JP3305006B2 - 有機電解液を用いる電池用セパレータ及びその製造方法 - Google Patents

有機電解液を用いる電池用セパレータ及びその製造方法

Info

Publication number
JP3305006B2
JP3305006B2 JP17575092A JP17575092A JP3305006B2 JP 3305006 B2 JP3305006 B2 JP 3305006B2 JP 17575092 A JP17575092 A JP 17575092A JP 17575092 A JP17575092 A JP 17575092A JP 3305006 B2 JP3305006 B2 JP 3305006B2
Authority
JP
Japan
Prior art keywords
weight
polyethylene
molecular weight
polypropylene
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17575092A
Other languages
English (en)
Other versions
JPH05234578A (ja
Inventor
博 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP17575092A priority Critical patent/JP3305006B2/ja
Publication of JPH05234578A publication Critical patent/JPH05234578A/ja
Application granted granted Critical
Publication of JP3305006B2 publication Critical patent/JP3305006B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は有機電解液を用いる電池
用セパレータに関する。更に詳細には、本発明は、ポリ
エチレンとポリプロピレンの混合物から成り、微細な孔
から成る均質な三次元の多孔構造を有していて、優れた
耐薬品性、機械特性、イオン透過性能を示す、特にリチ
ウム電池、殊に最近急速な伸びを見せている渦巻型リチ
ウム一次電池及び二次電池あるいは、有機電解液を用い
るその他の一次電池及び二次電池に有用なセパレータ、
特に安全性に優れたセパレータに関する。本発明は又、
その製造方法に関する。
【0002】
【従来の技術】ポリオレフィン製微多孔膜としては、種
々のものが知られている。例えば特開平2−94356
号公報には、ポリエチレン製の微多孔膜が開示されてい
るが、機械的特性が弱い。また、特開昭64−7053
8号公報には超高分子量ポリエチレンとポリプロピレン
の組成物よりなる微多孔膜の開示があるが、ポリマーの
押出温度が高いので有機液体(製膜後に抽出して膜に多
孔性を賦与する目的で用いる可塑剤)を用いる製膜の場
合は有機液体の分解等により製膜が困難である。また、
特公昭46−40119号公報には、ポリプロピレン製
の微多孔膜が開示されているが、均質な三次元の多孔構
造をとらず、気孔率が30〜40%と低くイオン透過性
能が悪いという問題点があった。また、上記3件の公報
に記載されている膜は、リチウム電池、特に最近急速な
伸びを示している渦巻型リチウム一次電池及び二次電
池、あるいは、有機電解液を用いるその他の一次電池及
び二次電池のセパレータとして用いた場合、特にその安
全性に問題があった。
【0003】本発明でいう "安全性に" ついて以下に説
明する。、電池を外部短絡させた場合、短絡電池による
ジュール熱で電池が発熱して温度上昇し、その際、電池
のセパレータ、すなわち多孔膜が温度上昇により変形
し、該多孔膜の孔径が小さくなって電気抵抗(透気度に
対応する)が増大する温度、あるいは、さらに溶融無孔
化してフィルム化する温度(該多孔膜の透気度が500
sec/100cc・枚以上になる温度を無孔化温度と
いう)が、低ければ低い程、より低温でイオンの流れを
阻止し、電池内温度の上昇を防止することができるの
で、電池内部温度がリチウム等の融点あるいは有機電解
液の引火点に至らず発火事故等を未然に防げて安全であ
る。さらに重要なことは、一旦上昇した電池内部温度
は、たとえセパレータの電気抵抗が上昇したとしても急
激には低下せずあるいは、温度上昇が続く可能性のある
ことである。溶融無孔化した電池セパレータは、更に温
度が上昇すると溶融粘度が低下して、ある温度に至ると
破れてしまう。このセパレータに破れが発生する温度
(膜破れ温度と呼ぶ。この温度で実質的に透気度はゼロ
となる)が高ければ高い程、イオンの流れを阻止する時
間も長く確実に温度上昇を防止できて非常に安全性が高
いと言える。本発明者は、従来のセパレータでは認識さ
れていなかった特性、すなわち、膜破れ温度と無孔化温
度との差が上記の安全性の決定要因であることを認識し
た。即ち、この差が大きいセパレータは安全性の高い電
池セパレータということができる。
【0004】さらに、詳細に述べると、ポリエチレン
(超高分子量ポリエチレン、高分子量ポリエチレン、ま
たは超高分子量ポリエチレンと高分子量ポリエチレンの
混合物)のみからなるセパレータは、無孔化温度は低い
が、膜破れ温度も低く安全性が高いとは言えない。一
方、ポリプロピレンのみからなるセパレータは、無孔化
温度が高く安全性が低い。
【0005】従来、超高分子量ポリエチレンは、機械的
特性に優れるが、流動性に劣るため成形性が悪い。機械
的特性の向上した微多孔膜を得るために、超高分子量ポ
リエチレン、無機微粉体、有機液体の混合物を押出成形
すると、成形時の圧力上昇などが発生し成形が困難であ
った。また、超高分子量ポリエチレン、高分子量ポリエ
チレン、無機微粉体、有機液体の混合物の組合せが考え
られるが、押出成形した場合、超高分子量ポリエチレン
の割合を増加させると成形時の圧力上昇などが発生し成
形が困難で超高分子量ポリエチレンの割合を増加できず
機械的特性の向上ができなかった。
【0006】このような状況下にあって、本発明者は、
有機電解液を用いる従来の電池用セパレータの上記の諸
欠点を有さず且つ優れた安全性を有する電池用セパレー
タを開発すべく鋭意研究の結果、特定の分子量分布を有
するポリエチレンと特定の範囲の重量平均分子量を有す
るポリプロピレンとをポリマー成分とし、それと無機微
粉体、有機液体よりなる混合物を製膜原料として用いる
ことについて検討したところ、ポリエチレンの分子量分
布において超高分子量部分の割合を増大しても、膜成形
時の圧力上昇もなく、機械的特性に優れ、安全性につい
ても優れた、有機電解液を用いる電池用セパレータが得
られる事を知見した。
【0007】
【問題を解決するための手段】従って、本発明の1つの
目的は、特定の分子量分布を有するポリエチレンと特定
範囲の重量平均分子量を有するポリプロピレンとの混合
物を用いる事により、微細な孔からなる均質な三次元の
多孔構造を有し、且つ優れた耐薬品性、機械的特性、透
過性能を示す、特にリチウム電池、特に最近急速な伸び
を示している渦巻型リチウム一次電池及び二次電池、あ
るいは、有機電解液を用いるその他の一次電池及び二次
電池に有用なセパレータ、特に優れた安全性を持つセパ
レータを提供することにある。
【0008】本発明の他の1つの目的は、上記の安全性
の高い、有機電解液を用いる電池用セパレータの製造方
法を提供することにある。本発明の上記及び他の諸目
的、諸特徴及び諸利益は、以下に添付の図面を参照して
述べる詳細な説明及び添付の特許請求の範囲の記載から
明らかになる。即ち、本発明によれば、有機電解液を用
いる電池用セパレータにして、分子量が100万以上の
部分を10重量%以上かつ分子量が10万以下の部分を
5重量%以上含むポリエチレン及び重量平均分子量が1
万〜100万のポリプロピレンを包含するマトリックス
よりなる微多孔膜で構成され、該ポリプロピレンの量は
ポリエチレン及びポリプロピレンの全重量の5〜45重
量%であり、該微多孔膜は、厚さが10〜500μm、
気孔率が40〜85%、最大孔径が0.05〜5μm
あり、膜破れ温度と無孔化温度との差が28〜40℃
ある事を特徴とするセパレータが提供される。
【0009】更に、本発明によれば、有機電解液を用い
る電池用セパレータの製造方法にして、(a)分子量が
100万以上の部分を10重量%以上かつ分子量が10
万以下の部分を5重量%以上含むポリエチレン、重量平
均分子量が1万〜100万のポリプロピレン、有機液体
及び無機微粉体を混合し、該ポリプロピレンの量はポリ
エチレン及びポリプロピレンの全重量の5〜45重量%
であり、(b)得られる混合物を押出成形してフィルム
を形成し、そして(c)有機液体及び無機微粉体をフィ
ルムから抽出する、ことを包含する製造方法が提供され
る。
【0010】本発明のセパレータを構成する微多孔膜の
マトリックスは、上述したように、特定の分子量分布を
有するポリエチレンと特定の重量平均分子量を有するポ
リプロピレンを包含する。本発明に用いられるポリエチ
レンは、分子量が100万以上の部分が10重量%以上
でかつ分子量が10万以下の部分が5重量%以上であ
る。更に好ましくは、分子量が100万以上の部分が1
5重量%以上でかつ分子量が10万以下の部分が10重
量%以上である。
【0011】このポリエチレンは、低圧法ポリエチレ
ン、中圧法ポリエチレン、高圧法ポリエチレンのいずれ
であってもよいが、低圧法ポリエチレンが好ましい。
又、2種以上のポリエチレンの混合物も、混合物全体で
分子量が100万以上の部分が10重量%以上でかつ分
子量が10万以下の部分が5重量%以上であるという条
件を満足する限り、用いることができる。
【0012】ポリプロピレンは重量平均分子量が1万〜
100万のものであることが必要である。ポリプロピレ
ンの単独重合体、及びプロピレンと更に好ましくは5万
〜80万、更に好ましくは8万〜60万である。本発明
に用いられるポリプロピレンは、プロピレンの単独重合
体、及びプロピレンとエチレンとの共重合体を包含し、
又、それらの混合物であっても良い。
【0013】ポリエチレンの分子量が100万以上の部
分の割合が10%未満では機械的特性が弱くて電池用セ
パレータとして使用できない。80重量%を越えると流
動的特性が悪く押出成形が困難となる。又、ポリエチレ
ンの分子量が10万以下の部分の割合が5%未満では無
孔化温度が上昇してしまい安全性に劣る。又、60%を
越えると機械的強度が弱くて電池用セパレータとしての
使用が困難となる。
【0014】本発明のセパレータを構成する微多孔膜の
マトリックスにおいて、重量平均分子量が1万〜100
万のポリプロピレンの量は、ポリエチレンとポリプロピ
レンの合計重量に対して、5〜45重量%である。更に
好ましくは7〜35重量%である。ポリプロピレンが5
重量%未満の場合には、安全性における膜破れ温度が低
下してしまい安全性に劣る。又45重量%を越えると安
全性における無孔化温度が上昇するとともに均一な膜が
得にくく強度が低下する。
【0015】本発明のセパレータを構成する微多孔膜の
マトリックスは、上記の分子量分布を有するポリエチレ
ン及び上記の範囲の重量平均分子量を有するポリプロピ
レンに加え、他のポリオレフィンを、上記のポリエチレ
ン及びポリプロピレンならびに他のポリオレフィンより
なるマトリックスの重量に対して30重量%まで、好ま
しくは20重量%までの範囲で含むことができる。他の
ポリオレフィンとは、エチレン、プロピレン、ブテン−
1、メチルブテン、メチルペンテン等のオレフィンの単
独重合体あるいは共重合体を含む。
【0016】本発明のセパレータを構成する多孔膜は、
厚さが10〜500μm、好ましくは20〜200μm
である。気孔率は40%〜85%,好ましくは45〜7
0%である。最大孔径は0.05μm〜5μm、好まし
くは0.1〜2μmである。厚さが10μm未満では、
薄すぎるために機械的特性が弱い。厚さが500μmを
越えると、厚すぎるためにイオンの透過性能が悪くな
る。気孔率が40%未満では、イオンの透過性能が悪く
なってしまう。気孔率が85%を越えると機械的特性が
弱くなる。最大孔径が0.05μm未満では、孔径が小
さすぎてイオンの透過性能が悪くなる。最大孔径が5μ
mを越えると機械的特性が低下する。
【0017】上記したように、本発明の電池用セパレー
タは、(a)分子量が100万以上の部分を10重量%
以上かつ分子量が10万以下の部分を5重量%以上含む
ポリエチレン、重量平均分子量が1万〜100万のポリ
プロピレン、有機液体及び無機微粉体を混合し、該ポリ
プロピレンの量はポリエチレン及びポリプロピレンの全
重量の5〜45重量%であり;(b)得られる混合物を
押出成形して膜を形成し;そして(c)有機液体及び無
機微粉体を該膜から抽出することにより製造することが
できる。
【0018】本発明の電池用セパレータの製造方法に用
いられるポリエチレン、ポリプロピレンとしては上に述
べたものが用いられ、もし望まれれば、上記した他のポ
リオレフィンを更に用いることができる。無機微粉体と
しては、シリカ、マイカ、タルク、酸化チタン、酸化ア
ルミニウム、硫酸バリウム、合成ゼオライトなどが挙げ
られ、シリカが好ましい。無機微粉体の粒径は0.00
5〜0.5μmが好ましい。
【0019】有機液体としては、ソリュビリティー パ
ラメター(solubility parameter、略してSP値)が
7.7〜10.0のものが用いられる。SP値は、ポリ
マーの溶媒に対する溶媒性を示す指標として用いられる
パラメータである(H. Burrelland B. Immerrut in "Po
lymer Handbook"、1966、Part IV, page 34)。
そのような有機液体の具体的な例としては、フタル酸ジ
エチル、フタル酸ジブチル、フタル酸ジオクチルなどの
フタル酸エステル、セバシン酸ジオクチルなどのセバシ
ン酸エステル、アジピン酸ジオクチルなどのアジピン酸
エステル、トリメリット酸トリオクチルなどのトリメリ
ット酸エステル、リン酸トリブチル、リン酸オクチルジ
フェニールなどのリン酸エステル、流動パラフィン等、
或いはそれらの混合物が挙げられる。これらのうち、フ
タル酸ジブチル、フタル酸ジオクチル、流動パラフィ
ン、或いはそれらの混合物が特に好ましい。
【0020】本発明の製造方法を次に詳しく説明する。
本発明の方法の工程(a)において、分子量が100万
以上の部分が10重量%以上でかつ分子量が10万以上
の部分が5重量%以上であるポリエチレン、重量平均分
子量が1万〜100万のポリプロピレン(該ポリエチレ
ンと該ポリプロピレンの合計重量に対して5〜45重量
%)、有機液体及び無機微粉体を、その合計重量に対し
て、該ポリエチレン及び該ポリプロピレンの合計量は1
0〜60重量%、好ましくは12〜50重量%であり、
無機微粉体の量は10〜50重量%、好ましくは15〜
35重量%であり、有機液体の量は30〜75重量%、
好ましくは40〜65重量%、となるような配合量で混
合する。
【0021】この時、ポリエチレンとポリプロピレンと
の合計量が10重量%未満では、機械的特性が弱く、成
形性も悪い。また、60重量%を越えると、気孔率が低
く透過性能に劣り好ましくない。無機微粉体の量が10
重量%未満では、混合物は粉末状或いは顆粒状となら
ず、押出成形機への投入が困難となる。また、50重量
%を越えると、押出成形時の流動性が悪く、かつ得られ
る成形品は脆く使用に耐えられない。有機液体の量は、
30重量%未満では、気孔形成に対する寄与率が低下
し、高い気孔率、高いイオン透過性能を持つ微多孔膜が
得られない。また、75重量%を越えると、成形が難し
く、機械的特性も弱い物しか得られず好ましくない。
【0022】本発明の方法の工程(a)では、基本的に
は、ポリエチレン、ポリプロピレン、無機微粉体、有機
液体の4つの成分が混合される。しかし、上記したよう
に、上記の特定の分子量分布を有するポリエチレン及び
特定の重量平均分子量を有するポリプロピレンの他に、
該ポリエチレン及び該ポリプロピレン以外のポリオレフ
ィンを添加混合することができる。そのような他のポリ
オレフィンの種類及び量については、セパレータを構成
する微多孔膜のマトリックスについて説明した通りであ
る。
【0023】更に、本発明の効果を大きく阻害しない範
囲で、もし望まれるならば、滑剤、酸化防止剤、紫外線
吸収剤、可塑剤、成形助剤などを添加することができ
る。上記した各成分の混合には、スーパーミキサー、リ
ボンブレンダー、V−ブレンダーなどの混合機による通
常の混合方法を用いることができる。この混合物は、押
出機、バンバリーミキサー、二本ロール、ニーダーなど
の溶触混練機により混練することができるが、工程
(b)における本発明方法に用いられる溶融成形方法と
しては、Tダイ法、インフレーション法、中空のダイス
を用いた押出成形、また混合物を直接押出機、ニーダー
ルーダーなどの混練・押出機能を有する装置で成形する
ことも可能である。
【0024】このようにして、工程(b)において厚さ
10〜500μmの膜が得られる。次に、工程(c)に
おいて、工程()で得られた膜から有機液体及び無機
液体を抽出する。この抽出は、まず有機液体を抽出し、
後、無機微粉体を抽出することが好ましい。膜中の
有機液体の抽出は、該有機液体の溶剤によって行う。抽
出に用いる溶剤としては、有機液体を溶解し得るもので
あり、目的の多孔膜のマトリックスとなるポリエチレン
及びポリプロピレンよりなるポリマー成分(場合によっ
てはその他のポリオレフィンを更に含む)を実質的に溶
解しないものが用いられる。そのような溶剤の例として
は、メタノール、アセトン、及び1、1、1−トリクロ
ロエタンなどのハロゲン化炭化水素が挙げられるが、ハ
ロゲン化炭化水素が特に好ましい。抽出は、回分法、向
流多段法などの一般的な抽出法により容易に行うことが
できる。有機液体の抽出が終わった半抽出微多孔膜は、
もし望まれるならば、溶剤の乾燥除去を行ってもよい。
【0025】次いで、無機微粉体の溶剤で無機微粉体の
抽出を行う。抽出は、回分法、向流多段法などの般的な
抽出法により容易に行うことができる。抽出に用いられ
る溶剤としては、水酸化ナトリウム、水酸化カリウムの
ようなアルカリ水溶液が好適に用いられる。その他、目
的の多孔膜のマトリックスとなるポリエチレン及びポリ
プロピレンよりなるポリマー成分(場合によってはその
他のポリオレフィンを更に含む)を実質的に溶解せず、
無機微粉体を溶解するものであれば、無機微粉体の溶剤
は何ら限定されるものではない。
【0026】また、孔径を変化させたり、気孔率を変え
るために、或いは強度を高めるために有機液体、無機微
粉体の一方または両方を抽出して得られる微多孔膜を一
軸または二軸に延伸を行うこともできる。有機液体およ
び無機微粉体の抽出を終了した微多孔膜中には有機液
体、無機微粉体が膜の性能を損なわない範囲で残存する
ことが許される。有機液体の微多孔膜中での許される残
存量は、膜の重量に対して、3重量%以下、好ましくは
2重量%以下であり、無機微粉体の微多孔膜中での許さ
れる残存量は、膜の重量に対して、3重量%以下、好ま
しくは2重量%以下である。
【0027】また、本発明の更に他の態様によれば、分
子量が1,000,000以上の部分を10重量%以上
かつ分子量が100,000以下の部分を5重量%以上
含むポリエチレン、重量平均分子量が10,000〜
1,000,000のポリプロピレン及び無機微粉体よ
りなり、該ポリプロピレンの量はポリエチレン及びポリ
プロピレンの全重量の5〜45重量%である微多孔膜か
ら、無機微粉体を抽出することを特徴とする有機電解液
を用いる電池用セパレータの製造方法が提供される。
【0028】前述したようにリチウム電池、特に最近急
速な伸びを示している渦巻型リチウム一次電池および二
次電池、或いは有機電解液を用いるその他の一次電池お
よび二次電池のセパレータとして、超高分子量ポリエチ
レン、高分子量ポリエチレン、ポリプロピレン、通常の
超高分子量ポリエチレンとポリプロピレンの混合物、ま
たは通常の超高分子量ポリエチレンと高分子量ポリエチ
レンの混合物のようなポリマーをマトリックスとするセ
パレータを用いた場合、安全性に問題がある。更に、超
高分子量ポリエチレン、高分子量ポリエチレン、または
超高分子量ポリエチレンと高分子量ポリエチレンの混合
物をマトリックスとするセパレータは、ポリエチレンの
融点である135〜140℃で溶融無孔化し、更に温度
を上昇させていくと約150℃で膜破れが発生する。ま
た、ポリプロピレンからなるセパレータは、ポリプロピ
レンの融点が165℃と高いため、膜が無孔化する温度
が高く、又約170℃になると膜破れが発生する。通常
の超高分子量ポリエチレンとポリプロピレンの混合物か
らなる微多孔膜は、無孔化する温度がポリプロピレンの
融点に近く約155℃で無孔化し、約170℃で膜が破
れるため、膜破れ温度と無孔化温度の差が小さい。それ
に対し、本発明の、特定の分子量を有するポリエチレン
および特定の重量平均分子量を有するポリプロピレンを
基本ポリマー成分とするマトリックスからなる微多孔膜
により構成される電池セパレータは、溶融無孔化する温
度が135〜140℃、膜破れが発生する温度が約17
0℃近くに達し、膜破れ温度と無孔化温度との差が30
〜35℃あり従来の電池セパレータに比較して非常に高
い安全性を有する。
【0029】本発明の電池セパレータは特に下記の優れ
た特性を有する。25℃において挾持固定された状態に
ある該セパレータを加熱処理した時、処理温度が135
℃以上の温度において、該セパレータの透気度が25℃
における透気度の少なくとも2倍以上となり、かつ膜破
れ温度と無孔化温度との差が少なくとも20℃以上ある
特性を有する。この膜破れ温度及び無孔化温度の評価方
法については、後記の安全性試験の項に記載する。
【0030】この特性は、本発明のセパレータを特にリ
チウム電池用セパレータに用いた場合、安全性の点で非
常に有用であり、本発明のセパレータはリチウム電池用
セパレータとして特に最適である。このように、本発明
のセパレータは、微細な孔からなる均質な三次元の多孔
構造を有していて、優れた安全性のみならず、耐薬品
性、優れた機械的特性および高い気孔率、高い透過性能
を備えており、リチウム電池、特に最近急速な伸びを示
している渦巻型リチウム一次電池および二次電池のみな
らず、有機電解液を用いるその他の一次電池および二次
電池のセパレータとして極めて有用である。
【0031】
【実施例】以下本発明を実施例により更に詳しく説明す
る。しかし、本発明はこれらの実施例に限定されるもの
ではない。なお、本発明のセパレータについての諸特性
は次の試験方法により評価した。 1.膜厚さ:ダイアルゲージにて読み取った(最少目盛
1μm) 2.最大孔径:ASTM E−128−61に準拠し
た。エタノール中でのバブルポイントより算出した。 3.気孔率: 気孔率=(1−100X/YZ)×10
0 [%] X:膜の重さ[g/dm2] Y:ポリマーの比重 Z:膜の厚さ[μm] 4.透気度: JIS−P−8117に準拠した。25
℃で測定した。 5.分子量: GPCにより測定した。
【0032】ポリエチン、ポリプロピレン或いはその
混合物の1,2,4−トリクロロベンゼン0.05%溶
液を140℃でWATERS Associates Co.,U.S.A
製の150C−GPCを用いて、インジェクション量5
00μlで、カラムはShodex GPC AT−807/SとTosoh
TSK-GEL GMH 6−HTを直列使用して測定した。分子量の
calibration はポリスチレンの標準資料を用いて行っ
た。ポリエチレンとポリプロピレンの混合物のそれぞれ
の分子量の測定はGPCの接続しPERKIN ELMER、U.S.A.
社製フーリエ変換赤外分光光度計(FT−IR)1760−
Xによりポリエチレンとポリプロピレンの吸収を分離し
て計測できる。特定の分子量部分の割合はGPCチャー
トの積分曲線より求めた。重量平均分子量はGPCより
求めた。
【0033】超高分子量ポリエチレンに関しては粘度平
均分子量の値を記載した。比較例2、6に示した様に粘
度平均分子量300万のポリエチレンはGPCでの重量
平均分子量が140万であった。しかし、分子量の分布
の仕方によりこの対応は変化する。本発明のセパレータ
はポリエチレンの分子量分布を特定のものにする事が必
要である。 6.ポリプロピレン量: ポリエチレンとポリプロピレン量の割合の測定はセパレ
ータをフィルム化してF−IRにより行った。 7.ポリエチレン粘度平均分子量:溶剤(デカリン)を
用い、測定温度135℃で測定し、粘度[η]から次式
により算出した。
【0034】 [η]=6.2×10-4Mv0.7 (Chiang の式) 8.ポリプロピレン粘度平均分子量:溶剤(テトラリ
ン)を用い、測定温度135℃で測定し、粘度[η]から
次式により算出した。 [η]=0.80×10-4Mv0.8 (Parrini の式) 9.安全性試験:100mm×100mmテフロンシー
ト(厚さ2mm)の内側を80mm×80mmくり抜き
枠を作り、枠に試験用サンプルをクリップで全周を固定
する。これを所定温度に設定されたギアオーブン中に3
0分間放置した後、試験用サンプルを取り出し、25℃
まで空冷する。その後、クリップを取り除き、該微多孔
膜の透気度を25℃雰囲気下で測定する。この時の透気
度が500sec/100cc・枚を超えるときのギア
オーブン温度を無孔化温度とした。また、膜の破れが認
められるようになる時のギアオーブン処理温度を膜破れ
温度とした。
【0035】
【実施例1】微粉シリカ13容量%(23.2重量%)
とジオクチルフタレート60容量%(53.6重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
3,000,000の超高分子量ポリエチレン9容量%
(7.8重量%)と重量平均分子量200,000のポ
リエチレン9容量%(7.8重量%)とのポリエチレン
混合物、及び粘度平均分子量400,000のポリプロ
ピレン9容量%(7.4重量%)を添加し、再度スーパ
ーミキサーで混合した。該混合物を30m/m二軸押出
機に450mm幅のTダイを取り付けたフィルム製造機
で膜厚さ100μmの膜状に成形した。成形された膜
は、1,1,1−トリクロロエタン中で5分間浸漬しジ
オクチルフタレートを抽出した後乾燥し、更に80℃の
20%苛性ソーダ中に30分間浸漬して微粉シリカを抽
出し、水洗した後乾燥した。得られた膜の特性を表1に
示す。
【0036】用いたポリエチレン混合物のGPC測定で
は、 であった。このポリエチレン混合物の分子量分布を図1
に示す。
【0037】又、用いたポリプロピレンのGPC測定で
は、重量平均分子量が51万であり であった。このポリプロピレンの分子量分布を図2に示
す。
【0038】
【実施例2】実施例1で得られた膜を120℃に加熱さ
れたロール延伸機により縦方向に3倍延伸し続いて12
5℃の雰囲気で5秒間熱処理を行った。得られた膜の特
性を表1に示す。この膜の室温での広角X線解折を行な
った。
【0039】ポリエチレンの(110)及びポリプロピ
レンの(110)を用いて配向度を求めたところ両者の
配向度は等しく92%であった。次に高温広角X線解折
を行なった。140℃での写真ではポリエチレン(10
0)にアモルファスハローと配向した結晶の回折が混在
しているのが観測された。
【0040】又、ポリプロピレン(110)はこの時点
で配向性が低下していた。145℃ではポリエチレンの
アモルファスハローとポリプロピレンの無配向な回折像
が観測できた。以上の結果より室温ではポリエチレンと
ポリプロピレンは延伸方向に一軸配向しているが、14
0℃では1部ポリエチレンが融解してはいるが、依然と
して配向した結晶が残っており、ポリプロピレンも配向
性は低下しているが結晶として存在している事が判っ
た。
【0041】145℃ではポリプロピレンの結晶は完全
に無配向になっている事が判った。これらによりポリプ
ロピレンはセパレータの母材であるポリエチレン中に非
常に微細に分散液した島構造を取っていると思われる。
【0042】
【実施例3】微粉シリカ13容量%(23.2重量%)
とジオクチルフタレート60容量%(53.6重量%)
をスーパーミキサーで混合し、これに粘度平均分子量約
1,000,000の超高分子量ポリエチレン9容量%
(7.8重量%)と重量平均分子量100,000のポ
リエチレン9容量%(7.8重量%)とのポリエチレン
混合物、及び粘度平均分子量約160,000のポリプ
ロピレン9容量%(7.4重量%)を添加した他は、実
施例1と同様に行った。得られた膜を120℃に加熱さ
れたロール延伸機により縦方向に3倍に延伸し続いて1
25℃の雰囲気で5秒間熱処理を行った。得られた膜の
特性を表1に示す。
【0043】用いたポリエチレン混合物のGPC測定で
であった。又、用いたポリプロピレンはGPCにより重
量平均分子量が24万であり であった。このポリプロピレンの分子量分布を図2に示
す。
【0044】次に透過型電子顕微鏡(TEM)の観察を
行なった。試料を4酸化ルテニウム蒸気染色(1%水溶
液)を施した後、メタクリル樹脂に包埋(硬化条件60
℃×24hr)してウルトラミクロトームで60〜80
nm程度の超薄切片を作成し、カーボン膜を張った検鏡
用グリッドに載せクロロホルムにて包埋樹脂を溶解し、
カーボンを6nm程度コーティングして検鏡試料とし
た。透過型電子顕微鏡はHITACHI H−500を
使用し加速電圧100kVで観察した。得られた顕微鏡
写真を図3に示す。図3のイラストレーションを図4に
示す。図4において、6は空孔を示し、7は結晶粒を示
す。図3の顕微鏡写真において、非晶部が染色されて黒
く見える。図3及び図4において、棒上のものはポリエ
チレンかポリプロピレンか不明であるが結晶粒と思われ
る(長軸100nm短軸5nm程度)。150nm以上
の大きなドメインは観測できずポリエチレンとポリプロ
ピレンの混合は非常に微細である事が判った。尚、上記
の通り、図3及び図4において、微細構造を持たない白
い部分(図4の1で示したところ)は空孔である。
【0045】
【実施例4】微粉シリカ13容量%(23.1重量%)
とジオクチルフタレート60容量%(53.6重量%)
をスーパーミキサーで混合し、これに実施例1で用いた
粘度平均分子量3,000,000の超高分子量ポリエ
チレンを12容量%(10.4重量%)と実施例1で用
いた重量平均分子量200,000のポリエチレンを1
2容量%(10.4重量%)とのポリエチレン混合物、
及び粘度平均分子量400,000のポリプロピレン3
容量%(2.5重量%)を添加した他は、実施例1と同
様に行った。得られた膜を120℃に加熱されたロール
延伸機により縦方向に3倍に延伸し続いて125℃の雰
囲気で5秒間熱処理を行った。得られた膜の特性を表1
に示す。
【0046】
【実施例5】微粉シリカ12容量%(21.5重量%)
とジオクチルフタレート62容量%(58.9重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
1,000,000の超高分子量ポリエチレン16容量
%(14重量%)と重量平均分子量100,000のポ
リエチレン5容量%(4.4重量%)との混合物、及び
粘度平均分子量160,000のポリプロピレン5容量
%(4.1重量%)を添加した他は、実施例1と同様に
行った。得られた膜を120℃に加熱されたロール延伸
機により縦方向に3倍に延伸し続いて125℃の雰囲気
で5秒間熱処理を行った。得られた膜の特性を表1に示
す。ポリエチレン混合物のGPC測定では であった。
【0047】ポリプロピレンのGPC測定結果は、実施
例3と同じであった。
【0048】
【実施例6】微粉シリカ13容量%(25.3重量%)
とジオクチルフタレート60容量%(54.1重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
3,000,000の超高分子量ポリエチレン14容量
%(12.3重量%)と粘度平均分子量1,000,0
00の超高分子量ポリエチレン2容量%(1.8重量
%)と重量平均分子量100,000のポリエチレン5
容量%(4.4重量%)とのポリエチレン混合物、及び
粘度平均分子量160,000のポリプロピレン5容量
%(4.1重量%)を添加した他は、実施例1と同様に
行った。得られた膜を120℃に加熱されたロール延伸
機により縦方向に3倍に延伸し、続いて125℃の雰囲
気で5秒間熱処理を行った。得られた膜の特性を表1に
示す。
【0049】ポリエチレン混合物のGPC測定では であった。
【0050】ポリプロピレンのGPC測定結果は実施例
3と同じであった。
【0051】
【実施例7】微粉シリカ13容量%(23.2重量%)
とジオクチルフタレート60容量%)53.6重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
3,000,000の超高分子量ポリエチレン9容量%
(7.8重量%)と重量平均分子量200,000のポ
リエチレン9容量%(7.8重量%)とのポリエチレン
混合物、及び粘度平均分子量400,000のポリプロ
ピレン9容量%(7.4重量%)を添加し、再度スーパ
ーミキサーで混合した。該混合物を30m/m二軸押出
機に450mm幅のTダイを取り付けたフィルム製造機
で膜厚さ200μmの膜状に成形した。成形された膜
は、1,1,1−トリクロロエタン中で5分間浸漬しジ
オクチルフタレートを抽出した後乾燥し、更に80℃の
20%苛性ソーダ中に30分浸漬し、水洗した後乾燥し
た。120℃に加熱されたロール延伸機により縦方向に
3倍に延伸し、続いて125℃雰囲気で5秒間熱処理を
行い、さらに120℃熱されたテンター式延伸機により
横方向に2倍に延伸した。得られた膜の特性を表1に示
す。
【0052】用いたポリエチレン混合物及びポリプロピ
レンのGPC測定結果は実施例1と同じであった。
【0053】
【実施例8】微粉シリカ20重量%とジオクチルフタレ
ート56重量%をスーパーミキサーで混合し、これにG
PCで求めた重量平均分子量650,000の単一の高
密度ポリエチレン21.6重量%とGPCで求めた重量
平均分子量510,000のポリプロピレン2.4重量
%を添加し、再度スーパーミキサーで混合した。該混合
物を実施例1と同様にして微多孔膜を得た。得られた微
多孔膜を120℃に加熱されたロール延伸機により縦方
向に3倍に延伸し、続いて125℃の雰囲気で5秒間熱
処理を行なった。得られたセパレータの特性を表1に示
す。
【0054】用いたポリエチレンのGPC測定では であった。
【0055】又、用いたポリプロピレンのGPC測定結
果は実施例1と同じであった。
【0056】
【実施例9】高密度ポリエチレンの量を22.8重量
%、ポリプロピレンの量を1.2重量%にした以外は実
施例8と同じにしてセパレータを得た。特性を表1に示
す。
【0057】
【実施例10】GPCで求めた重量平均分子量が 1, 1
00,000の単一のポリエチレンを用いた以外は実施
例8と同様にしてセパレータを作った。得られたセパレ
ータの特性を表1に示す。用いたポリエチレンのGPC
測定では であった。
【0058】
【実施例11】GPCで求めた重量平均分子量が49
0,000の単一のポリエチレンを用いた以外は実施例
8と同様にしてセパレータを作った。得られたセパレー
タの特性を表1に示す。用いたポリエチレンのGPC測
定より であった。このポリエチレンの分子量分布を図1に示
す。
【0059】
【比較例1】微粉シリカ13容量%(23.1重量%)
とジオクチルフタレート60容量%(53.6重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
3,000,000の超高分子量ポリエチレン13.5
容量%(11.7重量%)と重量平均分子量200,0
00のポリエチレン13.5容量%(11.7重量%)
とのポリエチレン混合物を用い、且つポリプロピレンは
用いなかった他は、実施例1と同様に微多孔膜を得た。
得られた微多孔膜を120℃に加熱されたロール延伸機
により縦方向に3倍に延伸し、続いて125℃の雰囲気
で5秒間熱処理を行った。得られた微多孔膜の特性を表
2に示す。ポリエチレン混合物のGPC測定結果では実
施例1と同じであったが、ポリプロピレンが入っていな
いために膜破れ温度が低かった。
【0060】又、成膜時に押出圧が高くなると共に押出
し量の変動が起き、均一な膜を得にくかった。
【0061】
【比較例2】微粉シリカ13容量%(23.2重量%)
とジオクチルフタレート60容量%(53.9重量%)
をスーパーミキサーで混合し、これに粘度平均分子量
3,000,000(重量平均分子量は1,400,0
00)の超高分子量ポリエチレン13.5容量%(1
1.8重量%)、粘度平均分子量400,000のポリ
プロピレン13.5容量%(11.1重量%)を添加し
た他は、実施例1と同様にして微多孔膜を得た。得られ
た微多孔膜を120℃に加熱されたロ−ル延伸機により
縦方向に3倍に延伸したが膜破れが発生しサンプルが得
られなかった。
【0062】用いた超高分子量ポリエチレンのGPC測
定では であって本発明に規定されているポリエチレンの分子量
分布からはずれており、又、ポリプロピレンの割合が4
8.5重量%と本発明における上限値である45重量%
を越えたため機械的強度が弱いものとなった。
【0063】
【比較例3】微粉シリカ13容量%(23.2重量%)
とジオクチルフタレート60容量%(53.9重量%)
をスーパーミキサーで混合し、これに重量平均分子量2
00,000のポリエチレン13.5容量%(11.8
重量%)、粘度平均分子量400,000のポリプロピ
レン13.5容量%(11.1重量%)を添加した他
は、実施例1と同様にして微多孔膜を得た。得られた微
多孔膜を120℃に加熱されたロール延伸機により縦方
向に3倍に延伸し、続いて125℃の雰囲気で5秒間熱
処理を行った。得られた膜の特性を表2に示す。
【0064】このポリエチレンをGPC測定した所 であり、分子量100万以上の高分子量部分の割合が少
なく又、ポリプロピレンの重量分率が48.5重量%と
大きいため強度が弱かった。又、無孔化温度はポリプロ
ピレンの分率が高いために高く、安全性に劣るセパレー
タとなった。
【0065】
【比較例4】ポリプロピレン製微多孔膜として市販され
ているジュラガード2500("Duragard"、日本国、ポ
リプラスチックス K.K.製)の特性を表2に示す。安全性
試験は、無孔化せず膜が破れてしまった。
【0066】
【比較例5】GPCで求めた重量平均分子量が200,
000の単一のポリエチレンと重量平均分子量510,
000のポリプロピレンを用いて実施例8と同様な処理
を行なった。成膜時、膜に大きな孔が開き、均一な膜が
得られず延伸もできなかった。
【0067】
【比較例6】GPCで求めた粘度平均分子量(3,00
0,000)(重量平均分子量は1,400,000)
の単一のポリエチレンを用いた以外は実施例8と同様に
してセパレータを作った。ここで用いてポリエチレンの
分子量分布を図1に示す。得られたセパレータの特性を
表2に示す。ポリエチレンの分子量分布において、本発
明に規定するポリエチレンの分子量10万以下の低分子
量の部分の量が少ないのが理由と考えられるが、無孔化
温度が高い。
【0068】
【表1】
【0069】
【表2】
【0070】
【発明の効果】本発明の電池セパレータは、優れた安全
性のみならず、優れた耐薬品性、機械特性及びイオン透
過性能を有し、リチウム電池、特に最近急速な伸びを見
せている渦巻型リチウム一次電池及び二次電池、或いは
有機電解液を用いるその他の一次電池及び二次電池に有
用である。
【図面の簡単な説明】
【図1】図1は、実施例11及び実施例1及び比較例6
で用いたポリエチレン(実施例1ではポリエチレン混合
物)の分子量分布(積分分布v.対数分子量)を示す。
【図2】図2は、実施例3及び実施例1で用いたポリプ
ロピレンの分子量分布(積分分布v.対数分子量)を示
す。
【図3】図3は、実施例3で得たセパレータ膜の透過型
電子顕微鏡(TEM)写真を示す。
【図4】図4は、図3の顕微鏡写真のイラストレーショ
ンである。
【符号の説明】
1 実施例11のポリエチレン 2 実施例1のポリエチレン 3 比較例6のポリエチレン 4 実施例3のポリプロピレン 5 実施例1のポリプロピレン 6 空孔 7 結晶粒
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B29K 23:00 B29K 23:00 105:04 105:04 B29L 7:00 B29L 7:00 31:36 31:36 (58)調査した分野(Int.Cl.7,DB名) H01M 2/16 B29C 47/14 C08J 9/26 101 C08J 9/26 CES C08L 23/06 B29K 23:00 B29K 105:04 B29L 7:00 B29L 31:36

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 有機電解液を用いる電池用セパレータに
    して、分子量が1,000,000以上の部分を10重
    量%以上かつ分子量が100,000以下の部分を5重
    量%以上含むポリエチレン及び重量平均分子量が10,
    000〜1,000,000のポリプロピレンを包含す
    るマトリックスよりなる微多孔膜で構成され、該ポリプ
    ロピレンの量はポリエチレン及びポリプロピレンの全重
    量の5〜45重量%であり、該微多孔膜は、厚さが10
    〜500μm、気孔率が40〜85%、最大孔径が0.
    05〜5μmであり、膜破れ温度と無孔化温度との差が
    28〜40℃である事を特徴とするセパレータ。
  2. 【請求項2】 有機電解液を用いる電池用セパレータの
    製造方法にして、(a)分子量が1,000,000以
    上の部分を10重量%以上かつ分子量が100,000
    以下の部分を5重量%以上含むポリエチレン、重量平均
    分子量が10,000〜1,000,000のポリプロ
    ピレン、有機液体及び無機微粉体を混合し、該ポリプロ
    ピレンの量はポリエチレン及びポリプロピレンの全重量
    の5〜45重量%であり、 (b)得られる混合物を押出成形して膜を形成し、そし
    て (c)有機液体及び無機微粉体を膜から抽出する、 ことを包含する製造方法。
JP17575092A 1991-07-05 1992-07-02 有機電解液を用いる電池用セパレータ及びその製造方法 Expired - Lifetime JP3305006B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17575092A JP3305006B2 (ja) 1991-07-05 1992-07-02 有機電解液を用いる電池用セパレータ及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-165866 1991-07-05
JP16586691 1991-07-05
JP17575092A JP3305006B2 (ja) 1991-07-05 1992-07-02 有機電解液を用いる電池用セパレータ及びその製造方法

Publications (2)

Publication Number Publication Date
JPH05234578A JPH05234578A (ja) 1993-09-10
JP3305006B2 true JP3305006B2 (ja) 2002-07-22

Family

ID=26490435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17575092A Expired - Lifetime JP3305006B2 (ja) 1991-07-05 1992-07-02 有機電解液を用いる電池用セパレータ及びその製造方法

Country Status (1)

Country Link
JP (1) JP3305006B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455429B2 (en) 2008-03-05 2016-09-27 Sony Corporation Non-aqueous electrolyte secondary battery

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591539A (en) * 1993-04-13 1997-01-07 Pall Corporation Electrolytically conductive battery separator polymeric film
US5492781A (en) * 1994-01-18 1996-02-20 Pall Corporation Battery separators
JP4812919B2 (ja) * 1999-09-24 2011-11-09 日本板硝子株式会社 非水電解液電池用セパレータ
JP4931163B2 (ja) * 2001-04-24 2012-05-16 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP5005140B2 (ja) * 2001-09-18 2012-08-22 株式会社Gsユアサ 非水電解質二次電池
CN100564433C (zh) 2002-08-28 2009-12-02 旭化成电子材料株式会社 聚烯烃制微孔膜及其评价方法
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
JP2005200578A (ja) * 2004-01-16 2005-07-28 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
JP5046640B2 (ja) 2004-05-20 2012-10-10 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
US7700182B2 (en) * 2006-05-15 2010-04-20 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, and battery separator
JP5235324B2 (ja) * 2007-04-20 2013-07-10 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP5325405B2 (ja) * 2007-10-09 2013-10-23 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
JP5572334B2 (ja) * 2008-05-30 2014-08-13 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
CN102124601B (zh) 2008-06-16 2014-02-12 波利普拉斯电池有限公司 含水锂/空气电池组电池
US8349957B2 (en) 2008-11-19 2013-01-08 Mitsui Chemicals, Inc. Polyolefin resin composition and uses thereof
JP5629542B2 (ja) * 2010-10-04 2014-11-19 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
KR102009237B1 (ko) 2011-12-28 2019-08-09 도레이 카부시키가이샤 폴리올레핀 미다공막 및 그 제조 방법
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
JP5942134B2 (ja) * 2013-02-04 2016-06-29 旭化成株式会社 ポリオレフィン製微多孔膜
JP6443333B2 (ja) 2013-05-31 2018-12-26 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2014192861A1 (ja) 2013-05-31 2014-12-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜およびその製造方法
HUE037883T2 (hu) * 2013-05-31 2018-09-28 Toray Industries Többrétegû, mikroporózus poliolefin membrán, és annak elõállítási eljárása
JP7298246B2 (ja) 2019-03-29 2023-06-27 Ube株式会社 ポリオレフィン多孔質フィルム、蓄電デバイス用セパレータ、および蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455429B2 (en) 2008-03-05 2016-09-27 Sony Corporation Non-aqueous electrolyte secondary battery
US9859590B2 (en) 2008-03-05 2018-01-02 Sony Corporation Battery

Also Published As

Publication number Publication date
JPH05234578A (ja) 1993-09-10

Similar Documents

Publication Publication Date Title
JP3305006B2 (ja) 有機電解液を用いる電池用セパレータ及びその製造方法
US5641565A (en) Separator for a battery using an organic electrolytic solution and method for preparing the same
EP0547237B1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP4494637B2 (ja) ポリオレフィン微多孔膜及びその製造方法
JP4997278B2 (ja) ポリエチレン微多孔膜及びその製造方法
JP4397121B2 (ja) ポリオレフィン微多孔膜
TWI418582B (zh) 微多孔聚烯烴膜、其製法、電池隔離材及電池
TWI428171B (zh) 微多孔聚烯烴膜、其製法、電池隔離材及電池
TWI393285B (zh) 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池
US7635513B1 (en) Heat resistant microporous film
JPWO2007052663A1 (ja) ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP4234392B2 (ja) 微多孔膜及びその製造方法並びに用途
JP3549290B2 (ja) ポリオレフィン微多孔膜及びその製造方法
KR101354708B1 (ko) 초고분자량 폴리에틸렌을 포함하는 리튬이차전지용다성분계 분리막의 제조방법 및 이로부터 제조된리튬이차전지용 다성분계 분리막
JPH10298325A (ja) ポリオレフィン微多孔膜及びその製造方法
JPH11269290A (ja) ポリオレフィン微多孔膜
JPH0693130A (ja) ポリオレフィン微孔性多孔膜の製造方法
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP2006111712A (ja) ポリオレフィン微多孔膜
JPH10296839A (ja) ポリオレフィン微多孔膜の製造方法
JPH06336535A (ja) ポリオレフィン微孔性多孔膜の製造方法
JPH09259858A (ja) セパレーター用ポリエチレン微多孔膜及びその製造方法
JP3967421B2 (ja) ポリオレフィン微多孔膜の製造方法
JP2000248088A (ja) ポリオレフィン微多孔膜及びその製造方法
JP2003138050A (ja) ポリオレフィン製微多孔膜

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11