JP2965641B2 - 超伝導素子の製造方法 - Google Patents

超伝導素子の製造方法

Info

Publication number
JP2965641B2
JP2965641B2 JP2216885A JP21688590A JP2965641B2 JP 2965641 B2 JP2965641 B2 JP 2965641B2 JP 2216885 A JP2216885 A JP 2216885A JP 21688590 A JP21688590 A JP 21688590A JP 2965641 B2 JP2965641 B2 JP 2965641B2
Authority
JP
Japan
Prior art keywords
thin film
superconducting
treatment
superconductor
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2216885A
Other languages
English (en)
Other versions
JPH04119905A (ja
Inventor
重美 古曵
晃 榎原
秀隆 東野
真一郎 八田
謙太郎 瀬恒
清孝 和佐
健 鎌田
重徳 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH04119905A publication Critical patent/JPH04119905A/ja
Application granted granted Critical
Publication of JP2965641B2 publication Critical patent/JP2965641B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • H10N60/0941Manufacture or treatment of Josephson-effect devices comprising high-Tc ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/702Josephson junction present
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/727Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device using magnetic field

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超伝導素子の製造方法に関する。
従来の技術 従来、A15型2元系化合物窒化ニオブ(NbN)やニオブ
3ゲルマニウム(Nb3Ge)などを用いた超伝導素子が種
々提案されている。しかし、これらの材料の超伝導転移
温度Tcはたかだか24Kであった。
また、ペロブスカイト系化合物としては、Ba−Pb−Bi
−O系(特開昭60−173885)が知られており、この系の
材料を用いた超伝導材料も数多く研究されている。しか
し、この材料のT0は13K程度と低く実用化は困難であっ
た。
これに対してLa−Sr−Cu−O系,Y−Ba−Cu−O系,Bi
−Sr−Ca−Cu−O系,Tl−Ba−Sr−Cu−O系など常伝導
状態における電荷輸送担体を、電子の空孔とするP型酸
化物超伝導材料は、超伝導機構の詳細は明かではない
が、転移温度が液体窒素温度以上と高く、量子干渉素子
等各種エレクトロニクス分野への応用が期待されてい
る。
また、Nd−Ce−Cu−O系、Nd−Cu−O−F系などはNd
2CuO4型結晶構造を有し、P型超伝導材料と異なり常伝
導状態における電荷輸送担体を電子とするN型酸化物超
伝導材料であり、このN型酸化物超伝導材料も、転移温
度が高く、その実用化に大きな期待が寄せられている。
またこの種の材料を素子として実用化する場合、薄膜
状に加工することが素子の小型化及び取扱性等で強く要
望されているが、従来の技術では、良好な超伝導特性を
有する薄膜作製は非常に困難とされている。つまりこれ
ら新しい超伝導材料は、主として焼結という過程でしか
形成できず、セラミックの粉末あるいはブロックの形で
しか得られていなかった。しかし、近年超伝導材料の薄
膜化についても積極的に検討されており、超伝導素子等
の超伝導材料応用技術に拍車がかかっている。
発明が解決しようとする課題 これらのP型超伝導材料及びN型超伝導材料は、結晶
中に含まれる酸素原子の量、即ち、酸化状態によって絶
縁体(半導体)−超伝導体の変化を示す。従って良好な
超伝導材料を得るには、結晶性並びに配向性の向上並び
に酸化状態の制御が必要であるが、それらが困難である
と言う課題があった。
さらにこれら超伝導材料の製法として従来専ら用いら
れていた焼結の製造方法においては、酸素雰囲気下で80
0℃以上での高温プロセスと100℃/時以下の徐冷プロセ
ス、もしくは真空(還元雰囲気)下800℃以上での高温
での慎重なアニールプロセスを必要としており、高温炉
等の設備と長い処理時間が必要であると言う課題もあっ
た。
またこれまでに薄膜法で作製されたこれらP型,N型何
れの超伝導体薄膜においても、超伝導臨界状態に於ける
電流密度が小さく、また電流密度の時間に対する減少が
著しく、安定性、信頼性の高い超伝導デバイスは実現困
難と考えられてきた。
この臨界超伝導電流を改善するために、中性子やγ線
等を照射して、ピニングセンターを作製する手法が提案
されている。しかしこの手法では確かに反磁化の大きさ
から求めた臨界電流密度は向上するが、実際の輸送電流
より求めた臨界電流密度は向上し難く、また中性子やγ
線照射と言った危険が伴うという課題があった。
本発明は、薄膜超伝導素子を作成する際に、結晶性並
びに配向性を向上させるとともに、酸素量を制御して臨
界電流密度を高めることを目的とする。
課題を解決するための手段 上記目的を達成するため、本発明は、基体上に形成さ
れた薄膜超伝導体からなり、臨界電流密度が小さい超伝
導体領域により臨界電流密度が大きい超伝導体領域を分
断した形状を有する超伝導素子において、臨界電流密度
の大きい超伝導領域に対して、紫外線以上のエネルギー
を有する光子の照射による還元工程と、その後の酸化処
理工程とを施すことを特徴とする超伝導素子の製造方法
である。
作用 本発明の超伝導素子の製造方法によれば、紫外線以上
のエネルギーを有する光子を照射することで、結晶構造
を破壊することなく超伝導体を還元し、その後適度な酸
素処理を行うこによって超伝導素子の酸化の状態を精密
に制御することが可能となる。
実施例 酸化物超伝導体は、臨界温度が高温であるが、薄膜堆
積工程で得られる薄膜の結晶性,配向性及び酸素並びに
酸素欠陥の量は、高臨界電流密度等の良好な超伝導特性
を出現させるには必ずしも充分ではない。従って結晶性
と配向性とを向上させ、酸素の取り込みの処理が必要で
ある。しかも超伝導体の転移温度はそのままにするた
め、元素配列を変化しないことが必要である。
さらに高温酸化物超伝導体はそのコヒーレンス長が短
いので、結晶中に酸素欠陥を均一に作ることが磁束量子
線のピンニングに有効である。
以上の観点から、本発明の超伝導素子の製造方法は、
基体上に超伝導薄膜を形成した後、紫外線以上のエネル
ギーを有する光子照射を行い、金属元素のオーダリング
を破壊することなく薄膜中に均一な酸素欠陥を発生させ
ることができる。
本発明で言う紫外線以上のエネルギとは、具体的には
数eV以上100KeV以下である。
数マイクロメータ以下の膜厚を有する薄膜超伝導体で
は、用いる光子のエネルギーによっては膜厚全体にわた
り均一な酸素欠陥を作ることが可能となる。
その後の酸化処理工程としては、酸素雰囲気下での熱
処理、酸素イオンや励起状態の酸素原子の照射などがあ
り、これにより酸素原子の含有量制御が可能である。
すなわち本発明では、P型超伝導体の結晶性もしくは
配向性の向上処理の仕方として、光子照射を薄膜堆積と
同時に、あるいは薄膜堆積を中断して行い、酸化処理の
仕方として酸素雰囲気下での熱処理、酸素イオンや励起
状態の酸素原子の照射を薄膜堆積を中断して行う。つま
り薄膜堆積工程、結晶性もしくは配向性向上処理工程と
酸化処理工程とを交互に繰り返すことにより、高性能の
超伝導材料を制御性、安定性良く実現した技術である。
またN型超伝導体では、紫外線以上のエネルギを有す
る光子の照射により、結晶性もしくは配向性の向上や酸
素含有量の制御が可能である。
P型,N型いずれの超伝導薄膜でも、この紫外線以上の
エネルギを有する光子の照射は、結晶中のOまたはFな
どの陰イオンを電子励起により中性化し、結晶から離脱
させることにより酸化物を還元する。また酸化物の還元
と同時に、ポテンシャルエネルギが結晶格子に開放され
るので、内殻励起状態の緩和によるスパイク的な格子振
動を励起し、これが陽イオンの原子配列をより整列させ
て結晶の配向性を向上させるという効果をもたらす。
臨界状態での磁束量子線は、薄膜中を直線で貫らぬい
ているのではなく、膜厚中で曲がりくねっていると考え
られている。
この磁束量子線を有効にピン止めするには、前述した
ように酸化物超伝導体のコヒーレンス長が短い点を考慮
すると、膜厚方向に数Å〜百Å程度の間隔で酸素欠陥を
分布させると良い。
本発明の薄膜超伝導体の製造方法は、紫外線以上のエ
ネルギを有する光子の照射を、薄膜堆積時もしくは堆積
後に行う。
例えばこの光子の照射工程を予め行った酸化物組成物
を、焼結により超伝導体を形成しても、この焼結により
光子照射で作成されたピンニングセンタが破壊されてし
まうため、効果は全く無い。
また本発明の超伝導体の製造方法の光子照射工程に
は、紫外線以上のエネルギであればよく、中性子やγ線
等の危険な電子線照射を施さなくてよい。このため非常
に安全で、工業的価値も高い。また中性子やγ線等の高
エネルギ線の照射を行うと、構成する金属原子にまで破
壊を及ぼし、このため反磁界の大きさから求めた臨界電
流密度は改善されるが、零磁場での輸送電流から求めた
臨界電流密度は改善されない。
本発明の超伝導素子の製造方法は、(イ)超伝導体薄
膜表面に紫外線以上のエネルギを有する光子を照射した
後、微小な間隙部で分離された2つの領域のみを選択的
に酸化処理を施すか、または(ロ)金属酸化物超伝導薄
膜表面の微小な間隙部で分離された2つの領域のみに選
択的に紫外線以上のエネルギを有する光子を照射し、そ
の後、上記超伝導体薄膜表面に酸化処理を施すか、また
は(ハ)超伝導薄膜表面の微小な間隙部で分離された2
つの領域のみに選択的に紫外線以上のエネルギを有する
光子を照射し、その後、上記超伝導体薄膜表面の上記2
つの領域のみに酸化処理を施すの主に3つの手法によ
り、前記超伝導体中の前記間隙部に接合部を形成して得
られる。
また、接合部形成のマスクパターンとしてPMMA等のア
クリル樹脂系やCMS等のスチレン樹脂系の電子線レジス
トあるいは光リソグラフィ用のネガレジストを用いるこ
ともできる。
また、エッチングなどを用いないため、形状の変化が
なく、積層化などの際にも有効である。
本発明の超伝導素子の製造方法は、超伝導薄膜表面に
紫外線以上のエネルギを有する光子を照射することによ
り、超伝導体中のCu酸化物が還元される結果、超伝導特
性が劣化し、その後、微小な間隙部で分離された2つの
領域のみを選択的に酸化処理し、超伝導性を再び可逆的
に回復させ、前記間隙部に弱結合のジョセフソン接合を
形成する。
この方法では、酸化処理が限られた領域のみに限定さ
れるため、酸化により損傷を受ける回路などと同一基板
上に形成できる。
また光子は表面全域に照射できるため、コリメイトさ
れていない光源でも利用できる。
さらに超伝導薄膜表面の微小な間隙部で分離された2
つの領域のみに紫外線以上のエネルギを有する光子を照
射し、その後酸化処理することによって照射された部分
のみの超伝導特性を向上させ、前記間隙部が弱結合型の
ジョセフソン接合となる。
この方法で超伝導薄膜表面に選択的に光子を照射する
には、従来からある光リソグラフィーの手法をそのまま
利用でき、また酸化処理は部分的に行う必要がないなど
から、従来半導体集積回路作製で用いられてきた技術を
流用できる部分が多く、作製が容易である。
また、本発明の製造方法では超伝導薄膜表面の微小な
間隙部で分離された2つの領域のみに紫外線以上のエネ
ルギを有する光子を照射し、その後、前記2つの領域の
みを酸化処理し超伝導特性を向上させ、前記間隙部に弱
結合のジョセフソン接合を形成する。
この方法では光子の照射及び酸化処理は金属酸化物超
伝導薄膜表面の限られた部分に対してのみ行われること
から、ジョセフソン接合形成を必要としない部分に照射
及び酸化処理の影響を及ぼすことがなく、ジョセフソン
素子と他の機能素子との集積化などを考慮した場合有効
である。
結晶性向上、配向性向上および酸素欠陥作成のための
光子照射装置としては、X線源もしくは紫外線源が供さ
れる。X線照射装置は通常のW,Mo,Rh,Cu,Fe,Co,Cr,Al,M
g,ZrなどのX線管、また紫外線照射処理はH,He,Neなど
の紫外線源をもちい、このX線または紫外線を超電導薄
膜に照射することにより行われる。
X線や紫外線の利用は、イオンビームや電子ビームの
利用と異なり、金属元素同士の比率の変化や局所的な大
きな温度上昇、また薄膜の結晶性の低下等を起こさずに
均一性の良好な処理を可能とするので、本発明は非照射
部の薄膜に大きな損傷を与えないという利点を有する。
基体の材料としては、高結晶性の酸化物走を積層する
ためには単結晶の基板が有効であり、酸化マグネシウ
ム、LaAlO3,LaGaO3、チタン酸ストロンチウム等の単結
晶が供される。
また本発明者らは、基板表面に薄膜酸化物層を付着さ
せる場合、その薄膜酸化物層に超伝導特性を持たせるた
めには、基板の温度範囲としてP型では500〜900℃,N型
では400〜1100℃が適当であることを確認した。化合物
薄膜の結晶性、組成、表面状態を最適なものとするため
の最適基板温度はこの範囲に存在する。
本発明者らは、結晶性の高い薄膜が初期特性並びに長
期的安定性に優れており、成膜中あるいは直後の結晶性
および酸素原子または酸素欠陥含有量の制御が、より良
好な超伝導特性をもたらすことを確認した。
この確認に基づき製造プロセスからみて、一旦薄膜形
成槽の外に被膜を取り出すと、空気中の水分等が表面に
吸着し、被膜の構成元素と反応して特性を劣化させてし
まうため、この結晶性向上並びに還元処理とP型超伝導
体の酸化処理を薄膜形成行程の一部として組み入れる必
要がある。
本発明者らは、結晶性向上並びに還元のための処理と
P型超伝導体の酸化のための処理の仕方として、A)薄
膜堆積直後の後処理として行う、B)薄膜堆積と同時に
行う、あるいは、C)薄膜堆積を中断して行う、すなわ
ち、薄膜堆積行程と結晶性向上並びに還元処理行程、P
型超伝導体の酸化処理行程とを交互に繰り返すといった
大別して3種類の方法を試み、いずれも全く結晶性向上
処理、酸化処理を施さない場合に比べ、特性が優れた超
伝導薄膜を得ることが出来ることを実験によって確認し
た。
まずP型超伝導体薄膜形成中にX線照射を行ない薄膜
形成後直ちに形成槽内に酸素ガスを導入し、焼結体と同
様の徐冷プロセスによって後処理として酸化処理を施せ
ば、良好な超伝導特性を得ることができる。
さらにX線照射により薄膜の結晶性が向上し、かつ酸
素が薄膜中に最も有効に取り込まれるのは、薄膜形成の
基板温度以下かつ常温以上のある限られた温度範囲であ
り、結晶性向上並びに還元とP型超伝導体の酸化の処理
は、この温度範囲で一定時間行うことによって最も効率
的かつ簡便に行える。
この効果は、結晶性向上並びに還元処理とP型超伝導
体の酸化処理を、被膜堆積を中断して行う、すなわち被
膜堆積行程と結晶性向上並びに還元処理工程とP型超伝
導体の酸化処理工程とを交互に繰り返す場合にも見られ
る。
これらの結晶性向上並びに還元処理とP型超伝導体の
酸化処理を施すべき温度は、薄膜の構成元素の種類、表
面状態によっても異なるため、各場合について最適なも
のを選ぶ必要があるが、一般的には450℃以下300℃以上
の温度範囲にある。なお、処理時間についても、被膜の
種類、膜厚、表面状態に応じて必要最小限の値が存在す
る。
結晶性向上並びに還元処理とP型超伝導体の酸化処理
を薄膜堆積と同時に行う場合、あるいは、薄膜堆積を中
断して行う。すなわち、薄膜堆積工程と結晶性向上並び
に還元処理とP型超伝導体の酸化処理行程とを交互に繰
り返す場合に用いる酸化処理の方法としては、少なくと
も酸素を含むガスの放電により生成される酸素イオンに
より処理する、あるいは励起状態にある中性酸素原子を
照射することが効果的かつ簡便である。
この様な効率的なP型超伝導体の酸化処理を、薄膜形
成、結晶性向上並びに還元処理の後の後処理工程として
用いた場合、臨界温度が短時間で最大値に到達するもの
の、臨界電流密度が処理時間に依存して増加し続け最大
値に到達するには、十数時間のオーダーの処理時間を要
する。
このことは、酸化処理が酸素の拡散挙動によって律速
され、超伝導体薄膜全体に行き渡るのには長時間を要す
ることを意味していると考えられる。
従って、十分な酸化処理を施した良質の超伝導薄膜を
得るには、酸化処理を薄膜堆積、結晶性向上並びに還元
処理と同時に行うか、あるいは、薄膜堆積、結晶性向上
並びに還元処理を中断して、すなわち、薄膜堆積行程と
結晶性向上並びに還元処理行程と酸化処理行程とを交互
に繰り返しながら行うのが望ましい。
結晶性向上並びに還元処理と酸化処理を施すという点
からだけでは、結晶性向上並びに還元処理と酸化処理
は、薄膜堆積と同時に行うのが最も望ましいが、薄膜堆
積過程の種類によっては、処理温度が堆積基板温度に限
定されるために十分な効果が得られない、あるいは高エ
ネルギーの酸素がかえって悪影響を及ぼす場合もあるこ
とも考えられる。
そこで本発明者らは、むしろ結晶性向上並びに還元処
理と酸化処理を薄膜堆積を中断して行う、すなわち薄膜
堆積行程と結晶性向上並びに還元処理工程と酸化処理工
程とを交互に繰り返しながら行なった場合の方が、超伝
導特性上同等もしくはそれ以上の効果が得られることを
実験により確認した。
これら薄膜堆積過程においては、堆積直後の各構成元
素は励起状態にあり、場合によっては、安定化するのに
数分のオーダーの時間を要するものも多く、特に積層構
造をとるものについては、1周期構造(すなわち単位格
子)分堆積させる毎に堆積を中断して安定化が図られて
いる場合もある。
この様な堆積中断時間に、結晶性もしくは配向性向上
並びに還元処理と酸化処理を施せば、短時間で理想的な
結晶性もしくは配向性向上並びに還元処理と酸化処理を
施せると考えられる。
本発明者らは、適当な堆積時間毎に中断し、結晶性向
上並びに還元処理と酸化処理を施すことによって、優れ
た特性を有するP型超伝導薄膜を得ることが出来ること
を確認した。更に、その堆積時間間隔として、その間に
堆積される被膜の厚みが10Å以上100Å以下とするもの
が有効であることを確認した。
次にN型薄膜超伝導体について述べる。N型超伝導体
も薄膜形成中にX線照射を行ない、薄膜を1200℃以下80
0℃以上の温度範囲で真空中に保持すると、良好な超伝
導特性を得ることができる。
更に、X線照射により薄膜の結晶性向上と還元が最も
有効に行われるのは、薄膜形成の基板温度以下かつ常温
以上のある限られた温度範囲であり、結晶性向上と還元
処理は、この温度範囲で一定時間行うことによって最も
効率的かつ簡便に行える。
この効果は、結晶性向上並びに還元処理を薄膜堆積を
中断して行う、すなわち、薄膜堆積工程と結晶性向上並
びに還元処理とを交互に繰り返す場合にも見られること
を、本発明者らは実験により確認した。
これらの結晶性向上並びに還元処理を施すべき温度
は、薄膜の組成、表面状態によっても異なるため、各場
合について最適なものを選ぶ必要があるが、一般的には
900℃以下600℃以上の温度範囲にある。
なお、処理時間についても、薄膜の組成、膜厚、表面
状態に応じて必要最小限の値が存在する。
結晶性向上並びに還元処理を施すという点からだけで
は、この処理を薄膜堆積と同時に行うのが最も望ましい
が、薄膜堆積過程の種類によっては、処理温度が堆積基
板温度に限定されるために十分な効果が得られない場合
もある。
そこで本発明者らは、むしろ結晶性向上並びに還元処
理を薄膜堆積を中断して行う、すなわち薄膜堆積行程と
結晶性向上並びに還元処理を交互に繰り返しながら行な
った場合の方が、超伝導特性に同等もしくはそれ以上の
効果が得られることを実験により確認した。
実施例1 第1図に示したように、酸化マグネシウム(MgO)単
結晶(100)面を基板11として用い、高周波プレーナー
マグネトロンスパッタ法により、焼結した酸化物高温超
伝導材料で形成したターゲット13を、ArとO2の混合ガス
雰囲気でスパッタリング蒸着して、基板11上に結晶性の
Y−Ba−Cu−O薄膜として4元複合銅酸化物薄膜12を堆
積させた。この場合、ガス圧力は、0.4Pa、スパッタリ
ング電力160W、スパッタリング時間1時間、薄膜の膜厚
0.5μm、基板温度600℃であった。
先ず抵抗率の温度依存性と以下に示す3通りの後処理
との関係について調べた。後処理は(a)X線間20とし
てRh管球をもちい、X線照射による結晶性向上処理と薄
膜形成後直ちに、形成槽内にO2ガス導入口19から酸素ガ
スを導入し、焼結体と同様の徐冷プロセスによる後処理
としての酸化処理を全く施さない場合、(b)Rh管球を
もちいたX線照射による結晶性向上処理を施さない場
合、(c)Rh管球をもちいたX線照射による結晶性向上
処理と薄膜形成後直ちに形成槽内に酸素ガスを導入し、
焼結体と同様の徐冷プロセスによる後処理としての酸化
処理を全て施した場合を挙げ、それぞれの抵抗率の温度
依存性を第2図(a)、(b)そして(c)に示す。
またそれぞれの後処理の場合の結晶性を示すX線回折
図形を、第3図(a)、(b)そして(c)に示す。
第2図から酸化処理のみの場合(すなわち(b))に
比べ、結晶性向上処理を用いた場合(すなわち(a)及
び(c))にはより一層の超伝導特性の向上が得られる
ことがわかる。
また第3図からは、結晶性向上処理により薄膜のc面
配向性が向上し結晶性が良くなること、そして酸化処理
により面間隔が減少することがわかる。
さらに本発明者らは、結晶性向上処理と酸化処理の仕
方として、(イ)薄膜堆積後の後処理として行う、
(ロ)薄膜堆積と同時に行う、あるいは、(ハ)薄膜堆
積を中断して行う、すなわち、薄膜堆積行程と結晶性向
上処理行程と酸化処理行程とを交互に周期的に繰り返す
といった大別して3種類の方法を試みた。
この場合、酸化処理法としては、第1図に示したECR
酸素プラズマ酸化法を用い、処理条件は、マイクロ波パ
ワー200W、酸素ガス圧8.5×10-4Torr、バイアス電圧50V
で行なった。
(ハ)の薄膜堆積工程と結晶性向上処理工程と酸化処
理工程とを交互に周期的に繰り返す場合、1周期に堆積
させる被膜の厚みおよび結晶性向上処理時間と酸化処理
時間を、それぞれ約100Å、10分、72秒とした。
酸化処理法(イ)および(ハ)による場合、いずれ
も、He II紫外線照射による結晶性向上処理時間を2時
間、酸化処理の温度を450℃、処理時間を1時間とし
た。
第4図に示すように、(イ),(ロ)および(ハ)の
何れの薄膜堆積工程と結晶性向上処理工程と酸化処理工
程との組合せを用いても、全く結晶性向上処理と酸化処
理を施さない場合に比べ高い転移温度を得ることが出
来、また大きな臨界電流密度が得られることが分かる。
この種の複合酸化物薄膜の構成元素の違いによる超伝
導特性の変化の詳細は明かではなく、また、結晶性向上
処理と酸化処理の最適条件の変化の詳細も明かではな
い。しかしながら、結晶性向上処理と酸化処理が超伝導
特性に大きな影響を及ぼすことは間違いなく、本発明は
P型薄膜超伝導体形成の結晶性向上処理と酸化処理の工
程を確立するものである。
実施例2 第5図に示したように、チタン酸ストロンチウム単結
晶の(100)面を基板51として用い、高周波プレーナー
マグネトロンスパッタ法により、焼結した酸化物高温超
伝導材料で形成したターゲット53を、ArとO2の混合ガス
雰囲気でスパッタリング蒸着して、基板51上に結晶性の
Nd−Ce−Cu−O薄膜として4元複合銅酸化物薄膜52を堆
積させた。この場合、ガス圧力は、0.3Pa、スパッタリ
ング電力160W、スパッタリング時間1時間、薄膜の膜厚
0.8μm、基板温度650℃であった。
X線管54としてRh管球をもちい、X線照射による結晶
性向上並びに還元処理を、薄膜を1100℃で8×10-7Torr
の真空中に保持して行い良好な超伝導特性を得た。
還元処理の効果を確かめるため、(a)Rh管球をもち
いたX線照射による結晶性向上処理を施さない場合、
(b)Rh管球をもちいたX線照射による結晶性向上並び
に還元処理を施した場合について、それぞれの抵抗率の
温度依存性を第6図(a)及び(b)に示す。
また(b)の結晶性を示すX線回折図形を第7図に示
す。
第6図から結晶性向上並びに還元処理を施した場合
(すなわち(b))、超伝導性が得られることがわか
る。
また第7図からは結晶性向上並びに還元処理により、
高いc面配向性を持つ薄膜が得られることがわかる。
本発明者らは、結晶性向上並びに還元処理の仕方とし
て、(イ)薄膜堆積後の後処理として行う、(ロ)薄膜
堆積と同時に行う、あるいは、(ハ)薄膜堆積を中断し
て行う、すなわち、薄膜堆積行程と結晶性向上並びに還
元処理行程とを交互に周期的に繰り返すといった大別し
て3種類の方法を試みた。但し(ハ)の薄膜堆積工程と
結晶性向上並びに還元処理工程とを交互に周期的に繰り
返す場合、1周期に堆積させる被膜の厚みおよび結晶性
向上並びに還元処理時間を、それぞれ約100Å、10分と
した。
(イ),(ロ)および(ハ)の何れの薄膜堆積工程と
結晶性向上並びに還元処理工程の組合せを用いても、高
い転移温度を得ることが出来、また大きな臨界電流密度
が得られることを本発明者らは本実施例で確認した。
この種の複合酸化物薄膜の組成の違いによる超伝導特
性の変化の詳細は明かではなく、また、結晶性向上並び
に還元処理の最適条件の変化の詳細も明かではない。
しかしながら、結晶性向上並びに還元処理が超伝導特
性に大きな影響を及ぼすことは間違いなく、本発明はNd
2CuO4型結晶構造の新しいN型超伝導体薄膜の結晶性向
上並びに還元処理の工程を確立するものである。
実施例3 第8図は、本発明の一実施例の全反射角以下で光子を
照射する薄膜超伝導体の製造装置の基本構成断面図であ
る。
同一の形成槽内に、薄膜堆積のための蒸着源(ここで
は例として高周波マグネトロンスパッタ装置81)と、表
面酸素欠陥を作るため堆積した薄膜表面に全反射角以下
の入射角で紫外線以上のエネルギを有する光子を照射す
るための装置(ここでは例としてRhX線管球82)、そし
てP型超伝導体に適用するための酸化処理装置(ここで
は一例としてECR酸素プラズマ発生装置83)が設置され
ている。
超伝導体薄膜84をMgO単結晶基板85上に形成する。
薄膜堆積工程と光子照射工程とを交互に繰り返すが、
その光子照射間隔として、その間に堆積される薄膜の厚
みが10Å以上100Å以下とすると、特に臨界状態での磁
束量子線のピン止めに有効であることを確認した。これ
は高温超伝導体のコヒーレンス長が短いことを反映して
おり、酸素欠陥はその周囲と比較して自由エネルギが小
さく臨界状態に於ける磁束量子線の有効なピンニングセ
ンタとなることを示している。
つまり第9図に示すように膜厚方向に数Å〜百Å程度
の間隔で酸素欠陥を分布させると、全膜厚にわたり磁束
量子線を真直にピン止めできるものと考えられる。
実施例4 結晶化還元処理を超伝導体薄膜に施した試料(ロ)
と、その処理を行なわなかった試料(イ)の、一定温度
の下で測定した磁化曲線を第10図(a)に示す。
測定装置としてはSQUID磁束計を用い、外部磁場はc
軸と平行に(すなわち膜面垂直方向)に印加した。
処理を加えていない試料(イ)の磁場による磁化の変
化は、通常よくみられる第2種超伝導体のそれである。
一方結晶化還元処理を施した試料(ロ)では、外部磁
場を増やしていくと、反磁化はほぼ直線的に増加し、あ
る特定の磁場で突然数十分の一に減少する。一旦減少し
た反磁化は、外部磁場の値をゼロにもどしても回復する
ことはない。また温度を変化させても回復することはな
い。さらに一定外部磁場の下での反磁化の値は、時間変
化にたいしてほとんど減少しない。
これらの結果は、本発明の超伝導体薄膜ではフラック
スピンニング力の強度分布が均一であることによると考
えられる。つまり、零磁場下で冷却した「結晶化還元処
理を施した超伝導体薄膜」に外部磁場を印加してゆく
と、ある外部磁場までは完全反磁性体としてふるまい、
大きな反磁化を示す。しかし外部磁場による超伝導体薄
膜内部への侵入圧力が、あるフラックスピンニング力を
越えたとたん、磁束は一挙に内部に侵入し反磁化の値は
たちまち減少してしまう。しかも一旦、「結晶化還元処
理を施した超伝導体薄膜」内部にフラックスが侵入して
しまえば、外部磁場をゼロにもどしても反磁化の値は回
復しない。このような特異な磁気的振舞いは、本発明に
よってはじめて明かとなったものである。
P型超伝導体では、酸化処理をともなう紫外線以上の
エネルギを有する光子の照射により強い超伝導体がで
き、酸化処理だけでは弱い超伝導体ができるので、フォ
トリソグラフィーの手法を用いパタン化した光子照射の
あと全面に酸化を行なえば例えば、例えば第10図(b)
に示したようなビットパタンを構成でき、上に述べたよ
うな性質を利用した超伝導磁気メモリを作製することが
可能である。
超伝導磁気メモリの読み出しは、膜面直上の磁場が大
きく異なることを利用し、磁気ヘッドやホール素子ヘッ
ド等の磁気検出器を使用して容易に行なうことができ
る。
また、一定磁場下での完全反磁性状態を1、フラック
スが侵入した微小反磁化状態を0に対応させることと
し、あらかじめメモリビットをすべて1としたのち、一
部分のメモリビットにパルス磁場を加えてフラックスを
侵入させ0のビットを作り、超伝導磁気メモリへの書き
込みを行なう方法もある。ここで0から1に変えるに
は、例えばレーザーパルス等で一旦転移温度以上に熱
し、零磁場中で冷却し再び外部磁場を加えることにより
行なう等の手法がある。
これらの超伝導磁気メモリは、経時変化が小さく時間
的に非常に安定である。
この超伝導体薄膜に対する結晶化還元処理の効果は、
材料がN型の超伝導体であってもP型のそれであっても
同様である。
このような超伝導磁気メモリに適応できる本発明の薄
膜超伝導体の製造方法について、さらに詳細に説明す
る。
第11図に示す形成装置を用い、酸化マグネシウム単結
晶(100)面を基体111とし、高周波プレーナーマグネト
ロンスパッタ法により焼結した酸化物高温超電導材料で
形成したターゲット113を、ArとO2の混合ガス雰囲気で
スパッタリング蒸着して、基板加熱ヒータ116で加熱し
た基板111上に、結晶性のY−Ba−Cu−O薄膜の4元複
合銅酸化物薄膜115を堆積した。この場合、ガス圧力
は、0.4Pa、スパッタリング電力160W、スパッタリング
時間1時間、薄膜の膜厚0.5μm、基板温度600℃であっ
た。
結晶性向上処理はX線管116としてRh管球をもちいた
X線照射により行い、酸化処理は4元複合銅酸化物薄膜
115形成後直ちに、形成槽112内に酸素ガスを導入してお
こなった。
第10図(a)の磁場特性図からわかるように、本発明
における結晶化還元処理を施していない超伝導体薄膜で
は、反磁化はゆるやかに変化しフラックスが徐々に侵入
していく。一方前記処理を施した超伝導体薄膜では、T
=48kでは磁化がH=200Oeまでほぼ直線的に増加し,そ
の後H=400Oeで最大磁化10000emu/ccを示した。さらに
磁場を強くしていくと、超伝導体薄膜に磁束が侵入し
て、磁化の値は約数十分の一に減少する。外径1mm程度
の試料の表面磁場を低温用ホール素子で測定すると、T
=48Kにおいて、反磁化状態(M=10000emu/cc)ではH
=400Oe、磁束侵入状態ではH=20Oeであり、反磁化状
態の方が磁束侵入状態に比べてはるかに表面磁場が大き
く、この差は容易に検出できる。
実施例5 本発明の薄膜超伝導体の別の応用例として、ジョセフ
ソン素子を説明する。
超伝導体薄膜を基体上にスパッタリング法で形成し、
酸素雰囲気中で熱処理、あるいは酸素イオンまたは励起
状態の中性酸素原子を打ち込んで超電導性を得る。
さらに、前記超伝導体薄膜の一部分にX線または紫外
線を照射することにより弱結合部を形成する。
但し、この弱結合部はX線または紫外線の照射量によ
って常電導体か、半導体か、絶縁体の性質の何れかを示
すことを、本発明によって分かった。
この場合超電導電極が2つ、即ち二端子素子である
と、弱結合部かトンネル形のジョセフソン素子となる。
この薄膜の形成は、物理的気相成長法に限定されたも
のではなく、化学的気相成長法例えば常圧あるいは減圧
化学的気相成長法、プラズマ化学的気相成長法、光化学
的気相成長法も組成を合致させれば有効であることを本
発明者らは確認した。
これらの薄膜を酸素処理することにより得た超電導性
を、X線または紫外線照射処理することにより制御する
と、この超電導薄膜は常電導体、半導体、あるいは絶縁
体の性質を示すようになることも本発明によって見いだ
した。
この効果は酸化処理により超電導性を得るために最適
化された薄膜超電導体に、X線または紫外線を照射して
薄膜を還元し、結晶中の酸素量を制御して超電導に対す
る酸素の最適条件をくずし、X線または紫外線照射部の
超電導性を消失させるためと考えられる。
また、X線や紫外線はその波長が短く、加工する超電
導薄膜の領域を微細に制御し、精密、微細な銅酸化物薄
膜の還元処理を可能とする。
これにより、サブミクロン加工を必要とするジョセフ
ソンデバイス等のデバイス作製がX線や紫外線の照射に
より容易に行われるようになる。
本発明の薄膜超伝導体のジョセフソン素子への応用例
について、図面を用いてさらに詳細に説明する。
第12図に示したように、金属酸化物超伝導体薄膜122
を基板121上に、例えばスパッタリング法で形成する。
また、必要に応じて酸素雰囲気中で熱処理、あるいは
酸素イオンまたは励起状態の中性酸素原子を、金属酸化
物超伝導被膜122に打ち込んで超伝導性を得る。
さらに、金属酸化物超伝導薄膜122の表面に、紫外線
以上のエネルギを有する光子を照射し、その後選択的に
酸化処理をすることにより、間隙部124で分離された2
つの電極部123を形成する。
酸化処理の方法としては、少なくとも酸素を含むガス
の放電により生成される酸素イオンあるいは励起状態に
ある中性酸素原子を照射する、またはオゾンを含む気体
中にで処理することが効果的かつ簡便である。
この2つの酸化処理は共に試料を加熱する必要がない
上に、前者については比較的短時間で処理が終る利点が
あり、後者ではレジストなどに代表される有機材料が侵
されることが少ないので、通常のレジスト膜を酸化処理
の際のマスクに利用できると言う利点がある。
また、薄膜122の内で、電極部123は超伝導性を持ち、
間隙部124を含む電極部123以外の部分は、光子が照射さ
れ酸化処理は行われていないため、常電導体か、半導体
か、絶縁体の性質の何れかを示す。
この場合、間隙部124は、弱結合あるいはトンネル結
合となり、二端子素子であると、ジョセフソン素子とな
る。
前述のように超伝導薄膜にX線あるいは紫外線など紫
外線以上のエネルギを有する光子を照射することによ
り、この超伝導薄膜を常電導体、半導体、あるいは絶縁
体の性質を示すように制御できることも本発明者らは見
いだした。紫外線よりも波長の短い光子としては通常の
W,Mo,Rh,Cu,Fe,Co,Cr,Al,Mg,ZrなどのX線管、またはH,
He,Neなどの紫外線源あるいは水銀ランプからの輻射光
等をもちいる。
第13図は、この特性を確認するための基礎実験の結果
の1例を示したもので、Bi−Sr−Ca−Cu−O超伝導薄膜
を例に取って、その抵抗率の温度変化について、作製直
後(131)、3時間の紫外線照射後(132)、その後の酸
化処理の後(133)の3つ状態でそれぞれ測定したもの
である。
薄膜作製直後は、約45Kで超伝導を示していたものが
(131)、照射後は室温での抵抗率が約8倍に増加し、
超伝導は示さなくなったが(132)、酸化処理によって
ほとんど作製直後の特性に回復している(133)。
この結果は、照射が薄膜を還元し、超伝導を失わせる
が、酸化処理によって可逆的に特性を回復させることが
できることを示している。
次に具体的材料を挙げて、本発明の薄膜超伝導体をジ
ョセフソン素子として用いた一実施例を示す。
第12図に示したように、(100)面MgO単結晶を基板12
1として用い、焼結して作成したYBa2Cu4.5OXターゲット
を、高周波プレナーマグネトロンスパッタにより、Arと
O2の混合ガス雰囲気でスパッタリング蒸着して、基板12
1上に金属酸化物超伝導薄膜122として結晶性のYBa2Cu3O
7薄膜を付着させた。
この場合、ガス圧力は0.5Pa、スパッタリング電力150
W,スパッタリング時間20分、薄膜の膜厚0.2μm、基板
温度700℃であった。
このようにして得られた薄膜122は超伝導性を示し、
その転移温度は90Kであった。
この本実施例では薄膜122の膜厚は、0.2μmである
が、膜厚は0.1μmかそれ以下の薄い場合でも、10μm
以上の厚い場合でも超伝導が発生することを確認した。
さらに、この超伝導薄膜122に対して、低圧水銀ラン
プを用いて紫外線を約3時間照射し、薄膜122を還元さ
せ超伝導性を失わせた。
そして、第14図に示すように、金属酸化物超伝導薄膜
142上に、レジスト膜143を用いてマスクパターンを形成
したのち、オゾン発生装置を利用し、数%のオゾンを含
む酸素中に数時間放置し、超伝導薄膜142の表面の内レ
ジスト膜143に覆われていない部分に酸化処理を行い、
電極部144とした。
最後に、有機溶剤でレジスト膜143を取り除き、2つ
の電極部144に測定用端子を導電ペーストで接着し、こ
の端子に85Hzの交流電圧を印加し、この端子を通して間
隙部145を流れる電流との関係を観測した。
その結果、観測された電流・電圧特性は、ジョセフソ
ン接合特有の非線形性を有していた。
さらに、この間隙部145に20GHzのマイクロ波を照射し
たところ、電流・電圧特性の曲線上に電圧のステップが
観測され、このステップの位置とマイクロ波の周波数の
関係から、このステップはジョセフソン接合特有のいわ
ゆるシャピロステップであることがわかった。
これらの結果から、試作した素子は、SNS形(超伝導
体・常伝導体・超伝導体)のジョセフソン接合が形成さ
れていることが分かった。
この方法により、制御性良く弱結合形のジョセフソン
素子を形成することができた。
この場合、レジストは有機溶剤のみで現像できるPMM
A、あるいはネガレジスト等が適している。
また通常これらのレジストは、200℃以上に加熱され
た場合変質してしまいレジストとしての機能を発揮でき
ないものが多いが、本発明のオゾン処理による酸化の方
法は、有機薄膜であるレジストを侵すことは少なく、ま
た、基板温度を上昇させることもなく効果的である。
実施例6 超伝導薄膜を基板上にスパッタリング法で形成し、必
要に応じて酸素雰囲気中で熱処理、あるいは酸素イオン
または励起状態の中性酸素原子を打ち込んで超伝導性を
得た。
次に、薄膜上の微小な間隙部で分離された2つの電極
部に、選択的に紫外線以上のエネルギを有する光子を照
射する。そしてその後、薄膜の表面に酸化処理を施し
た。
この方法により光子が照射されていない間隙部は、照
射された電極部に比べてその超伝導特性が悪く、照射及
び酸化処理の条件を適当に制御することによって、弱結
合型のジョセフソン接合となる。
本発明の製造方法では選択的に酸化処理をする必要は
なく、試料全体を酸化処理しても良いことから、実施例
5で述べたような酸素プラズマに侵され易いレジスト膜
等のマスクを酸化処理の際に利用する必要はない。
そのため、短時間で済む酸素プラズマを用いて酸化処
理できる利点がある。
また、必ずしもレジストをマスクに用いる必要はな
く、通常のフォトリソグラフィーの手法に従い、例え
ば、パターン化されたクロム等の薄膜をガラス板等上に
形成してできた通常のフォトマスクを超伝導薄膜上に接
触させ、このフォトマスクを通して紫外線を照射するこ
とによっても、選択的に電極部のみに光子を照射するこ
とが可能である。
実施例7 超伝導薄膜を基板にスパッタリング法で形成し、必要
に応じて酸素雰囲気中で熱処理、あるいは酸素イオンま
たは励起状態の中性酸素原子を打ち込んで熱伝導性を得
る。
次に、薄膜上の微小な間隙部で分離された2つの電極
部に選択的に紫外線以上のエネルギを有する光子を照射
する。そして、その後、前記電極部に選択的に酸化処理
を施した。
光子が照射されていない間隙部は、照射された電極部
に比べてその超伝導特性が悪く、照射及び酸化処理の条
件を適当に制御することによって弱結合型のジョセフソ
ン接合となる。
本実施例では、電極部以外の部分は光子照射や酸化処
理が成されないことから、同一基板上に他の機能素子な
どを集積化する場合などでも、それら機能素子に悪影響
を及ぼすことがないという利点がある。
紫外線以上のエネルギを有する光子の照射はその波長
が短いことから、加工する超伝導薄膜の領域を微細に制
御し、精密、微細な超伝導体薄膜の還元処理を可能とす
るので、サブミクロン加工を必要とするジョセフソンデ
バイス等のデバイス作製が、これら光子の照射により容
易に行われるようになる。
以上実施例に於いては銅の酸化物を含む高温超伝導体
について説明したが、本発明の効果は光子照射により酸
素欠陥が発現する高温超伝導体であれば有効である。し
たがって銅を含まない、例えばBKB(Ba−K−Bi−O)
系材料でも本発明は有効である。また酸素を硫黄で置換
した硫黄化合物においても、光子の照射により硫黄の欠
陥が発生するため、シェブレル化合物でも同様に本発明
の効果が有用であること勿論である。
発明の効果 また本発明の超伝導素子の製造方法では、高温超伝導
体を用いる素子の信頼性、長期安定性を確保するプロセ
スが提供されるので、本発明は工業上極めて大きな価値
を有するものである。
またこれまでは超伝導臨界状態に於ける電流密度が小
さく、電流密度の時間に対する対数的な減少が著しいこ
とから、高温超伝導体では安定性及び信頼性の高い超伝
導デバイスは実現困難と考えられてきたが、本発明によ
り酸素欠陥よりなる磁束量子線の有効ピンニングセンタ
を、原子的スケールで制御導入することが可能となり、
臨界電流密度を向上させるとともに、フラックスクリー
プの活性化エネルギを増大させることができた。
これにより高温超伝導体での安定性及び信頼性の高い
超伝導素子が実現する。
この光子の照射による超伝導薄膜の処理は、堆積した
薄膜の温度上昇がなく、制御性もよく、かつ、中性子や
γ線と言った人体に危険を及ぼす光子照射ではないた
め、処理が簡単である。
【図面の簡単な説明】
第1図,第5図,は本発明の一実施例の薄膜超伝導体の
製造装置の概念構成断面図、第2図,第4図,第6図及
び第13図は本発明の薄膜超伝導体の超伝導特性を示す電
気抵抗率の温度依存性を示す図、第3図及び第7図は本
発明の結晶性向上処理と酸化処理に基づく薄膜超伝導体
の結晶性を示すX線回折図、第12図は本発明の薄膜超伝
導体の他の応用例のジョセフソン素子の製造方法の概念
斜視図、第14図は本発明の超伝導素子の一実施例のジョ
セフソン素子の製造方法の内の1過程の概念斜視図、 11,51,85,111,121,141,151,161……基板、12,52,115…
…4元複合銅酸化物薄膜、20,54,82,116……X線管(紫
外線以上のエネルギを有する光子源)。
フロントページの続き (31)優先権主張番号 特願平2−99702 (32)優先日 平2(1990)4月16日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−99704 (32)優先日 平2(1990)4月16日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平2−143104 (32)優先日 平2(1990)5月31日 (33)優先権主張国 日本(JP) (72)発明者 東野 秀隆 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 八田 真一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 和佐 清孝 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 鎌田 健 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 林 重徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−203203(JP,A) 特開 平1−33006(JP,A) 特開 平1−12417(JP,A) 特開 平1−147878(JP,A) 特開 平1−188421(JP,A) 特開 平1−3011(JP,A) 特開 平1−109614(JP,A) 特開 平2−44014(JP,A) 特開 平1−234323(JP,A) 特開 平2−255504(JP,A) 特開 平2−255533(JP,A) 特開 平2−255527(JP,A) 特開 平2−255524(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 1/00,3/00

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】基体上に形成された薄膜超伝導体からな
    り、臨界電流密度が小さい超半導体領域により臨界電流
    密度が大きい超伝導体領域を分断した形状を有する超伝
    導素子において、前記臨界電流密度が大きい超伝導領域
    に対して、薄膜超伝導体形成後に紫外線以上のエネルギ
    ーを有する光子の照射による還元工程と、その後の酸化
    処理工程とを施すことを特徴とする超伝導素子の製造方
    法。
JP2216885A 1989-08-21 1990-08-16 超伝導素子の製造方法 Expired - Fee Related JP2965641B2 (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP21449889 1989-08-21
JP1-214498 1989-08-21
JP1-214496 1989-08-21
JP21449689 1989-08-21
JP2-99704 1990-04-16
JP2-99702 1990-04-16
JP9970290 1990-04-16
JP9970490 1990-04-16
JP10130190 1990-04-17
JP2-101301 1990-04-17
JP14310490 1990-05-31
JP2-143104 1990-05-31

Publications (2)

Publication Number Publication Date
JPH04119905A JPH04119905A (ja) 1992-04-21
JP2965641B2 true JP2965641B2 (ja) 1999-10-18

Family

ID=27552075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216885A Expired - Fee Related JP2965641B2 (ja) 1989-08-21 1990-08-16 超伝導素子の製造方法

Country Status (5)

Country Link
US (1) US5145830A (ja)
EP (1) EP0414205B1 (ja)
JP (1) JP2965641B2 (ja)
KR (1) KR940006779B1 (ja)
DE (1) DE69029234T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519147A1 (en) * 1991-06-19 1992-12-23 International Business Machines Corporation Method for controlling the current density tolerance of high-Tc-superconductors
US5304538A (en) * 1992-03-11 1994-04-19 The United States Of America As Repeated By The Administrator Of The National Aeronautics And Space Administration Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors
US5250817A (en) * 1992-08-12 1993-10-05 Microelectronics And Computer Technology Corporation Alkali barrier superconductor Josephson junction and circuit
US5462009A (en) * 1992-11-06 1995-10-31 The Boeing Company Method and apparatus for producing perovskite compositions
DE4401442C1 (de) * 1994-01-19 1995-03-23 Siemens Ag Mikroelektronisches Bauelement
JP2006096577A (ja) * 2004-09-28 2006-04-13 Tokyo Institute Of Technology 金属酸化物膜、金属酸化物膜の製造方法および成形品
US7309895B2 (en) * 2005-01-25 2007-12-18 Hewlett-Packard Development Company, L.P. Semiconductor device
US10722845B1 (en) * 2012-07-31 2020-07-28 Raytheon Company Isotope enrichment for improved magnetic materials

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643011A (en) * 1987-03-25 1989-01-06 Hitachi Ltd Superconducting film and production thereof
JP2609460B2 (ja) * 1987-03-26 1997-05-14 住友電気工業株式会社 セラミックス系酸化物超電導物質成型体の製造方法
DE3854238T2 (de) * 1987-04-08 1996-03-21 Hitachi Ltd Verfahren zur Herstellung eines supraleitenden Elements.
JPS63279494A (ja) * 1987-05-11 1988-11-16 Hitachi Cable Ltd 酸化物系超電導体を用いた磁気記憶素子
JPS647913A (en) * 1987-06-30 1989-01-11 Asahi Chemical Ind Method for dehydrating sludge of the like containing radioactive material
JPS6412417A (en) * 1987-07-06 1989-01-17 Hitachi Ltd Method of forming superconducting film
JP2625435B2 (ja) * 1987-07-14 1997-07-02 株式会社リコー 孔版式製版印刷装置
US4997809A (en) * 1987-11-18 1991-03-05 International Business Machines Corporation Fabrication of patterned lines of high Tc superconductors
JPH0244014A (ja) * 1987-11-25 1990-02-14 Kawatetsu Mining Co Ltd 導電性又は超伝導性薄膜の製造方法
JPH01147878A (ja) * 1987-12-04 1989-06-09 Matsushita Electric Ind Co Ltd 超電導素子の製造方法
JPH01160898A (ja) * 1987-12-18 1989-06-23 Toshiba Corp 酸化物超電導体膜の形成方法
JPH01188421A (ja) * 1988-01-25 1989-07-27 Hitachi Ltd 超伝導体薄膜の製造方法
JPH01203203A (ja) * 1988-02-08 1989-08-16 Fujitsu Ltd 超伝導材料層の形成方法
JPH01234323A (ja) * 1988-03-14 1989-09-19 Yokogawa Electric Corp 高温超電導薄膜
JPH01239977A (ja) * 1988-03-22 1989-09-25 Fujitsu Ltd 超伝導トランジスタ
US5053383A (en) * 1988-03-29 1991-10-01 At&T Bell Laboratories Method of reducing critical current density of oxide superconductors by radiation damage
DE3814277A1 (de) * 1988-04-27 1989-11-09 Baeuerle Dieter Verfahren zur aenderung der elektrischen leitungseigenschaften eines hochtemperatur-supraleiter-materials
JPH02255524A (ja) * 1989-03-28 1990-10-16 Nec Corp Y系超伝導薄膜の製造方法
JPH02255533A (ja) * 1989-03-28 1990-10-16 Nec Corp Bi系超伝導薄膜の製造方法
JPH02255527A (ja) * 1989-03-28 1990-10-16 Nec Corp Ti系超伝導薄膜の製造方法
JPH02255504A (ja) * 1989-03-30 1990-10-16 Nippon Steel Corp 酸化物超電導薄膜の製造方法
EP0392437B1 (en) * 1989-04-11 1996-08-14 Matsushita Electric Industrial Co., Ltd. Method for annealing thin film superconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法

Also Published As

Publication number Publication date
EP0414205B1 (en) 1996-11-27
KR910005498A (ko) 1991-03-30
DE69029234T2 (de) 1997-03-27
JPH04119905A (ja) 1992-04-21
KR940006779B1 (ko) 1994-07-27
EP0414205A3 (en) 1991-07-24
US5145830A (en) 1992-09-08
DE69029234D1 (de) 1997-01-09
EP0414205A2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
EP0286106B1 (en) Process for manufacturing a superconductive device
US5162298A (en) Grain boundary junction devices using high tc superconductors
CA1304829C (en) Apparatus comprising a superconductive element, and method of making the element
US5795848A (en) Oxide superconductor devices fabricated by impurity ion implantation
JP3278638B2 (ja) 高温超伝導ジョセフソン接合およびその製造方法
JP2965641B2 (ja) 超伝導素子の製造方法
JPH01157579A (ja) 超電導体の製造方法及び超電導回路の作製方法
JP2713343B2 (ja) 超電導回路の作製方法
JP2001244511A (ja) ランプエッジ構造を持つジョセフソン素子の製造方法および成膜装置
JP2822623B2 (ja) 超伝導体への電極形成方法
JP2577061B2 (ja) 複合酸化物超電導体薄膜の製造方法
JP2776004B2 (ja) ジョセフソン素子の製造方法
JPH07187614A (ja) 超電導酸化物の製造方法及び超電導体装置
JPH0483383A (ja) 薄膜超伝導素子の製造方法
JPH02298085A (ja) ジョセフソン素子の製造方法
JPH04171874A (ja) ジョセフソン素子およびその製造方法
JP2969068B2 (ja) 超伝導素子の製造方法
JP3037396B2 (ja) 薄膜超伝導体の製造方法
JP2634456B2 (ja) 超伝導体素子の製造方法
JP3149460B2 (ja) ジョセフソン素子の製造方法
JPH04171872A (ja) ジョセフソン素子およびその製造方法
JPH06338639A (ja) ジョセフソン素子の製造方法
JPH06188468A (ja) 放射線検出素子及びその製造方法
JPH0465398A (ja) 超伝導線路の製造方法
JPH05335640A (ja) 超電導素子

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees