JP5021693B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP5021693B2
JP5021693B2 JP2009098265A JP2009098265A JP5021693B2 JP 5021693 B2 JP5021693 B2 JP 5021693B2 JP 2009098265 A JP2009098265 A JP 2009098265A JP 2009098265 A JP2009098265 A JP 2009098265A JP 5021693 B2 JP5021693 B2 JP 5021693B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
film
side electrode
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098265A
Other languages
Japanese (ja)
Other versions
JP2009188422A (en
Inventor
直史 堀尾
正彦 土谷
一志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009098265A priority Critical patent/JP5021693B2/en
Publication of JP2009188422A publication Critical patent/JP2009188422A/en
Application granted granted Critical
Publication of JP5021693B2 publication Critical patent/JP5021693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Description

本発明は、半導体発光素子に関し、特に窒化物半導体を用い、特に基板の同一面側に正電極及び負電極が配置される半導体発光素子に関する。
に関する。
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device using a nitride semiconductor, and in particular, a positive electrode and a negative electrode are arranged on the same surface side of a substrate.
About.

図15(A)に、下記特許文献1に開示された半導体発光素子の断面図を示す。サファイア基板200の上に、バッファ層201を介してn型GaNからなるn型コンタクト層202、n型AlGaNからなるn型クラッド層203、InGaNからなる発光層204、p型AlGaNからなるp型クラッド層205、p型GaNからなるp型コンタクト層206がこの順番に積層されている。一部の領域において、p型コンタクト層206からn型コンタクト層202の表層部までエッチングされ、n型コンタクト層202の一部が表出している。   FIG. 15A is a cross-sectional view of a semiconductor light emitting element disclosed in Patent Document 1 below. An n-type contact layer 202 made of n-type GaN, an n-type clad layer 203 made of n-type AlGaN, a light-emitting layer 204 made of InGaN, and a p-type clad made of p-type AlGaN on a sapphire substrate 200 via a buffer layer 201. A layer 205 and a p-type contact layer 206 made of p-type GaN are stacked in this order. In some regions, etching is performed from the p-type contact layer 206 to the surface layer portion of the n-type contact layer 202, and a part of the n-type contact layer 202 is exposed.

p型コンタクト層206の上に、p側オーミック電極207が形成され、n型コンタクト層202の表出した領域上に、n側オーミック電極208が形成されている。これらの積層構造を、透光性の絶縁膜210が覆う。絶縁膜210に、n側オーミック電極208の表面を露出させる開口210a及びp側オーミック電極207の表面の一部を露出させる開口210bが形成されている。   A p-side ohmic electrode 207 is formed on the p-type contact layer 206, and an n-side ohmic electrode 208 is formed on the exposed region of the n-type contact layer 202. These laminated structures are covered with a light-transmitting insulating film 210. An opening 210 a that exposes the surface of the n-side ohmic electrode 208 and an opening 210 b that exposes part of the surface of the p-side ohmic electrode 207 are formed in the insulating film 210.

絶縁膜210を介してp型オーミック電極207を覆うように、反射膜211が形成されている。反射膜211の表面の一部の領域上にp側パッド213が形成され、n側オーミック電極208の上に、n側パッド212が形成されている。   A reflective film 211 is formed so as to cover the p-type ohmic electrode 207 via the insulating film 210. A p-side pad 213 is formed on a partial region of the surface of the reflective film 211, and an n-side pad 212 is formed on the n-side ohmic electrode 208.

反射膜211は、Al、AgまたはRhで形成され、発光層204で発生した光を、基板200側に向けて反射する。基板200を通して光が取り出される。光の取り出し効率を高めるために、反射膜211の反射率を高めることが望ましい。紫外光から可視光の波長域においてAgが非常に高い反射率を示す。ところが、Agは、電気化学的マイグレーションを生じやすい金属である。竹本正、佐藤良平著「高信頼度マイクロソルダリング技術」(工業調査会)によると、Agのマイグレーション発生機構は下記のように説明されている。   The reflective film 211 is formed of Al, Ag, or Rh, and reflects the light generated in the light emitting layer 204 toward the substrate 200 side. Light is extracted through the substrate 200. In order to increase the light extraction efficiency, it is desirable to increase the reflectance of the reflective film 211. Ag has a very high reflectance in the wavelength range from ultraviolet light to visible light. However, Ag is a metal that easily causes electrochemical migration. According to Tadashi Takemoto and Ryohei Sato, “High Reliability Micro Soldering Technology” (Industry Research Committee), the mechanism of Ag migration is explained as follows.

水分の存在下で電界を印加すると、陽極でAgが溶解し、陰極で水素(H)が発生する。陽極近傍でAgイオンとOHイオンとが反応して、水酸化銀AgOHが生成される。化学的に不安定な水酸化銀AgOHが分解してコロイド状の酸化銀AgOが生成される。酸化銀がさらに反応してAgイオンが生成される。上記反応を繰り返しながら、AgOとAgイオンとが陰極へ移動し、Agを析出し、陽極に銀が樹枝状に成長する。 When an electric field is applied in the presence of moisture, Ag dissolves at the anode and hydrogen (H 2 ) is generated at the cathode. In the vicinity of the anode, Ag + ions and OH ions react to produce silver hydroxide AgOH. Chemically unstable silver hydroxide AgOH is decomposed to produce colloidal silver oxide Ag 2 O. Silver oxide further reacts to produce Ag + ions. While repeating the above reaction, Ag 2 O and Ag + ions move to the cathode, precipitate Ag, and silver grows in a dendritic shape on the anode.

銀のマイグレーションが生ずると、樹枝状成長した銀により、陽極と陰極とが短絡され、リーク電流が増大してしまう。下記特許文献2及び3に、銀のマイグレーションを抑制する発明が開示されている。   When silver migration occurs, the anode and the cathode are short-circuited by the dendritic silver and the leakage current increases. Patent Documents 2 and 3 below disclose inventions that suppress silver migration.

図15(B)に、特許文献2に開示された半導体発光素子の断面図を示す。サファイア基板220の上に、AlNバッファ層221、n型GaN層222、InGaN発光層223、p型GaN層224がこの順番に積層されている。p型GaN層224及び発光層223が部分的にエッチングされ、n型GaN層222の一部が露出している。p型GaN層の表面に、Ag層225が形成され、このAg層225が酸化シリコン膜227で覆われている。   FIG. 15B is a cross-sectional view of the semiconductor light emitting element disclosed in Patent Document 2. On the sapphire substrate 220, an AlN buffer layer 221, an n-type GaN layer 222, an InGaN light emitting layer 223, and a p-type GaN layer 224 are stacked in this order. The p-type GaN layer 224 and the light emitting layer 223 are partially etched, and a part of the n-type GaN layer 222 is exposed. An Ag layer 225 is formed on the surface of the p-type GaN layer, and this Ag layer 225 is covered with a silicon oxide film 227.

酸化シリコン膜227に、Ag層225の上面の一部を露出させるビアホールが形成されている。酸化シリコン膜227の上に、Au層228が形成されている。Au層228は、酸化シリコン膜227に形成されたビアホール内を経由してAg層225に接続されている。   A via hole exposing a part of the upper surface of the Ag layer 225 is formed in the silicon oxide film 227. An Au layer 228 is formed on the silicon oxide film 227. The Au layer 228 is connected to the Ag layer 225 via a via hole formed in the silicon oxide film 227.

n型GaN層222の露出した表面上に、V層とAl層との積層構造を有するn側オーミック電極226が形成されている。Ag層225が酸化シリコン膜227で覆われているため、Agのマイグレーションを抑制することができる。   An n-side ohmic electrode 226 having a laminated structure of a V layer and an Al layer is formed on the exposed surface of the n-type GaN layer 222. Since the Ag layer 225 is covered with the silicon oxide film 227, Ag migration can be suppressed.

図15(C)に、特許文献3に記載された半導体発光素子の断面図を示す。サファイア基板230の上に、AlNバッファ層231、n型GaN層232、n型GaNクラッド層233、発光層234、p型GaNクラッド層235、p型GaNコンタクト層236がこの順番に積層されている。p型GaNコンタクト層236からn型GaNクラッド層233までの積層が部分的にエッチングされ、n型GaN層232の一部が露出している。   FIG. 15C is a cross-sectional view of the semiconductor light emitting element described in Patent Document 3. On the sapphire substrate 230, an AlN buffer layer 231, an n-type GaN layer 232, an n-type GaN cladding layer 233, a light emitting layer 234, a p-type GaN cladding layer 235, and a p-type GaN contact layer 236 are stacked in this order. . The stack from the p-type GaN contact layer 236 to the n-type GaN cladding layer 233 is partially etched, and a part of the n-type GaN layer 232 is exposed.

p型GaNコンタクト層236の表面の一部にAg層237が形成されている。Ag層237は、バナジウム(V)層238及びAl層239で覆われている。Ag層237が、V層238及びAl層239で覆われているため、Agのマイグレーションを抑制することができる。   An Ag layer 237 is formed on part of the surface of the p-type GaN contact layer 236. The Ag layer 237 is covered with a vanadium (V) layer 238 and an Al layer 239. Since the Ag layer 237 is covered with the V layer 238 and the Al layer 239, migration of Ag can be suppressed.

特開2003−224297号公報JP 2003-224297 A 特開2003−168823号公報JP 2003-168823 A 特開平11−220171号公報JP-A-11-220171

上述の特許文献2及び3に開示されたように、反射膜及び電極として用いられているAg層を、絶縁膜や、他の金属膜で覆うことにより、Agのマイグレーションが抑制される。しかし、マイグレーション抑制効果は十分ではない。Agのマイグレーションをより効果的に抑制することができる半導体発光素子が望まれる。   As disclosed in the above-mentioned Patent Documents 2 and 3, Ag migration is suppressed by covering the Ag layer used as the reflective film and the electrode with an insulating film or another metal film. However, the migration suppression effect is not sufficient. A semiconductor light emitting device capable of more effectively suppressing Ag migration is desired.

本発明の目的は、マイグレーションし易い金属を用いた半導体発光素子において、マイグレーションを抑制し、信頼性の向上を図ることができる半導体発光素子を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting device that can suppress migration and improve reliability in a semiconductor light emitting device using a metal that is easily migrated.

本発明の一観点によると、
n型の窒化物半導体からなる第1の層、及び該第1の層の上に配置されたp型の窒化物半導体からなる第2の層を含み、該第1の層と第2の層との間に発光領域を画定し、該第1の層の表面の一部の第1の領域において、該第2の層が除去されて該第1の層が現われている発光積層構造と、
前記第2の層の表面上に配置され、該第2の層に電気的に接続され、Pt、Rh及びPdからなる群より選択された1つの金属で形成されており、その厚さが1nm〜8nmであるp側電極と、
前記p側電極を覆う絶縁膜と、
前記第1の領域において、前記第1の層に電気的に接続されたn側電極と、
前記絶縁膜の上に、前記p側電極と重なるように配置され、銀を含む合金または銀で形成され、前記p側電極及びn側電極のいずれにも接続されておらず電気的にフローティング状態にされた反射膜と
を有し、
前記p側電極、前記絶縁膜、及び前記反射膜が、多層反射膜を構成している半導体発光素子が提供される。
According to one aspect of the invention,
a first layer made of an n-type nitride semiconductor; and a second layer made of a p-type nitride semiconductor disposed on the first layer, wherein the first layer and the second layer A light emitting stacked structure in which a light emitting region is defined between the first layer and the first layer on the surface of the first layer, wherein the second layer is removed and the first layer appears.
It is disposed on the surface of the second layer, is electrically connected to the second layer, is formed of one metal selected from the group consisting of Pt, Rh, and Pd, and has a thickness of 1 nm. A p-side electrode that is ˜8 nm;
An insulating film covering the p-side electrode;
An n-side electrode electrically connected to the first layer in the first region;
On the insulating film, disposed so as to overlap the p-side electrode, formed of an alloy containing silver or silver, and not electrically connected to either the p-side electrode or the n-side electrode, but in an electrically floating state And a reflecting film made of
There is provided a semiconductor light emitting device in which the p-side electrode, the insulating film, and the reflective film constitute a multilayer reflective film.

本発明の他の観点によると、
n型の窒化物半導体からなる第1の層、及び該第1の層の上に配置されたp型の窒化物半導体からなる第2の層を含み、該第1の層と第2の層との間に発光領域を画定し、該第1の層の表面の一部の第1の領域において、該第2の層が除去されて該第1の層が現われている発光積層構造と、
前記第2の層の表面上に配置され、該第2の層に電気的に接続され、前記発光領域で発生した光を透過させ、Pt、Rh及びPdからなる群より選択された1つの金属で形成されており、その厚さが1nm〜8nmであるp側電極と、
前記p側電極を覆う絶縁膜と、
前記第1の領域において、前記第1の層に電気的に接続されたn側電極と、
前記絶縁膜の上に、前記p側電極と重なるように配置され、銀を含む合金または銀で形成され、前記p側電極及びn側電極のいずれにも接続されておらず電気的にフローティング状態にされ、前記発光領域で発生した光を反射する反射膜と
を有し、
前記p側電極、前記絶縁膜、及び前記反射膜が、多層反射膜を構成している半導体発光素子が提供される。
According to another aspect of the invention,
a first layer made of an n-type nitride semiconductor; and a second layer made of a p-type nitride semiconductor disposed on the first layer, wherein the first layer and the second layer A light emitting stacked structure in which a light emitting region is defined between the first layer and the first layer on the surface of the first layer, wherein the second layer is removed and the first layer appears.
One metal disposed on the surface of the second layer, electrically connected to the second layer, transmitting light generated in the light emitting region, and selected from the group consisting of Pt, Rh, and Pd A p-side electrode having a thickness of 1 nm to 8 nm,
An insulating film covering the p-side electrode;
An n-side electrode electrically connected to the first layer in the first region;
On the insulating film, disposed so as to overlap the p-side electrode , formed of an alloy containing silver or silver, and not electrically connected to either the p-side electrode or the n-side electrode, but in an electrically floating state And a reflective film that reflects light generated in the light emitting region,
There is provided a semiconductor light emitting device in which the p-side electrode, the insulating film, and the reflective film constitute a multilayer reflective film.

反射膜が、電気的にフローティング状態にされており、p側電極(陽極)に接続されない。このため、反射膜を構成する金属のイオン化を抑制し、マイグレーションの発生を抑制することができる。 The reflective film is in an electrically floating state and is not connected to the p-side electrode (anode). For this reason, ionization of the metal which comprises a reflecting film can be suppressed, and generation | occurrence | production of migration can be suppressed.

第1の実施例による半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device by a 1st Example. 第1の実施例による半導体発光素子の平面図である。It is a top view of the semiconductor light-emitting device by a 1st Example. 第1の実施例による半導体発光素子の寿命を、比較例による素子の寿命と比較して示すグラフである。It is a graph which shows the lifetime of the semiconductor light-emitting device by a 1st Example compared with the lifetime of the device by a comparative example. 反射率のシミュレーションを行った積層構造のモデルを示す断面図である。It is sectional drawing which shows the model of the laminated structure which performed the simulation of the reflectance. p側オーミック電極の厚さと反射率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a p-side ohmic electrode, and a reflectance. 反射膜の厚さと反射率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a reflecting film, and a reflectance. 絶縁膜の厚さと反射率との関係を、p側オーミック電極の厚さごとに示すグラフである。It is a graph which shows the relationship between the thickness of an insulating film, and a reflectance for every thickness of the p side ohmic electrode. 絶縁膜の厚さと反射率との関係を、波長ごとに示すグラフである。It is a graph which shows the relationship between the thickness of an insulating film, and a reflectance for every wavelength. 絶縁膜の厚さと反射率との関係を、波長ごとに示すグラフである。It is a graph which shows the relationship between the thickness of an insulating film, and a reflectance for every wavelength. 波長と反射率との関係を、p側オーミック電極の厚さごとに示すグラフである。It is a graph which shows the relationship between a wavelength and a reflectance for every thickness of a p-side ohmic electrode. 第2の実施例による半導体発光素子の平面図である。It is a top view of the semiconductor light-emitting device by the 2nd example. 第2の実施例による半導体発光素子を搭載したランプの概略断面図である。It is a schematic sectional drawing of the lamp | ramp which mounts the semiconductor light-emitting device by a 2nd Example. 第3の実施例による半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device by a 3rd Example. 第3の実施例による半導体発光素子の平面図である。It is a top view of the semiconductor light-emitting device by a 3rd Example. 第3の実施例による半導体発光素子を搭載したランプの概略断面図である。It is a schematic sectional drawing of the lamp | ramp which mounts the semiconductor light-emitting device by a 3rd Example. 第4の実施例による半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device by a 4th Example. 第4の実施例による半導体発光素子の平面図である。It is a top view of the semiconductor light-emitting device by the 4th example. Agの反射膜を用いた従来の半導体発光素子の断面図である。It is sectional drawing of the conventional semiconductor light-emitting device using the reflecting film of Ag. Agのマイグレーションを抑制する従来の半導体発光素子の断面図である。It is sectional drawing of the conventional semiconductor light-emitting device which suppresses Ag migration. Agのマイグレーションを抑制する従来の半導体発光素子の断面図である。It is sectional drawing of the conventional semiconductor light-emitting device which suppresses Ag migration.

図1(A)に、第1の実施例による半導体発光素子の断面図を示し、図1(B)に、その平面図を示す。図1(B)の一点鎖線A1−A1における断面が図1(A)に対応する。サファイアからなる下地基板1の上に、初期核形成層2、n型コンタクト層3、n型クラッド層4、発光層5、p型クラッド層6、p型コンタクト層7がこの順番に積層されている。これらの層は、InAlGaN(x+y+z=1)等の窒化物化合物半導体で形成されている。 FIG. 1A shows a cross-sectional view of the semiconductor light emitting device according to the first embodiment, and FIG. 1B shows a plan view thereof. A cross section taken along one-dot chain line A1-A1 in FIG. 1B corresponds to FIG. On an underlying substrate 1 made of sapphire, an initial nucleation layer 2, an n-type contact layer 3, an n-type cladding layer 4, a light emitting layer 5, a p-type cladding layer 6 and a p-type contact layer 7 are laminated in this order. Yes. These layers are formed of a nitride compound semiconductor such as In x Al y Ga z N (x + y + z = 1).

基板面内の一部の第1の領域25において、p型コンタクト層7からn型コンタクト層3の表層部までの各層がエッチングされ、n型コンタクト層3の一部が表出している。   In a part of the first region 25 in the substrate surface, each layer from the p-type contact layer 7 to the surface layer portion of the n-type contact layer 3 is etched, and a part of the n-type contact layer 3 is exposed.

p型コンタクト層7の上に、p側オーミック電極10が形成されている。p側オーミック電極10は白金(Pt)で形成され、その厚さは約5nmである。第1の領域25内のn型コンタクト層3の表面上に、n側オーミック電極11が形成されている。n側オーミック電極11は、厚さ約3nmのAl層と厚さ約100nmのロジウム(Rh)層との2層構造を有する。p側オーミック電極10及びn側オーミック電極11は、それぞれp型コンタクト層7及びn型コンタクト層3にオーミック接触する。   A p-side ohmic electrode 10 is formed on the p-type contact layer 7. The p-side ohmic electrode 10 is made of platinum (Pt) and has a thickness of about 5 nm. An n-side ohmic electrode 11 is formed on the surface of the n-type contact layer 3 in the first region 25. The n-side ohmic electrode 11 has a two-layer structure of an Al layer having a thickness of about 3 nm and a rhodium (Rh) layer having a thickness of about 100 nm. The p-side ohmic electrode 10 and the n-side ohmic electrode 11 are in ohmic contact with the p-type contact layer 7 and the n-type contact layer 3, respectively.

p側オーミック電極10及びn側オーミック電極11の上に、Ti、Ni、W、Mo等からなる厚さ0.3〜3nmの接着層(図示せず)が形成されている。接着層は、その上に堆積される絶縁膜15の密着性を高めることができる。   On the p-side ohmic electrode 10 and the n-side ohmic electrode 11, an adhesive layer (not shown) having a thickness of 0.3 to 3 nm made of Ti, Ni, W, Mo or the like is formed. The adhesive layer can enhance the adhesion of the insulating film 15 deposited thereon.

p側オーミック電極10、n側オーミック電極11を覆うように、基板上に絶縁膜15が形成されている。絶縁膜15は、例えば酸化シリコンで形成され、その厚さは約300nmである。絶縁膜15に、開口15a及び15bが形成されている。開口15aの底面にp側オーミック電極10の表面の一部が露出し、開口15bの底面にn側オーミック電極11の表面の一部が露出する。   An insulating film 15 is formed on the substrate so as to cover the p-side ohmic electrode 10 and the n-side ohmic electrode 11. The insulating film 15 is made of, for example, silicon oxide and has a thickness of about 300 nm. Openings 15 a and 15 b are formed in the insulating film 15. A part of the surface of the p-side ohmic electrode 10 is exposed at the bottom surface of the opening 15a, and a part of the surface of the n-side ohmic electrode 11 is exposed at the bottom surface of the opening 15b.

絶縁膜15の上に反射膜16が形成されている。反射膜16は、p側オーミック電極10と重なる領域から、第1の領域25内のn側オーミック電極11上まで延在し、開口15bの底面に露出したn側オーミック電極11に電気的に接続される。反射膜16は銀(Ag)で形成され、その厚さは約200nmである。   A reflective film 16 is formed on the insulating film 15. The reflective film 16 extends from the region overlapping the p-side ohmic electrode 10 to the n-side ohmic electrode 11 in the first region 25 and is electrically connected to the n-side ohmic electrode 11 exposed at the bottom surface of the opening 15b. Is done. The reflective film 16 is made of silver (Ag) and has a thickness of about 200 nm.

絶縁膜15と反射膜16との間に、Ti、Ni、Al、W、Mo等からなる厚さ0.3〜3nmの接着層(図示せず)が挿入されている。この接着層は、絶縁膜15と反射膜16との密着性を高める。反射膜16の上にも、同様の接着層(図示せず)が形成されている。この接着層は、その上に形成される保護膜17の密着性を高める。上側の接着層の厚さは、例えば10nmとする。   An adhesive layer (not shown) made of Ti, Ni, Al, W, Mo or the like and having a thickness of 0.3 to 3 nm is inserted between the insulating film 15 and the reflective film 16. This adhesive layer improves the adhesion between the insulating film 15 and the reflective film 16. A similar adhesive layer (not shown) is also formed on the reflective film 16. This adhesive layer enhances the adhesion of the protective film 17 formed thereon. The thickness of the upper adhesive layer is, for example, 10 nm.

開口15aの底面に露出したp側オーミック電極10の上にp側パッド電極20が形成され、開口15bの底面に露出したn側オーミック電極11の上にn側パッド電極21が形成されている。p側パッド電極20及びn側パッド電極21は、Ti/Pt/Au/(Pt/Au)の多層構造を有する。ここでnは、Pt層とAu層との2層の繰り返し回数を示す。最も下に配置されたTi層の厚さは例えば3nmであり、Pt層とAu層との各々の厚さは例えば100nmである。繰り返し回数nは、例えば2である。なお、繰り返し回数nは、成膜の手間及び材料の使用量の観点から、1〜5とすることが好ましい。なお、フリップチップボンディングを行う場合には、n側パッド電極21の基板側から3層目のAu層の厚さを100nm〜1000nmとし、n側パッド電極21の上面の高さを、p側パッド電極20の上面の高さに揃えることが好ましい。 A p-side pad electrode 20 is formed on the p-side ohmic electrode 10 exposed on the bottom surface of the opening 15a, and an n-side pad electrode 21 is formed on the n-side ohmic electrode 11 exposed on the bottom surface of the opening 15b. The p-side pad electrode 20 and the n-side pad electrode 21 have a multilayer structure of Ti / Pt / Au / (Pt / Au) n . Here, n indicates the number of repetitions of the two layers of the Pt layer and the Au layer. The thickness of the lowermost Ti layer is, for example, 3 nm, and the thicknesses of the Pt layer and the Au layer are, for example, 100 nm. The number of repetitions n is 2, for example. Note that the number of repetitions n is preferably 1 to 5 from the viewpoint of film formation and the amount of material used. When flip chip bonding is performed, the thickness of the third Au layer from the substrate side of the n-side pad electrode 21 is set to 100 nm to 1000 nm, and the height of the upper surface of the n-side pad electrode 21 is set to the p-side pad. It is preferable to align with the height of the upper surface of the electrode 20.

p側パッド電極20及びn側パッド電極21の上に、Ti、Ni、Al、W、Mo等からなる厚さ0.3〜3nmの接着層(図示せず)が形成されている。この接着層は、その上に形成される保護膜17の密着性を高める。   On the p-side pad electrode 20 and the n-side pad electrode 21, an adhesive layer (not shown) having a thickness of 0.3 to 3 nm made of Ti, Ni, Al, W, Mo or the like is formed. This adhesive layer enhances the adhesion of the protective film 17 formed thereon.

反射膜16、パッド電極20、21を覆うように、保護膜17が形成されている。保護膜17は酸化シリコンで形成され、その厚さは100〜300nm、望ましくは約200nmである。保護膜17に、開口17a及び17bが形成されている。開口17a及び17bの底面に、それぞれp側パッド電極20及びn側パッド電極21の上面が露出する。   A protective film 17 is formed so as to cover the reflective film 16 and the pad electrodes 20 and 21. The protective film 17 is made of silicon oxide and has a thickness of 100 to 300 nm, preferably about 200 nm. Openings 17 a and 17 b are formed in the protective film 17. The upper surfaces of the p-side pad electrode 20 and the n-side pad electrode 21 are exposed at the bottom surfaces of the openings 17a and 17b, respectively.

図1(B)に示したように、1つの半導体発光素子の平面形状は、例えば一辺が300μmの正方形である。第1の領域25は、この正方形の一つの頂点を含み、その頂点の近傍の領域で構成される。その形状は、例えば一つの頂点を中心とした中心角90°の扇形である。p側オーミック電極10は、第1の領域25を除く領域に配置され、半導体発光素子の表面の大部分を占める。p側パッド電極20は、第1の領域25に含まれる頂点とは反対側の頂点の近傍に配置されている。反射膜16は、p側パッド電極20が配置された領域を除き、半導体発光素子の表面の大部分を占める。   As shown in FIG. 1B, the planar shape of one semiconductor light emitting element is, for example, a square having a side of 300 μm. The first region 25 includes one vertex of the square and is composed of a region near the vertex. The shape is, for example, a sector shape with a central angle of 90 ° centered on one vertex. The p-side ohmic electrode 10 is disposed in a region excluding the first region 25 and occupies most of the surface of the semiconductor light emitting element. The p-side pad electrode 20 is disposed in the vicinity of the vertex on the side opposite to the vertex included in the first region 25. The reflective film 16 occupies most of the surface of the semiconductor light emitting device except for the region where the p-side pad electrode 20 is disposed.

次に、第1の実施例による半導体発光素子の製造方法について説明する。サファイアからなる下地基板1上の初期核形成層2からp型コンタクト層7までの各層は、例えば有機金属気相エピタキシャル成長(MOVPE)または分子線エピタキシャル成長(MBE)等により形成される。p型コンタクト層7まで形成した後、基板表面を洗浄し、電子ビーム蒸着及びリフトオフ法を用いてp側オーミック電極10及びその上の接着層を形成する。   Next, a method for manufacturing the semiconductor light emitting device according to the first embodiment will be described. Each layer from the initial nucleation layer 2 to the p-type contact layer 7 on the base substrate 1 made of sapphire is formed by, for example, metal organic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE). After forming up to the p-type contact layer 7, the substrate surface is cleaned, and the p-side ohmic electrode 10 and the adhesive layer thereon are formed using electron beam evaporation and a lift-off method.

第1の領域25に対応する開口が形成されたレジストパターンをマスクとして用い、反応性イオンエッチングにより、n型コンタクト層3の表層部までエッチングし、n型コンタクト層3の一部を露出させる。エッチング後、マスクとして用いたレジストパターンを除去する。n型コンタクト層3の露出した表面上に、電子ビーム蒸着及びリフトオフ法を用いてn側オーミック電極11を形成する。   Using the resist pattern in which the opening corresponding to the first region 25 is formed as a mask, the surface layer portion of the n-type contact layer 3 is etched by reactive ion etching to expose a part of the n-type contact layer 3. After the etching, the resist pattern used as a mask is removed. An n-side ohmic electrode 11 is formed on the exposed surface of the n-type contact layer 3 using electron beam evaporation and a lift-off method.

なお、n型コンタクト層3の表面の一部を露出させた後に、p側オーミック電極10及びn側オーミック電極11を形成してもよい。   Note that the p-side ohmic electrode 10 and the n-side ohmic electrode 11 may be formed after exposing a part of the surface of the n-type contact layer 3.

スパッタリングにより絶縁膜15を形成する。絶縁膜15に、開口15a及び15bを形成する。なお、リフトオフ法を用いて開口15a及び15bを形成してもよい。電子ビーム蒸着とリフトオフ法を用いて、下側の接着層、反射膜16及び上側の接着層を形成する。反射膜16と、開口15aの底面に露出したp側オーミック電極10とが短絡されないように、反射膜16の縁を開口15aの縁から1μm以上、望ましくは5μm程度後退させておく。また、開口15bの底面に露出したn側オーミック電極11に電気的に接続されるように、反射膜16と開口15bとの重なり幅を3〜5μm程度確保しておく。これにより、反射膜16は、p側オーミック電極10には接続されず、n側オーミック電極11に電気的に接続されることになる。   An insulating film 15 is formed by sputtering. Openings 15 a and 15 b are formed in the insulating film 15. The openings 15a and 15b may be formed using a lift-off method. The lower adhesive layer, the reflective film 16 and the upper adhesive layer are formed using electron beam evaporation and a lift-off method. The edge of the reflective film 16 is set back from the edge of the opening 15a by 1 μm or more, preferably about 5 μm so that the reflective film 16 and the p-side ohmic electrode 10 exposed at the bottom of the opening 15a are not short-circuited. Further, the overlapping width of the reflective film 16 and the opening 15b is secured to about 3 to 5 μm so as to be electrically connected to the n-side ohmic electrode 11 exposed on the bottom surface of the opening 15b. Thereby, the reflective film 16 is not connected to the p-side ohmic electrode 10 but is electrically connected to the n-side ohmic electrode 11.

電子ビーム蒸着とリフトオフ法を用いて、p側パッド電極20、n側パッド電極21、及びその上の接着層を形成する。p側パッド電極20は、その外周が開口15aの縁よりもやや内側に配置されるように形成することが好ましい。なお、p側パッド電極20が反射膜16に接触しなければ、p側パッド電極20の外周近傍が絶縁膜15に重なってもよい。   The p-side pad electrode 20, the n-side pad electrode 21, and the adhesive layer thereon are formed using electron beam evaporation and a lift-off method. The p-side pad electrode 20 is preferably formed such that its outer periphery is disposed slightly inside the edge of the opening 15a. If the p-side pad electrode 20 does not contact the reflective film 16, the vicinity of the outer periphery of the p-side pad electrode 20 may overlap the insulating film 15.

スパッタリングにより保護膜17を形成する。その後、保護膜17に開口17a及び17bを形成する。なお、リフトオフ法を用いて開口17a及び17bを形成してもよい。開口17aの底面にp側パッド電極20の表面が露出し、開口17bの底面にn側パッド電極21の表面が露出する。   A protective film 17 is formed by sputtering. Thereafter, openings 17 a and 17 b are formed in the protective film 17. The openings 17a and 17b may be formed using a lift-off method. The surface of the p-side pad electrode 20 is exposed at the bottom surface of the opening 17a, and the surface of the n-side pad electrode 21 is exposed at the bottom surface of the opening 17b.

下地基板1の裏面を研削及び研磨し、下地基板1の厚さを約100μmまで薄くする。なお、下地基板1の厚さを60μm〜210μmとしてもよい。スクライビング及びブレーキングを行い、発光素子単位に分離する。分離された発光素子は、種々の形態で利用される。例えば、サブマウント基板にフリップチップボンディングされる。その他に、下地基板1を透明接着剤で導光板に貼り付け、p側パッド電極20及びn側パッド電極21を、導光板に設けられた配線に金線で接続してもよい。   The back surface of the base substrate 1 is ground and polished to reduce the thickness of the base substrate 1 to about 100 μm. The base substrate 1 may have a thickness of 60 μm to 210 μm. Scribing and braking are performed to separate the light emitting elements. The separated light emitting element is used in various forms. For example, flip chip bonding is performed on the submount substrate. In addition, the base substrate 1 may be attached to the light guide plate with a transparent adhesive, and the p-side pad electrode 20 and the n-side pad electrode 21 may be connected to the wiring provided on the light guide plate with a gold wire.

n型クラッド層4、発光層5、及びp型クラッド層6の積層構造に順方向電圧を印加することにより、発光層5で発光が生ずる。発光層5で発生した光は、下地基板1を透過して外部に放射される。発光層5で発生し、p型クラッド層6の方へ伝搬する光は、p側オーミック電極10及び絶縁膜15を透過し、反射膜16で下地基板1側へ反射され、下地基板1を透過して外部に放射される。   When a forward voltage is applied to the laminated structure of the n-type cladding layer 4, the light emitting layer 5, and the p-type cladding layer 6, light emission occurs in the light emitting layer 5. The light generated in the light emitting layer 5 passes through the base substrate 1 and is emitted to the outside. Light generated in the light emitting layer 5 and propagating toward the p-type cladding layer 6 is transmitted through the p-side ohmic electrode 10 and the insulating film 15, reflected by the reflective film 16 toward the base substrate 1, and transmitted through the base substrate 1. And radiated to the outside.

水分の存在下で電界を印加したときに、陽極でAgが溶解することが、Agのマイグレーションの原因になっていると考えられる。上記第1の実施例では、Agで形成された反射膜16が陰極(n側オーミック電極11)に接続されているため、Agの溶解が生じない。このため、Agのマイグレーションを抑制することができる。   When an electric field is applied in the presence of moisture, the dissolution of Ag at the anode is considered to cause the migration of Ag. In the first embodiment, since the reflective film 16 formed of Ag is connected to the cathode (n-side ohmic electrode 11), dissolution of Ag does not occur. For this reason, Ag migration can be suppressed.

図2に、上記第1の実施例による半導体発光素子の寿命評価試験の結果を示す。横軸は経過時間を単位「時間」で表し、縦軸は発光出力を相対目盛で表す。比較例として、図1(A)に示したp側オーミック電極10をAgで形成し、p側オーミック電極10が反射膜を兼ねる構造の半導体発光素子の寿命評価試験の結果も示す。図中の黒四角記号が第1の実施例による半導体発光素子の発光出力の経時変化を示し、黒丸記号が比較例の半導体発光素子の発光出力の経時変化を示す。なお、寿命評価試験では、半導体発光素子をサブマウント基板にフリップチップボンディングし、大気中で発光させて発光出力を測定した。発光波長は405nmであった。   FIG. 2 shows the result of the life evaluation test of the semiconductor light emitting device according to the first embodiment. The horizontal axis represents the elapsed time in the unit “time”, and the vertical axis represents the light emission output in a relative scale. As a comparative example, the results of a life evaluation test of a semiconductor light emitting device having a structure in which the p-side ohmic electrode 10 shown in FIG. 1A is formed of Ag and the p-side ohmic electrode 10 also serves as a reflective film are shown. Black square symbols in the figure indicate changes over time in the light emission output of the semiconductor light emitting device according to the first example, and black circles indicate changes over time in the light emission output of the semiconductor light emitting device of the comparative example. In the life evaluation test, the semiconductor light emitting device was flip-chip bonded to the submount substrate, and the light emission was measured by emitting light in the atmosphere. The emission wavelength was 405 nm.

比較例による半導体発光素子の発光出力は、数十時間で急激に低下しているが、実施例による半導体発光素子の発光出力は、1000時間経過してもほとんど低下していない。このように、Agからなる反射膜16を陰極に接続することにより、半導体発光素子の長寿命化を図ることができる。   The light emission output of the semiconductor light emitting device according to the comparative example is rapidly reduced in several tens of hours, but the light emission output of the semiconductor light emitting device according to the example is hardly lowered even after 1000 hours. As described above, the life of the semiconductor light emitting device can be extended by connecting the reflective film 16 made of Ag to the cathode.

上記第1の実施例では、p側オーミック電極10をPtで形成したが、発光層5の発光波長域の光を透過させ、p型コンタクト層7とオーミック接触が得られる他の導電材料で形成してもよい。使用可能な材料として、例えばロジウム(Rh)、パラジウム(Pd)等が挙げられる。その他に、Pt層とRh層との2層構造、またはNi層とAu層との2層構造にしてもよい。Ni層とAu層との2層構造とする場合には、オーミック接触を得るために、成膜後に熱処理を行う必要がある。また、AuとNiの酸化物とで構成された透光性酸化膜を用いることもできる。この場合には、成膜後に、酸化性雰囲気中で熱処理を行う必要がある。   In the first embodiment, the p-side ohmic electrode 10 is formed of Pt. However, the p-side ohmic electrode 10 is formed of another conductive material that transmits light in the emission wavelength region of the light-emitting layer 5 and can obtain ohmic contact with the p-type contact layer 7. May be. Examples of usable materials include rhodium (Rh) and palladium (Pd). In addition, a two-layer structure of a Pt layer and an Rh layer, or a two-layer structure of a Ni layer and an Au layer may be used. In the case of a two-layer structure of a Ni layer and an Au layer, it is necessary to perform heat treatment after film formation in order to obtain ohmic contact. Alternatively, a light-transmitting oxide film composed of an oxide of Au and Ni can be used. In this case, it is necessary to perform heat treatment in an oxidizing atmosphere after film formation.

また、上記第1の実施例では、n側オーミック電極11をAl層とRh層との2層構造(Al/Rh構造)としたが、n型コンタクト層3とオーミック接触可能な他の構成としてもよい。例えば、Al/Pt構造、Al/Ir構造、Al/Pd構造、Ti/Al構造、V/Al構造としてもよい。Ti/Al構造、またはV/Al構造を採用する場合には、オーミック接触を得るために、成膜後に熱処理を行う必要がある。   In the first embodiment, the n-side ohmic electrode 11 has a two-layer structure (Al / Rh structure) of an Al layer and an Rh layer. However, as another configuration capable of ohmic contact with the n-type contact layer 3 Also good. For example, an Al / Pt structure, an Al / Ir structure, an Al / Pd structure, a Ti / Al structure, or a V / Al structure may be used. When a Ti / Al structure or a V / Al structure is employed, heat treatment needs to be performed after film formation in order to obtain ohmic contact.

上記第1の実施例では、絶縁膜15を酸化シリコンで形成したが、発光層5の発光波長域の光を透過させる他の絶縁材料で形成していもよい。例えば、絶縁膜15の材料として、酸化チタン(TiO)、酸化タンタル(Ta)、アルミナ(Al)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)等の酸化物、ポリイミド等の耐熱性有機高分子材料等を用いることができる。 In the first embodiment, the insulating film 15 is formed of silicon oxide. However, the insulating film 15 may be formed of another insulating material that transmits light in the emission wavelength region of the light emitting layer 5. For example, oxides such as titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ) are used as the material of the insulating film 15. A heat-resistant organic polymer material such as polyimide can be used.

上記実施例ではp側パッド電極20をTi/Pt/Au/(Pt/Au)の多層構造としたが、その他にTi/Rh/Au/(Pt/Au)の多層構造、またはNi/Rh/Au/(Pt/Au)の多層構造としてもよい。
最下層のTi層またはNi層の厚さは、例えば0.3〜1nmとする。その上のRh層、Pt層、Au層の各々の厚さは100nmとする。また、繰り返し回数nは1〜5とする。このような多層構造とすることにより、p側パッド電極20に反射膜としての機能を持たせ、光の取り出し効率を高めることができる。
In the above embodiment, the p-side pad electrode 20 has a multi-layer structure of Ti / Pt / Au / (Pt / Au) n , but in addition, a multi-layer structure of Ti / Rh / Au / (Pt / Au) n , or Ni / A multilayer structure of Rh / Au / (Pt / Au) n may be used.
The thickness of the lowermost Ti layer or Ni layer is, for example, 0.3 to 1 nm. The thickness of each of the Rh layer, Pt layer, and Au layer thereon is 100 nm. The number of repetitions n is 1 to 5. With such a multilayer structure, the p-side pad electrode 20 can have a function as a reflective film, and the light extraction efficiency can be increased.

上記実施例では反射膜16をAgで形成したが、Agを主成分として含む合金で形成してもよい。反射膜16の厚さは、発光層5で発生した光を透過させないために、80nm以上とすることが好ましい。また、反射膜16を、Ag以外のマイグレーションの生じやすい金属で形成する場合にも、マイグレーション抑制効果が得られるであろう。特に、反射膜16を、p側オーミック電極10よりもマイグレーションの生じ易い金属で形成する場合に有効である。   In the above embodiment, the reflective film 16 is made of Ag. However, the reflective film 16 may be made of an alloy containing Ag as a main component. The thickness of the reflective film 16 is preferably 80 nm or more so as not to transmit light generated in the light emitting layer 5. In addition, when the reflective film 16 is formed of a metal other than Ag that easily undergoes migration, a migration suppressing effect will be obtained. This is particularly effective when the reflective film 16 is formed of a metal that is more likely to migrate than the p-side ohmic electrode 10.

上記実施例では、保護膜17を酸化シリコンで形成したが、その他の絶縁材料、例えば酸化チタン(TiO)、酸化タンタル(Ta)、アルミナ(Al)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)等の酸化物、ポリイミド等の耐熱性有機高分子材料等で形成してもよい。 In the above embodiment, the protective film 17 is formed of silicon oxide. However, other insulating materials such as titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), alumina (Al 2 O 3 ), zirconium oxide (ZrO) are used. 2 ), an oxide such as hafnium oxide (HfO 2 ), a heat-resistant organic polymer material such as polyimide, or the like.

反射膜16の表面上に、Agよりもイオン化傾向の大きなAl等の金属からなる導電層を形成してもよい。イオン化傾向の差を利用した異種金属接合を併用することにより、電極間に通電しない状態においても、反射膜16の電気腐食を抑制することができる。   A conductive layer made of a metal such as Al, which has a higher ionization tendency than Ag, may be formed on the surface of the reflective film 16. By using together the dissimilar metal bonding utilizing the difference in ionization tendency, the electric corrosion of the reflective film 16 can be suppressed even in a state where no current is applied between the electrodes.

上記第1の実施例では、p側オーミック電極10、絶縁膜15、及び反射膜16が多層反射膜を構成している。反射率は、これらの膜の厚さに依存する。金属薄膜及び誘電体膜で構成される多層膜の反射率を高くする好適条件を、実験により求めることは困難である。このため、シミュレーションにより、多層反射膜の反射率の膜厚依存性を評価した。以下、シミュレーションによる評価結果について説明する。   In the first embodiment, the p-side ohmic electrode 10, the insulating film 15, and the reflecting film 16 constitute a multilayer reflecting film. The reflectivity depends on the thickness of these films. It is difficult to obtain a suitable condition for increasing the reflectance of a multilayer film composed of a metal thin film and a dielectric film by experiments. For this reason, the film thickness dependence of the reflectance of the multilayer reflective film was evaluated by simulation. Hereinafter, the evaluation result by simulation will be described.

図3に、シミュレーションに用いた多層反射膜のモデルを示す。GaNからなるコンタクト層7の上に、Ptからなるp側オーミック電極10、Tiからなる接着層10a、SiOからなる絶縁膜15、Tiからなる接着層16a、Agからなる反射膜16がこの順番に積層されている。コンタクト層7から反射膜16へ進む波長460nmの光の反射率をしミュレーションにより求めた。 FIG. 3 shows a model of the multilayer reflective film used in the simulation. On the contact layer 7 made of GaN, the adhesive layer 10a made of p-side ohmic electrode 10, Ti consisting of Pt, adhesive layer 16a made of an insulating film 15, Ti consisting of SiO 2, the reflective film 16 made of Ag this order Are stacked. The reflectance of light having a wavelength of 460 nm traveling from the contact layer 7 to the reflective film 16 was obtained by simulation.

図4に、p側オーミック電極10の厚さと反射率との関係を示す。横軸はp側オーミック電極10の厚さを単位「nm」で表し、縦軸は反射率を単位「%」で表す。接着層10a、絶縁膜15、接着層16a、及び反射膜16の厚さは、それぞれ0.3nm、285nm、0.3nm、及び200nmとした。p側オーミック電極10の厚さが7nm以下の領域では反射率はほとんど膜厚の影響を受けず、厚さ7nm以上の領域では、膜厚の増加に伴って反射率が低下している。   FIG. 4 shows the relationship between the thickness of the p-side ohmic electrode 10 and the reflectance. The horizontal axis represents the thickness of the p-side ohmic electrode 10 in the unit “nm”, and the vertical axis represents the reflectance in the unit “%”. The thicknesses of the adhesive layer 10a, the insulating film 15, the adhesive layer 16a, and the reflective film 16 were 0.3 nm, 285 nm, 0.3 nm, and 200 nm, respectively. In the region where the thickness of the p-side ohmic electrode 10 is 7 nm or less, the reflectance is hardly affected by the film thickness, and in the region where the thickness is 7 nm or more, the reflectance decreases as the film thickness increases.

図5に、反射膜16の厚さと反射率との関係を示す。横軸は反射膜16の厚さを単位「nm」で表し、縦軸は反射率を単位「%」で表す。p側オーミック電極10、接着層10a、絶縁膜15、及び接着層16aの厚さは、それぞれ5nm、0.3nm、285nm、及び0.3nmとした。反射膜16が厚くなるに従って反射率が大きくなり、膜厚が80nm付近で反射率が飽和することがわかる。この結果から、反射膜16の厚さを80nm以上にすることが好ましいことがわかる。   FIG. 5 shows the relationship between the thickness of the reflective film 16 and the reflectance. The horizontal axis represents the thickness of the reflective film 16 in the unit “nm”, and the vertical axis represents the reflectance in the unit “%”. The thicknesses of the p-side ohmic electrode 10, the adhesive layer 10a, the insulating film 15, and the adhesive layer 16a were 5 nm, 0.3 nm, 285 nm, and 0.3 nm, respectively. It can be seen that the reflectivity increases as the thickness of the reflective film 16 increases, and the reflectivity is saturated when the film thickness is around 80 nm. From this result, it can be seen that the thickness of the reflective film 16 is preferably 80 nm or more.

図6に、絶縁膜15の厚さと反射率との関係を示す。横軸は絶縁膜15の厚さを単位「nm」で表し、縦軸は反射率を単位「%」で表す。接着層10a、接着層16a、及び反射膜16の厚さは、それぞれ0.3nm、0.3nm、及び200nmとした。図中の3本の曲線は、p側オーミック電極10の厚さが3nm、5nm、及び8nmの場合の反射率を示す。反射率は、絶縁膜15の厚さの変動に従って周期的に変動する。絶縁膜15の厚さが約130nm、286nm、及び440nmの近傍で反射率が極大値を示している。   FIG. 6 shows the relationship between the thickness of the insulating film 15 and the reflectance. The horizontal axis represents the thickness of the insulating film 15 in the unit “nm”, and the vertical axis represents the reflectance in the unit “%”. The thicknesses of the adhesive layer 10a, the adhesive layer 16a, and the reflective film 16 were 0.3 nm, 0.3 nm, and 200 nm, respectively. Three curves in the figure show the reflectance when the thickness of the p-side ohmic electrode 10 is 3 nm, 5 nm, and 8 nm. The reflectance varies periodically according to the variation of the thickness of the insulating film 15. The reflectance shows the maximum value when the thickness of the insulating film 15 is about 130 nm, 286 nm, and 440 nm.

反射率が極小値を示す位置における反射率は、p側オーミック電極10が厚くなるに従って低下することがわかる。絶縁膜15の厚さが変動した時の反射率の低下を抑制するために、p側オーミック電極10を薄くすることが好ましい。ところが、薄くしすぎると、p型コンタクト層7に均一にキャリアを注入するという電極本来の目的を達成できなくなる。高反射率及びキャリアの均一な注入の両方の要請を満たすために、p側オーミック電極10の厚さを1nm〜15nmとすることが好ましく、3nm〜8nmとすることがより好ましい。また、p側オーミック電極10の厚さを1〜5nmと薄くし、その上に、PtまたはRhからなるメッシュ状の補助電極を設けてもよい。このメッシュを構成する1本の電極の幅を、例えば2〜5μmとし、電極の間隔を、例えば10〜15nmとすればよい。   It can be seen that the reflectance at the position where the reflectance exhibits a minimum value decreases as the p-side ohmic electrode 10 becomes thicker. In order to suppress a decrease in reflectance when the thickness of the insulating film 15 varies, it is preferable to make the p-side ohmic electrode 10 thinner. However, if the thickness is too thin, the original purpose of injecting carriers uniformly into the p-type contact layer 7 cannot be achieved. In order to satisfy the requirements of both high reflectivity and uniform carrier injection, the thickness of the p-side ohmic electrode 10 is preferably 1 nm to 15 nm, and more preferably 3 nm to 8 nm. Moreover, the thickness of the p-side ohmic electrode 10 may be as thin as 1 to 5 nm, and a mesh-like auxiliary electrode made of Pt or Rh may be provided thereon. The width of one electrode constituting this mesh may be 2 to 5 μm, for example, and the distance between the electrodes may be 10 to 15 nm, for example.

シミュレーションからは、絶縁膜15の厚さが約286nmときに反射率が極大値を示すことがわかったが、実際に評価用試料を作製して反射率を測定したところ、絶縁膜15の厚さが300nm近傍で反射率が極大値を示した。実験で得られた絶縁膜15の最適膜厚が、シミュレーションで得られた絶縁膜15の最適膜厚からずれたのは、シミュレーションで使用した各膜の光学特性と、実際に形成された各膜の光学特性とが正確には一致しないためと考えられる。絶縁性の確保及びエッチング時間等の観点から、絶縁膜15の厚さを100〜600nmとすることが好ましく、200〜400nmとすることがより好ましい。   From the simulation, it has been found that the reflectance shows a maximum value when the thickness of the insulating film 15 is about 286 nm. However, when the evaluation sample was actually produced and the reflectance was measured, the thickness of the insulating film 15 was measured. Shows a maximum reflectance in the vicinity of 300 nm. The reason why the optimum film thickness of the insulating film 15 obtained by the experiment deviates from the optimum film thickness of the insulating film 15 obtained by the simulation is that the optical characteristics of each film used in the simulation and each actually formed film are This is considered to be because the optical characteristics of the above do not exactly match. From the viewpoint of ensuring insulation and etching time, the thickness of the insulating film 15 is preferably 100 to 600 nm, and more preferably 200 to 400 nm.

図7及び図8に、絶縁膜15の厚さと反射率との関係を、種々の波長について示す。横軸は絶縁膜15の厚さを単位「nm」で表し、縦軸は反射率を単位「%」で表す。p側オーミック電極10、接着層10a、接着層16a、及び反射膜16の厚さは、それぞれ5nm、0.3nm、0.3nm、及び200nmとした。図7及び図8に示した複数の曲線の各々に付した数値は、反射すべき光の波長を示す。   7 and 8 show the relationship between the thickness of the insulating film 15 and the reflectance for various wavelengths. The horizontal axis represents the thickness of the insulating film 15 in the unit “nm”, and the vertical axis represents the reflectance in the unit “%”. The thicknesses of the p-side ohmic electrode 10, the adhesive layer 10a, the adhesive layer 16a, and the reflective film 16 were 5 nm, 0.3 nm, 0.3 nm, and 200 nm, respectively. The numerical value given to each of the plurality of curves shown in FIGS. 7 and 8 indicates the wavelength of light to be reflected.

反射すべき光の波長が変わると、反射率が極大値を示す絶縁膜15の厚さが変化する。絶縁膜15は、発光層で発生する光の波長に応じて、反射率が極大値を示す近傍の厚さとすることが好ましい。   When the wavelength of the light to be reflected changes, the thickness of the insulating film 15 having the maximum reflectance changes. The insulating film 15 preferably has a thickness in the vicinity where the reflectance exhibits a maximum value in accordance with the wavelength of light generated in the light emitting layer.

以上、シミュレーションを行うことにより、反射率を大きくするための膜厚の条件を求めたが、実際には、各膜の成膜方法により、膜の屈折率や消衰係数がいくらか異なる。また、反射率は、膜の表面粗さにも影響される。このため、各膜の最適膜厚は、シミュレーションで得られた最適膜厚を参考にして、膜厚の異なる複数の評価用試料を作製し、実際に反射率を測定することによって決定することが好ましい。シミュレーション結果は、評価用試料の各膜の厚さを決定する尺度になる。   As described above, the film thickness condition for increasing the reflectance is obtained by performing the simulation, but actually, the refractive index and extinction coefficient of the film are somewhat different depending on the film forming method. The reflectance is also affected by the surface roughness of the film. For this reason, the optimum film thickness of each film can be determined by referring to the optimum film thickness obtained by the simulation and preparing a plurality of evaluation samples having different film thicknesses and actually measuring the reflectance. preferable. The simulation result is a scale for determining the thickness of each film of the evaluation sample.

次に、実際に評価用試料を作製し、その反射率を測定した結果について説明する。評価用試料では、図3のp側コンタクト層7として、厚さ320μmのサファイア基板を用いた。p側オーミック電極10を、厚さ5nm、8nm、及び10nmのPt膜とし、接着層10a及び16aを厚さ0.3nmのTi膜とし、絶縁膜15を厚さ313nmのSiO膜とし、反射膜16を厚さ200nmのAg膜とした。 Next, the result of actually producing an evaluation sample and measuring the reflectance will be described. In the sample for evaluation, a sapphire substrate having a thickness of 320 μm was used as the p-side contact layer 7 in FIG. The p-side ohmic electrode 10 is a Pt film having a thickness of 5 nm, 8 nm, and 10 nm, the adhesive layers 10a and 16a are Ti films having a thickness of 0.3 nm, the insulating film 15 is an SiO 2 film having a thickness of 313 nm, and reflection The film 16 was an Ag film having a thickness of 200 nm.

サファイア基板の上に厚さ4〜8μm程度のGaN膜を形成すると、基板に反りが発生する。基板に反りが発生すると、反射率を測定するための入射光の入射角を正確に調整できなくなる。このため、測定用試料では、GaN層を形成しないサファイア基板を用いた。   When a GaN film having a thickness of about 4 to 8 μm is formed on a sapphire substrate, the substrate is warped. When the substrate is warped, the incident angle of incident light for measuring the reflectance cannot be adjusted accurately. For this reason, in the measurement sample, a sapphire substrate on which no GaN layer was formed was used.

図9に、反射率の測定結果を示す。横軸は波長を単位「nm」で表し、縦軸は反射率を単位「%」で表す。作製した試料においては、波長が350〜360nm、及び510〜520nmのときに、反射率が極大値を示した。種々の試料を作製して反射率を測定することにより、サファイア基板上に形成した多層反射膜の反射率と、GaN層上に形成した多層反射膜の反射率との関係を得ることができる。この関係を利用して、絶縁膜15の好ましい膜厚を予測することができる。   FIG. 9 shows the measurement results of the reflectance. The horizontal axis represents the wavelength in the unit “nm”, and the vertical axis represents the reflectance in the unit “%”. In the prepared sample, the reflectance showed the maximum value when the wavelength was 350 to 360 nm and 510 to 520 nm. By producing various samples and measuring the reflectance, the relationship between the reflectance of the multilayer reflective film formed on the sapphire substrate and the reflectance of the multilayer reflective film formed on the GaN layer can be obtained. By utilizing this relationship, a preferable film thickness of the insulating film 15 can be predicted.

次に、図10及び図11を参照して、第2の実施例による半導体発光素子について説明する。   Next, with reference to FIGS. 10 and 11, the semiconductor light emitting device according to the second embodiment will be described.

図10に、第2の実施例による半導体発光素子の平面図を示す。図1(B)に示した第1の実施例では、反射膜16が無地の膜であり、p側オーミック電極10の大部分の領域と重なっていた。第2の実施例では、反射膜16の代わりに、格子状の反射パターン16aが配置されている。その他の基本構成は、第1の実施例による半導体発光素子の構成と同様である。図10では、p側パッド電極20及びn側パッド電極21が、相互に対向する一対の辺の中央よりやや内側に配置されている場合が示されているが、図1(B)に示した第1の実施例の場合のように、矩形の頂点近傍に配置してもよい。   FIG. 10 is a plan view of a semiconductor light emitting device according to the second embodiment. In the first embodiment shown in FIG. 1B, the reflective film 16 is a plain film and overlaps with most of the region of the p-side ohmic electrode 10. In the second embodiment, a grid-like reflection pattern 16 a is arranged instead of the reflection film 16. Other basic configurations are the same as those of the semiconductor light emitting device according to the first embodiment. FIG. 10 shows a case where the p-side pad electrode 20 and the n-side pad electrode 21 are arranged slightly inside the center of a pair of sides facing each other, but the case shown in FIG. As in the case of the first embodiment, it may be arranged near the vertex of a rectangle.

第2の実施例による半導体発光素子においては、発光層で発生した光が支持基板を通して外部に放射されると共に、反射パターン16aの開口部を通して支持基板と反対側にも放射される。さらに、反射パターン16aで散乱され、半導体発光素子の側方にも光が放射される。   In the semiconductor light emitting device according to the second embodiment, the light generated in the light emitting layer is radiated to the outside through the support substrate, and is also radiated to the side opposite to the support substrate through the opening of the reflective pattern 16a. Further, the light is scattered by the reflection pattern 16a, and light is also emitted to the side of the semiconductor light emitting element.

図11に、第2の実施例による半導体発光素子を実装したランプの概略断面図を示す。凹部を有する金属製のフレーム30の凹部の底面に、図10に示した半導体発光素子28が、支持基板をフレーム側にして装着されている。フレーム30から陰極リード31が延びている。半導体発光素子28のn側パッド電極21が、金線35を介してフレーム30に接続されている。p側パッド電極20が金線36を介して陽極リード32に接続されている。   FIG. 11 is a schematic cross-sectional view of a lamp mounted with the semiconductor light emitting device according to the second embodiment. The semiconductor light emitting element 28 shown in FIG. 10 is mounted on the bottom surface of the concave portion of the metal frame 30 having the concave portion with the support substrate facing the frame. A cathode lead 31 extends from the frame 30. The n-side pad electrode 21 of the semiconductor light emitting element 28 is connected to the frame 30 via a gold wire 35. The p-side pad electrode 20 is connected to the anode lead 32 through the gold wire 36.

フレーム30の凹部は、蛍光体37で埋め込まれている。半導体発光素子28は、蛍光体37に被覆されることになる。フレーム30、陰極リード31、及び陽極リード32が、封止樹脂38でモールドされている。   The concave portion of the frame 30 is embedded with a phosphor 37. The semiconductor light emitting element 28 is covered with the phosphor 37. The frame 30, the cathode lead 31, and the anode lead 32 are molded with a sealing resin 38.

半導体発光素子28の下方(支持基板側)に放射された光は、フレーム30で反射され、蛍光体37に入射する。また、半導体発光素子28の側方や上方(支持基板の反対側)に放射された光も蛍光体37に入射する。蛍光体37は、光を受けることにより蛍光を発生させる。この蛍光が、樹脂モールド38の外部に放射される。   The light emitted below the semiconductor light emitting element 28 (on the support substrate side) is reflected by the frame 30 and enters the phosphor 37. Further, the light emitted to the side or upper side (opposite side of the support substrate) of the semiconductor light emitting element 28 also enters the phosphor 37. The phosphor 37 generates fluorescence by receiving light. This fluorescence is emitted to the outside of the resin mold 38.

半導体発光素子28の下方、側方、及び上方に光が放射されるため、色むらを軽減することができる。   Since light is emitted below, to the side, and above the semiconductor light emitting element 28, color unevenness can be reduced.

第2の実施例では、反射パターン16aを格子状にしたが、開口部を有し、光を散乱させるその他のパターンにしてもよい。例えば、縞状パターン、ハニカム状パターン等にしてもよい。   In the second embodiment, the reflection pattern 16a is formed in a lattice pattern, but may have other patterns that have openings and scatter light. For example, a striped pattern or a honeycomb pattern may be used.

次に、図12(A)、図12(B)及び図13を参照して、第3の実施例による半導体発光素子について説明する。   Next, with reference to FIGS. 12A, 12B, and 13, a semiconductor light emitting device according to a third embodiment will be described.

図12(A)に、第3の実施例による半導体発光素子の断面図を示し、図12(B)にその平面図を示す。図12(B)の一点鎖線A12−A12における断面図が図12(A)に相当する。以下、図1(A)及び(B)に示した第1の実施例による半導体発光素子との相違点について説明する。   FIG. 12A shows a sectional view of a semiconductor light emitting device according to the third embodiment, and FIG. 12B shows a plan view thereof. A cross-sectional view taken along one-dot chain line A12-A12 in FIG. 12B corresponds to FIG. Hereinafter, differences from the semiconductor light emitting device according to the first embodiment shown in FIGS. 1A and 1B will be described.

第1の実施例では、n側パッド電極21がn側オーミック電極11の上に配置されていたが、第2の実施例では、n側パッド電極21がp側オーミック電極10の上方に配置され、反射膜16に接触している。保護膜17に形成された開口17a及び17bの底面に、それぞれp側パッド電極20及びn側パッド電極21が露出している。   In the first embodiment, the n-side pad electrode 21 is disposed on the n-side ohmic electrode 11. However, in the second embodiment, the n-side pad electrode 21 is disposed above the p-side ohmic electrode 10. , In contact with the reflective film 16. The p-side pad electrode 20 and the n-side pad electrode 21 are exposed at the bottom surfaces of the openings 17a and 17b formed in the protective film 17, respectively.

図12(B)に示すように、n側オーミック電極11は、支持基板1の一つの辺の近傍に、その辺に沿って配置されている。p側パッド電極20は、n側オーミック電極11が沿う辺に対向する辺の一方の端部近傍に配置されている。反射膜16は、p側パッド電極20の配置されていない領域の大部分を占める。n側パッド電極21は、反射膜16とp側オーミック電極10との重なる領域のうち大部分を占める。   As shown in FIG. 12B, the n-side ohmic electrode 11 is disposed in the vicinity of one side of the support substrate 1 along the side. The p-side pad electrode 20 is disposed in the vicinity of one end of the side facing the side along which the n-side ohmic electrode 11 extends. The reflective film 16 occupies most of the region where the p-side pad electrode 20 is not disposed. The n-side pad electrode 21 occupies most of the region where the reflective film 16 and the p-side ohmic electrode 10 overlap.

図13に、第3の実施例による半導体発光素子を実装したランプの概略断面図を示す。第3の実施例による半導体発光素子50が、サブマウント基板43にフリップチップボンディングされている。半導体発光素子50のp側パッド電極20及びn側パッド電極21が、それぞれサブマウント基板43上の陽極配線44及び陰極配線45に接続されている。サブマウント基板43がステム40に固定されている。ステム40に、陽極リード42及び陰極リード41が固定されている。陽極配線44が金線46を介して陽極リード42に接続され、陰極配線45が金線47を介して陰極リード41に接続されている。   FIG. 13 is a schematic cross-sectional view of a lamp on which the semiconductor light emitting device according to the third embodiment is mounted. The semiconductor light emitting device 50 according to the third embodiment is flip-chip bonded to the submount substrate 43. The p-side pad electrode 20 and the n-side pad electrode 21 of the semiconductor light emitting device 50 are connected to the anode wiring 44 and the cathode wiring 45 on the submount substrate 43, respectively. A submount substrate 43 is fixed to the stem 40. An anode lead 42 and a cathode lead 41 are fixed to the stem 40. The anode wiring 44 is connected to the anode lead 42 via the gold wire 46, and the cathode wiring 45 is connected to the cathode lead 41 via the gold wire 47.

半導体発光素子50及びサブマウント基板43は、封止樹脂48により封止されている。半導体発光素子50の発光層で発生した光は、図12(A)に示した反射膜16で反射され、支持基板1及び封止樹脂48を透過して外部に放射される。   The semiconductor light emitting element 50 and the submount substrate 43 are sealed with a sealing resin 48. The light generated in the light emitting layer of the semiconductor light emitting element 50 is reflected by the reflective film 16 shown in FIG. 12A, passes through the support substrate 1 and the sealing resin 48, and is emitted to the outside.

第3の実施例による半導体発光素子においては、第1の実施例による半導体発光素子に比べて、n側パッド電極21が素子表面の広い領域を占める。この広いn側パッド電極21を介して、素子内で発生した熱がサブマウント基板43に効率的に流れる。このため、良好な放熱特性を確保することができる。   In the semiconductor light emitting device according to the third embodiment, the n-side pad electrode 21 occupies a wider area on the device surface than the semiconductor light emitting device according to the first embodiment. Heat generated in the element efficiently flows to the submount substrate 43 through the wide n-side pad electrode 21. For this reason, a favorable heat dissipation characteristic is securable.

次に、図14(A)及び図14(B)を参照して、第4の実施例による半導体発光素子について説明する。   Next, with reference to FIGS. 14A and 14B, a semiconductor light emitting element according to the fourth embodiment will be described.

図14(A)に、第4の実施例による半導体発光素子の断面図を示し、図14(B)に、その平面図を示す。図14(B)の一点鎖線A14−A14における断面図が図14(A)に相当する。第4の実施例においては、4つのn側オーミック電極11が、それぞれ正方形状の支持基板1の4つの辺に沿うように配置されている。反射膜16が、4つのn側オーミック電極11に接続される。p側パッド電極20を内包するように、反射膜16に開口16aが形成されている。開口16aを形成することにより、反射膜16とp側パッド電極20との短絡が回避される。   FIG. 14A shows a cross-sectional view of a semiconductor light emitting device according to the fourth embodiment, and FIG. 14B shows a plan view thereof. A cross-sectional view along dashed-dotted line A14-A14 in FIG. 14B corresponds to FIG. In the fourth embodiment, the four n-side ohmic electrodes 11 are arranged along the four sides of the square support substrate 1, respectively. The reflective film 16 is connected to the four n-side ohmic electrodes 11. An opening 16 a is formed in the reflective film 16 so as to enclose the p-side pad electrode 20. By forming the opening 16a, a short circuit between the reflective film 16 and the p-side pad electrode 20 is avoided.

第4の実施例では、4つのn側オーミック電極11が形成されているため、電極の接触面積を大きくすることができ、接触抵抗の低減を図ることが可能になる。また、4つのn側オーミック電極11を正方形の4つの辺に沿って配置することにより、基板面内における電流の偏りを少なくすることができる。   In the fourth embodiment, since the four n-side ohmic electrodes 11 are formed, the contact area of the electrodes can be increased and the contact resistance can be reduced. Further, by arranging the four n-side ohmic electrodes 11 along the four sides of the square, it is possible to reduce the current bias in the substrate plane.

支持基板1の頂点近傍は、素子分離の際に欠け易い。このため、n側オーミック電極11は、支持基板1の頂点近傍まで延在させないことが好ましい。   The vicinity of the apex of the support substrate 1 is likely to be lost during element isolation. For this reason, it is preferable that the n-side ohmic electrode 11 does not extend to the vicinity of the apex of the support substrate 1.

また、第4の実施例では、n型クラッド層4からp型クラッド層7までの積層で構成されたメサ部の側面の全域が反射膜16で覆われている。このため、発光層5から側方に放射された光を効率的に支持基板1側に反射させることができ、光の取り出し効率を高めることができる。光の取り出し効率をより高めるために、メサ部の側面を傾斜させることが好ましい。例えば、メサ部の側面の傾斜角を60°以下にすることが好ましい。   Further, in the fourth embodiment, the entire side surface of the mesa portion formed by stacking from the n-type cladding layer 4 to the p-type cladding layer 7 is covered with the reflective film 16. For this reason, the light radiated | emitted from the light emitting layer 5 to the side can be efficiently reflected to the support substrate 1 side, and the extraction efficiency of light can be improved. In order to further increase the light extraction efficiency, it is preferable to incline the side surface of the mesa portion. For example, the inclination angle of the side surface of the mesa portion is preferably 60 ° or less.

以下、メサ部の側面を傾斜させる方法の一例について説明する。通常のレジストパターンを形成する時は、フォトマスクをレジスト膜に接触させて露光を行なう。メサ部の側面を傾斜させる場合には、フォトマスクをレジスト膜から僅かに浮かせて露光を行なう。レジスト膜とフォトマスクとの間に間隙が形成されるため、フォトマスクのパターンのエッジ部分がぼけて転写される。レジスト膜を現像すると、側面が傾斜したレジストパターンが得られる。   Hereinafter, an example of a method for inclining the side surface of the mesa unit will be described. When a normal resist pattern is formed, exposure is performed by bringing a photomask into contact with the resist film. When the side surface of the mesa portion is inclined, exposure is performed with the photomask slightly lifted from the resist film. Since a gap is formed between the resist film and the photomask, the edge portion of the photomask pattern is blurred and transferred. When the resist film is developed, a resist pattern with inclined side surfaces is obtained.

このレジストパターンをエッチングマスクとして、窒化物半導体層をドライエッチングすると、レジストパターン自体も徐々にエッチングされるため、レジストパターンの側面の傾きに対応して、窒化物半導体のメサ部の側面が傾斜する。   When the nitride semiconductor layer is dry-etched using this resist pattern as an etching mask, the resist pattern itself is also gradually etched. Therefore, the side surface of the mesa portion of the nitride semiconductor is inclined corresponding to the inclination of the side surface of the resist pattern. .

上記実施例では、反射膜16をn側オーミック電極11に接続したが、反射膜16を、p側オーミック電極10及びn側オーミック電極11のいずれにも接続せず、電気的にフローティング状態にしてもよい。フローティング状態の場合にも、図15(B)や図15(C)に示したように反射膜を陽極に接続する場合に比べて、マイグレーションを抑制することができる。   In the above embodiment, the reflective film 16 is connected to the n-side ohmic electrode 11, but the reflective film 16 is not connected to either the p-side ohmic electrode 10 or the n-side ohmic electrode 11, and is in an electrically floating state. Also good. Even in the floating state, migration can be suppressed as compared with the case where the reflective film is connected to the anode as shown in FIGS. 15B and 15C.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

1 下地基板
2 初期核形成層
3 n型コンタクト層
4 n型クラッド層
5 発光層
6 p型クラッド層
7 p型コンタクト層
10 p側オーミック電極
10a、16a 接着層
11 n側オーミック電極
15 絶縁膜
16 反射膜
16a 反射パターン
17 保護膜
20 p側パッド電極
21 n側パッド電極
25 第1の領域
28、50 半導体発光素子
30 フレーム
31、41 陰極リード
32、42 陽極リード
35、36、46、47 金線
37 蛍光体
38、48 封止樹脂
40 ステム
43 サブマウント基板
44 陽極配線
45 陰極配線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Initial nucleus formation layer 3 n-type contact layer 4 n-type cladding layer 5 light emitting layer 6 p-type cladding layer 7 p-type contact layer 10 p-side ohmic electrodes 10a and 16a adhesive layer 11 n-side ohmic electrode 15 insulating film 16 Reflective film 16a Reflective pattern 17 Protective film 20 P-side pad electrode 21 N-side pad electrode 25 First region 28, 50 Semiconductor light emitting element 30 Frame 31, 41 Cathode lead 32, 42 Anode lead 35, 36, 46, 47 Gold wire 37 Phosphor 38, 48 Sealing resin 40 Stem 43 Submount substrate 44 Anode wiring 45 Cathode wiring

Claims (10)

n型の窒化物半導体からなる第1の層、及び該第1の層の上に配置されたp型の窒化物半導体からなる第2の層を含み、該第1の層と第2の層との間に発光領域を画定し、該第1の層の表面の一部の第1の領域において、該第2の層が除去されて該第1の層が現われている発光積層構造と、
前記第2の層の表面上に配置され、該第2の層に電気的に接続され、Pt、Rh及びPdからなる群より選択された1つの金属で形成されており、その厚さが1nm〜8nmであるp側電極と、
前記p側電極を覆う絶縁膜と、
前記第1の領域において、前記第1の層に電気的に接続されたn側電極と、
前記絶縁膜の上に、前記p側電極と重なるように配置され、銀を含む合金または銀で形成され、前記p側電極及びn側電極のいずれにも接続されておらず電気的にフローティング状態にされた反射膜と
を有し、
前記p側電極、前記絶縁膜、及び前記反射膜が、多層反射膜を構成している半導体発光素子。
a first layer made of an n-type nitride semiconductor; and a second layer made of a p-type nitride semiconductor disposed on the first layer, wherein the first layer and the second layer A light emitting stacked structure in which a light emitting region is defined between the first layer and the first layer on the surface of the first layer, wherein the second layer is removed and the first layer appears.
It is disposed on the surface of the second layer, is electrically connected to the second layer, is formed of one metal selected from the group consisting of Pt, Rh, and Pd, and has a thickness of 1 nm. A p-side electrode that is ˜8 nm;
An insulating film covering the p-side electrode;
An n-side electrode electrically connected to the first layer in the first region;
On the insulating film, disposed so as to overlap the p-side electrode, formed of an alloy containing silver or silver, and not electrically connected to either the p-side electrode or the n-side electrode, but in an electrically floating state And a reflecting film made of
A semiconductor light emitting device in which the p-side electrode, the insulating film, and the reflective film constitute a multilayer reflective film.
n型の窒化物半導体からなる第1の層、及び該第1の層の上に配置されたp型の窒化物半導体からなる第2の層を含み、該第1の層と第2の層との間に発光領域を画定し、該第1の層の表面の一部の第1の領域において、該第2の層が除去されて該第1の層が現われている発光積層構造と、
前記第2の層の表面上に配置され、該第2の層に電気的に接続され、前記発光領域で発生した光を透過させ、Pt、Rh及びPdからなる群より選択された1つの金属で形成されており、その厚さが1nm〜8nmであるp側電極と、
前記p側電極を覆う絶縁膜と、
前記第1の領域において、前記第1の層に電気的に接続されたn側電極と、
前記絶縁膜の上に、前記p側電極と重なるように配置され、銀を含む合金または銀で形成され、前記p側電極及びn側電極のいずれにも接続されておらず電気的にフローティング状態にされ、前記発光領域で発生した光を反射する反射膜と
を有し、
前記p側電極、前記絶縁膜、及び前記反射膜が、多層反射膜を構成している半導体発光素子。
a first layer made of an n-type nitride semiconductor; and a second layer made of a p-type nitride semiconductor disposed on the first layer, wherein the first layer and the second layer A light emitting stacked structure in which a light emitting region is defined between the first layer and the first layer on the surface of the first layer, wherein the second layer is removed and the first layer appears.
One metal disposed on the surface of the second layer, electrically connected to the second layer, transmitting light generated in the light emitting region, and selected from the group consisting of Pt, Rh, and Pd A p-side electrode having a thickness of 1 nm to 8 nm,
An insulating film covering the p-side electrode;
An n-side electrode electrically connected to the first layer in the first region;
On the insulating film, disposed so as to overlap the p-side electrode , formed of an alloy containing silver or silver, and not electrically connected to either the p-side electrode or the n-side electrode, but in an electrically floating state And a reflective film that reflects light generated in the light emitting region,
A semiconductor light emitting device in which the p-side electrode, the insulating film, and the reflective film constitute a multilayer reflective film.
前記絶縁膜が、酸化シリコン、酸化チタン、酸化タンタル、アルミナ、酸化ジルコニウム、酸化ハフニウム、及び絶縁性高分子材料からなる群より選択された少なくとも1つの材料で形成されている請求項1または2に記載の半導体発光素子。   3. The insulating film according to claim 1, wherein the insulating film is formed of at least one material selected from the group consisting of silicon oxide, titanium oxide, tantalum oxide, alumina, zirconium oxide, hafnium oxide, and an insulating polymer material. The semiconductor light emitting element as described. さらに、前記反射膜を覆う絶縁性の保護膜を有する請求項1〜3のいずれかに記載の半導体発光素子。   The semiconductor light-emitting element according to claim 1, further comprising an insulating protective film that covers the reflective film. さらに、前記反射膜と前記保護膜との間に、Ti、Ni、Al、W、及びMoからなる群より選択された少なくとも1つの金属からなる中間層が配置されている請求項4に記載の半導体発光素子。   Furthermore, the intermediate layer which consists of at least 1 metal selected from the group which consists of Ti, Ni, Al, W, and Mo is arrange | positioned between the said reflecting film and the said protective film. Semiconductor light emitting device. さらに、前記p側電極の表面の一部の領域上に配置されたフリップチップボンディング用のp側パッドと、
前記n側電極の表面の一部の領域上に配置されたフリップチップボンディング用のn側パッドと
を有する請求項1〜5のいずれかに記載の半導体発光素子。
Furthermore, a p-side pad for flip chip bonding disposed on a partial region of the surface of the p-side electrode;
The semiconductor light emitting element according to claim 1, further comprising an n-side pad for flip chip bonding disposed on a partial region of the surface of the n-side electrode.
前記反射膜が、前記発光領域で発光し該反射膜に向かって進行する光を散乱させるような平面形状を有し、
さらに、前記反射膜で散乱された光が入射することにより蛍光を発生する蛍光体を有する請求項1〜5のいずれかに記載の半導体発光素子。
The reflective film has a planar shape that scatters light emitted from the light emitting region and traveling toward the reflective film,
Furthermore, the semiconductor light emitting element in any one of Claims 1-5 which have the fluorescent substance which generate | occur | produces fluorescence when the light scattered by the said reflecting film injects.
前記反射膜の表面上に、前記反射膜よりもイオン化傾向の大きな金属からなる層が、さらに形成されている請求項1〜のいずれかに記載の半導体発光素子。 Wherein on the surface of the reflective film, the reflective film made of a large metal ionization tendency than layers, the semiconductor light-emitting device according to any one of claims 1 to 7, which is further formed. 前記反射膜は、開口部を有し、光を散乱させるパターンにされている請求項1〜のいずれかに記載の半導体発光素子。 The reflective layer has an opening, a semiconductor light-emitting device according to any one of claims 1-8, which is a pattern to scatter light. 前記p側電極の厚さは1〜5nmであり、さらに、該p側電極の上にメッシュ状の補助電極が形成されている請求項1〜のいずれかに記載の半導体発光素子。 The thickness of the p-side electrode is 1 to 5 nm, further, the semiconductor light-emitting device according to any one of claims 1 to 9 mesh auxiliary electrode on the p-side electrode is formed.
JP2009098265A 2009-04-14 2009-04-14 Semiconductor light emitting device Expired - Fee Related JP5021693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098265A JP5021693B2 (en) 2009-04-14 2009-04-14 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098265A JP5021693B2 (en) 2009-04-14 2009-04-14 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004095217A Division JP4330476B2 (en) 2004-03-29 2004-03-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2009188422A JP2009188422A (en) 2009-08-20
JP5021693B2 true JP5021693B2 (en) 2012-09-12

Family

ID=41071302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098265A Expired - Fee Related JP5021693B2 (en) 2009-04-14 2009-04-14 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5021693B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071444A (en) * 2009-09-28 2011-04-07 Toyoda Gosei Co Ltd Light-emitting element
KR101014013B1 (en) 2009-10-15 2011-02-10 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
JP2011165799A (en) * 2010-02-08 2011-08-25 Showa Denko Kk Flip-chip light emitting diode and method for manufacturing the same, and light emitting diode lamp
KR101014155B1 (en) 2010-03-10 2011-02-10 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2012151261A (en) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd Semiconductor light-emitting element, protective film of the same, and manufacturing method of the same
JP5682427B2 (en) * 2011-04-11 2015-03-11 日亜化学工業株式会社 Light emitting element
CN103946994B (en) 2012-01-13 2016-10-12 世迈克琉明有限公司 Light emitting semiconductor device
KR101669641B1 (en) 2012-06-28 2016-10-26 서울바이오시스 주식회사 Light Emitting Diode for Surface Mount Technology, Method of manufacturing the same and Method of manufacturing of Light Emitting Diode Module
KR101740531B1 (en) * 2012-07-02 2017-06-08 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same
US9461212B2 (en) 2012-07-02 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
KR101364246B1 (en) 2012-07-18 2014-02-17 주식회사 세미콘라이트 Semiconductor light emimitting device
EP2782147B1 (en) * 2012-07-18 2020-03-11 Semicon Light Co. Ltd. Method for manufacturing semiconductor light-emitting element
KR101363496B1 (en) 2012-07-18 2014-02-17 주식회사 세미콘라이트 Method of manufacturing semiconductor light emimitting device
US9530941B2 (en) 2012-07-18 2016-12-27 Semicon Light Co., Ltd. Semiconductor light emitting device
CN108598230A (en) 2012-07-18 2018-09-28 世迈克琉明有限公司 Light emitting semiconductor device
JP6205747B2 (en) * 2013-02-21 2017-10-04 富士通株式会社 Optical semiconductor device and manufacturing method thereof
KR101549870B1 (en) 2013-10-11 2015-09-03 주식회사 세미콘라이트 Semiconductor light emitting device
JP2016015375A (en) * 2014-07-01 2016-01-28 株式会社タムラ製作所 Light emitting element
KR101607775B1 (en) * 2014-11-19 2016-03-30 한국광기술원 Light emitting display module with side wall reflection function and light emitting device using the same
JP6009041B2 (en) * 2015-06-05 2016-10-19 ローム株式会社 Light emitting device, light emitting device unit, and light emitting device package
KR102509144B1 (en) * 2015-12-28 2023-03-13 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
US10950756B2 (en) 2016-12-06 2021-03-16 Lg Innotek Co., Ltd. Light emitting device including a passivation layer on a light emitting structure
KR102598043B1 (en) * 2017-01-12 2023-11-06 삼성전자주식회사 Semiconductor light emitting device including a floating conductive pattern
KR101843512B1 (en) * 2017-05-22 2018-05-14 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531475B2 (en) * 1998-05-22 2004-05-31 日亜化学工業株式会社 Flip chip type optical semiconductor device
JP2002190620A (en) * 2000-12-20 2002-07-05 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor light-emitting diode
JP2003046137A (en) * 2001-07-27 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2009188422A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4330476B2 (en) Semiconductor light emitting device
JP5021693B2 (en) Semiconductor light emitting device
JP5755646B2 (en) Optoelectronic semiconductor component and method of manufacturing inorganic optoelectronic semiconductor component
JP5633477B2 (en) Light emitting element
US9705044B2 (en) Semiconductor device and method for manufacturing same
KR101368720B1 (en) Semiconductor light emimitting device
JP2007335793A (en) Semiconductor light emitting device and its manufacturing method
KR100826375B1 (en) Nitride based semiconductor light emitting device and method for fabricating the same
JP5589812B2 (en) Semiconductor light emitting device
JP6087096B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4493153B2 (en) Nitride-based semiconductor light emitting device
KR20090027220A (en) Semiconductor light emitting element and method for fabricating the same
JP2014093509A (en) Semiconductor light-emitting element
KR20130052002A (en) Method for manufacturing group iii nitride semiconductor light emitting element
JP5608340B2 (en) Semiconductor light emitting device
JP4946663B2 (en) Semiconductor light emitting device
JP4836410B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
CN116210093A (en) Resonant cavity light-emitting diode and preparation method thereof
JP5592248B2 (en) Nitride semiconductor light emitting device
JP2009200254A (en) Semiconductor light emitting element
KR100683924B1 (en) Semiconductor light emitting device
JP5503799B2 (en) Compound semiconductor light emitting device
JP7453588B2 (en) Vertical cavity surface emitting laser device
KR102338178B1 (en) Semiconductor light emitting device
JP6846017B2 (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees