JP3163110U - Heat sink structure - Google Patents

Heat sink structure Download PDF

Info

Publication number
JP3163110U
JP3163110U JP2010004806U JP2010004806U JP3163110U JP 3163110 U JP3163110 U JP 3163110U JP 2010004806 U JP2010004806 U JP 2010004806U JP 2010004806 U JP2010004806 U JP 2010004806U JP 3163110 U JP3163110 U JP 3163110U
Authority
JP
Japan
Prior art keywords
capillary
heat sink
layers
passages
capillary layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010004806U
Other languages
Japanese (ja)
Inventor
黄▲イク▼博
郭東榮
Original Assignee
昆山巨仲電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山巨仲電子有限公司 filed Critical 昆山巨仲電子有限公司
Priority to JP2010004806U priority Critical patent/JP3163110U/en
Application granted granted Critical
Publication of JP3163110U publication Critical patent/JP3163110U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】蒸気の拡散効率を増加し、工作流体の均一配布を促進し、温度下げ効率を向上させる放熱板の構造を提供する。【解決手段】本放熱板の構造は、主に、2枚の板本体100を互いに対応して結合することにより収容空間を形成し、収容空間内に複数の第1毛細層210が設けられ、これらの第1毛細層が同一の水平面に位置され、これらの第1毛細層の間に複数の通路211が形成されている。【選択図】図1AThe present invention provides a structure of a heat sink that increases the diffusion efficiency of steam, promotes uniform distribution of a working fluid, and improves the temperature lowering efficiency. The structure of the heat radiating plate is mainly composed of two plate bodies 100 coupled to each other so as to form a housing space, and a plurality of first capillary layers 210 are provided in the housing space, These first capillary layers are located on the same horizontal plane, and a plurality of passages 211 are formed between these first capillary layers. [Selection] Figure 1A

Description

本考案は、放熱板の構造に係り、特に、電子製品に適応可能な放熱板の構造に関るものである。   The present invention relates to a structure of a heat radiating plate, and more particularly to a structure of a heat radiating plate that can be applied to an electronic product.

現在、一般の電子製品は、長時間に使うと熱量が発生し易くなり、その解決方法は、主に、放熱板を付けて放熱させる方法を採っている。放熱板は、高い熱伝導率、軽量、構造簡単等の特性を備え、さらに、大量の熱量を伝達しても電力を消費しない利点も備えている。   At present, general electronic products are likely to generate heat when used for a long time, and the solution is mainly to radiate heat by attaching a heat sink. The heat radiating plate has characteristics such as high thermal conductivity, light weight, and simple structure, and further has an advantage that power is not consumed even if a large amount of heat is transmitted.

従来の放熱板の構造は、主に、板本体を含み、板本体の内部に真空チャンバが形成され、真空チャンバに毛細組織が設けられ且つ工作流体が充填され、前記板本体の一側にシールチューブ(また、閉管や、排気管または充填排気管とも称する)が接続され、シールチューブの一端を前記板本体に接続するとともに内部の真空チャンバに互いに連通することにより、シールチューブを介して放熱板の内部(すなわち、真空チャンバ)に工作流体を外部から注入するとともに、排気及び真空作業を行ない、電子製品の使用中に発生した熱量を放熱できる。   The structure of a conventional heat sink mainly includes a plate body, a vacuum chamber is formed inside the plate body, a capillary tissue is provided in the vacuum chamber and a working fluid is filled, and a seal is provided on one side of the plate body. A tube (also referred to as a closed tube, an exhaust pipe or a filling exhaust pipe) is connected, and one end of the seal tube is connected to the plate body and communicated with the internal vacuum chamber, thereby allowing the heat sink to pass through the seal tube. In addition, the working fluid is injected into the inside (ie, the vacuum chamber) from the outside, and exhaust and vacuum operations are performed to dissipate heat generated during use of the electronic product.

本考案は以上の点に鑑みてなされたもので、温度を下げる効率を向上可能な放熱板の構造の提供および製品の使用寿命を延長させるものである。   The present invention has been made in view of the above points, and provides a structure of a heat sink that can improve the efficiency of lowering the temperature and extend the service life of the product.

本考案の主な目的は、放熱板の温度の下げ効率を向上可能な放熱板の構造を提供することにある。   A main object of the present invention is to provide a structure of a heat radiating plate capable of improving the temperature lowering efficiency of the heat radiating plate.

前記目的を達成するため、本考案に係る放熱板の構造は、互いに結合して収容空間を形成する2枚の板本体と、前記収容空間に設けられ、同一の水平面に位置された毛細層であって、毛細層の間に複数の通路が形成された複数の第1毛細層とを含む。よって、蒸気の拡散効率を増加し、工作流体の均一配布を促進し、温度下げ効率を向上させ、実用性、新規性、進歩性及び便利性を確かに備えている。   In order to achieve the above object, the structure of the heat dissipation plate according to the present invention includes two plate bodies that are coupled to each other to form an accommodation space, and a capillary layer that is provided in the accommodation space and is positioned on the same horizontal plane. And a plurality of first capillary layers in which a plurality of passages are formed between the capillary layers. Therefore, it increases steam diffusion efficiency, promotes uniform distribution of working fluid, improves temperature reduction efficiency, and certainly has practicality, novelty, inventive step and convenience.

図1Aは、本考案に係る放熱板の構造の第1実施例を示す分解斜視図である。FIG. 1A is an exploded perspective view showing a first embodiment of the structure of a heat sink according to the present invention. 図1Bは、本考案に係る放熱板の構造の第1実施例の板本体の結合を示す図である。FIG. 1B is a view showing the coupling of the plate bodies of the first embodiment of the structure of the heat sink according to the present invention. 図2は、本考案に係る放熱板の構造の第2実施例を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a second embodiment of the structure of the heat sink according to the present invention. 図3は、本考案に係る放熱板の構造の第3実施例を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a third embodiment of the structure of the heat sink according to the present invention. 図4は、本考案に係る放熱板の構造の第4実施例を示す分解斜視図である。FIG. 4 is an exploded perspective view showing a fourth embodiment of the structure of the heat sink according to the present invention. 図5Aは、本考案に係る放熱板の構造の第5実施例を示す分解斜視図である。FIG. 5A is an exploded perspective view showing a fifth embodiment of the structure of the heat sink according to the present invention. 図5Bは、本考案に係る放熱板の構造の第5実施例を示す斜視組合図である。FIG. 5B is a perspective combination view showing a fifth embodiment of the structure of the heat sink according to the present invention. 図5Cは、図5BのA−A’線の断面図である。FIG. 5C is a cross-sectional view taken along line A-A ′ of FIG. 5B. 図5Dは、図5BのB−B’線の断面図である。FIG. 5D is a cross-sectional view taken along line B-B ′ of FIG. 5B.

図1A〜図3は、それぞれ、本考案に係る放熱板の構造の第1実施例を示す分解斜視図、板本体の結合を示す図、第2実施例、第3実施例を示す分解斜視図である。
図1A〜図3に示すように、放熱板の構造は、2枚の板本体100と、シールチューブ110と、複数の第1毛細層210とを備え、電子製品に設けられることにより、熱源温度を下げ、熱量を効率的に伝導し、温度下げ効率を向上させる効果に達する。
1A to 3 are exploded perspective views showing a first embodiment of the structure of the heat sink according to the present invention, a view showing the coupling of plate bodies, an exploded perspective view showing the second embodiment, and the third embodiment, respectively. It is.
As shown in FIGS. 1A to 3, the structure of the heat radiating plate includes two plate main bodies 100, a seal tube 110, and a plurality of first capillary layers 210. , And conducts heat efficiently and reaches the effect of improving the temperature reduction efficiency.

2枚の板本体100は、互いに対応して結合するとともに2枚の板本体100の間に収容空間101を形成し、実際の使用時に、2枚の板本体100うちの一方に凹溝102を設け、或いは、2枚の板本体100の両方に凹溝102を設けることで、2枚の板本体100が結合された後に、真空状態となりかつ工作流体のある収容空間101が形成され、2枚の板本体100の結合方法は、銅ろうまたは銀ろう高温ろうつけ法(blazing)、拡散接合(diffusion bounding)、高温溶接(welding)などを採用すれば良い。   The two plate main bodies 100 are coupled to each other and form a receiving space 101 between the two plate main bodies 100, and a concave groove 102 is formed in one of the two plate main bodies 100 in actual use. By providing the concave groove 102 in both of the two plate main bodies 100, the two plate main bodies 100 are joined to each other, and after that, the vacuum space is formed and the accommodation space 101 containing the working fluid is formed. As the bonding method of the plate body 100, copper brazing or silver brazing, high temperature brazing, diffusion bounding, high temperature welding or the like may be employed.

シールチューブ110(中空チューブ)は、2枚の板本体100の何れか一方の側辺または何れか一方の角隅に設けられ、シールチューブ110の一端が収容空間101に連通され、シールチューブ110により収容空間101に工作流体を外部から注入し、工作流体の両相変化及び2枚の板本体100内の毛細構造の循環により、熱源温度を下げ、及び熱量を効率的に伝導し放熱させる効果に達する。   The seal tube 110 (hollow tube) is provided on one side or any one corner of the two plate bodies 100, and one end of the seal tube 110 is communicated with the accommodation space 101. By injecting the working fluid into the housing space 101 from the outside, the heat source temperature is lowered and the amount of heat is efficiently conducted and radiated by the both phases of the working fluid and the circulation of the capillary structure in the two plate bodies 100. Reach.

これらの第1毛細層210が収容空間101に設けられ、同一の水平面に配列され、且つ、これらの第1毛細層210の間に複数の通路211が形成され、第1毛細層210間の通路211は、平行に配列しても良い(図1に示すように)が、垂直配列(図2に示すように)或いは放射状配列(図3に示すように)してもよい。すなわち、これらの第1毛細層210間の通路211は、あらゆる方向に配列してもよい。これらの第1毛細層210は、金属綱または粉末(例えば、金属粉末)を焼結して形成される。また、これらの第1毛細層210の高さが収容空間101の高さと同じであり、収容空間101に完全に充填され、その支持性が向上される。   These first capillary layers 210 are provided in the accommodation space 101 and arranged in the same horizontal plane, and a plurality of passages 211 are formed between the first capillary layers 210, and the passages between the first capillary layers 210. 211 may be arranged in parallel (as shown in FIG. 1), but may be arranged vertically (as shown in FIG. 2) or radially (as shown in FIG. 3). That is, the passages 211 between the first capillary layers 210 may be arranged in any direction. These first capillary layers 210 are formed by sintering a metal rope or powder (for example, metal powder). Moreover, the height of these 1st capillary layers 210 is the same as the height of the accommodation space 101, and the accommodation space 101 is completely filled, and the supportability is improved.

図1に示すように、本実施例では、主に、2枚の板本体100と複数の第1毛細層210を提供し、2枚の板本体100のうちの一方に凹溝102が設けられ、2枚の板本体100が互いに対応して結合された後に収容空間101が形成され、シールチューブ11が2枚の板本体100の一方の角隅に設けられ、シールチューブ11の一端が収容空間101に連通され、これらの第1毛細層210が収容空間101内に設けられ、これらの第1毛細層210の間に複数の通路211が形成され、これらの通路211が平行に配列され、シールチューブ110により2枚の板本体100内に工作流体(例えば、水)を外部から注入し、工作流体の両相変化により2枚の板本体100内の毛細構造に循環し、熱源温度を下げ、及び熱量を効率的に伝導するとともに、工作流体が両相変化(例えば、水、水蒸気)を行なうときに、これらの通路211を蒸気通路として、蒸気状態の工作流体(例えば、水蒸気)を上方の板本体100に拡散させ、その蒸気の拡散効率を向上し、液体状態の工作流体(例えば、水)をこれらの第1毛細層210により下方の板本体100に均一に配布させることによって、工作流体の均一配布を促進し、その温度下げ効率を向上させる。   As shown in FIG. 1, in the present embodiment, mainly two plate bodies 100 and a plurality of first capillary layers 210 are provided, and a concave groove 102 is provided in one of the two plate bodies 100. An accommodation space 101 is formed after the two plate bodies 100 are coupled to each other, the seal tube 11 is provided at one corner of the two plate bodies 100, and one end of the seal tube 11 is the accommodation space. 101, the first capillary layers 210 are provided in the accommodating space 101, a plurality of passages 211 are formed between the first capillary layers 210, the passages 211 are arranged in parallel, and the seal A working fluid (for example, water) is injected from the outside into the two plate main bodies 100 by the tube 110, and circulates to the capillary structure in the two plate main bodies 100 due to both phase changes of the working fluid, and the heat source temperature is lowered. And heat quantity efficiently In addition, when the working fluid undergoes a two-phase change (for example, water, steam), the working fluid (for example, steam) in a vapor state is diffused into the upper plate body 100 using these passages 211 as steam passages. , Improving the diffusion efficiency of the vapor, and distributing the working fluid in a liquid state (for example, water) uniformly to the lower plate body 100 by the first capillary layer 210, thereby facilitating uniform distribution of the working fluid. , Improve its temperature reduction efficiency.

図4は、本考案に係る放熱板の構造の第4実施例を示す分解斜視図である。
図4に示すように、本実施例は第1実施例と同じであり、その主な違いは、さらに、第2毛細層220を有し、これらの第2毛細層220の間に複数の通路221が形成されている。これらの第1毛細層210は金属綱であり、これらの第2毛細層220は金属綱(または粉末(例えば、金属粉末)を焼結して形成され)である。これらの第2毛細層220がこれらの第1毛細層210と互いに堆積される。すなわち、これらの第2毛細層220がこれらの第1毛細層210の上方または下方に堆積される。本実施例では、これらの第2毛細層220がこれらの第1毛細層210の下方に堆積され、これらの第2毛細層220間の通路とこれらの第1毛細層210間の通路とが互いに対応してまたは交差される点である。
また、これらの第1毛細層210の厚さがこれらの第2毛細層220の厚さよりも大きく(すなわち、第1毛細層210が粗毛細層と呼ばれ、第2毛細層220が精毛細層と呼ばれる)、また、第1毛細層210の綱目数が第2毛細層220の綱目数と異なっている。
FIG. 4 is an exploded perspective view showing a fourth embodiment of the structure of the heat sink according to the present invention.
As shown in FIG. 4, the present embodiment is the same as the first embodiment, and the main difference is that it further includes a second capillary layer 220, and a plurality of passages between these second capillary layers 220. 221 is formed. These first capillary layers 210 are metal ropes, and these second capillary layers 220 are metal ropes (or formed by sintering powder (eg, metal powder)). These second capillary layers 220 are deposited with each other with these first capillary layers 210. That is, these second capillary layers 220 are deposited above or below these first capillary layers 210. In this embodiment, these second capillary layers 220 are deposited below these first capillary layers 210, and the passages between these second capillary layers 220 and the passages between these first capillary layers 210 are mutually connected. A point that corresponds or intersects.
Further, the thickness of these first capillary layers 210 is larger than the thickness of these second capillary layers 220 (that is, the first capillary layer 210 is called a coarse capillary layer, and the second capillary layer 220 is a fine capillary layer). In addition, the number of meshes of the first capillary layer 210 is different from the number of meshes of the second capillary layer 220.

図5Aから図5Dは、本考案に係る放熱板の構造の第5実施例を示す分解斜視図、斜視組合図、及びその断面図である。
図5Aから図5Dに示すように、本実施例は第4実施例と同じであり、その主な違いは、これらの第2毛細層220がこれらの第1毛細層210の上方または下方に堆積された外、これらの第1毛細層210の上方、下方に複数の第2毛細層220が同時に堆積される。
本実施例では、これらの第1毛細層210の上方に堆積された第2毛細層220の間に複数の通路221が形成され、第1毛細層210と第2毛細層220とが互いに堆積された後の高さは収容区間101の高さと同じであり、収容空間101に完全に充填され、その支持性(図5Cから図5Dに示すように、図5Cは、第1毛細層210と第2毛細層220の断面を示し、図5Dは、第2毛細層220の通路221、第1毛細層210の通路211及び第2毛細層220の断面を示す)が向上される点である。
5A to 5D are an exploded perspective view, a perspective combination view, and a cross-sectional view showing a fifth embodiment of the structure of the heat dissipation plate according to the present invention.
As shown in FIGS. 5A to 5D, this embodiment is the same as the fourth embodiment, the main difference being that these second capillary layers 220 are deposited above or below these first capillary layers 210. In addition, a plurality of second capillary layers 220 are simultaneously deposited above and below these first capillary layers 210.
In the present embodiment, a plurality of passages 221 are formed between the second capillary layers 220 deposited above the first capillary layers 210, and the first capillary layers 210 and the second capillary layers 220 are deposited on each other. The height after this is the same as the height of the accommodating section 101, and the accommodating space 101 is completely filled. As shown in FIGS. 5C to 5D, FIG. 2D shows the cross section of the second capillary layer 220, and FIG. 5D shows the improvement in the passage 221 of the second capillary layer 220, the passage 211 of the first capillary layer 210, and the cross section of the second capillary layer 220).

本考案に係る放熱板の構造は、2枚の板本体100が互いに対応して収容空間101が形成され、収容空間101内に複数の第1毛細層210が設けられる。これらの第1毛細層210の間に複数の通路211が形成され、収容空間101内の工作流体が両相変化を行なうときに、これらの通路211を蒸気通路として、蒸気状態の工作流体(例えば、水蒸気)を上方の板本体100に拡散させ、その蒸気の拡散効率を向上し、液体状態の工作流体(例えば、水)をこれらの第1毛細層210により下方の板本体100に均一に配布させることによって、工作流体の均一配布を促進し、その温度下げ効率を向上させることを特徴とする。   In the structure of the heat dissipation plate according to the present invention, the two plate main bodies 100 correspond to each other to form an accommodation space 101, and a plurality of first capillary layers 210 are provided in the accommodation space 101. A plurality of passages 211 are formed between the first capillary layers 210, and when the working fluid in the accommodation space 101 undergoes both-phase changes, these passages 211 serve as a steam passage (for example, a working fluid in a vapor state (for example, , Water vapor) is diffused to the upper plate body 100, the diffusion efficiency of the vapor is improved, and the liquid working fluid (for example, water) is uniformly distributed to the lower plate body 100 by these first capillary layers 210. Thus, the uniform distribution of the working fluid is promoted, and the temperature lowering efficiency is improved.

以上の記載は単に本考案の好ましい具体的な実施例の説明に過ぎず、本考案の請求の範囲を限定するものではなく、いずれの当該分野における通常の知識を有する者が、本考案の分野の中で、良適宜変更や修飾等を実施できるが、それらの実施が本考案に納含まれるべきことは言うまでもないことである。   The above description is merely a description of a preferred specific embodiment of the present invention, and is not intended to limit the scope of the present invention. Any person having ordinary skill in the art may However, it is needless to say that such implementation should be included in the present invention.

100・・・・・板本体
101・・・・・収容空間
102・・・・・凹溝
110・・・・・シールチューブ
210・・・・・第1毛細層
211・・・・・通路
220・・・・・第2毛細層2
221・・・・・通路
DESCRIPTION OF SYMBOLS 100 ... Plate body 101 ... Accommodating space 102 ... Concave groove 110 ... Seal tube 210 ... First capillary layer 211 ... Passage 220 ... 2nd capillary layer 2
221: Passage

Claims (12)

互いに結合して収容空間を形成する2枚の板本体と、
前記収容空間に設けられ、同一の水平面に位置された毛細層であって、毛細層の間に複数の通路が形成された複数の第1毛細層とを含む放熱板の構造。
Two plate bodies that combine with each other to form an accommodation space;
A structure of a heat radiating plate including a plurality of first capillary layers that are provided in the housing space and are located on the same horizontal plane and in which a plurality of passages are formed between the capillary layers.
前記第1毛細層の間の通路は平行に配列されたことを特徴とする請求項1に記載の放熱板の構造。   The structure of the heat sink according to claim 1, wherein the passages between the first capillary layers are arranged in parallel. 前記第1毛細層の間の通路は垂直に配列されたことを特徴とする請求項1に記載の放熱板の構造。   The structure of the heat sink according to claim 1, wherein the passages between the first capillary layers are arranged vertically. 前記第1毛細層の間の通路は放射状に配列されたことを特徴とする請求項1に記載の放熱板の構造。   The structure of the heat sink according to claim 1, wherein the passages between the first capillary layers are arranged radially. 前記第1毛細層は金属綱であることを特徴とする請求項1に記載の放熱板の構造。   The heat sink structure according to claim 1, wherein the first capillary layer is a metal rope. 前記第1毛細層は粉末を焼結して形成されたことを特徴とする請求項1に記載の放熱板の構造。   The heat sink structure according to claim 1, wherein the first capillary layer is formed by sintering powder. 前記第1毛細層の高さは前記収容空間と同じであることを特徴とする請求項1に記載の放熱板の構造。   The heat sink structure according to claim 1, wherein a height of the first capillary layer is the same as the accommodation space. さらに、同一水平面に位置され、前記第1毛細層と互いに堆積された第2毛細層を備えることを特徴とする請求項1に記載の放熱板の構造。   The heat sink structure according to claim 1, further comprising a second capillary layer positioned on the same horizontal plane and deposited on the first capillary layer. 前記第2毛細層の間に複数の通路が形成されたことを特徴とする請求項8に記載の放熱板の構造。   The heat sink structure according to claim 8, wherein a plurality of passages are formed between the second capillary layers. 前記第2毛細層は金属綱であることを特徴とする請求項8に記載の放熱板の構造。   The structure of the heat sink according to claim 8, wherein the second capillary layer is a metal rope. 前記第2毛細層は粉末を焼結して形成されたことを特徴とする請求項8に記載の放熱板の構造。   The structure of the heat sink according to claim 8, wherein the second capillary layer is formed by sintering powder. 前記第1毛細層と前記第2毛細層とが互いに堆積された高さは前記収容空間と同じでることを特徴とする請求項8に記載の放熱板の構造。   The heat sink structure according to claim 8, wherein the height of the first capillary layer and the second capillary layer deposited on each other is the same as that of the housing space.
JP2010004806U 2010-07-16 2010-07-16 Heat sink structure Expired - Fee Related JP3163110U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010004806U JP3163110U (en) 2010-07-16 2010-07-16 Heat sink structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010004806U JP3163110U (en) 2010-07-16 2010-07-16 Heat sink structure

Publications (1)

Publication Number Publication Date
JP3163110U true JP3163110U (en) 2010-09-30

Family

ID=54865843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010004806U Expired - Fee Related JP3163110U (en) 2010-07-16 2010-07-16 Heat sink structure

Country Status (1)

Country Link
JP (1) JP3163110U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132582A (en) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Thin sheet type heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132582A (en) * 2010-12-20 2012-07-12 Furukawa Electric Co Ltd:The Thin sheet type heat pipe

Similar Documents

Publication Publication Date Title
JP3163111U (en) Capillary structure of heat sink
CN107278089A (en) Heat conductive structure
US7013958B2 (en) Sintered grooved wick with particle web
CN107421364B (en) Temperature equalizing plate structure and manufacturing method thereof
TW557350B (en) One-way airstream hollow cavity energy transferring device
TWI601933B (en) Heat-conducting structure
CN108882644A (en) Heat-sink unit
CN202455719U (en) Radiator with heat sink structure
CN106885485B (en) Hot end variable cross-section multi-pulsation cold end heat pipe radiator
US20120031588A1 (en) Structure of heat plate
JP2007519877A (en) Plate heat transfer device and manufacturing method thereof
CN104754913A (en) Heat-conductive composite material sheet and preparation method thereof
CN104053335A (en) Heat radiation device of electronic equipment
US20060283575A1 (en) Heat pipe
CN206268818U (en) A kind of heat abstractor and the high-power LED lamp with the heat abstractor
CN208480199U (en) Heat-sink unit
JP2020176752A (en) Heat sink
CN104315903A (en) Asbestos-nonmetallic fibrofelt wick heat plate
JP3163110U (en) Heat sink structure
CN202092499U (en) Thin heat pipe structure
CN209978682U (en) Heat pipe
CN104236348B (en) Heat exchanger
TWM522332U (en) Dual material heat spreader and upper shell member thereof
CN105387439B (en) A kind of manufacturing method of LED light source module radiator and LED illumination device
GB2419463A (en) Heat sink

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees