JP3315054B2 - 車外監視装置 - Google Patents
車外監視装置Info
- Publication number
- JP3315054B2 JP3315054B2 JP08687997A JP8687997A JP3315054B2 JP 3315054 B2 JP3315054 B2 JP 3315054B2 JP 08687997 A JP08687997 A JP 08687997A JP 8687997 A JP8687997 A JP 8687997A JP 3315054 B2 JP3315054 B2 JP 3315054B2
- Authority
- JP
- Japan
- Prior art keywords
- dimensional object
- distance
- vehicle
- group
- distance data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Image Processing (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Description
分布を示す疑似画像に基づいて車外の状況を認識する車
外監視装置に関する。
・レーダ等を搭載して前方の車両や障害物を検知し、そ
れらに衝突する危険度を判定して運転者に警報を発した
り、自動的にブレーキを作動させて停止させる、あるい
は、先行車との車間距離を安全に保つよう自動的に走行
速度を増減する等のASV(Advanced Safety Vehicl
e;先進安全自動車)に係わる技術の開発が積極的に進
められている。
る技術としては、本出願人によって先に提出された特開
平5−265547号公報の技術がある。この技術で
は、車両の左右に取り付けた2台のステレオカメラの画
像を距離画像に変換し、この距離画像を所定の間隔で格
子状に区分し、各区分毎に立体物のデータを抽出して区
分毎の立体物までの距離を検出すると、次に、区分毎の
検出距離を調べ、左右の区分で検出距離が接近している
場合には、それらの区分は1個の物体を検出していると
見なして1つのグループにまとめる。そして、立体物の
各グループに対し、物体が存在すると推定される位置を
包含する三次元空間の領域を設定し、その領域内に存在
する立体物のデータを抽出することによって、立体物の
輪郭像を抽出し、その立体物の位置や大きさを検出する
ようにしている。
物のデータを抽出し、これらのデータをハフ変換によっ
て処理し、ガードレール等の道路に沿った立体物(側
壁)を検出する技術を、特開平6−266828号公報
において提案している。
技術では、処理サイクル毎に、その都度、立体物の有無
や位置を検出するため、立体物の有無や位置に関する情
報が無い状態から検出処理を行うことになり、情報処理
量が膨大なものとなるばかりでなく、区分毎の距離デー
タの誤差やバラツキが大きくなる遠方の立体物に対する
認識結果が不安定となる虞があり、検出精度や信頼性を
向上する上でのネックとなっていた。
で、既検出の立体物の情報を効果的に利用し、データ処
理量を減少させるとともに遠方の立体物に対する認識を
確実なものとし、検出精度及び信頼性を向上することの
できる車外監視装置を提供することを目的としている。
車外の立体物までの距離データを検出して車外の立体物
を認識する車外監視装置において、既に認識されている
立体物の現在位置を推定する手段と、上記立体物の推定
位置を基準とした所定領域内に存在する距離データをグ
ループ化する手段と、グループ化された距離データの並
び方向を算出し、当該距離データが上記立体物の後部で
あるか側部であるかを判別する手段とを備えたことを特
徴とする。
明において、各グループについて、立体物の位置に係わ
るパラメータを算出する手段を備えたことを特徴とす
る。
明において、既に認識されている立体物が後部または側
部のいずれか一方で表されている場合に、上記所定領域
は上記立体物の推定位置を囲むように設定されることを
特徴とする。請求項4記載の発明は、請求項1記載の発
明において、既に認識されている立体物が後部と側部の
組合せで表されている場合に、上記立体物の推定位置は
上記後部と側部のコーナー点を示し、上記所定領域は上
記コーナー点を基点として自車両の進行方向の領域と自
車両の左右方向の領域とに分けて設定され、それぞれの
領域内の距離データが個別にグループ化されることを特
徴とする。
明において、認識された立体物の前後方向と左右方向の
移動速度を求め、該移動速度に基づいて上記現在位置を
推定することを特徴とする。
出領域を複数に区分し、それぞれの区分毎に得られた距
離データに基づいて車外の立体物を認識する車外監視装
置において、既に認識されている既存立体物の現在位置
を推定し、その推定位置を基準に上記既存立体物を表す
距離データをグループ化する手段と、上記既存立体物が
位置する区分以外の区分領域において新規立体物を抽出
し、上記新規立体物を表す距離データをグループ化する
手段と、グループ化された距離データの並び方向を求
め、当該距離データが上記立体物の後部であるか側部で
あるかを判別する手段とを備えたことを特徴とする。
明において、グループ化された上記既存立体物の距離デ
ータと上記新規立体物の距離データを互いに評価して、
同一立体物に関すると判断されるグループ同士を結合し
て1つのグループとする手段を備えたことを特徴とす
る。
載の発明において、上記距離データは、ステレオカメラ
装置により計測されたものであることを特徴とする。請
求項9記載の発明は、請求項1又は6記載の発明におい
て、上記距離データは、レーダ測距装置により計測され
たものであることを特徴とする。
置では、車外の立体物までの距離データを検出して車外
の立体物を認識する際、既に認識されている立体物の現
在位置を推定し、この推定位置を基準とした所定領域内
に存在する距離データをグループ化する。そして、グル
ープ化された距離データの並び方向を算出し、当該距離
データが立体物の後部であるか側部であるかを判別す
る。また、第2の車外監視装置は、距離検出領域を複数
に区分して各区分から得られた距離データに基づいて車
外の立体物を認識する際、既に認識されている既存立体
物の現在位置を推定し、その推定位置を基準に既存立体
物を表す距離データをグループ化すると共に、既存立体
物が位置する区分以外の区分領域において新規立体物を
抽出し、この新規立体物を表す距離データをグループ化
する。そして、グループ化された距離データの並び方向
を求め、当該距離データが立体物の後部であるか側部で
あるかを判別する。
ループについて、立体物の位置に係わるパラメータを算
出することが望ましく、既に認識されている立体物の現
在位置は、認識された立体物の前後方向と左右方向の移
動速度を求め、この移動速度に基づいて推定することが
望ましい。 また、既に認識されている立体物が後部また
は側部のいずれか一方で表されている場合、距離データ
をグループ化する所定領域を、立体物の推定位置を囲む
ように設定することが望ましく、既に認識されている立
体物が後部と側部の組合せで表されている場合には、距
離データをグループ化する所定領域を、立体物の推定位
置を示す後部と側部のコーナー点を基点として自車両の
進行方向の領域と自車両の左右方向の領域とに分けて設
定し、それぞれの領域内の距離データを個別にグループ
化することが望ましい。
化された既存立体物の距離データと新規立体物の距離デ
ータを互いに評価し、同一立体物に関すると判断される
グループ同士を結合して1つのグループとすることが望
ましい。
やレーダ測距装置により計測された距離データに基づい
て行うことができる。
施の形態を説明する。図1〜図21は本発明の実施の第
1形態に係わり、図1は車外監視装置の全体構成図、図
2は車外監視装置の回路ブロック図、図3は立体物検出
処理のメインルーチンを示すフローチャート、図4は距
離データ検出ルーチンのフローチャート、図5は物体・
側壁候補検出ルーチンのフローチャート、図6は立体物
候補検出ルーチンのフローチャート、図7〜図10は新
規立体物検出ルーチンのフローチャート、図11は車載
のカメラで撮像した画像の例を示す説明図、図12は距
離画像の例を示す説明図、図13は距離画像の区分を示
す説明図、図14は検出対象の状況例を示す説明図、図
15は区分毎の立体物の検出距離の例を示す説明図、図
16は立体物の距離データの抽出範囲を示す説明図、図
17はコーナー点検出の説明図、図18はコーナー点を
起点とする距離データのグループ化を示す説明図、図1
9は距離データの並び方向によるグループの分割を示す
説明図、図20は検出対象に対する検出結果を示す説明
図、図21は検出結果をX−Z平面で示した説明図であ
る。
あり、この車両1に、車外の設置範囲内の対象を撮像
し、撮像画像から車外の物体を認識して監視する車外監
視装置2が搭載されている。この車外監視装置2は、車
外の対象物を異なる位置から撮像するためのステレオ光
学系10、このステレオ光学系10で撮像した画像を処
理して三次元の距離分布情報を算出するイメージプロセ
ッサ20、及び、このイメージプロセッサ20からの距
離情報を入力し、その距離情報から道路形状や複数の立
体物の三次元位置を高速で検出し、その検出結果に基づ
いて先行車や障害物を特定して衝突警報の判断処理等を
行う画像処理用コンピュータ30等から構成されてい
る。
は、車速センサ4、舵角センサ5等の現在の車両の走行
状態を検出するためのセンサが接続され、認識された物
体が自車両1の障害物となる場合、運転者の前方に設置
されたディスプレイ9へ表示して運転者に対する警告を
行う他、図示しないアクチュエータ類を制御する外部装
置を接続することで車体の自動衝突回避制御等が可能と
なっている。
合素子(CCD)等の固体撮像素子を用いた左右1組の
CCDカメラ10a,10bからなり、上記イメージプ
ロセッサ20では、CCDカメラ10a,10bで撮像
した1対の画像の相関を求め、同一物体に対する視差か
ら三角測量の原理により距離を求める、いわゆるステレ
オ法により画像全体に渡る3次元の距離分布を算出す
る。
記イメージプロセッサ20からの距離分布情報を読み込
んで道路形状や複数の立体物(車両や障害物等)の3次
元位置を高速で検出し、この検出物体との衝突や接触可
能性を上記車速センサ4や上記舵角センサ5等によって
検出した自車両の走行状態に基づいて判断し、その結果
を上記ディスプレイ9に表示して運転者に知らせる。
処理用コンピュータ30は、詳細には、図2に示すハー
ドウエア構成となっている。上記イメージプロセッサ2
0は、上記CCDカメラ10a,10bで撮像した1組
のステレオ画像対に対して所定の小領域毎に同一の物体
が写っている部分を探索し、対応する位置のずれ量を求
めて物体までの距離を算出し、三次元の距離分布情報と
して出力する距離検出回路20aと、この距離検出回路
20aから出力される距離分布情報を記憶する距離画像
メモリ20bとから構成されている。
離分布情報は、画像のような形態をした疑似画像(距離
画像)であり、左右2台のCCDカメラ11a,11b
で撮影した画像、例えば図11に示すような画像(図1
1は片方のカメラで撮像した画像を模式的に示す)を上
記距離検出回路20aで処理すると、図12のような距
離画像となる。
ズは横600画素×縦200画素であり、距離データを
持っているのは黒点の部分で、これは図11の画像の各
画素のうち、左右方向に隣合う画素間で明暗変化が大き
い部分である。上記距離検出回路20aでは、この距離
画像を、1ブロックを4×4画素の小領域として横15
0×縦50のブロックからなる画像として扱い、各ブロ
ック毎に距離(画素ズレ数)の算出を行う。
は、道路形状等の検出処理を主とするマイクロプロセッ
サ30aと、検出した道路形状に基づいて個々の立体物
を検出する処理を主とするマイクロプロセッサ30b
と、検出した立体物の位置情報に基づいて先行車や障害
物を特定し、衝突や接触危険性を判断する処理を主とす
るマイクロプロセッサ30cとがシステムバス31を介
して並列に接続されたマルチマイクロプロセッサのシス
テム構成となっている。
距離画像メモリ20bに接続されるインターフェース回
路32と、制御プログラムを格納するROM33と、計
算処理途中の各種パラメータを記憶するRAM34と、
処理結果のパラメータを記憶する出力用メモリ35と、
上記ディスプレイ(DISP)9を制御するためのディ
スプレイコントローラ(DISP.CONT.)36
と、上記車速センサ4、上記舵角センサ5等からの信号
を入力するI/Oインターフェース回路37とが接続さ
れている。
素を単位とする距離画像上の座標系を、図12に示すよ
うに、左下隅を原点として横方向をi座標軸,縦方向を
j座標軸として扱い、画素ズレ数をdpとする距離画像
上の点(i,j,dp)を実空間の座標系に変換し、道
路形状の認識や立体物の位置検出等の処理を行う。
車(車両1)固定の座標系とし、X軸を車両1の進行方
向右側側方、Y軸を車両1の上方、Z軸を車両1の前
方、原点を2台のCCDカメラ10a,10bの中央の
真下の道路面とすると、X−Z平面(Y=0)は、道路
が平坦な場合、道路面と一致することになり、以下の
(1)〜(3)式により、距離画像上の点(i,j,dp)
を、実空間上の点(x,y,z)に座標変換することが
できる。 x=CD/2+z・PW・(i−IV) …(1) y=CH+Z・PW・(j−JV) …(2) z=KS/dp …(3) 但し、CD :CCDカメラ10a,10bの間隔 PW :1画素当たりの視野角 CH :CCDカメラ10a,10bの取付け高さ IV,JV:車両1の真正面の無限遠点の画像上の座標
(画素) KS :距離係数(KS=CD/PW) 尚、実空間上の点(x,y,z)から画像上の点(i,
j,dp)を算出する式は、上記(1)〜(3)式を変形し、
次のようになる。
おける個々の処理について説明する。まず、上記マイク
ロプロセッサ30aによる道路検出処理では、距離画像
メモリ20bに記憶された距離画像からの3次元的な位
置情報を利用して実際の道路上の白線だけを分離して抽
出し、内蔵した道路モデルのパラメータを実際の道路形
状と合致するよう修正・変更して道路形状を認識する。
路の自車線を、設定した距離によって複数個の区間に分
け、各区間毎に左右の白線を3次元の直線式で近似して
折れ線状に連結したものであり、実空間の座標系におけ
る水平方向の直線式のパラメータa,b、及び、垂直方
向の直線式のパラメータc,dを求め、以下の(7)式に
示す水平方向の直線式、及び、以下の(8)式に示す垂直
方向の直線式を得る。 x=a・z+b …(7) y=c・z+d …(8)
る立体物検出処理では、距離画像を格子状に所定の間隔
で区分し、各区分毎に、上記マイクロプロセッサ30a
によって検出された道路形状に基づいて道路表面より上
のデータを立体物データとして抽出し、立体物までの距
離を算出する。そして、検出された立体物の位置が互い
に接近する各区分を1つのグループにまとめ、これらの
グループを分類して立体物の後部、側部、及び、ガード
レール等の道路に沿った構造物を検出し、その位置や速
度等を算出する。
(例えば、0.1sec毎)で連続して実行されるた
め、前回の認識処理で検出された立体物の多くは、次の
処理の際にも撮像範囲内に留まっている場合が多い。従
って、本発明では、前回の認識処理で検出された立体物
の位置と速度とから現在の立体物の位置を推定し、周辺
の距離データを予めグループとしてまとめておき、新た
にグループ化した距離データと併せて分類し直すこと
で、前回認識処理時の認識誤りや今回認識処理時の位置
の推定誤差等を修正し、最終的に認識した立体物の位置
や速度を算出する。
ら道路形状を検出する処理、及び、衝突・接触判断処理
については、本出願人によって先に提出された特開平5
−265547号公報や特開平6−266828号公報
等に詳述されている。
る立体物検出処理について、図3〜図10のフローチャ
ートに従って説明する。
処理のメインルーチンである。まず、ステップS10で図
4の距離データ検出ルーチンを実行し、距離分布の情報
の中から道路表面より上にあるデータを立体物データと
して抽出すると、距離画像を左右方向に所定間隔で区分
して各区分毎にヒストグラムを作成し、このヒストグラ
ムから区分毎の立体物の存在位置と、その距離を求め
る。
パラメータを読み込むと、ステップS102で、図13に示
すように距離画像を所定間隔(例えば、8〜20画素間
隔)で格子状に区分し、ステップS103で、各区分毎に立
体物のデータを抽出し、その検出距離を算出するため、
最初の区分のデータを読み込む。
のデータをセットすると、ステップS105で被写体の三次
元位置(x,y,z)を前述の(1)〜(3)式によって求
め、ステップS106で、前述の道路形状の直線式(7),(8)
を使って距離zに於ける道路表面の高さyrを算出す
る。次に、ステップS107へ進み、以下の(9)式によって
算出した被写体の道路表面からの高さHに基づいて、道
路面より上にあるデータを立体物データとして抽出す
る。 H=y−yr …(9)
写体は、道路上の白線や汚れ、影等と考えられるため、
この被写体のデータは棄却する。また、自車両1の高さ
より上にある被写体も、歩道橋や標識などと考えられる
ので棄却し、道路上の立体物と推定されるデータのみを
選別する。
か否かを調べ、最終データでないときには、ステップS1
09で区分内の次のデータをセットして前述のステップS1
05へ戻り、同様の処理を繰り返して道路面より上にある
データを抽出する。そして、1つの区分内で最終データ
の処理が完了すると、ステップS108からステップS110へ
進み、抽出された立体物データに対し、予め設定された
距離Zの区間に含まれるデータの個数を数えて距離zを
横軸とするヒストグラムを作成する。
数が判定値以上で、かつ最大値となる区間を検出し、該
当する区間があれば、ステップS112において、その区間
に立体物が存在すると判断し、その立体物までの距離を
検出する。
像中の距離データには誤って検出された値も存在し、実
際には物体の存在しない位置にも多少のデータが現れ
る。しかしながら、ある程度の大きさの物体があると、
その位置の度数は大きな値を示し、一方、物体が何も存
在しない場合には誤った距離データのみによって発生す
る度数は小さな値となる。従って、作成されたヒストグ
ラムの度数が、予め設定した判定値以上かつ最大値をと
る区間があれば、その区間に物体が存在すると判断し、
度数の最大値が判定値以下の場合は物体が存在しないと
判断しても差し支えなく、画像のデータに多少のノイズ
が含まれている場合においても、ノイズの影響を最小限
にして物体を検出できる。
13へ進んで最終区分に達したか否かを調べる。そして、
最終区分に達していないときには、上記ステップS112か
らステップS114へ進んで次の区分のデータを読み込む
と、前述のステップS104へ戻り、道路面より上にあるデ
ータの抽出、ヒストグラムの作成、及び、各区分内での
立体物の検出と距離の算出を行う。以上の処理を繰り返
し、やがて、最終区分の処理が終了すると、上記ステッ
プS113からメインルーチンへ戻る。
以上の距離データ検出処理によって検出し、区分毎の距
離をX−Z平面上に示した例であり、検出した距離に多
少の誤差が含まれるため、黒点で示すように、立体物の
自車両に面した部分に多少のバラツキを持ったデータと
して検出される。
ンルーチンではステップS20へ進み、図5の物体・側壁
候補検出ルーチンを実行する。この物体・側壁候補ルー
チンでは、前回の処理で検出された物体あるいは側壁の
位置と速度とから今回の処理時の物体あるいは側壁の位
置を推定し、この推定位置を囲む三次元の領域を設定す
る。そして、この領域内にある距離データを抽出し、こ
れを物体候補あるいは側壁候補グループとしてまとめ
る。尚、この物体・側壁候補検出ルーチンにおいては、
物体と側壁とは同様に扱うため、以下の説明では、物体
で代表して説明する。
物体の位置や速度の前回データを読み込むと、ステップ
S202で、現在の物体の位置を推定する。前回の処理で物
体として検出された立体物Kについて、その検出位置を
(Xk,Zk)、速度をVxk,Vzkとすると、今回
の認識処理時の立体物Kの推定位置(Xk',Zk')
は、処理周期(例えば、0.1sec)をDTとして以
下の(10),(11)式によって求めることができる。 Xk'=Xk+Vxk・DT …(10) Zk'=Zk+Vzk・DT …(11)
検出した時点からの自車両の移動量を算出すると、ステ
ップS204で、この自車両の移動量によって上記ステップ
S202で求めた物体推定位置を補正する。この補正によ
り、立体物Kの自車両に対する推定位置は(Xk'',Z
k'')となる。
置から所定領域内にある距離データをグループ化する。
図16に示すように、自車両の正面前方の立体物K(先
行車両)を例とすると、この立体物Kの推定位置(X
k'',Zk'')を囲むように領域を設定し、この領域内
にある今回検出の距離データを全て抽出して物体候補グ
ループとして1個にまとめる。立体物Kを囲む領域は、
立体物Kの推定位置の誤差を考慮して立体物Kの横幅に
余裕(例えば、1,2区分程度)を加えた範囲を左右方
向とし、位置の推定誤差及び距離データのバラツキ等を
考慮した範囲(例えば、立体物Kの距離Zkの10%程
度)を前後方向として設定される。
06へ進んで最終物体か否かを調べ、最終物体でないとき
には、ステップS207で次の物体のデータを読み込んでス
テップS202へ戻り、以上の処理を繰り返す。そして、上
記ステップS206で最終物体に達し、前回処理で物体とし
て検出された全ての立体物に対する処理が終了したと
き、メインルーチンに戻ってステップS30へ進む。
の立体物候補検出ルーチンを実行し、前回の処理で物体
と側壁の組み合わせとして検出した立体物について、そ
の位置と速度とから今回の処理時の位置を推定すると、
この推定位置のコーナー点を中心にして周囲の距離デー
タをサーベイし、新しいコーナー点を検出する。そし
て、新しいコーナー点の周囲の距離データを、新しいコ
ーナー点を境目として物体部分と推定される距離データ
のグループと、側壁部分と推定される距離データのグル
ープとに分けて抽出し、これらのグループを、物体と側
壁の組み合わせの候補のグループとする。
ップS301で、最初の物体・側壁のコーナー点や位置の前
回データを読み込み、ステップS302で、現在のコーナー
点の位置を推定し、ステップS303で、前回のコーナー点
を検出した時点からの自車両の移動量を算出する。そし
て、ステップS304で、この自車両の移動量によって上記
ステップS302で推定したコーナー点位置を補正する。
“物体”、側面を“側壁”として同時に検出し、“物
体”及び“側壁”の対として認識された立体物Eでは、
そのコーナー点PEの検出位置(Xpe,Zpe)と、
検出速度Vxe,Vzeとから、今回認識処理時の推定
コーナー点PE’の位置(Xpe',Zpe')を、前述
の物体候補検出処理と同様の以下の(12),(13)式によっ
て推定する。 Xpe'=Xpe+Vxe・DT …(12) Zpe'=Zpe+Vze・DT …(13)
定コーナー点PE’の補正後の位置(Xpe",Zp
e")を求め、次のステップS305〜S307で、補正後の推
定コーナー点PE”の位置を元にして今回の処理で検出
された距離データからコーナー点を検出し直す。このた
め、ステップS305で、推定コーナー点位置を起点として
Z軸方向に延びるX座標サーベイエリアのヒストグラム
を作成するとともに、ステップS306で、推定コーナー点
位置を起点としてX軸方向に延びるZ座標サーベイエリ
アのヒストグラムを作成し、ステップS307で、これらの
ヒストグラムから現在のコーナー点位置を特定する。
時に物体・側壁の組み合わせとして検出し、今回の処理
で推定したコーナー点PE”の位置が(Xpe",Zp
e")である場合、図17に示すように、推定コーナー
点PE”を起点としてZ軸方向とX軸方向とに、それぞ
れサーベイエリアを設定する。
コーナー点PE”から遠方に車両長(5m程度)の範囲
と、左右方向に所定幅(1m程度)の範囲として設定
し、X軸方向のZ座標サーベイエリアは、図17に示す
ように、推定コーナー点PE”が自車両より左側にある
場合(Xpe"<0)、推定コーナー点PE”から左側
に車両幅(2m程度)の範囲と、推定コーナー点PE''
を中心として前後方向に所定幅(距離Zpe"の5%程
度)の範囲として設定する。また、推定コーナー点P
E”が自車両より右側にある場合(Xpe">0)に
は、推定コーナー点PE”より右側に同様の大きさのZ
座標サーベイエリアを設定する。
データについて、そのX座標値によるヒストグラムを作
成するとともに、Z座標サーベイエリア内の各距離デー
タについて、そのZ座標値によるヒストグラムを作成
し、各ヒストグラムの度数が最大のX座標値とZ座標値
とを現在のコーナー点PE1の位置として新しく設定す
る。
ナー点を起点として物体と側壁のグループ化を行う。こ
のグループ化は、図18に示すように、コーナー点(新
しいコーナー点)PE1を起点としてX座標サーベイエ
リア内の距離データと、Z座標サーベイエリア内の距離
データとを分割して行い、コーナー点PE1の左下部分
(コーナー点PE1が自車両の右側にある場合は、コー
ナー点PE1の右下の部分)を新しい物体の候補として
1個のグループにまとめ、一方、コーナー点PE1の右
上部分(コーナー点PE1が自車両の右側にある場合
は、コーナー点PE1の左上部分)は、新しい側壁の候
補として1個のグループにまとめる。尚、ここでグルー
プ化されたデータは、後述する新規立体物検出ルーチン
において、再度、正確に分類し直される。
09へ進んで最終の物体・側壁の組み合わせか否かを調
べ、最終の組み合わせでないときには、ステップS310で
次の物体・側壁の組み合わせのデータを読み込んでステ
ップS302へ戻り以上の処理を繰り返す。そして、上記ス
テップS309で最終の物体・組み合わせとなり、前回処理
で物体・側壁として検出された全ての立体物に対する処
理が終了したとき、メインルーチンに戻ってステップS4
0へ進む。
〜図10の新規立体物検出ルーチンを実行する。今回の
認識処理で検出された距離データの一部は、上述のステ
ップS20,S30の処理によって既にグループ化されてい
る。例えば、図14の検出対象例では、進行方向左側の
ガードレール、このガードレールの脇に駐車している車
両、自車両の走行レーン内の先行車両、進行方向右側の
走行レーンの先行車両等が前回の認識処理時に検出され
ており、右側の走行レーンで新たに視野に入ってきた車
両側面付近の距離データがグループ化され、既検出のグ
ループと併せて分類される。
未だグループ化されていない残りの距離データについ
て、区分毎の距離を画像の左から右へ順次比較してゆ
き、前後方向(Z軸方向)及び横方向(X軸方向)の距
離が接近しているものをグループとしてまとめ、その
後、既検出のグループと併せて各グループについてデー
タの並び方向をチェックし、方向が大きく変化する部分
でグループを分割してグループ全体としての距離データ
の並び方向(Z軸との傾き)から、個々のグループを立
体物あるいは側壁に分類する。
いて、グループ内の距離データから平均距離や左端、右
端のX座標等のパラメータを算出し、側壁と分類された
グループについては、並び方向(Z軸との傾き)や前後
端の位置(Z,X座標)等のパラメータを算出する。次
に、各グループの相互の位置関係を調べ、端点の位置が
接近し、且つ、並び方向がほぼ一致しているグループを
再結合し、改めて再結合したグループのパラメータを算
出すると、同一の立体物に対し、後部を検出したグルー
プと側面を検出したグループとを識別して1個の立体物
を物体と側壁との組み合わせとして認識し、物体と側壁
の交点で形成する立体物のコーナー点の位置を算出す
る。そして、立体物のZ軸方向の移動速度及びX軸方向
の移動速度を算出し、立体物の位置、及び、立体物の移
動速度等のパラメータを後段の処理へ渡す。
候補及び側壁候補のグループ以外の区分を抽出し、ステ
ップS402〜S408の距離グループ検出処理により、未だグ
ループ化されていない各区分の立体物の検出距離を調
べ、隣接する区分において立体物までの検出距離の差異
が判定値以下の場合は同一の立体物と見なし、一方、判
定値を超えている場合は別々の立体物と見なしてグルー
プ分けを行う。
(例えば左端)を調べ、立体物が検出されている場合に
は、距離データを読み込んで、この区分R1を、グルー
プS1、距離Z1に分類する。次に、ステップS403へ進
んで右隣の区分R2を調べ、立体物が検出されていない
場合には、グループS1は区分R1の内部とその近辺に
存在し、その距離はZ1と判定し、一方、区分R2で立
体物が検出されており、その検出距離がZ2である場合
には、区分R1の距離Z1と右隣の区分R2の距離Z2
の差を計算する。
との距離の差が判定値以下か否かを調べ、距離の差が判
定値以下で互いに接近しているときには、ステップS405
で、区分R2で検出された立体物は、先に検出されたグ
ループS1に属すると判定して同一グループにラベル付
けを行い、その距離をZ1とZ2との平均値としてステ
ップS407へ進む。
超えているときには、上記ステップS404からステップS4
06へ進み、区分R2で検出された立体物は、先に検出さ
れたグループS1とは異なると判定して新しいグループ
(グループS2、距離Z2)にラベル付けを行い、ステ
ップS407へ進む。
かを調べ、最終区分に達していないときには、ステップ
S408で次の区分の距離を読み込み、上記ステップS403へ
戻って、さらに右隣の領域を調べてゆく。また、最終区
分の処理が終了したときには、ステップS407からステッ
プS409以降へ進む。
分の距離データがグループ化されるが、異なる立体物で
あっても互いに距離が接近している区分は、同一のグル
ープとして処理される虞がある。従って、次のステップ
S409〜ステップS420におけるグループ分割処理で距離デ
ータのX−Z平面上での並び方向を調べ、並び方向がZ
軸と平行な部分とX軸と平行な部分とでグループを分割
する。
で、既検出の物体候補のグループのデータを追加する
と、ステップS410で、最初のグループのデータを読み込
み、ステップS411で、このグループ内の各区分の並び方
向を算出し、次に、ステップS412へ進んで各区分に“物
体”、“側壁”のラベルを付ける。具体的には、グルー
プ内での左端の区分K1の位置をZ1,X1とし、N個
だけ右側の区分の位置をZp,Xpとすると、点X1,
Z1と点Xp,Zpとの2点を結ぶ直線のZ軸に対する
傾きA1を算出し、この直線の傾きA1を設定値(例え
ば、45°程度)と比較する。そして、直線の傾きA1
が設定値以下でデータの並びが略Z軸方向の場合には、
区分K1は“側壁”とラベル付けし、上記直線の傾きA
1が設定値を超え、データの並びが略X軸方向の場合に
は、“物体”とラベル付けする。
=2〜4区分程度とする。これは、N=1すなわち右隣
の区分では、検出距離のバラツキのために並び方向が大
きくばらついてしまい、分割の判断が難しくなるためで
あり、少し離れた区分との並び方向を使うことにより、
方向の安定化を図る。そして、この“側壁”あるいは
“物体”のラベル付けを、グループ内の左端の区分から
順に、右端からN個左側の区分まで行い、各区分にラベ
ル付けをする。
ると、上記ステップS412からステップS413へ進んで左端
の区分のラベルを読み込み、さらに、ステップS414で、
その右隣の区分のラベルを読み込む。次いで、ステップ
S415へ進み、左端のラベルと、その右隣のラベルが異な
るか否かを調べる。その結果、上記ステップS415におい
て、ラベルが同じときにはステップS417へジャンプし、
ラベルが異なるとき、ステップS416で“側壁”とラベル
付けされた区分と“物体”とラベル付けされた区分とを
分割して別のグループとし、ステップS417へ進む。分割
する区分の位置は、ラベルが“側壁”←→“物体”で変
化する位置のN/2区分だけ右側となる。
より部分的にラベルが変化する状況に対処するため、同
じラベルが判定値以上(例えば、3区分以上)連続して
並んでいる場合にのみ分割を行い、判定値未満の場合に
は、分割は行わない。
べ、最終区分でないとき、ステップS418で次の区分のラ
ベルを読み込んで上記ステップS414へ戻り、同様の処理
を繰り返す。そして、最終区分の処理が終了すると、上
記ステップS417からステップS419ヘ進み、最終グループ
に達したか否かを調べる。その結果、最終グループに達
していないときには、ステップS420で次のグループのデ
ータを読み込み、次のグループに対して同様にグループ
を分割する処理を行う。この処理を繰り返し、やがて、
最終グループに達し、最終グループの処理が終了する
と、グループ分割処理を完了してステップS419からステ
ップS421以降へ進む。
示すように、左側のガードレール付近の区分がグループ
1の“側壁”、停車車両の後部がグループ2の“物体”
とラベル付けされ、車両側面の付近の区分がグループ3
の“側壁”とラベル付けされる。また、前方正面の車両
の後部付近の区分がグループ4の“物体”とラベル付け
され、進行方向右側の走行レーンの先行車両では、車両
側面の付近の区分がグループ5の“側壁”とラベル付け
され、車両後部がグループ6の“物体”とラベル付けさ
れる。さらに、右側の走行レーンで新たに視野に入って
きた車両側面付近の区分がグループ7の“側壁”とラベ
ル付けされる。
された各グループに対し、側壁か物体かの分類を行って
各グループのパラメータを算出する処理であり、ステッ
プS421で、既検出の側壁候補のグループのデータを追加
すると、ステップS422で最初のグループのデータを読み
込み、ステップS423で、グループ内の各区分の位置(X
i,Zi)からハフ変換あるいは最小二乗法によって近
似直線を求め、グループ全体の傾きを算出する。
体の傾きから、X軸方向の傾きを有するグループを物
体、Z軸方向の傾きを有するグループを側壁に分類し、
ステップS425で、各グループのパラメータを算出する。
このパラメータは、物体と分類されたグループでは、グ
ループ内の距離データから算出される平均距離や、左
端、右端のX座標等のパラメータであり、側壁と分類さ
れたグループでは、並びの方向(Z軸との傾き)や前後
端の位置(Z,X座標)等のパラメータである。
割処理で付けられた各区分の“側壁”あるいは“物体”
のラベルによって行っても良い。
26へ進んで最終グループに達したか否かを調べ、最終グ
ループでないときには、ステップS427で次のグループの
データを読み込んで上記ステップS423へ戻り、最終グル
ープの処理が終了すると、ステップS428以降の処理へ進
む。
たガードレール等では、区分毎の距離データのバラツキ
の影響を強く受けることがあり、先の距離グループ検出
処理あるいはグループ分割処理で複数のグループに分割
されてしまう場合がある。この対策として、以下のステ
ップS428〜ステップS436のグループ結合処理において、
先のグループパラメータ算出処理で算出されたグループ
パラメータによって各グループの相互の位置関係を調
べ、同種類のグループで端点の位置が接近し、且つ、並
び方向がほぼ等しい場合には、同一物体の同一の面であ
ると判断し、それらのグループを1個のグループに統合
する。そして、統合したグループとしての各種パラメー
タをグループパラメータ算出処理と同様にして再計算す
る。
プのパラメータを読み込み、ステップS429で、次のグル
ープのパラメータを読み込むと、ステップS430で、各グ
ループの端点の距離の差、及び、各グループの傾きの差
を算出する。そして、ステップS431で、各グループの端
点の距離の差、及び、各グループの傾きの差が、それぞ
れの判定値以内か否かを調べ、共に判定値以内のとき、
ステップS432へ進んで同一物体のグループとしてグルー
プを結合し、再度、改めてグループのパラメータを算出
してステップS435へ進む。
端点の距離の差、あるいは、各グループの傾きの差が判
定値以内でないときには、上記ステップS431からステッ
プS433へ進んで最終グループか否かを調べ、最終グルー
プでないときには、ステップS434で次のグループのパラ
メータを読み込んでステップS430へ戻り、最終グループ
のとき、ステップS435へ進む。
調べ、最終グループでないとき、ステップS436で次のグ
ループのパラメータを読み込んで上記ステップS429へ戻
り、最終グループのとき、ステップS437以降へ進む。
1つの面を誤って分割して検出することが防止される。
このグループ結合処理の後、例えば、図19に示すよう
に、グループ2とグループ3、グループ5とグループ6
等、同一立体物の後部と側面で別のグループに分離され
ているものに対し、以下のステップS437〜ステップS446
の処理により、同一の立体物であることを検出し、1個
の立体物を、“物体”と“側壁”との組み合わせ(後部
は“物体”、側面は“側壁”とする)として認識する。
体と分類された最初のグループのパラメータを読み込
み、ステップS438で、側壁と分類された最初のグループ
のパラメータを読み込む。次いで、ステップS439へ進
み、物体と分類されたグループの端点の位置と、側壁と
分類されたグループの端点の位置との差を算出する。こ
の場合、各端点の位置は、“物体”が自動車の正面(Z
軸に相当)より右側にある場合には、“物体”の左端の
位置と“側壁”の手前側の端点の位置との差を算出し、
“物体”が自車両の正面より左側にある場合には、“物
体”の右端の位置と“側壁”の手前側の端点の位置との
差を算出する。
点の位置の差が判定値(例えば、1m程度)以内で、互
いに接近しているか否かを調べ、判定値を超えていると
きには、ステップS441へ分岐して最終側壁か否かを調
べ、最終側壁でないときには、ステップS442で側壁と分
類された次のグループのパラメータを読み込んで上記ス
テップS439へ戻り、最終側壁のとき、ステップS445へ進
む。
端点の位置の差が判定値以内のときには、上記ステップ
S440からステップS443へ進んで同一立体物であると判定
する。すなわち、1個の立体物の後部と側面とが同時に
見える場合、その2つの面が作るコーナーは手前に凸と
なっているため、“物体”の左端の位置と“側壁”の手
前側の端点の位置、あるいは、“物体”の右端の位置と
“側壁”の手前側の端点の位置とは、本来、一致してい
る。従って、2つのグループの位置の差が上記判定値以
内にあるとき、この2つのグループは1個の立体物を分
けて検出した対であると判断することができる。
へ進み、同一の立体物と判断された“物体”と“側壁”
との対に対し、それぞれの近似直線を延長して交差する
点を立体物のコーナー点の位置として算出すると、各端
点の位置を、このコーナー点の位置に変更する。そし
て、ステップS445で、“物体”の最終グループか否かを
調べ、“物体”の最終グループでないときには、ステッ
プS446で、“物体”と分類された次のグループのパラメ
ータを読み込み、上記ステップS438へ戻って同様の処理
を繰り返す。一方、ステップS445で“物体”の最終のグ
ループのときには、次のステップS447以降の処理へ進
む。
し、“物体”及び“側壁”の検出結果を枠線で示したも
のであり、X−Z平面で示すと、図21のようになる。
図21では、“物体”は太線の実線で示され、“側壁”
は太線の破線で示される。
隔(例えば、0.1sec)の処理サイクル毎に検出さ
れる“物体”や“側壁“の位置の変化から、これらの移
動速度を算出する速度算出処理であり、まず、ステップ
S447で、最初のグループのパラメータを読み込み、ステ
ップS448で同一立体物の対となっているか否かを調べ
る。
きには、上記ステップS448からステップS449へ進み、
“物体”では左右端の中央、“側壁”では前後端の中央
を中心点の位置として、この中心点の位置の時間変化量
を算出すると、ステップS450で、前後方向の速度すなわ
ちZ方向の速度Vzを、中心点のZ座標の時間変化量か
ら算出するともに、左右方向の速度すなわちX方向の速
度を、中心点のX座標の時間変化量から算出し、ステッ
プS453へジャンプする。
調べ、最終グループでないときには、ステップS454で次
のグループのパラメータを読み込み、ステップS448へ戻
って同一立体物の対か否かを調べる。その結果、同一立
体物の対でないときには、前述のステップS449,S450を
経て中心点の位置に時間変化から前後・左右方向の速度
を算出し、最終グループか否かを調べるステップS453へ
戻る。
であるときには、上記ステップS448からステップS451へ
進んで、対応する“物体”又は“側壁”のパラメータを
読み込み、ステップS452で、“物体”から前後方向の速
度(Z軸方向の速度Vz)を算出するとともに、“側
壁”から左右方向の速度(X軸方向の速度Vx)を算出
し、これらの速度Vz,Vxを、同一立体物におけるZ
軸方向、X軸方向の速度とする。そして、ステップS453
で、最終グループか否かを調べ、最終グループでないと
きには、以上の処理を繰り返し、最終グループのとき、
ステップS453からステップS455へ進んで、各グループの
パラメータをメモリに書き込み、立体物検出処理の全体
のプログラムを終了する。
は複数の区分の距離の平均値的な値となり、速度Vzは
安定しているが、X方向の位置は左右端のX座標のバラ
ツキの影響を受け、速度Vxはバラツキが大きい傾向に
ある。一方、“側壁”では、X方向の位置は複数の区分
のX座標の平均値的な値となり、速度Vxは安定してい
るが、Z方向の位置は前後端のZ座標のバラツキの影響
を受け、速度Vzはバラツキが大きくなる傾向にある。
従って、両方の安定した速度のみを用いて同一立体物の
速度とするのである。
のデータは、車両がガードレール等に接触する危険や先
行車や障害物と衝突する危険を判断するためのデータと
して用いられるが、前回の処理で認識した結果を用いて
現在の状況を検出するため、計算処理量を低減して迅速
な処理を可能とし、システム全体の応答性を向上して安
全確保に寄与することができる。
ツキが大きくなる遠方(例えば、80m以上)の立体物
に対し、従来のように立体物に関する情報が無い状態か
らの認識処理によって認識結果が不安定となることがな
く、安定した認識結果を得ることができる。
く、前回の認識結果に基づいて距離データを予めグルー
プ化しておき、その上で、新たに検出した距離データと
共に、改めて認識処理を行うため、万一、前回の認識結
果に誤りが有る場合でも、自動的に認識結果が修正さ
れ、信頼性の高いデータを得ることができる。
に係わり、図22は車外監視装置の全体構成図、図23
は車外監視装置の回路ブロック図、図24はレーザビー
ムの走査方法を側面から示す説明図、図25はレーザビ
ームの走査方法を上面から示す説明図、図26はレーザ
レーダ測距装置で計測される立体物の二次元分布の例を
示す説明図である。
理して車外の物体を検出するようにしているが、これに
対し、本形態は、レーザビームの走査によって車外の物
体を検出するものである。すなわち、図22に示すよう
に、本形態の車両50に搭載される車外監視装置60
は、前述の第1形態のステレオ光学系10及びイメージ
プロセッサ20に代えてレーザビームによるレーザレー
ダ測距装置70を採用し、このレーザレーダ測距装置7
0に画像処理用コンピュータ30を接続したものであ
る。
ビームを投射し、このレーザビームが物体に当たって反
射してくる光を受光し、この所要時間から物体までの距
離を測定するものであり、本形態の車外監視装置60に
は周知のレーザレーダ測距装置を適用することができ
る。
ームの投射・受光と左右方向への走査機能を有するレー
ザ投光ユニット71が車両の前部に取り付けられてお
り、図23に示すように、レーザレーダ測距装置70に
は、レーザービームの投光受光の所要時間から物体まで
の距離を計算し、また、レーザビームを走査する方向か
ら物体の二次元の位置を計算する距離検出回路70a、
検出された物体の二次元の位置を書き込む二次元分布メ
モリ70b等から構成されている。
71からはレーザビームが水平に投射され、道路表面よ
り高い位置にある立体物のみが検出される。また、図2
5に示すように、レーザビームは左右方向に走査され、
所定の走査範囲で一定の間隔毎にレーザビームが投光・
受光されて距離を検出する動作が繰り返され、立体物の
二次元分布が計測される。
に他の車両がある状況を上記レーザレーダ測距装置70
で計測すると、図26に示すような立体物の二次元分布
の情報が得られる。これは、前述の第1形態における区
分毎の立体物の距離データと同様である。
である立体物の二次元分布に対し、第1形態と同様の処
理を行なうことにより、物体や壁面を検出することがで
きる。本形態では、立体物のデータを処理が容易な形態
で得ることができ、計算処理量を更に低減することが可
能である。
検出の立体物の情報を効果的に利用するため、データ処
理量を低減してシステム全体の応答性を向上することが
でき、且つ、遠方の立体物に対する認識を確実なものと
し、検出精度及び信頼性を向上することができる等優れ
た効果が得られる。
置の全体構成図
フローチャート
ト
ャート
ト
ト
ト
ト
ート
す説明図
説明図
説明図
グループ化を示す説明図
の分割を示す説明図
図
全体構成図
す説明図
す説明図
体物の二次元分布の例を示す説明図
Claims (9)
- 【請求項1】 車外の立体物までの距離データを検出し
て車外の立体物を認識する車外監視装置において、既 に認識されている立体物の現在位置を推定する手段
と、 上記立体物の推定位置を基準とした所定領域内に存在す
る距離データをグループ化する手段と、グループ化された距離データの並び方向を算出し、当該
距離データが上記立体物の後部であるか側部であるかを
判別する 手段とを備えたことを特徴とする車外監視装
置。 - 【請求項2】 各グループについて、立体物の位置に係
わるパラメータを算出する手段を備えたことを特徴とす
る請求項1記載の車外監視装置。 - 【請求項3】 既に認識されている立体物が後部または
側部のいずれか一方で表されている場合に、上記所定領
域は上記立体物の推定位置を囲むように設定されること
を特徴とする請求項1記載の車外監視装置。 - 【請求項4】 既に認識されている立体物が後部と側部
の組合せで表されている場合に、上記立体物の推定位置
は上記後部と側部のコーナー点を示し、上記所定領域は
上記コーナー点を基点として自車両の進行方向の領域と
自車両の左右方向の領域とに分けて設定され、それぞれ
の領域内の距離データが個別にグループ化されることを
特徴とする請求項1記載の車外監視装置。 - 【請求項5】 認識された立体物の前後方向と左右方向
の移動速度を求め、該移動速度に基づいて上記現在位置
を推定することを特徴とする請求項1記載の車外監視装
置。 - 【請求項6】 距離検出手段の検出領域を複数に区分
し、それぞれの区分毎に得られた距離データに基づいて
車外の立体物を認識する車外監視装置において、 既に認識されている既存立体物の現在位置を推定し、そ
の推定位置を基準に上記既存立体物を表す距離データを
グループ化する手段と、 上記既存立体物が位置する区分以外の区分領域において
新規立体物を抽出し、上記新規立体物を表す距離データ
をグループ化する手段と、 グループ化された距離データの並び方向を求め、当該距
離データが上記立体物 の後部であるか側部であるかを判
別する手段とを備えたことを特徴とする 車外監視装置。 - 【請求項7】 グループ化された上記既存立体物の距離
データと上記新規立体物の距離データを互いに評価し
て、同一立体物に関すると判断されるグループ同士を結
合して1つのグループとする手段を備えたことを特徴と
する請求項6記載の車外監視装置。 - 【請求項8】 上記距離データは、ステレオカメラ装置
により計測されたものであることを特徴とする請求項1
又は6記載の車外監視装置。 - 【請求項9】 上記距離データは、レーダ測距装置によ
り計測されたものであることを特徴とする請求項1又は
6記載の車外監視装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08687997A JP3315054B2 (ja) | 1997-04-04 | 1997-04-04 | 車外監視装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08687997A JP3315054B2 (ja) | 1997-04-04 | 1997-04-04 | 車外監視装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10283477A JPH10283477A (ja) | 1998-10-23 |
JP3315054B2 true JP3315054B2 (ja) | 2002-08-19 |
Family
ID=13899130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08687997A Expired - Lifetime JP3315054B2 (ja) | 1997-04-04 | 1997-04-04 | 車外監視装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3315054B2 (ja) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001134772A (ja) * | 1999-11-04 | 2001-05-18 | Honda Motor Co Ltd | 対象物認識装置 |
JP3649163B2 (ja) * | 2001-07-12 | 2005-05-18 | 日産自動車株式会社 | 物体種別判別装置及び物体種別判別方法 |
JP4021344B2 (ja) * | 2003-03-03 | 2007-12-12 | 富士重工業株式会社 | 車両用運転支援装置 |
DE10394349T5 (de) * | 2003-12-25 | 2006-12-21 | Toshihiro Fukumoto | Leicht bedienbare sichere Fahrzeugsteuervorrichtung |
JP4639681B2 (ja) * | 2004-07-23 | 2011-02-23 | 株式会社デンソー | 車両用物体検知装置 |
JP4510554B2 (ja) * | 2004-08-31 | 2010-07-28 | 富士重工業株式会社 | 立体物監視装置 |
JP4721278B2 (ja) * | 2006-03-27 | 2011-07-13 | 富士重工業株式会社 | 車線逸脱判定装置、車線逸脱防止装置および車線追従支援装置 |
JP4638370B2 (ja) | 2006-03-29 | 2011-02-23 | 富士重工業株式会社 | 車線逸脱防止装置 |
JP4721279B2 (ja) | 2006-03-29 | 2011-07-13 | 富士重工業株式会社 | 車線追従支援装置 |
JP4914234B2 (ja) | 2007-01-31 | 2012-04-11 | 富士重工業株式会社 | 先行車両検出装置 |
JP4914233B2 (ja) | 2007-01-31 | 2012-04-11 | 富士重工業株式会社 | 車外監視装置 |
JP5221886B2 (ja) | 2007-03-07 | 2013-06-26 | 富士重工業株式会社 | 物体検出装置 |
JP4987573B2 (ja) | 2007-06-01 | 2012-07-25 | 富士重工業株式会社 | 車外監視装置 |
JP4933962B2 (ja) | 2007-06-22 | 2012-05-16 | 富士重工業株式会社 | 分岐路進入判定装置 |
JP5234894B2 (ja) | 2007-06-28 | 2013-07-10 | 富士重工業株式会社 | ステレオ画像処理装置 |
JP4856612B2 (ja) | 2007-10-29 | 2012-01-18 | 富士重工業株式会社 | 物体検出装置 |
JP4856611B2 (ja) | 2007-10-29 | 2012-01-18 | 富士重工業株式会社 | 物体検出装置 |
JP4856656B2 (ja) | 2008-01-22 | 2012-01-18 | 富士重工業株式会社 | 車両検出装置 |
JP4876080B2 (ja) | 2008-01-25 | 2012-02-15 | 富士重工業株式会社 | 環境認識装置 |
JP4956452B2 (ja) | 2008-01-25 | 2012-06-20 | 富士重工業株式会社 | 車両用環境認識装置 |
JP5137617B2 (ja) | 2008-02-27 | 2013-02-06 | 富士重工業株式会社 | 操舵支援装置 |
JP5073548B2 (ja) | 2008-03-27 | 2012-11-14 | 富士重工業株式会社 | 車両用環境認識装置および先行車追従制御システム |
JP2010030404A (ja) * | 2008-07-28 | 2010-02-12 | Visteon Global Technologies Inc | 先行車両の位置検出方法及び位置検出装置並びにデータフィルタリング方法 |
JP5693994B2 (ja) | 2011-02-16 | 2015-04-01 | 富士重工業株式会社 | 車両検出装置 |
US8576382B2 (en) * | 2011-03-22 | 2013-11-05 | Exelis, Inc. | Method and apparatus for controlling laser transmissions for enhanced safety |
US8781721B2 (en) * | 2012-06-06 | 2014-07-15 | Google Inc. | Obstacle evaluation technique |
JP6087858B2 (ja) * | 2014-03-24 | 2017-03-01 | 株式会社日本自動車部品総合研究所 | 走行区画線認識装置及び走行区画線認識プログラム |
JP6705497B2 (ja) * | 2016-02-23 | 2020-06-03 | 株式会社リコー | 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、プログラム、及び移動体 |
JP2018197059A (ja) * | 2017-05-24 | 2018-12-13 | トヨタ自動車株式会社 | 衝突回避制御装置 |
JP7069944B2 (ja) * | 2018-03-28 | 2022-05-18 | 住友電気工業株式会社 | 環境検出装置、環境検出システム、環境検出方法、及びコンピュータプログラム |
US20220319322A1 (en) * | 2019-02-14 | 2022-10-06 | Mitsubishi Electric Corporation | Drive assist apparatus and drive assist method |
JP7344031B2 (ja) * | 2019-07-19 | 2023-09-13 | 株式会社Subaru | 画像処理装置 |
JP7226565B2 (ja) * | 2019-08-28 | 2023-02-21 | 日産自動車株式会社 | 物体認識方法、及び、物体認識装置 |
JP7406962B2 (ja) * | 2019-11-26 | 2023-12-28 | 株式会社Subaru | 画像処理装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045882A (ja) * | 1983-07-15 | 1985-03-12 | Hitachi Ltd | 通路認識方法 |
JPH05265547A (ja) * | 1992-03-23 | 1993-10-15 | Fuji Heavy Ind Ltd | 車輌用車外監視装置 |
JP3324821B2 (ja) * | 1993-03-12 | 2002-09-17 | 富士重工業株式会社 | 車輌用車外監視装置 |
JP3349060B2 (ja) * | 1997-04-04 | 2002-11-20 | 富士重工業株式会社 | 車外監視装置 |
-
1997
- 1997-04-04 JP JP08687997A patent/JP3315054B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10283477A (ja) | 1998-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3315054B2 (ja) | 車外監視装置 | |
JP3349060B2 (ja) | 車外監視装置 | |
US10977504B2 (en) | Vehicle-mounted image target objection recognition device | |
JP3516856B2 (ja) | 車外監視装置 | |
JP6151150B2 (ja) | 物体検出装置及びそれを用いた車両 | |
US10115027B2 (en) | Barrier and guardrail detection using a single camera | |
US6477260B1 (en) | Position measuring apparatus using a pair of electronic cameras | |
JP3337197B2 (ja) | 車外監視装置 | |
US6661449B1 (en) | Object recognizing apparatus for vehicle and the method thereof | |
JP4082471B2 (ja) | 車外監視装置 | |
CN112455430B (zh) | 无车位线的斜列车位的检测方法、泊车方法及泊车系统 | |
KR102536037B1 (ko) | 차량의 주변 환경에 있는 물체와 관련된 정보를 결정하기 위한 방법 및 처리 유닛 | |
JP2000357233A (ja) | 物体認識装置 | |
JP7225149B2 (ja) | 処理装置 | |
JP2006072495A (ja) | 立体物監視装置 | |
WO2019065970A1 (ja) | 車両用外界認識装置 | |
JP2007264712A (ja) | 車線検出装置 | |
JP4721278B2 (ja) | 車線逸脱判定装置、車線逸脱防止装置および車線追従支援装置 | |
JPH1139598A (ja) | 車両の衝突防止装置 | |
JP3925285B2 (ja) | 走行路環境検出装置 | |
CN117734702A (zh) | 一种基于侧边超声波雷达的车位搜索方法、模块、车辆 | |
US11861914B2 (en) | Object recognition method and object recognition device | |
KR101734726B1 (ko) | 주차공간 탐지 방법 및 이를 실행하는 장치 | |
JP2007286873A (ja) | 車載周辺他車検出装置 | |
KR102161905B1 (ko) | 후방 차량 검출 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080607 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110607 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110607 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120607 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120607 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130607 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |