JP3362025B2 - 正極活物質と該正極活物質を用いたリチウム二次電池 - Google Patents

正極活物質と該正極活物質を用いたリチウム二次電池

Info

Publication number
JP3362025B2
JP3362025B2 JP2000128857A JP2000128857A JP3362025B2 JP 3362025 B2 JP3362025 B2 JP 3362025B2 JP 2000128857 A JP2000128857 A JP 2000128857A JP 2000128857 A JP2000128857 A JP 2000128857A JP 3362025 B2 JP3362025 B2 JP 3362025B2
Authority
JP
Japan
Prior art keywords
active material
conductivity
positive electrode
powder
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000128857A
Other languages
English (en)
Other versions
JP2000323143A (ja
Inventor
明伸 飯川
義和 尾本
正行 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26461503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3362025(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP11124943A external-priority patent/JP3088716B1/ja
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2000128857A priority Critical patent/JP3362025B2/ja
Publication of JP2000323143A publication Critical patent/JP2000323143A/ja
Application granted granted Critical
Publication of JP3362025B2 publication Critical patent/JP3362025B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、非水系二次電池用
の正極活物質および該正極活物質を用いた非水系二次電
池に関する。
【0002】
【従来の技術】近年、電子機器の小型化、高性能化およ
び携帯化が進み、これら携帯用電子機器に使用される高
エネルギー密度の電池の要求が高まっている。これらの
要求を満たす電池システムとして、リチウム二次電池は
軽量で、高エネルギー密度の条件を満たすものとして期
待が大きい。
【0003】このような電池の正極活物質としては、リ
チウムを挿入・脱離し得ることが可能な層状化合物、例
えばLiCoO2やLiNiO2、あるいはトンネル構造
を有する化合物、例えばLiMn24等、リチウムと遷
移金属を主体とする複合酸化物が知られている。このよ
うなリチウム含有複合酸化物のうち、LiCoO2 は既
に実用化されているが、資源的に希少で高価なコバルト
を用いていることから、より安価で高エネルギー密度化
が可能なLiNiO2 において、材料開発が精力的に行
われている。
【0004】LiNiO2 の実用化には、LiNiO2
は結晶構造に起因すると考えられているサイクル劣化
や、充電状態での安全性、信頼性の確保に問題があっ
た。サイクル劣化については、Niの一部をCoやMn
等の異種金属で置換してサイクル劣化を抑制すること
や、また高温保存性や加熱試験に関しては、Niの一部
をAl等の他元素で置換して、熱安定性を向上させるこ
となどが提案され、実用化にむけての改良がなされてき
た。
【0005】しかしながら現時点では、LiNiO2
の正極活物質材料は、実用化されるに至っていない。そ
の理由は、電池の安全性評価の機械的誤用試験のうち、
釘刺し試験および圧壊試験において、これまで提案され
てきた正極活物質の熱安定性の改良手段をもってして
も、安全性の確保と高性能電池との両立が困難なことに
ある。ここで釘刺し試験および圧壊試験とは、日本蓄電
池工業会指針「リチウム2次電池の安全性評価基準ガイ
ドラインSBAG1101」に規定された試験方法で、
電池の破損による内部短絡状況を想定している。このよ
うな内部短絡の場合には、PTC素子の作動やセパレー
ター溶融によるシャットダウンといった保護回路が機能
しない状況下であり、短絡電流に伴う急激な電池内部で
の発熱が、電池の破裂、発火の原因になると指摘されて
いる。
【0006】このような観点から内部短絡に対する安全
性対策として、電池設計上からの安全性対策が、種々提
案がなされてきた。例えば、特開平10−116619
には、内部短絡時のジュール熱の発生を抑制するため、
負極活物質として体積抵抗率が5×10-3Ω・cm以下で
ある黒鉛を使用することが開示されている。また、特開
平10−199574には、導電性基体表面に、導電性
基体よりも高い抵抗値を有する抵抗体層を形成すること
により、短絡時の大電流放電を抑制することが開示され
ている。さらに、特開平10−116633において
は、正極に電気的に接続した金属部分と負極に電気的に
接続した金属部分をセパレーターを介して対向させ、前
記金属部分のいずれか一方に導電性粉末を塗着すること
により、電池の変形による内部短絡時に、金属部分間に
短絡電流を導通することで、発熱が抑制されることが開
示されている。
【0007】
【発明が解決しようとする課題】しかしながら、これら
内部短絡に対する電池設計上の安全性対策は、製造コス
トの増大や、活物質充填量の低下・負荷率特性の低下を
伴い、LiNiO2 系の正極活物質に本来期待されてい
る安価で高性能な電池の実現には最適ではなかった。す
なわち、層状結晶構造を有するリチウムとニッケルを主
体とする元素との複合酸化物粉末を正極活物質として用
いた高容量の非水系二次電池においては、内部短絡時に
おける安全性の向上が課題であり、製造コストや電池性
能が犠牲となる電池設計上の安全性対策によらない正極
活物質としての改良が求められている状況にある。
【0008】従って本発明の目的は、内部短絡試験にお
ける安全性の改良されたLiNiO 2 系正極活物質粉末
およびそれを用いた高性能なリチウム二次電池を提供す
ることにある。
【0009】
【課題を解決するための手段】本発明者らは上記課題に
対し鋭意検討を重ねた結果、LiNiO2 系の正極活物
質を用いた非水系二次電池における釘刺し試験や圧壊試
験においてみられるような内部短絡状況での安全性の確
保には、Niの一部を異種元素で置換して充電時におけ
る熱的な安定性の向上を図ると同時に、粉体物性として
の電気伝導度の低減を図ることが必要であるとの知見を
得た。
【0010】これまで正極活物質として用いられてきた
層状結晶構造化合物のLiCoO2は不定比組成化合物
であり、P型半導体であることが知られている。そのた
め、酸化物としては比較的高い10-2〜10-3(S/cm)程
度の電子伝導度を有している。また、充電状態ではLi
が結晶構造から脱離することにより、格子内のCoが酸
化されて平均価数が+3価以上となることから、電子伝
導度は未充電状態よりさらに1桁程度高くなることが報
告されている。
【0011】しかしながら、これら層状化合物の電気伝
導度の絶対値は集電剤や負極活物質と較べれば低く、ま
た粉末状であることから粒子間の導通を確保するため
に、実用電池においては導電助剤として黒鉛、或いはア
セチレンブラックのような炭素材に代表される高導電性
物質が正極合材中に添加されている。このような導電助
剤の添加量は一般的に3重量%程度で、体積分率に換算
したとしても5%程度であり、正極合剤層内でのパーコ
レーションモデルによる導電回路の形成には不十分な量
である。さらに正極活物質が半導性物質である場合、粒
子の空隙・或いは接点に存在する少量の導電助剤によっ
ても粒子内を貫通する導電経路が成立し、電気抵抗が著
しく低減することが知られている。したがって、正極合
剤層内には、集電体基体から活物質粒子を貫通して電子
が流れる経路が存在していると考えられる。
【0012】一方、P型半導体であるLiNiO2 の電
子伝導度は、同じ層状結晶構造を有しているLiCoO
2 よりも1桁以上高く、またスピネル構造のLiMn2
4より3桁程度高いことが知られている。本発明者等
は、LiNiO2 のように電気伝導度がLiCoO2
LiMn24より桁違いに高い活物質を用いた場合に
は、電池の短絡時に活物質粒子内を貫通して大電流が流
れ、この貫通電流のジュール発熱によって活物質自身が
急速に自己加熱されて熱分解を生じることがLiNiO
2 系正極活物質の安全性上の問題点であるとの知見を得
た。
【0013】短絡時に発生するこのような活物質の自己
発熱の問題は、LiNiO2 系化合物の抵抗の温度特性
がNTC(Negative Temperature Coefficient)である
ことにより一層加速される。また、電気化学反応におけ
る活物質界面でのLiイオンの反応抵抗に起因する発熱
速度も、短絡電流の大きさ、すなわち活物質の導電率に
比例する。従って、正極活物質の導電率に関連する電池
の内部発熱因子は複合的であり、導電性低減による安全
性の改良効果は、非常に大きいといえる。
【0014】また、従来技術にみられるように、Niの
一部を他元素で置換して、充電時の熱的安定性を向上さ
せることも電池の安全性を確保するため不可欠である。
これら置換元素は添加量に比例して活物質の放電容量を
低下させるため、少量の置換量で改良効果を発揮する元
素を選定することが好ましい。
【0015】このように正極活物質の熱安定性を向上さ
せると共に、導電率を低減して内部短絡時の安全性の向
上を図るという本発明の技術思想は、従来にない新規な
発想である。従来技術においては、正極活物質の導電率
はむしろ増加させることが望まれてきた。例えば、特開
平10−241691においてはLiMeO2 構造にお
けるLi位置にMgを存在させることにより、正極活物
質の電子伝導率を増大させている。導電性を低減すると
いう技術思想がなされなかった理由として、LiNiO
2 系活物質の負荷率特性が、従来材料であるLiCoO
2 より劣ることがあげられる。そのため負荷率特性に関
連する電子伝導性は高い方が有利であると一般的に考え
られてきたためである。
【0016】しかしながら、本発明者等は、LiNiO
2 系活物質の負荷率特性の問題は電気化学反応における
電子伝導性が律速ではなく、活物質表面と有機電解液と
の界面反応(活性化分極)に起因しているとの知見を得
ている。従って、活物質を多孔質構造としてその細孔分
布を最適化すること、すなわち固液界面面積を増大さ
せ、かつ、イオン拡散経路を十分確保することにより改
善することが可能であることを見出だした。 。
【0017】一方、Proc.2nd Japan-France Joint
Seminar on Lithium Batteries,P.38では、Lix
0.8Co0.22組成で、電子伝導率と充電状態および
温度との依存性が報告されており、X=1すなわち未充電
状態の室温における電子導電率が約1×10-3 S/cmと
従来の報告例より約一桁以上電子伝導性の低い正極活物
質が例示されているが、電子伝導性と内部短絡時の安全
性に関する何らの技術思想を開示するものでなく、さら
に短絡時の安全性確保の観点からみれば、Niサイトの
20mol%をCoで置換しただけでは熱的安定性の改良
が不十分であり 、本発明の要件を満たすものではな
い。
【0018】すなわち、本発明は、第1に、層状結晶構
造を有するリチウムとニッケルを主成分とする複合酸化
物において、一般式: LiaNi1-b-c1 b2 c2 (1) 0.95≦a≦1.05、0.01≦b≦0.10、0.10≦c≦0.20 (但し、M1 はAl、B、Y、Ce、Ti、Sn、V、
Ta、Nb、W、Moから選ばれる1種以上の元素、M
2 はCo、Mn、Feから選ばれる1種以上の元素)で
表される元素組成を有する粉末であり、かつ、該粉末を
加圧成形した時の圧縮密度が4.0g/cm3における圧粉体の
25℃における導電率:σが、5×10-2≧σ≧5×1
-4 [S/cm]の範囲内であることを特徴とする正極活
物質であり、第2に、前記第1に記載の正極活物質を用
いたことを特徴とするリチウム二次電池である。
【0019】
【発明の実施の形態】本発明の正極活物質は、層状構造
を有するリチウムとニッケルを主成分とする複合酸化物
において、前記(1)式 LiaNi1-b-c1 b2 c2
で表される一般式中のLiは電池中で電荷の移動を担う
ために必要な元素であり、 aは0.95〜1.05の範囲内にあ
ることが必要である。aが0.95未満では放電容量の低下
が顕著である。また aが1.05を超えると過剰のLiが残
留して、電極作製時にペーストのゲル化を生じやすく弊
害を生ずる。また、Niは層状結晶構造をとるために必
要であり、Liの添加量はNiをほぼ基準として決定さ
れる。
【0020】組成式中のM1 は、Al、B、Y、Ce、
Ti、Sn、V、Ta、Nb、W、Moから選ばれる1
種以上からなる元素であり、充電状態での結晶の熱的安
定性を向上させ、かつ、導電率を低減するために、0.01
〜0.10の範囲で添加する。0.01未満では熱的安定性の向
上および導電率低減の効果が不充分であり、0.10を超え
ると容量の低下が著しくなる。Al、B、Yは熱的安定
性の改良効果が大きく、Ni(+3価)とのイオン半径差
に比例してAl>B>Yの順でLiNiO2 への固溶範
囲が広い。AlとBは導電率を低減する効果もある。Y
はb=0.005前後の少量添加でも熱的安定性の改良効果が
高い。また、酸化物としてn型半導性を示し、+4価以
上の原子価で安定な元素群:Ce、Ti、Sn、V、T
a、Nb、W、Moを添加すると、熱的安定性の向上と
導電率の低減が図れる。組成式中のM2 はCo、Mn、
Feから選ばれる1種以上の元素であり、充放電サイク
ルの経時に伴う容量劣化を抑制する効果があり、0.10〜
0.20の範囲で添加する。0.10未満では効果が不充分であ
り、0.20を超えると初期容量が低下する。
【0021】これら元素は組み合わせて添加することに
より、熱的安定性や導電率の低減効果が向上する場合が
あり、そのより好ましい発明の形態としての複合酸化物
は、 次式:LiaNi1-x-y-c1 x2 y2 c2 0.95≦a≦1.05、0.01≦x+y≦0.10、0.10≦c≦0.20 (但し、N1はAl、B、Yより選ばれる1種以上の元
素、N2はCe、Ti、Sn、V、Ta、Nb、W、M
oから選ばれる1種以上の元素、M2はCo、Mn、F
eから選ばれる1種以上の元素)で表される組成のもの
である。添加元素の熱的安定性や導電率に対する効果
は、活物質の合成条件・合成方法・出発原料等によって
も大きく異なり、組成式による規定は必要条件であって
も十分条件でないことに留意が必要である。
【0022】本発明の正極活物質の導電率:σは、5×
10-2〜5×10-4(S/cm)の範囲内であることが必要
である。より好ましくは、1×10-2〜5×10-4(S/
cm)の範囲内である。以下にその理由を詳細に述べる。
当然のことながら、本発明の組成的な要件を満たしてい
ても、導電率範囲外であれば、内部短絡時の安全性確保
は困難である。
【0023】まず、本発明における導電率の測定方法を
説明する。図1に導電率測定装置を図示した。すなわ
ち、油圧プレス機1の固定盤2にPVC等絶縁板3と金
属板4を取り付け、Al箔等集電体5を介してダイスを
兼ねる試料収納用の絶縁性耐圧容器6をセットすると共
に、可動盤7にも絶縁板8と金属板9とさらに金型10
を取り付けてあり、金型10と集電体5間の導電率を抵
抗測定器11によって計測できるようにしてある。
【0024】試料Sとして正極活物質粉末約5gを秤量
し、PVC製の絶縁性耐圧容器(内径17.6mm)6に収納
し、この試料粉末Sに、一定の圧縮加重(P)を加えなが
ら圧粉体の厚み(t)と直流抵抗値(r)を測定し、導電率:
σ(P)および圧縮密度:ρ(P)を算出した。さらに圧縮加
重を0.8〜3.2 ton/cm2の範囲で変化させ多点測定
を行って、得られたσ(P)とρ(P)の関係より、加圧した
成形体の圧縮密度が4.0g/cm3における導電率に換算して
充填状態の変動による誤差を補正した。この導電率測定
は、室温25℃、相対湿度40±10%の環境下で実施
した。
【0025】LiNiO2 のような半導体物質の粒子に
おいては、粒子固有抵抗(Rs)、接触抵抗(Rc)、表面吸
着抵抗(Rs)の関係は一般的に、Rs>Rb>Rcであり、
圧粉体抵抗RはほぼRbに等しいことが知られている。
従って測定誤差として、充填状態(接触抵抗)や水分吸
着量等の影響を受けにくいと考えられるが、測定条件の
妥当性を確認するため、LiNi0.8Co0.22粉末を
用いて、加湿操作により水分吸着量を0.05wt%〜1wt%
の範囲で、また解粒操作により平均粒子径を5〜15μ
mの範囲で変化させて導電率への影響を確認した結果、
何れもσ=(9±1)×10-2 (S/cm)であり、再現誤
差の程度であった。
【0026】上記測定方法により、現在実用化されてい
る市販のLiCoO2 を3種類評価した結果を表1に示
す。導電率は1×10-2から1×10-4(S/cm)の範囲
内であった。LiNi0.8Co0.22と比較すると、約
10〜1000倍程度、導電率が低い結果であった。ま
た、導電率と負荷率特性に相関は認められるものの、そ
の影響はあまり大きくないことが確認された。
【0027】
【表1】
【0028】次に導電率が、3×10-1〜5×10-3(S
/cm)の各種活物質粉末を用い、図1の導電率測定装置を
用い、圧粉体に直流を4V定電圧印加して電流値を測定
し、導電率を求めた。この試験は電池の内部短絡状態を
想定し、活物質の導電率と短絡電流によるジュール加熱
の関係を確認する目的で行った。導電率が3×10-1(S
/cm)の活物質試料Dを測定したところ、4V印加直後に
電流は測定レンジを逸脱して導電率は測定不能(導電率
>1×10+0 S/cm)となった。4V印加後わずか数秒
で、PVC製の絶縁容器の内壁が熱により焼損した。こ
の現象はジュール加熱により活物質の温度が上昇して電
気抵抗が低下(導電率が上昇)することにより、更に大
電流が導通して加熱が促進される、という連鎖反応が生
じて熱暴走状態になったものと判断される。
【0029】一方、導電率が各々1×10-2(S/cm)、5
×10-3(S/cm)である活物質試料AとBを、同様に4V
の定電圧印加して導電率測定したところ、その値は直流
抵抗測定から得られた導電率とほぼ一致した。また4V
の定電圧印加状態を30秒以以上継続しても、導電率の
顕著な上昇は認められず、試料Dで生じたようなジュー
ル加熱による熱暴走は生じなかった。
【0030】以上の結果から活物質の導電率は内部短絡
時の加熱因子として重要であり、ある導電率値以上を境
にジュール熱による熱暴走状態を引き起こすことが想定
される。表2は圧粉体密度が4g/cm3で、活物質層厚を
50μm、活物質の比熱を0.2cal/gと想定した場合
での活物質の導電率と、4V印加時のジュール熱による
自己昇温速度の関係を算出したシュミレーション結果で
ある。
【0031】
【表2】
【0032】LiNiO2 系材料の一般的な導電率は1
×10-1(S/cm)前後であり、充電状態での加熱による熱
分解温度は2百数十度Cであること、またLiNiO2
の電気抵抗(NTC)特性に起因する導電率上昇による連
鎖反応を考慮すると、内部短絡時にLiNiO2 系活物
質はジュール加熱によって、ほぼ瞬間的に熱分解温度に
到達するものと考えられる。
【0033】従って本発明の要件である導電率の範囲と
しては、従来技術による電池処方での安全性対策を併用
する場合でも、5×10-2(S/cm)以下であることが最低
でも必要であり、更にはLiCoO2 同等の導電率とす
ることで電池処方が不要となる 1×10-2(S/cm)以下
であることがより望ましい。また短絡時の安全性確保が
困難な薄膜・大面積電極や、過充電試験という過酷な状
況を想定した場合でも、5×10-4(S/cm)の導電率であ
ればジュール発熱による問題はないと考えられ、これを
導電率の下限値とする。
【0034】活物質の電気化学特性および熱的安定性の
評価方法について説明する。 正極活物質の電気化学特性の評価法 正極板の作製は、正極活物質とアセチレンブラックとP
TFE(ポリテトラフルオロエチレン)を、重量比で8
7:8:5の割合で乳鉢混合後、ロール圧延機で混練し
シート上に成形した。負極には金属Li、セパレーター
にはポリプロピレンフィルム、電解液は炭酸エチレンと
炭酸ジエチレンを体積比で1:1に混合した溶媒に、電
解質としてLiPF6 を1 mol/Lで溶解したものを用
いて、図2に示したような試験電池を作製した。この試
験電池12では、正極13と負極14はセパレータ15
を介在してステンレスケース16に収納され、封口板1
7とガスケット18が施されている。充放電試験は、電
流密度が0.53mA/cm2で4.2Vまで定電流充電した
後、電流密度が0.13mA/cm2になるまで定電圧充電を
行った。その後、0.53mA/cm2で2.7Vまで定電流
放電を行い、活物質の重量当たりの放電容量を求めた。
負荷率特性の評価は、前述の試作電池を用いて放電電流
を5mA/cm2で測定し、0.53mA/cm2放電時の放電容
量に対する維持率(%)で表した。
【0035】正極活物質の熱安定性の評価法 Ar雰囲気のグローブボックス内で、4.2Vで充電後
の試験電池から正極板を取り出し、電解液を含有した状
態で約20mgの試料をアルミニューム製の密閉容器に封
入後、5℃/minで300℃まで昇温して示差熱量分析
(TG-DTA)を行った。この時に試料が急発熱を開始する温
度を熱暴走温度として、活物質の熱的安定性の指標とし
た。熱安定性の高い活物質は、熱暴走温度が高温側にシ
フトする。以下に、実施例をもって本発明の正極活物質
について詳細に説明するが、本発明の範囲はこれらによ
って限定されるものではない。
【0036】
【実施例1】ニッケル、コバルト、アルミニウムの各硝
酸塩をモル比でNi:Co:Al=70:20:10で混合した溶液
を、液温を80゜Cに制御した反応容器内に連続的に投入
し、48重量%濃度の水酸化ナトリウム溶液で中和し
て、PHを10.0±0.2に制御することにより共沈
水酸化物の沈殿を得た。この水酸化物を、Li/(Ni
+Co+Al)=1.05となるように水酸化リチウム
と混合し、1トン/cm2で加圧して成形体を得た。この
成形体を酸素気流中で800゜Cで10時間焼成し、臼式
解砕機で解粒してLi1.04Ni0.70Co0.20Al0.10
2組成の層状結晶構造化合物の粉末を得た。
【0037】この粉末は平均粒子径が約8μmの不定形
二次粒子であり、BET法による比表面積は2.3m2/
g、導電率は2.2×10-2(S/cm)であった。この粉末
を活物質として用いた場合の電気化学特性は、放電容量
が150mAh/g、初期効率が86%、負荷率特性は56
%であった。活物質の熱的安定性は、熱暴走温度:27
4℃であった。なお、成形体のLi/(Ni+Co+Al)と焼成後
の層状結晶構造化合物のLi含有組成が一致しないのは、
焼成時にLiが揮発することに起因すると考えられる。
【0038】
【実施例2】実施例1で用いた水酸化物をLi/(Ni
+Co+Al)=1.05となるように水酸化リチウム
と混合し、1トン/cm2で加圧して成形体を得た。この
成形体を酸素気流中で700゜Cで10時間焼成し、臼式
解砕機で解粒してLi1.04Ni0.70Co0.20Al0.10
2組成の層状結晶構造化合物の粉末を得た。この焼成物
を固形分濃度が50重量%となるように、1重量%濃度
の硝酸リチウム溶液中に懸濁し、湿式ビーズミルで平均
粒子径が1μm以下になるまで湿式粉砕して分散スラリ
ーを得た。このスラリーを噴霧乾燥して球状に造粒し
た。これを酸素気流中で800゜Cで2時間焼成後、臼式
解砕機で解粒してLi1.04Ni0.70Co0. 20Al0.10
2組成の層状結晶化合物粉末を得た。
【0039】この粉末は平均粒子径が約12μmの球状
二次粒子であり、粒子表面から粒子内部に貫通するポア
ーが多数認められた。BET法による比表面積は2.1
m2/g、導電率は3.2×10-2(S/cm)であった。この粉
末を活物質として用いた場合の電気化学特性は、放電容
量が173mAh/g、初期効率が91%、負荷率特性は6
9%であった。活物質の熱的安定性は、熱暴走温度:2
57℃であった。
【0040】
【比較例1〜3】成形体のLi/(Ni+Co+Al)
組成比を0.95、1.00、1.10に変えた以外
は、実施例2と同様にして層状結晶構造化合物を作製・
評価した。結果を表3に示す。
【0041】
【比較例4〜5】共沈水酸化物のNi:Co:Alが80:20:0で
あり、成形体のLi/(Ni+Co+Al)組成比が
1.01、1.10に変更した以外は、実施例2と同様
にして層状結晶構造化合物を作製・評価した。結果を表
3に示す。
【0042】
【表3】
【0043】実施例1〜2と比較例1〜5の結果よりわ
かるように、層状結晶構造化合物が化学量論組成比(L
iMO2 )に対し、Li含有量が多いほど導電率が低減
するが、熱的安定性は不安定となる。また、Alのよう
に安定性を改良する置換元素がない場合は、熱安定性は
著しく悪化することは明らかである。逆にLi含有量が
少ない場合は、熱的安定性には優れるものの、導電率の
上昇や放電容量の著しい低下が認められる。従って望ま
しいLi/M組成比の範囲は0.95〜1.05の範囲である。
【0044】
【比較例6〜9】共沈水酸化物のNi:Co:Alが、79:20:
1、77:20:3、74:20:6、68:20:12 であり、成形体のL
i/(Ni+Co+Al)組成比が1.03である事を除けば、
実施例2と同様の同様にして層状結晶構造化合物を作製
・評価した。評価結果を表4に示す。表4に記載の如
く、Al添加により導電性の低減と熱安定性の改良が図
れるものの、放電容量低下の影響が著しい。
【0045】
【表4】
【0046】
【実施例3】ニッケル、コバルト、アルミニウムの各硝
酸塩を,モル比でNi:Co:Al=77:20:3で混合した溶液
を、液温を80゜Cに制御した反応容器内に連続的に投入
し、48重量%濃度の水酸化ナトリウム溶液で中和し
て、PHを10.0±0.2に制御することにより共沈
水酸化物の沈殿を得た。この水酸化物を、Li/(Ni
+Co+Al)=1.03となるように水酸化リチウム
と混合し、1トン/cm2で加圧して成形体を得た。この
成形体を酸素気流中で700℃で10時間焼成し、臼式
解砕機で解粒して層状結晶構造化合物の粉末を得た。
【0047】この焼成物と、Nb/Li1.03Ni0.77Co0.20
Al0.032=0.01の量に相当するNb25を、固形
分濃度が50重量%となるように、1重量%濃度の硝酸
リチウム溶液中に懸濁し、湿式ビーズミルで平均粒子径
が1μm以下になるまで湿式粉砕して分散スラリーを得
た。このスラリーを噴霧乾燥して球状に造粒した。これ
を酸素気流中で800゜Cで2時間焼成後、臼式解砕機で
解粒してLi1.02Ni 0.76Co0.20Al0.03Nb0.01
2組成の層状結晶化合物粉末を得た。この粉末は平均粒
子径が約9μmの球状二次粒子であった。BET法によ
る比表面積は3.3m2/g、導電率は2.0×10-2(S/c
m)であった。この粉末を活物質として用いた場合の電気
化学特性は、放電容量が189mAh/g、初期効率が92
%、負荷率特性は57%であった。 活物質の熱的安定
性は、熱暴走温度:257゜Cであった。
【0048】
【実施例4〜10】Nb25の代わりに、WO3、Mo
3、Ta25、V25、SnO4、TiO4、CeO2
を用いた以外は、実施例3と同様にして、層状結晶構造
化合物を作製・評価した。表5にその結果を示す。実施
例3〜10で添加した元素群の特徴は酸化物としてN型
の半導体であり、かつ酸化物として+4価以上で安定で
ある。比較例7との対比において、Al単独添加の場合
と異なり1at%という少量で熱安定性の改良効果がある
と同時に、導電率を約1/2〜1/10に低減する効果があ
る。熱安定性の改良効果は、酸化物で安定な原子価が+
5価である場合に著しい。このような効果が何故生じる
かは不明であるが、ESCA分析によれば、酸素の結合
エネルギーがシフトしており、層状結晶構造の酸素サイ
トに何らかの影響を及ぼしていると考えられる。また、
EPMAではこれら元素の分布状態を観察したが、偏析
状態は認められなかった。
【0049】
【表5】
【0050】
【比較例10〜16】Nb25の代わりに、Co34
Mn23、Fe23、BaO、CaO、MgO、Al2
3を用いた以外は、実施例3と同様にして、層状結晶
構造化合物を作製・評価した。表6にその結果を示す。
これら元素は、酸化物単体としての導電性は低いが、層
状結晶構造化合物に添加しても導電率を下げる効果は期
待できず、熱的安定性も改善しない。
【0051】
【表6】
【0052】
【実施例11、比較例17〜18】Nb25の代わり
に、B23、P25、Si23を用いた以外は、実施例
3と同様にして、層状結晶構造化合物を作製・評価し
た。表7にその結果を示す。
【0053】
【表7】
【0054】
【比較例19】実施例3で用いた水酸化物と、Nb/Li
1.03Ni0.77Co0.20Al0.032=0.01の量に相当する
Nb25を、Li/(Ni+Co+Al+Nb)=1.
03となるように水酸化リチウムと混合し、1トン/cm
2で加圧して成形体を得た。この成形体を酸素気流中で
700゜Cで10時間焼成し、臼式解砕機で解粒して層状
結晶構造化合物の粉末を得た。この焼成物を、固形分濃
度が50重量%となるように、1重量%濃度の硝酸リチ
ウム溶液中に懸濁し、湿式ビーズミルで平均粒子径が1
μm以下になるまで湿式粉砕して分散スラリーを得た。
このスラリーを噴霧乾燥して球状に造粒した。これを酸
素気流中で800゜Cで2時間焼成後、臼式解砕機で解粒
してLi1.03Ni0.77Co0.20Al0.03Nb0.012
成の層状結晶化合物粉末を得た。この粉末は平均粒子径
が約10μmの球状二次粒子であった。BET法による
比表面積は2.6m2/g、導電率は5.8×10-2(S/cm)
であった。この粉末を活物質として用いた場合の電気化
学特性は、放電容量が191mAh/g、初期効率が93%
であった。活物質の熱的安定性は、熱暴走温度:227
゜Cであった。実施例3に対し導電率の低減効果や、熱安
定性の改良効果が劣るものであった。
【0055】
【比較例20】ニッケル、コバルト、アルミニウムの各
硝酸塩を、モル比でNi:Co:Al=77:20:3で混合した溶液
を、液温を80゜Cに制御した反応容器内に連続的に投入
し、48重量%濃度の水酸化ナトリウム溶液で中和し
て、PHを10.0±0.2に制御することにより共沈
水酸化物の沈殿を得た。この水酸化物を、Li/(Ni
+Co+Al)=1.03となるように水酸化リチウム
と混合し、1ton/cm2で加圧して成形体を得た。この成
形体を酸素気流中で700゜Cで10時間焼成し、臼式解
砕機で解粒して層状結晶構造化合物の粉末を得た。
【0056】この焼成物と、Nb/Li1.03Ni0.77Co0.20
Al0.032=0.01の量に相当するNb25と、Li
/Li1.03Ni0.77Co0.20Al0.032=0.01の量に相当
する硝酸リチウムを混合し、石川式ライカイ機で30分
間混合後、この粉末を酸素気流中で800゜Cで2時間焼
成して、Li1.02Ni0.77Co0.20Al0.03Nb0.01
2組成の層状結晶化合物粉末を得た。この粉末の平均粒
子径は約5μmの不定形二次粒子であった。BET法に
よる比表面積は4.2m2/g、導電率は9.8×10-2(S
/cm)であった。この粉末を活物質として用いた場合の電
気化学特性は、放電容量が179mAh/g、初期効率が8
4%で、活物質の熱的安定性は、熱暴走温度:232゜C
であった。
【0057】
【実施例12】ニッケル、コバルト、アルミニウムの各
硝酸塩と、ホウ酸をモル比でNi:Co:Al:B=76:20:3:1で
混合した溶液を、液温を80゜Cに制御した反応容器内に
連続的に投入し、48重量%濃度の水酸化ナトリウム溶
液で中和して、PHを10.0±0.2に制御すること
により共沈水酸化物の沈殿を得た。この水酸化物を、L
i/(Ni+Co+Al+B)=1.03となるように
水酸化リチウムと混合し、1トン/cm2で加圧して成形
体を得た。この成形体を酸素気流中で700゜Cで10時
間焼成し、臼式解砕機で解粒して層状結晶構造化合物の
粉末を得た。
【0058】この焼成物を、固形分濃度が50重量%と
なるように、1重量%濃度の硝酸リチウム溶液中に懸濁
し、湿式ビーズミルで平均粒子径が1μm以下になるま
で湿式粉砕して分散スラリーを得た。このスラリーを噴
霧乾燥して球状に造粒した。これを酸素気流中で800
゜Cで2時間焼成後、臼式解砕機で解粒してLi1.02Ni
0.76Co0.20Al0.030.012組成の層状結晶化合物
粉末を得た。この粉末は平均粒子径が約13μmの球状
二次粒子であった。BET法による比表面積はは2.6
m2/g、導電率は6.9×10-3(S/cm)であった。この粉
末を活物質として用いた場合の電気化学特性は、放電容
量が180mAh/g、初期効率が90%、負荷率特性は7
5%であった。活物質の熱的安定性は、熱暴走温度:2
57゜Cであった。
【0059】
【比較例21】水酸化物と水酸化リチウムの混合をLi
/(Ni+Co+Al+B)=0.95とした以外は実施例12と同
様にして層状結晶構造化合物を作製・評価した。この粉
末の組成は、Li0.96Ni0.76Co0.20Al0.030.01
2で、平均粒子径が約11μmの球状二次粒子であっ
た。BET法による比表面積はは2.2m2/g、導電率は
7.2×10-2(S/cm)であった。この粉末を活物質とし
て用いた場合の電気化学特性は、放電容量が192mAh/
g、初期効率が90%であった。活物質の熱的安定性
は、熱暴走温度:245゜Cであった。
【0060】
【実施例13】実施例12で用いた水酸化物を、Li/
(Ni+Co+Al+B)=0.95となるように水酸
化リチウムと混合し、1トン/cm2で加圧して成形体を
得た。この成形体を酸素気流中で700゜Cで10時間焼
成し、臼式解砕機で解粒して層状結晶構造化合物の粉末
を得た。この焼成物を、固形分濃度が50重量%となる
ように、3重量%濃度の硝酸リチウム溶液中に懸濁し、
湿式ビーズミルで平均粒子径が1μm以下になるまで湿
式粉砕して分散スラリーを得た。このスラリーを噴霧乾
燥して球状に造粒した。これを酸素気流中で800゜Cで
2時間焼成後、臼式解砕機で解粒してLi1.03Ni0.76
Co0.20Al0.030.012組成の層状結晶化合物粉末
を得た。この粉末は平均粒子径が約12μmの球状二次
粒子であった。BET法による比表面積は3.0m2/g、
導電率は3.8×10-2(S/cm)であった。この粉末を活
物質として用いた場合の電気化学特性は、放電容量が1
90mAh/g、初期効率が89%であった。活物質の熱的
安定性は、熱暴走温度:247゜Cであった。実施例12
〜13と比較例21の結果よりホウ素添加による導電率
の低減は、Al添加と同様にLi含有量の影響を受けて
いることがわかる。
【0061】
【実施例14】実施例12で用いた水酸化物を、Li/
(Ni+Co+Al+B)=0.95となるように水酸
化リチウムと混合し、1トン/cm2で加圧して成形体を
得た。この成形体を酸素気流中で700゜Cで10時間焼
成し、臼式解砕機で解粒して層状結晶構造化合物の粉末
を得た。この焼成物と、Nb/Li1.03Ni0.76Co0.20Al0.
03B0.012=0.01の量に相当するNb25を、固形
分濃度が50重量%となるように、3重量%濃度の硝酸
リチウム溶液中に懸濁し、湿式ビーズミルで平均粒子径
が1μm以下になるまで湿式粉砕して分散スラリーを得
た。このスラリーを噴霧乾燥して球状に造粒した。これ
を酸素気流中で800゜Cで2時間焼成後、臼式解砕機で
解粒して Li1.03Ni0.76Co0.20Al0.030.01
2組成の層状結晶化合物粉末を得た。この粉末は平均粒
子径が約10μmの球状二次粒子であった。BET法に
よる比表面積は4.6m2/g、導電率は6.8×10-3(S
/cm)であった。この粉末を活物質として用いた場合の電
気化学特性は、放電容量が186mAh/g、初期効率が8
7%であった。活物質の熱的安定性は、熱暴走温度:2
71゜Cであった。
【0062】
【実施例15】焼成時の雰囲気を空気とした以外は実施
例と同様にして Li1.03Ni0.76Co0.20Al0.03
0.012組成の層状結晶化合物粉末を得た。この粉末は
平均粒子径が約11μmの球状二次粒子であった。BE
T法による比表面積は2.4m2/g、導電率は9.4×1
-4(S/cm)であった。この粉末を活物質として用いた場
合の電気化学特性は、放電容量が189mAh/g、初期効
率が91%であった。活物質の熱的安定性は、熱暴走温
度:258゜Cであった。
【0063】
【実施例16】ニッケル、コバルト、アルミニウム、イ
ットリウムの各硝酸塩と、ホウ酸を、モル比でNi:Co:A
l:B:Y=75.5:20:3:1:0.5で混合した溶液を、液温を8
0゜Cに制御した反応容器内に連続的に投入し、48重量
%濃度の水酸化ナトリウム溶液で中和して、PHを1
0.0±0.2に制御することにより共沈水酸化物の沈
殿を得た。この水酸化物を、Li/(Ni+Co+Al
+B+Y)=0.95となるように水酸化リチウムと混
合し、1トン/cm2で加圧して成形体を得た。この成形
体を酸素気流中で700゜Cで10時間焼成し、臼式解砕
機で解粒して層状結晶構造化合物の粉末を得た。
【0064】この焼成物を、固形分濃度が50重量%と
なるように、3重量%濃度の硝酸リチウム溶液中に懸濁
し、湿式ビーズミルで平均粒子径が1μm以下になるま
で湿式粉砕して分散スラリーを得た。このスラリーを噴
霧乾燥して球状に造粒した。これを酸素気流中で800
゜Cで2時間焼成後、臼式解砕機で解粒してLi1.02Ni
0.755Co0.20Al0.030.010.0052組成の層状結
晶化合物粉末を得た。この粉末は平均粒子径が約14μ
mの球状二次粒子であった。BET法による比表面積は
0.3m2/g、導電率は3.2×10-2(S/cm)であった。
この粉末を活物質として用いた場合の電気化学特性は、
放電容量が180mAh/g、初期効率が89%であった。
活物質の熱的安定性は、熱暴走温度:244゜Cであっ
た。
【0065】
【発明の効果】以上述べたように、本発明の正極活物質
によれば、層状結晶構造を有するリチウムとニッケルを
主成分とする複合酸化物において、ニッケルを他の遷移
金属、および少なくともAl、B、Y、Ce、Ti、S
n、V、Ta、Nb、W、Moから選ばれる1種以上の
元素を含有することで、充電状態における熱的安定性が
向上し、かつ、圧縮密度が4.0Kg/cm2における圧粉体
の25゜Cにおける導電率を5×10-2(S/cm)以下に、よ
り好ましくは1×10-2(S/cm)以下にすることで、電池
が内部短絡を生じた状況下においても短絡電流によるジ
ュール発熱が抑制され、安全性の確保が容易になるとい
う効果を奏する。
【図面の簡単な説明】
【図1】本発明の正極活物質の導電率測定に用いた導電
率測定装置の断面図である。
【図2】本発明の正極活物質による正極を組み込んだ試
験電池の断面図である。
【符号の説明】
1 プレス機 2 固定盤 3,8 絶縁板 4,9 金属板 5 集電体 6 耐圧容器 7 可動盤 12 電池 13 正極 14 負極 16 ステンレスケース 17 封口板
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−25980(JP,A) 特開 平10−316431(JP,A) 特開 平9−237631(JP,A) 特開2000−30693(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 層状結晶構造を有するリチウムとニッケ
    ルを主成分とする複合酸化物において、一般式: LiaNi1-b-c1 b2 c2 0.95≦a≦1.05、0.01≦b≦0.10、0.10≦c≦0.20 (但し、M1はAl、B、Y、Ce、Ti、Sn、V、
    Ta、Nb、W、Moから選ばれる1種以上の元素、M
    2はCo、Mn、Feから選ばれる1種以上の元素)で表
    される元素組成を有する粉末であり、かつ、該粉末を加
    圧成形した時の圧縮密度が4.0g/cm3における圧粉体の2
    5℃における導電率:σが5×10-2≧σ≧5×10-4
    [S/cm] の範囲内であることを特徴とする正極活物質。
  2. 【請求項2】 請求項1記載の正極活物質を用いたこと
    を特徴とするリチウム二次電池。
JP2000128857A 1999-04-30 2000-04-28 正極活物質と該正極活物質を用いたリチウム二次電池 Expired - Lifetime JP3362025B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128857A JP3362025B2 (ja) 1999-04-30 2000-04-28 正極活物質と該正極活物質を用いたリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11124943A JP3088716B1 (ja) 1999-04-30 1999-04-30 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000128857A JP3362025B2 (ja) 1999-04-30 2000-04-28 正極活物質と該正極活物質を用いたリチウム二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11124943A Division JP3088716B1 (ja) 1999-04-30 1999-04-30 正極活物質と該正極活物質を用いたリチウム二次電池

Publications (2)

Publication Number Publication Date
JP2000323143A JP2000323143A (ja) 2000-11-24
JP3362025B2 true JP3362025B2 (ja) 2003-01-07

Family

ID=26461503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128857A Expired - Lifetime JP3362025B2 (ja) 1999-04-30 2000-04-28 正極活物質と該正極活物質を用いたリチウム二次電池

Country Status (1)

Country Link
JP (1) JP3362025B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116971A1 (ja) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
WO2008078695A1 (ja) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2009031619A1 (ja) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
US8399113B2 (en) 2007-04-19 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873717B2 (ja) * 2001-11-09 2007-01-24 ソニー株式会社 正極材料およびそれを用いた電池
JP4655453B2 (ja) * 2002-03-28 2011-03-23 三菱化学株式会社 リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
US7241532B2 (en) 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
JP4997700B2 (ja) * 2004-12-13 2012-08-08 三菱化学株式会社 リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4613943B2 (ja) * 2006-11-10 2011-01-19 三菱化学株式会社 リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
CN101595582B (zh) * 2007-01-18 2015-03-25 株式会社Lg化学 阴极活性材料及包括该阴极活性材料的二次电池
CN101578724A (zh) * 2007-01-24 2009-11-11 株式会社Lg化学 具有改进的安全性的蓄电池
US8986570B2 (en) * 2009-12-14 2015-03-24 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery and use thereof
JP5412453B2 (ja) 2011-02-24 2014-02-12 株式会社日立製作所 正極活物質、正極、およびリチウムイオン二次電池
JP5629609B2 (ja) * 2011-02-28 2014-11-26 株式会社日立製作所 リチウム二次電池
CN104584281B (zh) 2012-08-28 2017-06-16 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质的制造方法,非水系电解质二次电池用正极活性物质,和使用所述物质的非水系电解质二次电池
WO2015076323A1 (ja) * 2013-11-22 2015-05-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、並びに非水系電解質二次電池
JP6578635B2 (ja) * 2013-11-22 2019-09-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
CN105765770B (zh) * 2013-11-22 2019-02-05 住友金属矿山株式会社 非水系电解质二次电池用正极活性物质及其制造方法、以及非水系电解质二次电池
JP6578634B2 (ja) * 2013-11-22 2019-09-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
WO2016139957A1 (ja) * 2015-03-04 2016-09-09 株式会社豊田自動織機 リチウムイオン二次電池用正極及びその製造方法並びにリチウムイオン二次電池
EP3270446A4 (en) * 2015-03-10 2018-09-05 Nihonkagakusangyo Co. Ltd. Positive-electrode active material for nonaqueous electrolyte lithium secondary batteries, and production method for said material
JP6733140B2 (ja) * 2015-08-27 2020-07-29 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法
JP6744880B2 (ja) * 2018-02-06 2020-08-19 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
JP7159589B2 (ja) * 2018-03-28 2022-10-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、成形体、及び、非水系電解質二次電池の製造方法
JP7444535B2 (ja) * 2018-03-28 2024-03-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP7444534B2 (ja) * 2018-03-28 2024-03-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP7159588B2 (ja) * 2018-03-28 2022-10-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
CN116057731A (zh) * 2020-10-15 2023-05-02 巴斯夫欧洲公司 制备涂覆的正极活性材料的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116971A1 (ja) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
US8535829B2 (en) 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
WO2008078695A1 (ja) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
EP2337125A1 (en) 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
EP2341570A1 (en) 2006-12-26 2011-07-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
US8399113B2 (en) 2007-04-19 2013-03-19 Panasonic Corporation Nonaqueous electrolyte secondary battery
WO2009031619A1 (ja) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
EP2466671A2 (en) 2007-09-04 2012-06-20 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same

Also Published As

Publication number Publication date
JP2000323143A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
JP3362025B2 (ja) 正極活物質と該正極活物質を用いたリチウム二次電池
JP3088716B1 (ja) 正極活物質と該正極活物質を用いたリチウム二次電池
US20210399287A1 (en) Lithium Nickel-Manganese-Cobalt Oxide Cathode Powders for High Voltage Lithium-Ion Batteries
KR101109068B1 (ko) 리튬 2차 전지용 양극 재료 및 그것을 사용한 리튬 2차 전지
Yang et al. SiOx-based anodes for secondary lithium batteries
KR101241571B1 (ko) 리튬 이온 이차 전지용 정극 재료 및 그것을 이용한 리튬 이온 이차 전지
US7045251B2 (en) Material for positive electrode and secondary battery
US7147967B1 (en) Cathode for metal-oxygen battery
JP3355126B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2000030703A (ja) 非水電解質二次電池用負極材料とそれら負極材料を用いた非水電解質二次電池
US6884543B2 (en) Material for positive electrode and secondary battery
JP4235702B2 (ja) 正極活物質とその製造方法とこれを用いた非水電解質二次電池
JP2001076727A (ja) 非水電解質電池用正極活物質及び非水電解質電池
JP2008135245A (ja) 非水電解質二次電池
US6627351B1 (en) Non-aqueous electrolyte battery
JP3709446B2 (ja) リチウム二次電池用正極活物質及びその製造方法
JP3975502B2 (ja) 非水電解液二次電池
JP3578503B2 (ja) リチウム二次電池用正極活物質およびそれを用いた二次電池
US20220041466A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN110661033B (zh) 离子交换材料及其制备方法、电解质薄膜、二次电池
CN110419131B (zh) 用于二次电池的高密度和高电压稳定的阴极材料
WO2020175554A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP2019067756A (ja) タングステン酸リチウムとその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及びリチウムイオン二次電池とその製造方法
CN116779836B (zh) 补锂材料及制备方法、正极极片、储能装置和用电装置
US20220045323A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term