JP3163111U - Capillary structure of heat sink - Google Patents

Capillary structure of heat sink Download PDF

Info

Publication number
JP3163111U
JP3163111U JP2010004808U JP2010004808U JP3163111U JP 3163111 U JP3163111 U JP 3163111U JP 2010004808 U JP2010004808 U JP 2010004808U JP 2010004808 U JP2010004808 U JP 2010004808U JP 3163111 U JP3163111 U JP 3163111U
Authority
JP
Japan
Prior art keywords
capillary
capillary layer
heat sink
layer
capillary structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004808U
Other languages
Japanese (ja)
Inventor
黄▲イク▼博
郭東榮
Original Assignee
昆山巨仲電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山巨仲電子有限公司 filed Critical 昆山巨仲電子有限公司
Priority to JP2010004808U priority Critical patent/JP3163111U/en
Application granted granted Critical
Publication of JP3163111U publication Critical patent/JP3163111U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】放熱板の温度下げ効率を向上可能な放熱板の毛細構造を提供する。【解決手段】本放熱板の毛細構造は、主に、2枚の板本体100を互いに対応して結合することにより収容空間を形成し、該収容空間内に少なくとも一つの第1毛細層210と少なくとも一つの第2毛細層220とが設けられ、第1毛細層と第2毛細層とが互いに堆積されている。【選択図】図1AA heat sink capillary structure capable of improving the temperature lowering efficiency of a heat sink is provided. The heat dissipation plate has a capillary structure in which an accommodation space is formed by coupling two plate bodies 100 correspondingly to each other, and at least one first capillary layer 210 is formed in the accommodation space. At least one second capillary layer 220 is provided, and the first capillary layer and the second capillary layer are deposited on each other. [Selection] Figure 1A

Description

本考案は、放熱板の毛細構造に係り、特に、電子製品に適応可能な放熱板の毛細構造に関るものである。   The present invention relates to a heat sink capillary structure, and more particularly to a heat sink capillary structure applicable to electronic products.

現在、一般の電子製品は、長時間に使うと熱量が発生し易くなり、その解決方法は、主に、放熱板を付けて放熱させる方法を採っており、放熱板は、高い熱伝導率、軽量、構造簡単等の特性を備え、さらに、大量の熱量を伝達しても電力を消費しない利点も備えている。   Currently, general electronic products tend to generate heat when used for a long time, and the solution is mainly to dissipate heat by attaching a heat sink, which has a high thermal conductivity, It has characteristics such as light weight and simple structure, and further has the advantage of not consuming electric power even if a large amount of heat is transmitted.

従来の放熱板の毛細構造は、主に、板本体を含み、板本体の内部に真空チャンバが形成され、真空チャンバに毛細組織が設けられ且つ工作流体が充填され、前記板本体の一側にシールチューブ(また、閉管や、排気管または充填排気管とも称する)が接続され、シールチューブの一端を前記板本体に接続するとともに内部の真空チャンバに互いに連通することにより、シールチューブを介して放熱板の内部(すなわち、真空チャンバ)に工作流体を外部から注入するとともに、排気及び真空作業を行ない、電子製品の使用中に発生した熱量を放熱できる。   The conventional heat sink capillary structure mainly includes a plate main body, a vacuum chamber is formed inside the plate main body, a capillary tissue is provided in the vacuum chamber, and a working fluid is filled, on one side of the plate main body. A seal tube (also referred to as a closed tube, an exhaust pipe or a filling exhaust pipe) is connected, and one end of the seal tube is connected to the plate body and communicated with the internal vacuum chamber, thereby radiating heat through the seal tube. In addition to injecting a working fluid from the outside into the inside of the plate (ie, the vacuum chamber), exhaust and vacuum operations can be performed to dissipate heat generated during use of the electronic product.

本考案の主な目的は、放熱板の温度下げ効率を向上可能な放熱板の毛細構造を提供することにある。   The main object of the present invention is to provide a heat sink capillary structure capable of improving the temperature lowering efficiency of the heat sink.

前記目的を達成するため、本考案に係る放熱板の毛細構造は、互いに結合して収容空間を形成する2枚の板本体と、前記収容空間に設けられた少なくとも一つの第1毛細層と、前記収容空間に設けられ、前記第1毛細層と互いに堆積された少なくとも一つの第2毛細層とを含む。   In order to achieve the above-described object, the capillary structure of the heat sink according to the present invention includes two plate bodies that are coupled to each other to form a storage space, and at least one first capillary layer provided in the storage space; It is provided in the accommodation space and includes the first capillary layer and at least one second capillary layer deposited on each other.

本考案は、蒸気の拡散効率を増加し、工作流体の均一配布を促進し、温度下げ効率を向上させることができて、実用性、新規性、進歩性及び便利性を備えている。   The present invention increases the diffusion efficiency of steam, promotes uniform distribution of the working fluid, improves the temperature reduction efficiency, and has practicality, novelty, inventive step and convenience.

本考案の特徴、特点及び技術内容をさらに深く了解を得るため、以下の本考案に係る詳細説明及び添付図面を参照すれば得られるが、前記添付図面は参考や説明のみ提供され、本考案を局限するものではない。   In order to obtain a deeper understanding of the features, features, and technical contents of the present invention, reference can be made to the following detailed description and the accompanying drawings of the present invention. It is not limited.

図1Aは、本考案に係る放熱板の毛細構造の第1実施例を示す分解斜視図である。FIG. 1A is an exploded perspective view showing a first embodiment of a capillary structure of a heat sink according to the present invention. 図1Bは、本考案に係る放熱板の毛細構造の第1実施例の2枚の板本体の組み合いを示す図である。FIG. 1B is a view showing a combination of two plate bodies of the first embodiment of the heat sink capillary structure according to the present invention. 図1Cは、本考案に係る放熱板の毛細構造の第1実施例を示す斜視組合図である。FIG. 1C is a perspective combination view showing a first embodiment of the capillary structure of the heat sink according to the present invention. 図1Dは、図1CのA−A’線の断面図である。1D is a cross-sectional view taken along line A-A ′ of FIG. 1C. 図2Aは、本考案に係る放熱板の毛細構造の第2実施例を示す分解斜視図である。FIG. 2A is an exploded perspective view showing a second embodiment of the capillary structure of the heat sink according to the present invention. 図2Bは、本考案に係る放熱板の毛細構造の第2実施例の第1毛細層と第2毛細層の堆積を示す図である。FIG. 2B is a diagram illustrating the deposition of the first capillary layer and the second capillary layer in the second embodiment of the capillary structure of the heat sink according to the present invention. 図2Cは、本考案に係る放熱板の毛細構造の第2実施例を示す斜視組合図である。FIG. 2C is a perspective combination view showing a second embodiment of the capillary structure of the heat sink according to the present invention. 図2Dは、図2CのB−B’線の断面図である。2D is a cross-sectional view taken along line B-B ′ of FIG. 2C. 図3は、本考案に係る放熱板の毛細構造の第3実施例を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a third embodiment of the capillary structure of the heat sink according to the present invention. 図4は、本考案に係る放熱板の毛細構造の第4実施例を示す分解斜視図である。FIG. 4 is an exploded perspective view showing a fourth embodiment of the heat sink capillary structure according to the present invention.

図1A〜図1Dは、それぞれ、本考案に係る放熱板の毛細構造の第1実施例を示す分解斜視図、2枚の板本体の組み合いを示す図、斜視組合図及びその断面図である。
図1A〜図1Dに示すように、放熱板の毛細構造は、2枚の板本体100と、シールチューブ110と、少なくとも一つの第1毛細層210と、少なくとも一つの第2毛細層220とを備え、熱源温度を下げ、熱量を効率的に伝導し、温度下げ効率を向上させる効果に達する。
1A to 1D are an exploded perspective view showing a first embodiment of a heat sink capillary structure according to the present invention, a view showing a combination of two plate bodies, a perspective combination view, and a sectional view thereof, respectively.
As shown in FIGS. 1A to 1D, the capillary structure of the heat sink includes two plate bodies 100, a seal tube 110, at least one first capillary layer 210, and at least one second capillary layer 220. The heat source temperature is lowered, the amount of heat is efficiently conducted, and the temperature reduction efficiency is improved.

2枚の板本体100は、互いに対応して結合するとともに2枚の板本体100の間に収容空間101を形成し、実際の使用時に、2枚の板本体100うちの一方に凹溝102を設け、或いは、2枚の板本体100の両方に凹溝102を設けることで、2枚の板本体100が結合された後に、真空状態となりかつ工作流体のある収容空間101が形成される。2枚の板本体100の結合方法は、銅ろうまたは銀ろう高温ろうつけ法(blazing)、拡散接合(diffusion bounding)、高温溶接(welding)などを採用すれば良い。   The two plate main bodies 100 are coupled to each other and form a receiving space 101 between the two plate main bodies 100, and a concave groove 102 is formed in one of the two plate main bodies 100 in actual use. By providing the concave grooves 102 in both of the two plate main bodies 100, after the two plate main bodies 100 are coupled, a storage space 101 containing a working fluid is formed in a vacuum state. The bonding method of the two plate bodies 100 may be copper brazing or silver brazing, high temperature brazing, diffusion bounding, high temperature welding, or the like.

シールチューブ110(中空チューブ)は、2枚の板本体100の何れか一方の側辺または何れか一方の角隅に設けられ、シールチューブ110の一端が収容空間101に連通され、シールチューブ110により収容空間101に工作流体を外部から注入し、工作流体の両相変化が2枚の板本体100内の第1毛細層210と第2毛細層220との間での循環により、熱源温度を下げ、及び熱量を効率的に伝導し放熱させる効果に達する。   The seal tube 110 (hollow tube) is provided on one side or any one corner of the two plate bodies 100, and one end of the seal tube 110 is communicated with the accommodation space 101. The working fluid is injected into the housing space 101 from the outside, and both phase changes of the working fluid are circulated between the first capillary layer 210 and the second capillary layer 220 in the two plate bodies 100 to lower the heat source temperature. And the effect of efficiently conducting heat and dissipating heat.

各第1毛細層210及び各第2毛細層220が収容空間101に設けられ、第2毛細層220と第1毛細層210とが互いに堆積され、第1毛細層210と第2毛細層220とが互いに堆積された後の高さは収容空間101と同じであり、第1毛細層210及び第2毛細層220は金属綱であり(或いは、第2毛細層220は粉末(例えば、金属粉末)を焼結して形成され)、第1毛細層210の厚さが第2毛細層220の厚さよりも大きく、第1毛細層210の綱目数が第2毛細層220の綱目数より少ない(すなわち、第1毛細層210が粗毛細層と呼ばれ、第2毛細層220が精毛細層と呼ばれる)。   Each first capillary layer 210 and each second capillary layer 220 are provided in the accommodation space 101, and the second capillary layer 220 and the first capillary layer 210 are deposited on each other, and the first capillary layer 210 and the second capillary layer 220 are The height of the first capillary layer 210 and the second capillary layer 220 is a metal rope (or the second capillary layer 220 is a powder (for example, a metal powder). The first capillary layer 210 is larger in thickness than the second capillary layer 220, and the number of meshes of the first capillary layer 210 is less than the number of meshes of the second capillary layer 220 (ie, The first capillary layer 210 is called the coarse capillary layer, and the second capillary layer 220 is called the fine capillary layer).

本実施例では、2枚の板本体100と、第1毛細層210と、第2毛細層220とを提供する。2枚の板本体100うちの一方に凹溝102が設けられ、2枚の板本体100が互いに対応して結合された後に収容空間101が形成されている。シールチューブ11が2枚の板本体100の一方の角隅に設けられ、シールチューブ11の一端が収容空間101に連通され、第1毛細層210と第2毛細層220とが収容空間101内に設けられ、第2毛細層220が第1毛細層210の下方に堆積され、第1毛細層210及び第2毛細層220の形状が板本体100の凹溝102に対応し、第1毛細層210と第2毛細層220とが互いに堆積された後の高さは収容空間101と同じであり、収容空間101に完全に充填され、その支持性が向上する。さらに、シールチューブ110により2枚の板本体100内に工作流体(例えば、水)を外部から注入し、工作流体の両相変化及び2枚の板本体100内の毛細構造に循環により、熱源温度を下げ、及び熱量を効率的に伝導するとともに、工作流体が両相変化(例えば、水、水蒸気)を行なうときに、蒸気状態の工作流体(例えば、水蒸気)を第1毛細層210により上方の板本体100に拡散させ、その蒸気の拡散効率を向上し、液体状態の工作流体(例えば、水)を第2毛細層220により下方の板本体100に均一に配布させることによって、工作流体の均一配布を促進し、その温度下げ効率を向上させる。   In the present embodiment, two plate bodies 100, a first capillary layer 210, and a second capillary layer 220 are provided. A concave groove 102 is provided in one of the two plate main bodies 100, and the accommodation space 101 is formed after the two plate main bodies 100 are coupled to each other. The seal tube 11 is provided at one corner of the two plate bodies 100, one end of the seal tube 11 is communicated with the accommodation space 101, and the first capillary layer 210 and the second capillary layer 220 are in the accommodation space 101. The second capillary layer 220 is deposited below the first capillary layer 210, and the shapes of the first capillary layer 210 and the second capillary layer 220 correspond to the concave grooves 102 of the plate body 100, and the first capillary layer 210 is provided. The height after the second capillary layer 220 and the second capillary layer 220 are deposited is the same as that of the receiving space 101, so that the receiving space 101 is completely filled and its supportability is improved. Further, the working fluid (for example, water) is injected from the outside into the two plate main bodies 100 by the seal tube 110, and the heat source temperature is changed by circulating both phases of the working fluid and the capillary structure in the two plate main bodies 100. When the working fluid undergoes both phase changes (for example, water and water vapor), the working fluid in the vapor state (for example, water vapor) is moved upward by the first capillary layer 210. Diffusion to the plate body 100 improves the diffusion efficiency of the vapor, and distributes the working fluid in a liquid state (for example, water) uniformly to the lower plate body 100 by the second capillary layer 220, thereby making the working fluid uniform. Promote distribution and improve its temperature reduction efficiency.

(第2実施例)
図2A〜図2Dは、それぞれ、本考案に係る放熱板の毛細構造の第2実施例を示す分解斜視図、体積を示す図、斜視組合図及びその断面図である。
図2A〜図2Dに示すように、本実施例は第1実施例と同じであり、その主な違いは、第2毛細層220の形状が板本体100の凹溝102に対応し、第1毛細層210と第2毛細層220とが互いに堆積された後の高さは収容空間101と同じであり、第1毛細層210の形状は、任意形状(例えば、T字状)であり、第1毛細層210の周縁に切り欠き211が形成され、第2毛細層220が第1毛細層210の下方に堆積されたときに、蒸気状態の工作流体(例えば、水蒸気)が切り欠き211に快速に通過し、ひいて、その温度下げ効率を向上させる点である。
(Second embodiment)
2A to 2D are an exploded perspective view, a volume diagram, a perspective combination diagram, and a cross-sectional view showing a second embodiment of the heat sink capillary structure according to the present invention, respectively.
As shown in FIGS. 2A to 2D, this embodiment is the same as the first embodiment, and the main difference is that the shape of the second capillary layer 220 corresponds to the concave groove 102 of the plate body 100, and the first embodiment The height after the capillary layer 210 and the second capillary layer 220 are deposited on each other is the same as that of the accommodating space 101, and the shape of the first capillary layer 210 is an arbitrary shape (for example, a T-shape). When the notch 211 is formed in the peripheral edge of the first capillary layer 210 and the second capillary layer 220 is deposited below the first capillary layer 210, the working fluid in a vapor state (for example, water vapor) quickly enters the notch 211. It is a point which passes through and improves the temperature lowering efficiency.

(第3実施例)
図3は、本考案に係る放熱板の毛細構造の第3実施例を示す分解斜視図である。図3に示すように、本実施例は第1実施例と同じであり、その主な違いは、第1毛細層210の上、下方に第2毛細層220がそれぞれ堆積され、第2毛細層220の形状が板本体100の凹溝102に対応し、第1毛細層210の形状は、任意形状(例えば、T字状)であり、第1毛細層210の周縁に切り欠き211が形成された点である。
(Third embodiment)
FIG. 3 is an exploded perspective view showing a third embodiment of the capillary structure of the heat sink according to the present invention. As shown in FIG. 3, the present embodiment is the same as the first embodiment, the main difference being that the second capillary layer 220 is deposited on the first capillary layer 210 and below the first capillary layer 210, respectively. The shape of 220 corresponds to the concave groove 102 of the plate body 100, the shape of the first capillary layer 210 is an arbitrary shape (for example, a T shape), and a notch 211 is formed on the periphery of the first capillary layer 210. It is a point.

(第5実施例)
図4は、本考案に係る放熱板の毛細構造の第4実施例を示す分解斜視図である。図4に示すように、本実施例は第1実施例と同じであり、その主な違いは、第1毛細層210の形状が第2毛細層220の形状に対応し、すなわち、第1毛細層210及び第2毛細層220の形状が、いずれも対応する任意形状(例えば、T字状)であり、第1毛細層210の周縁に切り欠き211が形成され、第2毛細層220の周縁にも切り欠き221が形成された点である。
(5th Example)
FIG. 4 is an exploded perspective view showing a fourth embodiment of the heat sink capillary structure according to the present invention. As shown in FIG. 4, this embodiment is the same as the first embodiment, the main difference being that the shape of the first capillary layer 210 corresponds to the shape of the second capillary layer 220, that is, the first capillary. The shapes of the layer 210 and the second capillary layer 220 are all corresponding arbitrary shapes (for example, T-shape), the notches 211 are formed on the periphery of the first capillary layer 210, and the periphery of the second capillary layer 220 is formed. Also, a notch 221 is formed.

本考案に係る放熱板の毛細構造は、2枚の板本体100が互いに対応して収容空間101が形成され、収容空間101内に第1毛細層210及び第2毛細層220が設けられ、第1毛細層210と第2毛細層220とが互いに堆積され、収容空間101内の工作流体が両相変化を行なうときに、蒸気状態の工作流体(例えば、水蒸気)が第1毛細層210上に快速に通過し、その蒸気の拡散効率を向上し、液体状態の工作流体が第2毛細層220上に均一拡散して流動され、工作流体の均一配布を促進し、その温度下げ効率を向上させることを特徴とする。   In the capillary structure of the heat sink according to the present invention, the housing space 101 is formed so that the two plate bodies 100 correspond to each other, the first capillary layer 210 and the second capillary layer 220 are provided in the housing space 101, When the first capillary layer 210 and the second capillary layer 220 are deposited on each other and the working fluid in the accommodation space 101 undergoes both phase changes, the working fluid in a vapor state (for example, water vapor) is deposited on the first capillary layer 210. Passes quickly and improves the diffusion efficiency of the vapor, and the working fluid in a liquid state is uniformly diffused and flowed on the second capillary layer 220 to promote uniform distribution of the working fluid and improve its temperature lowering efficiency. It is characterized by that.

以上の記載は単に本考案の好ましい具体的な実施例の説明に過ぎず、本考案の請求の範囲を限定するものではなく、いずれの当該分野における通常の知識を有する者が、本考案の分野の中で、良適宜変更や修飾等を実施できるが、それらの実施が本考案に納含まれるべきことは言うまでもないことである。   The above description is merely a description of a preferred specific embodiment of the present invention, and is not intended to limit the scope of the present invention. Any person having ordinary skill in the art may However, it is needless to say that such implementation should be included in the present invention.

100・・・・・板本体
101・・・・・収容空間
102・・・・・凹溝
110・・・・・シールチューブ
210・・・・・第1毛細層
211・・・・・切り欠き
220・・・・・第2毛細層2
221・・・・・切り欠き
DESCRIPTION OF SYMBOLS 100 ... Plate body 101 ... Accommodating space 102 ... Concave groove 110 ... Seal tube 210 ... First capillary layer 211 ... Notch 220 ... 2nd capillary layer 2
221 ... Notch

Claims (10)

互いに結合して収容空間を形成する2枚の板本体と、
前記収容空間に設けられた少なくとも一つの第1毛細層と、
前記収容空間に設けられ、前記第1毛細層と互いに堆積された少なくとも一つの第2毛細層とを含む放熱板の毛細構造。
Two plate bodies that combine with each other to form an accommodation space;
At least one first capillary layer provided in the accommodation space;
A heat sink capillary structure including the first capillary layer and the at least one second capillary layer provided in the housing space and stacked on each other.
前記第1毛細層の厚さが前記第2毛細層の厚さより大きいことを特徴とする請求項1に記載の放熱板の毛細構造。   The heat sink capillary structure according to claim 1, wherein a thickness of the first capillary layer is greater than a thickness of the second capillary layer. 前記第1毛細層及び前記第2毛細層は金属綱であり、前記第1毛細層の綱目数が前記第2毛細層の綱目数より少ないことを特徴とする請求項1または2に記載の放熱板の毛細構造。   The heat dissipation according to claim 1 or 2, wherein the first capillary layer and the second capillary layer are metal ropes, and the number of meshes of the first capillary layer is smaller than the number of meshes of the second capillary layer. The capillary structure of the board. 前記第2毛細層が前記第1毛細層の下方に堆積されたことを特徴とする請求項1に記載の放熱板の毛細構造。   The heat sink plate capillary structure according to claim 1, wherein the second capillary layer is deposited below the first capillary layer. 前記第2毛細層が前記第1毛細層の上、下方にそれぞれ堆積されたことを特徴とする請求項1に記載の放熱板の毛細構造。   The heat sink plate capillary structure according to claim 1, wherein the second capillary layer is deposited above and below the first capillary layer. 前記第1毛細層の周縁に切り欠きが形成されたことを特徴とする請求項1に記載の放熱板の毛細構造。   The heat sink capillary structure according to claim 1, wherein a notch is formed in a peripheral edge of the first capillary layer. 前記第2毛細層の周縁に切り欠きが形成されたことを特徴とする請求項1または6に記載の放熱板の毛細構造。   The heat sink plate capillary structure according to claim 1, wherein a notch is formed in a peripheral edge of the second capillary layer. 前記2枚の板本体の少なくとも一方に凹溝が設けられたことを特徴とする請求項1に記載の放熱板の毛細構造。   The capillary structure of the heat sink according to claim 1, wherein a concave groove is provided in at least one of the two plate bodies. 前記第1毛細層と前記第2毛細層とが互いに堆積された後の高さは前記収容空間と同じでることを特徴とする請求項1に記載の放熱板の毛細構造。   2. The heat sink capillary structure according to claim 1, wherein a height after the first capillary layer and the second capillary layer are deposited on each other is the same as the accommodation space. 前記第2毛細層は粉末を焼結して形成されたことを特徴とする請求項1に記載の放熱板の毛細構造。   The heat sink capillary structure according to claim 1, wherein the second capillary layer is formed by sintering powder.
JP2010004808U 2010-07-16 2010-07-16 Capillary structure of heat sink Expired - Fee Related JP3163111U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004808U JP3163111U (en) 2010-07-16 2010-07-16 Capillary structure of heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004808U JP3163111U (en) 2010-07-16 2010-07-16 Capillary structure of heat sink

Publications (1)

Publication Number Publication Date
JP3163111U true JP3163111U (en) 2010-09-30

Family

ID=54865844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004808U Expired - Fee Related JP3163111U (en) 2010-07-16 2010-07-16 Capillary structure of heat sink

Country Status (1)

Country Link
JP (1) JP3163111U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157535A1 (en) * 2012-04-16 2013-10-24 古河電気工業株式会社 Heat pipe
JP2015512020A (en) * 2012-01-19 2015-04-23 アクメクールズ テック. リミテッドAcmecools Tech. Ltd. Method for manufacturing a soaking device without an injection pipe and a soaking device manufactured by this manufacturing method
JP2017003160A (en) * 2015-06-08 2017-01-05 株式会社フジクラ Thin plate heat pipe type thermal diffusion plate
JP2018204841A (en) * 2017-06-01 2018-12-27 古河電気工業株式会社 Plane type heat pipe
CN112747618A (en) * 2019-10-31 2021-05-04 建准电机工业股份有限公司 Vapor chamber and capillary sheet thereof
WO2023093125A1 (en) * 2021-11-26 2023-06-01 华为技术有限公司 Vapor chamber comprising microstructure layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512020A (en) * 2012-01-19 2015-04-23 アクメクールズ テック. リミテッドAcmecools Tech. Ltd. Method for manufacturing a soaking device without an injection pipe and a soaking device manufactured by this manufacturing method
WO2013157535A1 (en) * 2012-04-16 2013-10-24 古河電気工業株式会社 Heat pipe
JP5654176B2 (en) * 2012-04-16 2015-01-14 古河電気工業株式会社 heat pipe
JPWO2013157535A1 (en) * 2012-04-16 2015-12-21 古河電気工業株式会社 heat pipe
US10107561B2 (en) 2012-04-16 2018-10-23 Furukawa Electric Co., Ltd. Heat pipe
JP2017003160A (en) * 2015-06-08 2017-01-05 株式会社フジクラ Thin plate heat pipe type thermal diffusion plate
JP2018204841A (en) * 2017-06-01 2018-12-27 古河電気工業株式会社 Plane type heat pipe
CN112747618A (en) * 2019-10-31 2021-05-04 建准电机工业股份有限公司 Vapor chamber and capillary sheet thereof
WO2023093125A1 (en) * 2021-11-26 2023-06-01 华为技术有限公司 Vapor chamber comprising microstructure layer

Similar Documents

Publication Publication Date Title
JP3163111U (en) Capillary structure of heat sink
US20120031588A1 (en) Structure of heat plate
WO2023024498A1 (en) Vapor chamber and electronic device
TWI601933B (en) Heat-conducting structure
CN107278089A (en) Heat conductive structure
TWI407071B (en) Thin heat pipe structure and manufacturing method thereof
US20190335619A1 (en) Loop heat transfer device with gaseous and liquid working fluid channels separated by partition wall
JP2011112330A5 (en)
CN104754913A (en) Heat-conductive composite material sheet and preparation method thereof
CN202455719U (en) Radiator with heat sink structure
CN206268818U (en) A kind of heat abstractor and the high-power LED lamp with the heat abstractor
US20120031587A1 (en) Capillary structure of heat plate
US11644250B2 (en) Vapor chamber device
CN213426737U (en) Liquid cooling heat abstractor and have this liquid cooling heat abstractor's liquid cooling system
CN209978682U (en) Heat pipe
CN205425919U (en) Individual layer wick samming sheet metal
TWM513988U (en) Structure of temperature equilibration plate
CN202092499U (en) Thin heat pipe structure
JP3175221U (en) Heat pipe structure
JP3163110U (en) Heat sink structure
CN104703442A (en) Efficient radiating device
TW201144739A (en) Thermal plate structure
CN202691980U (en) Radiator and lamp with same
CN102551499A (en) High heat-conducting kitchen ware
CN112351642A (en) Radiator of integrated foam metal imbibition core and fin

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees