JP3054850B2 - 湿度検知方法 - Google Patents

湿度検知方法

Info

Publication number
JP3054850B2
JP3054850B2 JP6222181A JP22218194A JP3054850B2 JP 3054850 B2 JP3054850 B2 JP 3054850B2 JP 6222181 A JP6222181 A JP 6222181A JP 22218194 A JP22218194 A JP 22218194A JP 3054850 B2 JP3054850 B2 JP 3054850B2
Authority
JP
Japan
Prior art keywords
humidity
thin film
change
light
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6222181A
Other languages
English (en)
Other versions
JPH0886752A (ja
Inventor
昌儀 安藤
哲彦 小林
正毅 春田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP6222181A priority Critical patent/JP3054850B2/ja
Publication of JPH0886752A publication Critical patent/JPH0886752A/ja
Priority to US08/872,940 priority patent/US5879943A/en
Application granted granted Critical
Publication of JP3054850B2 publication Critical patent/JP3054850B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/81Indicating humidity

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、湿度検知用材料を用い
た湿度検知方法に関する。
【0002】
【従来の技術】空気等の気体中の水蒸気、すなわち湿度
を検知することは、環境上の問題に関連して重要であ
る。近年、より快適な生活空間を得る目的のみならず、
ホームオートメーション化及びファクトリーオートメー
ション化の進展に伴って、結露によるトラブル発生の恐
れのある精密機器の作動環境を整える目的からも、セン
サによる湿度の検知、計測及び制御は、ますますその重
要性を増している。
【0003】従来、空気等の気体中の湿度を検知する方
法としては、例えば、(イ)毛髪が水蒸気を吸収する際
に起こる伸びを利用する方法(いわゆる毛髪湿度計)、
(ロ)電解質の電気抵抗が水蒸気により増減する現象を
利用する方法、(ハ)有機物、半導体、金属酸化物等の
誘電体へ水分が吸着することにより起こる抵抗あるいは
容量の変化を検知する方法、(ニ)ポリアミド等で被覆
した水晶振動子に水分が吸着することによる重量変化を
検知する方法等が用いられている。
【0004】しかし、これらの従来方法においては、
(イ)の方法では作動可能な雰囲気温度が室温付近に限
られ、また、酸やアルカリ等のような腐食性蒸気のある
ところでは使用できない等の欠点がある。(ロ)の電気
化学的な方法では他の方法に比べて構造が複雑になり、
電極や電解質のメンテナンスを行う必要がある。(ハ)
の方法のうち抵抗の変化を利用する方法は、水の吸着に
より生成するH+イオンの伝導性を利用する場合が多
く、したがって、吸着水量が少なくなる低湿度領域では
湿度センサ素子の抵抗が過大となり、通常の方法では抵
抗値や湿度の正確な測定が困難になる。また、一般に過
大な素子抵抗による測定の困難さがあり、感湿材料とし
て親水性高分子を用いる方法では、結露の可能性がある
ような高湿度領域では使用できない。
【0005】更に、(ニ)の重量変化を検知する方法で
は、水分以外の分子の吸着によっても、素子の重量変化
が起こりさえすれば信号が出力されるので、水分のみを
選択的に検知させる必要があって、難しい場合がある。
また、湿分検知信号を電気信号として取り出しているの
で、化学プラントや炭鉱等におけるように、広範囲での
湿度検知を遠隔操作により行う場合には、種々の発振源
から発せられる強力な電磁波やノイズなどにより湿度検
知信号が妨害されやすい欠点がある。また、これら電気
信号を基本とする湿度検知方法では、近年実用化されつ
つある光信号を基本に構成された情報システムや制御シ
ステムと直接組み合わせることは困難であり、電気信号
を光信号に変換するための設備を必要とする。
【0006】そのため、電磁気的妨害を受けにくく、光
情報システムや光制御システムと直接組み合わせやすい
湿度検知装置の開発が要望されている。そして、従来、
光信号で湿度を検知する方法としては、(イ)高分子担
体にクリスタルバイオレット、ベダイン系色素、ローダ
ミン色素等の有機色素を複合した膜の可視吸収スペクト
ル或いは蛍光強度の湿度依存性を利用する方法、(ロ)
高分子担体に担持した塩化コバルトの可視吸収スペクト
ル変化を利用する方法等が研究されている。しかし、有
機色素や有機高分子は耐熱性が低いため作動温度範囲が
比較的狭く、雰囲気中に反応性の強い蒸気が存在すると
不可逆的変化を起こす恐れがある等の欠点があった。し
たがって、化学的・熱的安定性に優れた光学的な湿度検
知用材料及び該材料を用いた湿度検知方法が要望されて
いる。
【0007】
【発明が解決しようとする課題】本発明は上記の事情に
鑑み、化学的・熱的安定性に優れ、且つ光学的な手段で
湿度を検知し得る湿度検知用材料を用いた湿度検知方法
を提供することを目的とする。
【0008】
【課題を解決するための手段】本発明者は、光信号によ
り空気等の気体中の湿度を検知し得る方法を見出すべく
鋭意研究を重ねてきた。その結果、Mg、Ca、Mn、
Fe、Co、Ni又はCuの酸化物は、空気等の気体中
において、水蒸気と接触させたときに、雰囲気中の湿度
(水蒸気分圧)に対応して光吸収率が変化する特性を有
することを知見し、この特性を利用することによって光
信号による湿度の検知が可能となることを見出し、本発
明を完成した。
【0009】すなわち本発明は、Mg、Ca、Mn、F
e、Co、Ni、Cuから選ばれた少なくとも1種の金
属の酸化物からなる湿度検知用材料を、湿分を含む気体
と接触させ、そのときの湿度検知用材料の光吸収率を測
定することを特徴とする湿度検知方法である。また、本
発明は前記の金属酸化物が多孔質であることを特徴とす
る湿度検知方法である。更に、本発明は、前記の湿度検
知用材料の金属酸化物が透明基板上に薄膜状に形成され
たものであることを特徴とする湿度検知方法である。ま
た、上記の気体としては、特に限定されず、水蒸気が種
々の濃度で安定に存在出来るような気体であれば良く、
空気、N2、Ar、He、H2、CO、CO2など、及び
これらの混合物があげられる。
【0010】本発明について順次説明する。本発明で用
いる湿度検知用材料は、Mg、Ca、Mn、Fe、C
o、Ni、Cuの少なくとも1種の金属酸化物である。
これらの酸化物は、気体中の水蒸気と接触することによ
って光吸収率が変化する性質を有する。しかも、この光
吸収率は、気体中の水蒸気濃度(湿度)に応じて変化す
る。このような現象の生じる理由は明確ではないが、例
えば、室温条件下での酸化コバルト(Co34)を例に
とると、以下のような原理によるものであると推測され
る。酸化コバルトを乾燥空気中に置き、次に乾燥空気雰
囲気中に水蒸気を混入させると、酸化コバルト表面上で
はまずH2Oが解離してH+とOH-になる。生じたOH-
は金属イオン上に、H+は酸素イオン上に化学結合し、
それぞれ表面水酸基を形成するが、このとき更にH+
OH-あるいは表面水酸基が酸化コバルト表面に通常吸
着している酸素陰イオンやガス分子とも化学的に相互作
用する等の結果、水蒸気の濃度が濃い場合には酸化コバ
ルトから電子が奪われ、酸化コバルト中の電子密度が低
くなり、水蒸気の濃度が薄い場合には酸化コバルトに電
子が押し戻されて酸化コバルト中の電子密度が高くな
る。酸化コバルトの光吸収率は電子密度で変化し、電子
密度が高いと光吸収率が小さくなり、電子密度が低いと
光吸収率が大きくなる。以上のように、酸化コバルトは
水蒸気濃度(湿度)の変化に対応して光吸収率の変化が
生じる。
【0011】上述した現象は全ての金属酸化物に現われ
るのではなく、次の3条件、すなわち、 (i)気相中の水蒸気と平衡して、表面に水分子が可逆
的に吸脱着し、かつ吸着したH2Oが解離してH+とOH
-になり、金属酸化物表面に可逆的に結合すること、 (ii)H2O、H+、OH-が吸着・結合する際に気体中
に置かれた金属酸化物の電子密度が変化すること、 (iii)電子密度の変化で金属酸化物の光吸収率が変化
すること、を満足する金属酸化物のみに現われるものと
考えられる。上記したMg、Ca、Mn、Fe、Co、
Ni、Cuの酸化物は、いずれも湿度変化に対応した光
吸収率変化を示す。
【0012】本発明において使用する金属酸化物は、金
属の酸化状態に関して特に限定はなく、例えばMgO、
CaO、MnO2、Mn34、Fe23、Fe34、C
oO、Co34、NiO、CuO等の種々の酸化状態の
ものがいずれも用いられ、特に好ましい金属酸化物とし
ては、CaO、Co34、NiO、CuOが挙げられ
る。ここで言う金属の酸化物には、上記のような単一の
酸化物の他に、2種類以上の酸化物の混合物、及びMn
Co24、NiCo24、NiMnCo48等の複合酸
化物も含まれる。これらの金属酸化物は既に知られてい
る種々の方法で調製することができる。
【0013】本発明において使用する金属酸化物には、
それ自体は湿度変化による光吸収変化を示さないが、該
金属酸化物の調製過程において添加することによって湿
度変化による該金属酸化物の光吸収変化を増幅させ、高
感度化させる働きをもつ物質を、金属酸化物の調製過程
で添加しても良い。このような物質としては、例えば、
金属酸化物をオクチル酸コバルトのような有機酸金属塩
或いは硝酸ニッケルのような硝酸塩の熱分解によって調
製する場合には、樟脳(C1016O)、尿素(CO(N
22)等の有機化合物が挙げられる。常温で固体であ
る樟脳や尿素等は加熱により気化・飛散するので、樟脳
や尿素を添加した金属塩から得られる金属酸化物は、こ
れら化合物を添加しない場合と比較してより多孔質で表
面積の大きなものとなり、表面により多量の水を吸着す
ることができる。したがって、得られた金属酸化物は、
湿度変化による光吸収変化が鋭敏となる。この場合、原
料化合物中の金属原子数と、添加する物質の分子数の比
率は、通常(1:0.01)〜(1:5)程度である。
【0014】本発明では、金属酸化物の形状は特に限定
されなく、湿度の検出手段に応じて、薄膜状、粉末状等
の各種の形状にして使用する。例えば、後述する透過法
により光吸収率を測定する方法では、薄膜状とすること
が一般的であり、また拡散反射法により測定する場合に
は、粉末状またはこれを成形したペレット状とすること
が一般的である。
【0015】本発明で上記の金属酸化物を薄膜にして使
用する場合は、透明基板上に上記の金属酸化物の薄膜を
形成させて使用する。この透明基板としては、特に限定
はないが、SiO2を主成分とするガラス、石英、Al2
3からなるサファイア等が例示される。薄膜の形成方
法は、特に限定はなく、スパッタ法、真空蒸着法、CV
D法等のいわゆる気相法や、金属硝酸塩、有機酸金属
塩、金属アルコキシド等の溶液を基板上に塗布し、熱分
解する方法等、各種の公知の方法が適用できる。薄膜の
厚さは、特に限定されないが、光吸収率の変化は、主と
して薄膜の表面付近で生じるので、薄膜が厚くなりすぎ
ると、光吸収率の変化割合が少なくなり、検出感度が低
下する。通常、スパッタ法で形成される薄膜のように均
質で緻密な薄膜の場合には、比較的表面積が小さいの
で、5〜20nm程度が適当であり、一方溶液を塗布
し、熱分解する方法を採用して薄膜を形成する場合に
は、形成される薄膜の表面積が比較的大きいので、より
厚い膜厚でも、光吸収率の変化を検出することができ
る。
【0016】また、金属酸化物を粉末状で用いる場合に
は、微粉末状とすることが好ましく、粒径1μm以下と
することが適当である。また、この微粉末状金属酸化物
を固めて成形しペレットにして用いても良い。金属酸化
物は他の物質と混合して用いても良い。この物質はそれ
自体は湿度変化による光吸収変化を示さないが、金属酸
化物を多孔質化させたり、機械的強度を増大させるなど
の作用をなすものである。機械的強度を増大させる物質
としては、シリカ(SiO2)、アルミナ(Al23
などが挙げられる。
【0017】本発明の湿度検知用材料は、気体中の湿度
の変化に応じて光吸収率が変化する。この特性を利用し
て湿度を検知するには、次のようにする。すなわち、本
発明の湿度検知方法は、湿度検知用材料が検知すべき湿
分を含有する気体と接触した際の該湿度検知用材料の光
吸収率を測定することにより行なう。湿度検知用材料の
光吸収率を測定するには、公知の方法のいずれも適用で
きる。例えば、透明基板上に薄膜状の金属酸化物層を形
成した湿度検知用材料を用いて、透過光強度から光吸収
率を測定する方法、粉末状の金属酸化物や粉末を固めて
成形したペレット状の金属酸化物等を用いて、光を照射
した際の反射光の強度を拡散反射法で測定し光吸収率を
見積もる方法、光導波路表面に金属酸化物を付着させて
その光吸収率を測定する方法、光−音響効果を利用して
光吸収率を測定する方法等各種の公知の方法が可能であ
る。斯くして、本発明の湿度検知用材料を用いると、そ
の光吸収率を測定することにより、気体中の湿度を検知
し、また測定することができる。
【0018】光吸収率は、吸光度、透過率等通常用いら
れる各種の基準によって評価することができる。光吸収
率の測定に用いる測定光の波長は、特に限定的ではない
が、300〜2500nm程度とすることが好ましい。
光吸収率の測定は、高湿度条件下で起こることが予想さ
れる金属酸化物表面での水の凍結を避けるため、0℃以
上の温度で行うことが好ましい。一方、測定温度を約5
00℃よりも高温に設定すると、熱による金属酸化物粉
末同士の凝集や膜を構成する金属酸化物微粒子同士の凝
集が起こり、湿度検知特性が経時変化を起こす恐れがあ
るので、測定温度範囲は、1〜300℃程度が適当であ
る。但し、約150℃以上の温度域では、本発明におい
て使用する多くの金属酸化物の光吸収率は空気中のC
O、H2等の還元性ガスの存在量によっても変化する
(特開平3−89162号公報参照)ので、湿度変化に
よる光吸収率の変化と還元性ガスによる光吸収率の変化
を分離する必要が生じる。したがって、空気中の還元性
ガスの存在量に影響を受けずに湿度変化だけを光吸収率
から検知するためには、測定温度範囲を1〜150℃に
設定することがより好ましい。
【0019】
【実施例及び比較例】以下実施例を示して本発明を更に
詳細に説明する。 実施例1 ガラス基板上(片面)にオクチル酸コバルトと樟脳の混
合物(コバルトの原子数:樟脳の分子数=1:1)の膜
をスピンコート法で形成し、380℃で2時間焼成し、
厚み約60nmの酸化コバルト(Co34)薄膜を調製
した。この酸化コバルト薄膜を25℃に保ち、(a)相
対湿度(RH)90%の湿分を含む空気、及び(b)相
対湿度(RH)10%の湿分を含む空気のそれぞれの中
で、透過光の紫外−可視−近赤外光吸収スペクトルを測
定した。この紫外−可視−近赤外光吸収スペクトルの測
定は、石英セル(容積200ml)中で調湿空気を10
0ml/分で流通させながら光ファイバー付分光光度計
を用いて測定した。その結果を図1に示す。
【0020】図1における点線(a)と実線(b)との
比較により明らかなように、空気中の湿度の増減によ
り、紫外−可視−近赤外の幅広い波長域内で酸化コバル
ト薄膜の吸光度が増減する。したがって、この波長域内
のいずれかの1波長での酸化コバルト薄膜の吸光度を測
定することにより、空気中の湿度の増減を検知すること
ができる。また、吸光度変化量は波長350〜400n
m付近で最も大きくなることがわかる。
【0021】また、酸化コバルト薄膜を25℃に保ち、
雰囲気を相対湿度10%の湿分を含む空気から相対湿度
90%の湿分を含む空気に切り替え、15分経過後に再
び標準空気に戻したときの、波長400nmの光に対す
る酸化コバルト薄膜の吸光度の変化を調べた。結果を図
2に示す。空気中の湿度の増減により、可逆的に酸化コ
バルト薄膜の吸光度が変化し、応答時間は数分以内であ
ることがわかる。
【0022】更に、酸化コバルト薄膜を25℃に保ち、
雰囲気を相対湿度10%、30%、50%、70%、9
0%の湿分を含む空気に変えて、波長400nmの光に
対する酸化コバルト薄膜の吸光度の変化を調べた。結果
を図3に示す。空気中の相対湿度に応じて吸光度が変化
することがわかる。したがって、この酸化コバルト薄膜
を、空気の存在下で水蒸気と接触させ、そのときの酸化
コバルト薄膜の吸光度を少なくとも1波長、例えば波長
400nmの光で測定することにより湿度を測定するこ
とができる。
【0023】実施例2 ガラス基板上(片面)にオクチル酸ニッケル膜をスピン
コート法で形成し、380℃で2時間焼成して厚み約7
0nmの酸化ニッケル(NiO)薄膜を調製した。酸化
ニッケル薄膜を15℃に保ち、(a)相対湿度95%の
湿分を含む空気、及び(b)相対湿度5%の湿分を含む
空気のそれぞれの中で、透過光の紫外−可視−近赤外光
吸収スペクトルを測定した。その結果を図4に示す。図
4における点線(a)と実線(b)の比較により明らか
なように、空気中の湿度の増減により、紫外−可視−近
赤外の幅広い波長域内で酸化ニッケル薄膜の吸光度が増
減する。したがって、この波長域内のいずれか1波長で
の酸化ニッケル薄膜の吸光度を測定することにより、空
気中の湿度の増減を検知することができる。また、吸光
度変化量は波長350〜1350nmの範囲では波長に
よらずほぼ一定であることがわかる。
【0024】実施例3 ガラス基板上(片面)にスパッタ法で厚み約10nmの
酸化銅(CuO)薄膜を形成した。この酸化銅薄膜を1
8℃に保ち、(a)相対湿度95%の湿分を含む空気、
及び(b)相対湿度5%の湿分を含む空気のそれぞれの
中で、波長400nmの光に対する吸光度を測定した結
果、(a)及び(b)のそれぞれの雰囲気中での酸化銅
薄膜の吸光度は0.125及び0.121であった。こ
れより、空気中の湿度の増減により、可視光領域で酸化
銅薄膜の吸光度が増減することがわかる。
【0025】実施例4 ガラス基板上(片面)にナフテン酸マグネシウム膜をス
ピンコート法で形成し、380℃で2時間焼成して酸化
マグネシウム(MgO)薄膜を調製した。この酸化マグ
ネシウム薄膜を20℃に保ち、(a)相対湿度80%の
湿分を含む空気、及び(b)相対湿度5%の湿分を含む
空気のそれぞれの中で、波長900mnの光に対する酸
化マグネシウムの薄膜の吸光度はそれぞれ0.012及
び0.006であった。
【0026】実施例5 ガラス基板上(片面)にオクチル酸カルシウム膜をスピ
ンコート法で形成し、380℃で2時間焼成して酸化カ
ルシウム(CaO)薄膜を調製した。この酸化カルシウ
ム薄膜を14℃に保ち、(a)相対湿度80%の湿分を
含む空気、及び(b)相対湿度5%の湿分を含む空気の
それぞれの中で、波長400nmの光に対する酸化カル
シウムの吸光度を測定した結果、酸化カルシウムの吸光
度はそれぞれ0.036及び0.032であった。
【0027】
【発明の効果】本発明の湿度検知方法によると、湿分を
含む気体と接触させ、そのときの湿度検知用材料の光吸
収率を測定することにより容易に湿度を検知、測定する
ことができる利点がある。更に、光学的な手段で湿度を
検知し得る、すなわち光信号により気体中の湿度を検知
し得るので、近年実用化されつつある光信号を基本に構
成された情報システムや制御システムと直接組み合わせ
ることができる利点がある。また、本発明で用いる湿度
検知用材料は化学的・熱的安定性に優れており、そのた
め従来研究されてきた有機高分子材料を用いた湿度検知
用材料よりも化学的・熱的安定性が高い湿度センサを構
成することができ、より幅広い条件下で使用できる可能
性がある。
【図面の簡単な説明】
【図1】高湿度空気中及び低湿度空気中での酸化コバル
ト薄膜の紫外−可視−近赤外光吸収スペクトルを表す図
である。
【図2】湿度変化による酸化コバルト薄膜の吸光度変化
を表す図である。
【図3】相対湿度と酸化コバルト薄膜の吸光度との関係
を表す図である。
【図4】高湿度空気中及び低湿度空気中での酸化ニッケ
ル薄膜の紫外−可視−近赤外光吸収スペクトルを表す図
である。
フロントページの続き 審査官 山村 祥子 (56)参考文献 特開 昭55−51345(JP,A) 特開 昭54−102147(JP,A) 実開 平4−122360(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 21/75 - 21/83

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】Mg、Ca、Mn、Fe、Co、Ni、C
    uから選ばれた少なくとも1種の金属の酸化物からなる
    湿度検知用材料を、湿分を含む気体と接触させ、そのと
    きの湿度検知用材料の光吸収率を測定することを特徴と
    する湿度検知方法。
  2. 【請求項2】湿度検知用材料の金属酸化物が多孔質であ
    ることを特徴とする請求項1記載の湿度検知方法。
  3. 【請求項3】湿度検知用材料の金属酸化物が透明基板上
    に薄膜状に形成されたものであることを特徴とする請求
    項1又は2記載の湿度検知方法。
JP6222181A 1994-09-16 1994-09-16 湿度検知方法 Expired - Lifetime JP3054850B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6222181A JP3054850B2 (ja) 1994-09-16 1994-09-16 湿度検知方法
US08/872,940 US5879943A (en) 1994-09-16 1997-06-11 Humidity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222181A JP3054850B2 (ja) 1994-09-16 1994-09-16 湿度検知方法

Publications (2)

Publication Number Publication Date
JPH0886752A JPH0886752A (ja) 1996-04-02
JP3054850B2 true JP3054850B2 (ja) 2000-06-19

Family

ID=16778435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222181A Expired - Lifetime JP3054850B2 (ja) 1994-09-16 1994-09-16 湿度検知方法

Country Status (2)

Country Link
US (1) US5879943A (ja)
JP (1) JP3054850B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054688B2 (ja) * 1997-08-29 2000-06-19 工業技術院長 湿度検知用材料及びその製造方法
JP3826175B2 (ja) * 1997-11-07 2006-09-27 独立行政法人産業技術総合研究所 雰囲気中の水分検出方法
AU2001230356A1 (en) * 2000-01-28 2001-08-07 Catalytic Electrodes Limited Carbon monoxide detector
US6450015B1 (en) * 2000-12-08 2002-09-17 Eastman Kodak Company Ambient condition sensor for a photosensitive media cartridge
WO2002066966A1 (en) * 2001-01-08 2002-08-29 California Analytical Instruments, Inc. Method and apparatus for the determination of total sulfur in a gas
US6918982B2 (en) * 2002-12-09 2005-07-19 International Business Machines Corporation System and method of transfer printing an organic semiconductor
CA2476902C (en) * 2003-08-20 2014-04-22 Dennis S. Prince Innovative gas monitoring with spacial and temporal analysis
US8949037B2 (en) * 2003-08-20 2015-02-03 Airdar Inc. Method and system for detecting and monitoring emissions
US20070143032A1 (en) * 2005-09-15 2007-06-21 Carl Zeiss Smt Ag Apparatus and method for the detection of a surface reaction, especially for cleaning of an arbitrary two-dimensional surface or three-dimensional body
US7762255B2 (en) * 2005-09-30 2010-07-27 General Electric Company Safety device for breathing circuit carbon dioxide absorber
DK2419766T3 (da) * 2009-04-14 2022-10-03 Airdar Inc System til at måle udledning og kvantificere udledningskilde
JP5415376B2 (ja) * 2010-08-06 2014-02-12 株式会社フジクラ センサヘッド、および光学式センサ
GB201617276D0 (en) 2016-10-11 2016-11-23 Big Solar Limited Energy storage
JP6969206B2 (ja) 2017-08-07 2021-11-24 株式会社ジェイテクト 4輪駆動車及び4輪駆動車の制御方法
DE112019005493T5 (de) * 2018-11-01 2021-10-21 Ams Ag Feuchtigkeitssensor mit einem optischen wellenleiter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB345672A (en) * 1929-12-21 1931-03-23 Leonard Angelo Levy Method of and means for detecting water vapour
NL7515014A (nl) * 1974-12-27 1976-06-29 Matsushita Electric Ind Co Ltd Vochtigheidssensor.
US4050048A (en) * 1975-04-09 1977-09-20 Plessey Incorporated Humidity sensor, material therefor and method
JPS54102147A (en) * 1978-01-30 1979-08-11 Matsushita Electric Ind Co Ltd Temperature and humidity sensor
JPS5551345A (en) * 1978-10-11 1980-04-15 Matsushita Electric Ind Co Ltd Humidity detector
JPS55136954A (en) * 1979-04-13 1980-10-25 Matsushita Electric Works Ltd Moisture control of base material
US4419021A (en) * 1980-02-04 1983-12-06 Matsushita Electric Industrial Co., Ltd. Multi-functional sensing or measuring system
JPS57109319A (en) * 1980-12-16 1982-07-07 Yoshio Imai Capacity type moisture sensor and method of producing same
JPS62110143A (ja) * 1985-11-08 1987-05-21 Res Dev Corp Of Japan 感応媒体
JPS62142564A (ja) * 1985-12-17 1987-06-25 ア−ス製薬株式会社 インジケ−タ−
JPH0511496Y2 (ja) * 1986-05-13 1993-03-22
JPS63250801A (ja) * 1987-04-08 1988-10-18 ティーディーケイ株式会社 湿度検知素子
US4975249A (en) * 1987-07-27 1990-12-04 Elliott Stanley B Optical and capacitance type, phase transition, humidity-responsive devices
JPH01107956U (ja) * 1988-01-12 1989-07-20
GB2241781A (en) * 1990-03-05 1991-09-11 Bacharach Inc Moisture indicator
JPH04122360U (ja) * 1991-04-19 1992-11-02 株式会社トーキン 感湿素子

Also Published As

Publication number Publication date
US5879943A (en) 1999-03-09
JPH0886752A (ja) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3054850B2 (ja) 湿度検知方法
US4141800A (en) Electrochemical gas detector and method of using same
Seiyama et al. Ceramic humidity sensors
GB2070770A (en) Biuret reagent composition and analytical elements
US20230273139A1 (en) Gas detection complex and method for producing same, gas sensor comprising gas detection complex and method for manufacturing same
US4755473A (en) Method of detecting carbon dioxide gas
JP2789522B2 (ja) 基板上に黄緑石型酸化タングステン層を形成する方法および該黄緑石型酸化タングステン層含有湿度センサ素子
US4732738A (en) Combustible gas detecting element
JPH05505465A (ja) ガスセンサ
JPH0389162A (ja) 可燃性ガス検知材料、及び可燃性ガス検知方法
JP3054688B2 (ja) 湿度検知用材料及びその製造方法
US20200340923A1 (en) A sensor comprising a nanoporous material and method for detecting an analyte using the sensor
GB2599010A (en) Gas sensor and method of manufacturing a gas sensor
US4296399A (en) Microminiature palladium oxide gas detector and method of making same
US7628957B1 (en) Carbon dioxide sensor
JP2707246B2 (ja) 湿度センサ
Feng et al. ZIF-67C@ CeO2 Composite for the Electrochemical Non-Enzymatic Determination of Nitrite in Fish Dry Samples
JPH0254512B2 (ja)
JP3919306B2 (ja) 炭化水素ガス検知素子
KR20190101503A (ko) 2d 나노시트 물질에 기초하는 가스 및 증기 센싱 장치
Schmitt et al. Chromium Titanium Oxide-Based Ammonia Sensors
Takagi et al. CAPACITIVE TYPE CO, SENSOR USING SELF-ASSEMBLED ORGANIC-INORGANIC BILAYER FILM OPERATING AT LOW TEMPERATURE
Majumder et al. Synthesis of Pd/SnO2 films by wet chemical route for LPG sensor
JPH05196591A (ja) 湿度センサ
JP2004226177A (ja) 湿度センサー及び湿度の測定方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term