JP3143992B2 - 窒化ケイ素系焼結体 - Google Patents

窒化ケイ素系焼結体

Info

Publication number
JP3143992B2
JP3143992B2 JP03272939A JP27293991A JP3143992B2 JP 3143992 B2 JP3143992 B2 JP 3143992B2 JP 03272939 A JP03272939 A JP 03272939A JP 27293991 A JP27293991 A JP 27293991A JP 3143992 B2 JP3143992 B2 JP 3143992B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
ratio
sialon
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03272939A
Other languages
English (en)
Other versions
JPH05105518A (ja
Inventor
隆夫 西岡
剛久 山本
健二 松沼
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03272939A priority Critical patent/JP3143992B2/ja
Publication of JPH05105518A publication Critical patent/JPH05105518A/ja
Application granted granted Critical
Publication of JP3143992B2 publication Critical patent/JP3143992B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はとくに常温において優れ
た機械的強度を有し、生産性、コスト面において優れた
窒化ケイ素系焼結体に関する。
【0002】
【従来の技術】従来、窒化ケイ素系材料の強度向上を目
的として、焼結方法、焼結助剤、含有結晶相の限定など
様々な研究開発が行われてきた。たとえば、焼結法に関
しては、ホットプレス焼結法では、Am.Ceram.
Soc.Bull.,52(1973)pp560で〜
100kg/mm2(曲げ強度)が実現されており、ま
たガラスカプセルによる熱間静水圧プレス法(HIP
法)等も開発されている。こうした手法では焼結体の強
度特性の面では優れた特性が得られているものの、生産
性、コストの面で優れた手法とは言えない。一方、こう
した問題に対して、ガス圧焼結法(例えば、三友、粉体
と工業、12巻、12号、pp27、1989)がある
が、本方法では最終の焼結体の緻密化をβ−Si34
晶の粒成長に伴なうため、粗大結晶粒の析出による強度
劣化をまねく可能性が高いことに加え、一般には、10
気圧以上のN2ガス圧をかけ焼結を実施するため、ホッ
トプレス法やHIP法と同様に焼結設備が大型となり、
特性面、生産面で十分優れた手法とは言えない。他方、
焼結助剤に関しては、主たる助剤としてY23を用いた
Si34−Al23−Y23系の窒化ケイ素系焼結体が
特公昭49−21091号、特公昭48−38448号
に開示されている。これらは、該特許明細書中に示され
ているように、β−Si34結晶粒が焼結体中で繊維状
組織を形成し、これがマトリックス中に分散することか
ら強度、靭性を向上しうるものと考えられている。すな
わちこれは、β−Si34結晶形が六方晶でありC軸方
向に結晶が異方性成長をすることを積極的に利用したも
のであり、とくに特公昭48−38448号や窯業協会
誌、94巻、pp96、1986に示されるように、繊
維状のβ−Si34結晶粒がC軸方向に10数μm以上
に成長している場合がある。しかしながら、本技術にお
いては、やはりこの粒成長が異常成長や気孔の発生をま
ねき、強度劣化をまねく可能性があり、また本方法での
焼結助剤だけを用いた焼結体では、焼結温度を1700
〜1900℃に上昇させなければ、緻密化が十分図れ
ず、大気圧付近のN2ガス圧焼結では、窒化ケイ素の昇
華分解が生じ、安定した焼結体を得られない場合があ
る。このため同じく、焼結体特性と生産性両面で十分優
れているとは言えない。一方、以上で述べてきた手法で
は、いずれも得られる焼結体の強度が、例えばJIS−
R1601に準拠した3点曲げ強度でせいぜい100k
g/mm2前後であり、様々な窒化ケイ素系材料の応用
を考えた場合、必ずしも十分な特性が得られていない。
更に名古屋工業技術試験所報告、第40巻、第1号(1
991年)、PP45には、Si34−Y23−Al2
3−MgO−(CeO2)系焼結体において、α−Si
34およびβ−Si34の複合結晶相をもつ焼結体が開
示されているが、焼結温度が1700℃以上であり、十
分微細な複合組織が達成されていないと考えられるこ
と、さらにホットプレス焼結法によっても曲げ強度で1
00kg/mm2以上を安定して維持するに至っていな
い。
【0003】
【発明が解決しようとする課題】こうした従来技術にお
ける生産性と焼結体の機械的特性の両立を満足させる手
法を提供するのが本発明の課題である。
【0004】
【課題を解決するための手段】本発明は、Si34−第
1助剤−第2助剤の3元組成図において、第1助剤がY
23及びCeO2あるいはY23及びCaOの2種より
なる組合わせからなり、一方第2助剤がAl23及びA
lNの1種または2種より選ばれた組合わせよりなり、
かつ、第2助剤のAl 2 3 とAlNの添加比率が、モル
比{AlN/(Al 2 3 +AlN)}で25〜75%の
範囲にあって、その組成の範囲が図1に示される範囲、
すなわちSi34と第1助剤の添加組成比がモル%で8
5:15から95:5の範囲であり、かつSi34と第
2助剤の添加組成比がモル%で90:10から98:2
の範囲で示される図1中の点A、B、C、Dで囲まれる
範囲にあり、得られた焼結体中の結晶相にα−Si34
とβ’−サイアロンの双方を含み、その焼結体の相対密
度が98%以上であることを特徴とする窒化ケイ素系焼
結体である。
【0005】本発明では、かかる焼結体が、JISR−
1601に準拠した3点曲げ強度が容易に100kg/
mm2以上の特性を有する知見を得たものである。
【0006】また本発明では焼結体の焼結温度および雰
囲気に関する条件を1500〜1700℃、1.1気圧
以下のN2ガス雰囲気中で焼結体相対密度が96%以上
になるよう1次焼結をおこなった後、1500〜170
0℃、10気圧以上のN2ガス雰囲気中で焼結体相対密
度が99%以上になるよう2次焼結をおこなうことを特
徴とするため、生産性にも十分優れた焼結体を得る手法
であると同時に、その焼結温度が低いため異常粒成長に
伴う焼結体の特性劣化を生じることもない。
【0007】本発明の焼結体が優れた強度特性を得る効
果は、微粒で等軸晶のα−Si34と柱状化したβ´−
サイアロンの両方の結晶相を複合させることにより、従
来の柱状化したβ´−サイアロン結晶相のみで構成され
た焼結体に比較し、ヤング率、硬度が向上する。これは
材料の変形抵抗を示す物性値でありセラミック材料のよ
うな脆性材料では、この値を向上させることが広義では
材料の強度向上につながるためである。さらに脆性材料
の破壊の基本概念であるGriffithの理論に従え
ば、焼結体の破壊強度σfは次式で与えられる。
【0008】σf=E・γs/4a、 E;ヤング率、γs;破壊の表面エネルギ―、a;先在
亀裂長さ ここでγsは粒界相の組成と厚みに依存すると考えられ
るため、とくに厚みの点で結晶粒の存在密度を向上させ
る結晶相の複合化は有利である。また本式に従えば、破
壊強度を向上させるためにはEの増大とaの減少が重要
である。aの値は工程上不可避な欠陥寸法を排除すれ
ば、結晶粒径に依存するため、微細結晶粒で充填性を向
上させた本発明はE、γsの点で強度向上に有効であ
る。こうしたα−Si34と柱状化したβ’−Si34
の両方の結晶相を複合させる類似の考え方は、上記の報
告以外に例えば特開昭61−91065号や特開平2−
44066号に開示されているが、いずれも組成的には
Si34−AlN−MO(M;MgO、Y23、CaO
等)の3成分系が主であり、その範囲もAlNとMOの
添加比がモル%で1:9の限定された範囲で、強度等の
機械的特性の向上を示したものであり、またその実施例
でも明らかなように各焼結体の強度特性が曲げ強度で1
00kg/mm2を安定して越える焼結体製法はいずれ
もホットプレス法によるものであり、工業的に安定して
高い強度特性を得るまでに至っていない。また、これら
の焼結体はα’−サイアロンとβ’−サイアロンの間の
熱膨張係数の差が大きく、これが原因となり焼結体中に
引張の残留応力を発生させ、強度劣化を招く可能性があ
る。本発明はこうした条件の限定がなく工業的に安定し
て高強度な焼結体を提供することにある。
【0009】本発明の詳細な作用の説明をすると、組成
の範囲が図1に示される範囲、すなわちSi34と第1
助剤の添加組成比がモル%で85:15から95:5の
範囲であり、かつSi34と第2助剤の添加組成比がモ
ル%で90:10から98:2の範囲で示される図1中
の点A、B、C、Dで囲まれる範囲とする。
【0010】本組成範囲とするのはSi34と第1助剤
の添加組成比がモル%で85:15より第1助剤側へず
れるとα−Si34の含有量が高く、焼結体強度の劣化
をまねく原因になるとともに、焼結中の雰囲気の影響を
受け、焼結体表面に強度等の特性を劣化させる表面層を
生成するためである。また同組成比が95:5よりSi
34側へずれると焼結性が低下しホットプレス法等の加
圧焼結法を用いなければ十分緻密な焼結体を得ることが
できないためである。一方Si34と第2助剤の添加組
成比がモル%で90:10を越えて第2助剤側へずれる
とβ´−サイアロンの粗大結晶が選択的に生成するため
強度劣化をまねくとともに、やはり焼結中の雰囲気の影
響を受け、焼結体表面に強度等の特性を劣化させる表面
層を生成するためである。また同組成比が98:2より
Si34側へずれると焼結性が低下しホットプレス法等
の加圧焼結法を用いなければ、十分緻密な焼結体を得る
ことができないためである。さらに本発明の効果を顕著
にするためには、焼結体中のα−Si34とβ´−サイ
アロンの結晶相の析出比がX線回析のピーク強度比が、
0<α−Si34≦25%、75%<β’−サイアロン
<100%であることがのぞましい。この析出比がα−
Si34側へずれると結晶相の複合化の効果が十分現れ
ず強度向上の効果が十分ではない。さらに本発明では焼
結体中のα−Si34、およびβ’−サイアロン両結晶
相の結晶粒径の効果も大きい。すなわちその範囲が焼結
体中のα−Si34の平均粒径が0.5μm以下、β’
−サイアロンの長軸、短軸方向の平均結晶粒径がそれぞ
れ、2.5μm、0.5μm以下であることが、安定し
て100kg/mm2以上の曲げ強度を得るのにのぞま
しい。またβ’−サイアロンについては焼結体中のβ’
−サイアロン(一般式Si6-ZAlZZ8-Z)が0<Z
<1.0の範囲にあることがのぞましい。Z値が1.0
を越えると、結晶相の複合化の効果が十分現れず強度向
上の効果が十分ではない。一方、助剤の添加比率につい
ては、とくに第2助剤のAl23、およびAlNの添加
比率が本発明の効果を達成するために重要な条件とな
る。すなわち、第2助剤のAl23とAlNの添加比率
が、モル比{AlN/(Al23+AlN)}で25〜
75%の範囲にあることがのぞましい。このモル比が2
5%未満であるとβ’−サイアロンの粒成長が顕著に現
れ、焼結体の強度劣化を招き、一方75%を越えると焼
結体中のα−Si34の複合比率が大きくなり、結晶相
の複合化の効果が十分現れず強度向上の効果が十分では
ない。
【0011】また本発明はその焼結体の製法条件も重要
である。すなわちα率93%以上、平均粒径が0.7μ
m以下の窒化ケイ素原料粉末を用い、図1に示される組
成範囲の助剤となる混合粉末よりなる圧粉体を1500
〜1700℃、1.1気圧以下のN2ガス雰囲気中で焼
結体相対密度が96%以上になるよう1次焼結をおこな
った後、1500〜1700℃、10気圧以上のN2
ス雰囲気中で焼結体相対密度が99%以上になるよう2
次焼結をおこなうことが好ましい。ここで窒化ケイ素原
料としてα率93%以上、平均粒径が0.7μm以下の
窒化ケイ素原料粉末を必要とする理由は低温域での焼結
性を向上させるためである。また本発明の組成の範囲を
選択することにより、焼結条件は1次焼結が1500〜
1700℃、1.1気圧以下のN2ガス雰囲気中の低温
域で可能となった。このため結晶粒の複合化がより微細
な結晶粒により構成され、その効果を顕著にするととも
に、1次焼結がプッシャー式あるいはベルト式等の開放
型連続焼結炉により、同時に生産性の優れた焼結が可能
となる。この詳細な説明を加えると、一般に強度特性に
優れた窒化ケイ素系材料の焼結法としては、いわゆるバ
ッチ式焼結炉によるガス圧焼結が主であるが、この方式
では炉内の温度分布のばらつきやロット間の条件ばらつ
き等が必ず生じるために、量産部品等の用途のセラミッ
ク材料を安定して供給する製法としては十分とは言えな
い。また窒化ケイ素は大気圧のN2雰囲気下では170
0℃以上の温度域で昇華分解するため、加圧N2雰囲気
下で焼結する必要があり、設備面でバッチ式焼結炉を用
いていた。この点からも本発明はその生産性を同時に向
上させた点で工業的に重要である。ここで焼結温度を1
500〜1700℃としたのは、上述した理由の他に1
500℃未満では焼結体の緻密化が十分図れず、170
0℃を超えると、結晶粒の粗大化が顕著になり強度特性
の劣化やばらつきの原因となる。また1次焼結体の相対
密度を96%以上に焼結するのは、2次焼結において焼
結体の緻密化を十分達成するためである。一方2次焼結
条件の焼結温度を1500〜1700℃としたのは、や
はり1500℃未満では焼結体の緻密化が十分図れず、
1700℃を超えると、結晶粒の粗大化が顕著になり強
度特性の劣化やばらつきの原因となるためである。ま
た、2次焼結を10気圧未満のN2雰囲気下で行うと最
終の焼結体が十分に緻密化しないため10気圧以上が好
ましい。一方得られた焼結体の相対密度が99%未満で
あると、強度特性にばらつきが生じるため好ましくな
い。また上述した条件は、窒化ケイ素原料粉末の製法が
イミド分解法によるものであると、さらに焼結体の強度
特性を向上させるのに好ましい。イミド分解法により得
られた窒化ケイ素原料粉末はα率が高く、結晶粒径の粒
度分布も狭いため、本発明の組成、焼結法の組合せによ
り、結晶相の複合化の効果が顕著に現れる。すなわちα
−Si34結晶粒の平均粒径が0.5μm以下及び、
β’−サイアロン結晶粒の長軸、および短軸の平均粒径
が各々2.5m、0.5μm以下と非常に微細な形態で
両結晶相が複合されるためである。この範囲で結晶粒が
複合された焼結体の強度は、その曲げ強度が100kg
/mm2を容易に越えるばかりでなく、そのばらつきも
きわめて少ないためである。以上により本発明の焼結体
が強度特性、及び生産性、コストに優れたものであるこ
とが明らかとなった。
【0012】
【実施例】
実施例1 平均粒径0.4μm、α結晶化率96%、酸素量1.4
重量%のイミド分解法を製法とする窒化ケイ素原料粉末
および、平均粒径0.8μm、0.4μm、0.5μ
m、0.1μmのY23、Al23、AlN、CeO2
の各粉末を表1に示す組成で、エタノール中、100時
間、ナイロン製ボールミルにて湿式混合したのち、乾燥
して得られた混合粉末を3000kg/cm2でCIP
成形し、この成形体をN2ガス1気圧中で1550℃で
6時間、1650℃で3時間1次焼結した。得られた焼
結体を1600℃、1000気圧N2ガス雰囲気中で1
時間、2次焼結した。この焼結体よりJISR1601
に準拠した3mm×4mm×40mm相当の抗折試験片
を切り出し、#800ダイヤモンド砥石により切削加工
仕上げした後、引張面については#3000のダイヤモ
ンドペーストによりラッピング仕上げ加工した後、JI
SR1601に準拠して3点曲げ強度を15本ずつ実施
した。表2中には1次焼結体の相対密度、2次焼結体の
相対密度、結晶相の比率と曲げ強度及びワイブル係数を
示した。なお、結晶相の比率に関してはX線回折法によ
り求めた各結晶相のピーク高さ比より算出した。
【0013】
【表1】
【0014】
【表2】
【0015】実施例2 市販の直接窒化法により得られた窒化ケイ素原料粉末
(平均粒径=0.7μm、α結晶化率=93%、酸素量
=1.5重量%)に実施例1と同様の助剤粉末を実施例
1の組成1〜5になるよう、実施例1と同様の手法で混
合、乾燥し成形した。この成形体をN2ガス1気圧中で
1580℃で6時間、1680℃で2時間1次焼結した
後、1600℃、1000気圧N2ガス雰囲気中で1時
間、2次焼結した。この焼結体より実施例1と同様の手
法によりJISR1601に準拠した抗折試験片を加工
し、同様の評価に供試した。この結果を表3に示す。
【0016】
【表3】
【0017】実施例3 実施例1と同様の原料粉末を、実施例1で示した組成1
〜5について同様の手法で混合、乾燥、成形した。得ら
れた成形体をN2ガス1気圧中で1550℃で6時間、
1650℃で3時間1次焼結した後、連続して1600
℃、80気圧N2ガス雰囲気中で2時間、2次焼結し
た。得られた焼結体より、実施例1と同様の手法でJI
SR1601に準拠した抗折試験片を切り出し、実施例
1と同様の手法で評価した。この結果を表4に示す。
【0018】
【表4】
【0019】実施例4 実施例2と同様の原料粉末を、実施例1で示した組成
2、4、5、9、15について、実施例1と同様の手法
で混合、乾燥、成形した。得られた成形体を表5に示す
条件で1次焼結した後、1600℃、50気圧N2ガス
雰囲気中で2時間焼結した。得られた焼結体より、実施
例1と同様の手法でJISR1601に準拠した抗折試
験片を切り出し、実施例1と同様の手法で評価した。ま
た各焼結体の微細組織をTEM観察により評価し結晶粒
径を求めた結果を表5中に示す。
【0020】
【表5】
【0021】実施例5 表6に示すように実施例1においてCeO2をCaOに
代えた以外すべて同じようにして実施した。相対密度等
を表7に示す。
【0022】
【表6】
【0023】
【表7】
【0024】実施例7 市販の直接窒化法により得られた窒化ケイ素原料粉末
(平均粒径=0.7μm、α結晶化率=93%、酸素量
=1.5重量%)に実施例6と同様の助剤粉末を実施例
6の組成17〜21になるよう、実施例6と同様の手法
で混合、乾燥し成形した。この成形体を実施例1と同様
に評価した。この結果を表8に示す。
【0025】
【表8】
【0026】実施例3 実施例6と同様の原料粉末を、実施例6で示した組成1
7〜21について同様の手法で混合、乾燥、成形した。
得られた成形体を実施例1と同様に試験をした。この結
果を表9に示す。
【0027】
【表9】
【0028】実施例9 実施例7と同様の原料粉末を、実施例6で示した組成1
8、20、21、25、31について、実施例6と同様
の手法で混合、乾燥、成形した。得られた成形体を表1
0に示す条件で1次焼結した後、1600℃、50気圧
2ガス雰囲気中で2時間焼結した。得られた焼結体よ
り、実施例1と同様の手法でJISR1601に準拠し
た抗折試験片を切り出し、実施例1と同様の手法で評価
した。また各焼結体の微細組織をTEM観察により評価
し結晶粒径を求めた結果を表10中に示す。
【0029】
【表10】
【0030】
【発明の効果】本発明によれば、特に常温において優れ
た機械的強度を有する窒化ケイ素系焼結体を、生産性、
コスト面において有利に提供される。
【図面の簡単な説明】
【図1】本発明における組成範囲を示す3元組成図であ
る。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社 伊丹製作所内 (56)参考文献 特開 平2−124770(JP,A) 特開 昭62−113767(JP,A) 特開 平2−296769(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 C04B 35/64

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】 Si34−第1助剤−第2助剤の3元組
    成図において、第1助剤がY23及びCeO2あるいは
    23及びCaOの2種よりなる組合わせからなり、一
    方第2助剤がAl23及びAlNの1種または2種より
    選ばれた組合わせよりなり、かつ、第2助剤のAl 2 3
    とAlNの添加比率が、モル比{AlN/(Al 2 3
    AlN)}で25〜75%の範囲にあって、その組成の
    範囲が図1に示される範囲、すなわちSi34と第1助
    剤の添加組成比がモル%で85:15から95:5の範
    囲であり、かつSi34と第2助剤の添加組成比がモル
    %で90:10から98:2の範囲で示される図1中の
    点A、B、C、Dで囲まれる範囲にあり、得られた焼結
    体中の結晶相にα−Si34とβ’−サイアロンの双方
    を含み、その焼結体の相対密度が98%以上であること
    を特徴とする窒化ケイ素系焼結体。
  2. 【請求項2】 焼結体中のα−Si34とβ’−サイア
    ロンの結晶相の析出比がX線回折のピーク強度比が、0
    %<α−Si34≦25%、75%<β’−サイアロン
    <100%であることを特徴とする請求項1記載の窒化
    ケイ素系焼結体。
  3. 【請求項3】 焼結体中のα−Si34結晶粒の平均粒
    径が0.5μm以下、β’−サイアロンの長軸、短軸方
    向の平均粒径がそれぞれ2.5μm、0.5μm以下で
    あることを特徴とする請求項1記載の窒化ケイ素系焼結
    体。
  4. 【請求項4】 焼結体中のβ’−サイアロン(一般式S
    6-ZAlZZ8-Zは0<Z<1.0の範囲であること
    を特徴とする請求項1記載の窒化ケイ素焼結体。
  5. 【請求項5】 α率93%以上、平均粒径が0.7μm
    以下の窒化ケイ素原料粉末を用い、図1中の点A、B、
    C、Dで囲まれる組成範囲の助剤となる混合粉末により
    圧粉体を1500〜1700℃、1.1気圧以下のN2
    ガス雰囲気中で焼結体相対密度が96%以上になるよう
    1次焼結をおこなった後、1500〜1700℃、10
    気圧以上のN2ガス雰囲気中で焼結体相対密度が99%
    以上になるよう2次焼結をおこなうことを特徴とする窒
    化ケイ素系焼結体の製造方法。
JP03272939A 1991-10-21 1991-10-21 窒化ケイ素系焼結体 Expired - Fee Related JP3143992B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03272939A JP3143992B2 (ja) 1991-10-21 1991-10-21 窒化ケイ素系焼結体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03272939A JP3143992B2 (ja) 1991-10-21 1991-10-21 窒化ケイ素系焼結体

Publications (2)

Publication Number Publication Date
JPH05105518A JPH05105518A (ja) 1993-04-27
JP3143992B2 true JP3143992B2 (ja) 2001-03-07

Family

ID=17520876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03272939A Expired - Fee Related JP3143992B2 (ja) 1991-10-21 1991-10-21 窒化ケイ素系焼結体

Country Status (1)

Country Link
JP (1) JP3143992B2 (ja)

Also Published As

Publication number Publication date
JPH05105518A (ja) 1993-04-27

Similar Documents

Publication Publication Date Title
EP0589411B1 (en) Silicon nitride sintered body and process for producing the same
US5204297A (en) Silicon nitride sintered body and process for producing the same
US5449649A (en) Monolithic silicon nitride having high fracture toughness
JPH11314969A (ja) 高熱伝導性Si3N4焼結体及びその製造方法
JP3395247B2 (ja) 窒化ケイ素系焼結体
JP3143992B2 (ja) 窒化ケイ素系焼結体
JP2597774B2 (ja) 窒化ケイ素系焼結体およびその製造方法
JPH09268069A (ja) 高熱伝導性材料およびその製造方法
JP2773976B2 (ja) 超靭性モノリシック窒化ケイ素
JP2539961B2 (ja) 窒化ケイ素系焼結体及びその製造法
EP0544070B1 (en) Silicon nitride sintered body
JP3137405B2 (ja) 窒化珪素基セラミックスの製造法
JP2539968B2 (ja) 窒化ケイ素系焼結体
JPH0558739A (ja) 窒化ケイ素系焼結体およびその製造法
JPH05148028A (ja) 窒化ケイ素系焼結体の製造法
JPH1149571A (ja) 窒化珪素質焼結体とその製造方法
JPH05155663A (ja) 窒化ケイ素系焼結体
JPH0570232A (ja) 窒化ケイ素系焼結体の製造法
JPH05124867A (ja) 窒化ケイ素系焼結体
JPH11130543A (ja) β型窒化ケイ素結晶およびその製造方法ならびに窒化ケイ素質焼結体の製造方法
JPH05105522A (ja) 窒化ケイ素系焼結体
JPH05208869A (ja) 窒化ケイ素系切削工具
JP2001019550A (ja) 微細結晶粒超塑性炭化珪素焼結体とその製造方法
JP2699697B2 (ja) 炭化珪素・窒化珪素質複合焼結体の製造方法
JPH07101777A (ja) 窒化ケイ素質焼結体およびその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees