-based compound semiconductor light emitting device
JP2008135694A (en) 2006-10-31 2008-06-12 Hitachi Cable Ltd Led module
KR100875128B1 (en) * 2007-01-16 2008-12-22 한국광기술원 Light emitting diode having high withstand voltage and manufacturing method thereof
JP5223102B2 (en) * 2007-08-08 2013-06-26 豊田合成株式会社 Flip chip type light emitting device
JP5139005B2 (en) * 2007-08-22 2013-02-06 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
JP5021693B2 (en) * 2009-04-14 2012-09-12 スタンレー電気株式会社 Semiconductor light emitting device
US7977132B2 (en) * 2009-05-06 2011-07-12 Koninklijke Philips Electronics N.V. Extension of contact pads to the die edge via electrical isolation
US8507935B2 (en) 2009-08-06 2013-08-13 Panasonic Corporation Light emitting element and light emitting device
CN101859861A (en) * 2010-05-13 2010-10-13 厦门市三安光电科技有限公司 GaN-based flip-chip light-emitting diode with double reflecting layers and preparation method thereof
JP2012028381A (en) * 2010-07-20 2012-02-09 Sharp Corp Semiconductor light emitting device and method of manufacturing the same
US8299488B2 (en) * 2010-12-16 2012-10-30 King Dragon International Inc. LED chip
JP5754173B2 (en) * 2011-03-01 2015-07-29 ソニー株式会社 Light emitting unit and display device
JP5682427B2 (en) * 2011-04-11 2015-03-11 日亜化学工業株式会社 Light emitting element
JP2013021175A (en) * 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
JP5767934B2 (en) * 2011-10-07 2015-08-26 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP5985322B2 (en) * 2012-03-23 2016-09-06 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP5563031B2 (en) * 2012-08-24 2014-07-30 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
JP6093196B2 (en) * 2013-01-29 2017-03-08 スタンレー電気株式会社 Flip-chip type semiconductor light emitting device, semiconductor device and manufacturing method thereof
DE102013107531A1 (en) * 2013-07-16 2015-01-22 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
JP6045999B2 (en) * 2013-07-31 2016-12-14 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP6306308B2 (en) * 2013-09-19 2018-04-04 株式会社東芝 Semiconductor light emitting device
KR101546929B1 (en) * 2013-09-24 2015-08-25 서울바이오시스 주식회사 Light emitting diode and led module having the same
JP5991348B2 (en) * 2014-07-28 2016-09-14 豊田合成株式会社 Semiconductor light emitting device
WO2016122725A1 (en) * 2015-01-30 2016-08-04 Technologies Llc Sxaymiq Micro-light emitting diode with metal side mirror
US11158767B2 (en) 2015-03-30 2021-10-26 Sony Semiconductor Solutions Corporation Light-emitting element, light-emitting unit, light-emitting panel device, and method for driving light-emitting panel device
CN105390583A (en) * 2015-10-28 2016-03-09 江苏新广联半导体有限公司 White light flip chip and preparation method thereof
DE102016106831A1 (en) * 2016-04-13 2017-10-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP7056543B2 (en) * 2018-12-26 2022-04-19 豊田合成株式会社 Semiconductor light emitting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566417A (en) * 1979-06-28 1981-01-23 Nichicon Capacitor Ltd Laminated capacitor
JPS5892751U (en) * 1981-12-17 1983-06-23 三洋電機株式会社 light emitting diode element
JPS61203503A (en) * 1985-03-06 1986-09-09 同和鉱業株式会社 Ag-pd based conductive paste
JPH01179469A (en) * 1988-01-06 1989-07-17 Res Dev Corp Of Japan Junction-type semiconductor light-emitting element
JP3423328B2 (en) * 1991-12-09 2003-07-07 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP3312049B2 (en) * 1993-03-12 2002-08-05 シャープ株式会社 Semiconductor light emitting device
JPH06318731A (en) * 1993-03-12 1994-11-15 Sharp Corp Semiconductor light emitting device
JPH09116192A (en) * 1995-10-16 1997-05-02 Toshiba Corp Light emitting diode
JP3264163B2 (en) * 1996-01-18 2002-03-11 日亜化学工業株式会社 Nitride semiconductor laser device
JPH1197742A (en) * 1997-09-22 1999-04-09 Nichia Chem Ind Ltd Nitride semiconductor element
JP3130292B2 (en) * 1997-10-14 2001-01-31 松下電子工業株式会社 Semiconductor light emitting device and method of manufacturing the same
JP3322300B2 (en) * 1997-11-14 2002-09-09 日亜化学工業株式会社 Gallium nitride based semiconductor light emitting device and light receiving device
JP3736181B2 (en) * 1998-05-13 2006-01-18 豊田合成株式会社 Group III nitride compound semiconductor light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694112A (en) * 2011-03-23 2012-09-26 丰田合成株式会社 Group iii nitride semiconductor light-emitting device
US8912559B2 (en) 2011-03-23 2014-12-16 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device
CN102694112B (en) * 2011-03-23 2015-01-28 丰田合成株式会社 Group III nitride semiconductor light-emitting device
US9515228B2 (en) 2011-03-23 2016-12-06 Toyoda Gosei Co., Ltd. Group III nitride semiconductor light-emitting device
KR101901839B1 (en) * 2012-01-03 2018-09-27 엘지이노텍 주식회사 Light emitting device, light emitting devicd package and light emitting module
KR101900276B1 (en) * 2012-01-04 2018-09-20 엘지이노텍 주식회사 Light emitting device and light emitting apparatus having the same
KR101901845B1 (en) 2012-01-05 2018-09-27 엘지이노텍 주식회사 Light emitting device and light emitting device package and light emitting module
US10804451B2 (en) 2017-10-26 2020-10-13 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device and production method therefor

Also Published As

Publication number Publication date
JPH11340514A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP3531475B2 (en) Flip chip type optical semiconductor device
US10340309B2 (en) Light emitting device
US7023026B2 (en) Light emitting device of III-V group compound semiconductor and fabrication method therefor
TWI429107B (en) Semiconductor light emitting element, manufacturing method thereof, lamp, lighting equipment, electronic equipment and mechanical equipment
US7190005B2 (en) GaN LED with solderable backside metal
CN100580963C (en) Light emitting diode having InO layer and method for manufacturing the same
US7972952B2 (en) Compound semiconductor light-emitting device and method for manufacturing the same
US8349629B2 (en) Semiconductor light-emitting element and method of manufacturing same
US8835938B2 (en) Nitride semiconductor light-emitting element and method of manufacturing the same
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
US20030122251A1 (en) Optical semiconductor device
JPH114020A (en) Semiconductor light-emitting element, manufacture thereof and semiconductor light-emitting device
CN101820043A (en) Light-emitting device
KR20100074100A (en) Optoelectronic semiconductor chip, optoelectronic component, and method for producing an optoelectronic component
JP4474892B2 (en) Flip chip type LED
KR102530758B1 (en) Semiconductor light emitting device package
JP2770717B2 (en) Gallium nitride based compound semiconductor light emitting device
CN107623061A (en) It is a kind of to suppress the poly- method of film LED chip light reflective metal layer ball
KR100786802B1 (en) Vertical type semiconductor light emitting diode and the method for manufacturing the same
KR20110082863A (en) Supporting wafer for semiconductor light emitting device, method for mafacturing the same and vertical structured semiconductor light emitting device using the same
KR101115533B1 (en) Flip chip Light-emitting device and Method of manufacturing the same
KR101119009B1 (en) Method of forming light emitting device with separation by ion implantation
KR100407773B1 (en) GaN LIGHT EMITTING DEVICE AND THE PACKAGE THEREOF
KR101084641B1 (en) Iii-nitride semiconductor light emitting device
US20210336110A1 (en) Optoelectronic semiconductor device having a support element and an electric contact element, an optoelectronic component and a method of producing the optoelectronic semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees