JPH04171874A - ジョセフソン素子およびその製造方法 - Google Patents

ジョセフソン素子およびその製造方法

Info

Publication number
JPH04171874A
JPH04171874A JP2300393A JP30039390A JPH04171874A JP H04171874 A JPH04171874 A JP H04171874A JP 2300393 A JP2300393 A JP 2300393A JP 30039390 A JP30039390 A JP 30039390A JP H04171874 A JPH04171874 A JP H04171874A
Authority
JP
Japan
Prior art keywords
thin film
metal oxide
oxide thin
ultraviolet rays
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2300393A
Other languages
English (en)
Inventor
Akira Enohara
晃 榎原
Shigemi Furubiki
古曵 重美
Hidetaka Tono
秀隆 東野
Kentarou Segaki
瀬垣 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300393A priority Critical patent/JPH04171874A/ja
Publication of JPH04171874A publication Critical patent/JPH04171874A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、超伝導素子、特に接合部を有する金属酸化物
超伝導薄膜を用いたジョセフソン素子の製造方法に関す
るものである。
[従来の技術] 従来、超伝導体としては、A15型2元系化合物として
窒化ニオブ(N b N)やニオブ3ゲルマニウム(N
 b 3G e )などが知られていた。また、これら
の材料を用いた超伝導素子も種々提案されている。しか
し、−これらの材料の超伝導転移温度(Tc)はたかだ
か24にであった。
また、ペロブスカイト系化合物としては、Ba−Pb−
Bi−0系(特開昭60−173885号公報)が知ら
れており、この系の材料を用いた超伝導素子も数多く研
究されている。しかし、この材料の超伝導転移温度(T
c)は13に程度と低く実用化は困難であった。
ところがTcが30〜40Kを示すBa−La−Cu−
0系の高温超伝導体が提案された[J、G。
Bednorx and K、A、Muller、  
ツァイト シュリフトフェア フィジーク(2ei+s
hr百t fur physik B)−Conden
sed MaNe+ 64.189−193 (198
6) ] 。さらに、]Y−Ba−Cu−0では90K
をこえるTCか報告されており[M、 K、Wu等、フ
ィジカル レビュー レターズ(Pb7sicai R
eviev Levers) V。
1、58. No、 9.908−910 (1987
)] 、液体窒素の沸点(77K)よりも高くなったこ
とで実用化が有望となってきた。
このY−Ba−Cu−0系に代表される金属酸化物超伝
導体は、例えばスパッタリング法等の薄膜形成手法を用
いると、薄膜状の高温超伝導体として形成され得る。そ
して、この金属酸化物超伝導体は、結晶性および酸素含
有量すなわち酸化状態がその超伝導特性に大きな影響を
与えることが知られている。従来、結晶性や酸化状態の
制御は、主として薄膜作製条件を調整することで実現し
ている。
[発明が解決しようとする課題] 前記超伝導薄膜を利用して素子を作製するためには、素
子作製プロセス技術が不可欠であるが、現在決定的な方
法は確立しておらず、新規素子の実現は困難な状況にあ
る。
実際に超伝導体の酸化状態を調節するには、従来、適当
な雰囲気中で高温に加熱したり、また、還元性のある水
素イオンや酸化性のある酸素イオンなどを照射したりす
る手法が用いられてきた。
しかし、前者の方法では、高温に加熱するため制御性が
悪く、また、金属酸化物超伝導薄膜と連常の半導体電子
回路との集積化などが困難になること、後者の方法では
、活性イオンにより超伝導体の結晶構造などが損傷を受
けるなどの欠点があり、ジョセフソン素子の作製への適
用は困難であるという課題があった。
本発明は、前記従来技術の課題を解決するため、高精度
の弱結合部をもつ均一性の良いジョセフソン素子および
その製造方法を提供することを目的とする。
[課題を解決するための手段] 前記目的を達成するため、本発明のジョセフソン素子は
、基板上に少なくとも金属酸化物薄膜が形成されたジョ
セフソン素子であって、前記金属酸化物薄膜は、少なく
とも2つの電極部と、電極部と電極部との間に接合部を
備え、前記電極部は前記接合部に比較して超伝導特性が
高いことを特徴とする。
本発明のジョセフソン素子の製造方法は、基板上に少な
くとも金属酸化物薄膜が形成されたジョセフソン素子の
製造方法であって、金属酸化物薄膜に熱処理を施した後
、前記金属酸化物薄膜上の微小な間隙部で分離された少
なくとも2つの領域に、紫外線または紫外線よりも波長
の短い電磁波を照射することを特徴とする。
また前記本発明方法においては、金属酸化物薄膜として
、A−B−Cu−0複合化合物を用いることが好ましい
[ここで、AはY % L a %およびLa系列元素
(原子番号57.59〜60,62〜71)から選ばれ
る少なくとも1種の元素、Bは周期律表のIIa族元素
から選ばれる少なくとも1種の元素、かつA、B元素と
Cu元素の濃度は 0.5≦(A+B)/Cu≦2.5  ]また前記本発
明方法においては、金属酸化物薄膜として、B i−S
r−Ca−Cu−O、またはT l−Ba−Ca−Cu
−0複合化合物を用いることが好ましい。
また前記本発明方法においては、熱処理が、酸素ガス中
で800〜1000℃の範囲の温度に加熱する条件であ
ることが好ましい。
また前記本発明方法においては、熱処理時間が、30分
以内であることが好ましい。
また前記本発明方法においては、紫外線または紫外線よ
りも波長の短い電磁波の照射が、減圧下、または、不活
性ガス雰囲気中で行なう条件であることが好ましい。
[作用コ 前記本発明のジョセフソン素子の構成によれば、金属酸
化物薄膜は、少なくとも2つの電極部と、電極部と電極
部との間に接合部を備え、前記電極部は前記接合部に比
較して超伝導特性が高いので、高精度の弱結合部をもつ
均一性の良いジョセフソン素子とすることができる。ま
た形状の変化も無く、積層化などにも有効である。
次に前記本発明方法の構成によれば、金属酸化物薄膜に
熱処理を施した後、前記金属酸化物薄膜上の微小な間隙
部で分離された少なくとも2つの領域に、紫外線または
紫外線よりも波長の短い電磁波を照射するので、これら
照射された領域のみの超伝導性を部分的に向上、または
、発現させることができると共に、前記微小間隙部を弱
結合のジョセフソン接合部とすることができる。また前
記本発明のジョセフソン素子を効率よく合理的に製造す
ることができる。
また金属酸化物薄膜として、A−B−Cu−0複合化合
物、B i −Sr−Ca−Cu−0,またはT l−
Ba−Ca−Cu−0複合化合物を用いるという本発明
方法の好ましい構成によれば、臨界温度の高いジョセフ
ソン素子を得ることができる。
また、熱処理が酸素ガス中で800〜1000℃の範囲
の温度に加熱するという本発明方法の好ましい構成によ
れば、超伝導膜層の結晶性を向上することができる。
また、熱処理の時間が30分以内の範囲であるという本
発明方法の好ましい構成によれば、超伝導膜層の超伝導
特性を良好に保つことができる。
また、紫外線または紫外線よりも波長の短い電磁波の照
射が、減圧下、または、不活性ガス雰囲気中で行なう条
件であるという本発明方法の好ましい構成によれば、酸
化状態を精度良く制御でき、結晶性の劣化を有効に防止
できる。
[実施例] 本発明者らは、紫外線または紫外線よりも波長の短い電
磁波を照射したときの超伝導体の特性変化について着目
し、その効果を詳細に検討した。
その結果、金属酸化物超伝導体中のCu−0結合の酸素
イオンが照射により一部離脱し、銅イオンの酸化状態が
制御できることを見い出した。
本発明者らは、熱処理と上記電磁波照射の金属酸化物超
伝導薄膜に対する影響を検討した結果、以下のような効
果のあることを見いだした。
■ 比較的高温(800〜1000℃)の熱処理によっ
て、上記薄膜堆積直後は不完全であった結晶性が改善さ
れるが、しかし、酸化状態が不確定となる。
■ 紫外線または紫外線よりも波長の短い電磁波の照射
によって、薄膜の酸化状態を制御でき、最適化できる。
そこで、これら2つの処理を共に施すことによって金属
酸化物超伝導薄膜の超伝導特性を著しく改善される、ま
たは、堆積直後は結晶性または酸化状態が不完全である
ために超伝導性を示さなかった膜については、その超伝
導特性を発現させる作用がある。
この作用によれば、堆積後の金属酸化物超伝導薄膜に上
記熱処理を施した後、微小間隙部分で分離した2領域の
みに紫外線または紫外線よりも波長の短い電磁波を照射
することにより、これら照射された領域のみの超伝導性
を部分的に向上、または、発現させることができると共
に、前記微小間隙部を弱結合のジョセフソン接合部とす
ることができる。
以上のように本発明のジョセフソン素子の製造方法は、
熱処理と紫外線または紫外線よりも波長の短い電磁波と
によってジョセフソン素子をを得ることができるので、
微細なブリッジ構造をエツチングなどで製作するのに比
べて極めて簡単なプロセスでジョセフソン素子を作製で
きる。また、エツチングなどを用いないので形状の変化
がなく、積層化などの際にも有効である。
次に、本発明の第1の実施例を図面を用いて説明する。
第1図は本発明のジョセフソン素子の一実施例の概念図
である。
第1図において、金属酸化物薄膜12を基板11上に例
えばスパッタリング法で形成する。つぎに、この薄膜1
2を熱処理する。さらに、例えば、有機レジスト膜など
をマスクにして、薄膜12の表面の電極部13にのみ、
紫外線または紫外線よりも波長の短い電磁波を照射する
。これらの工程により、上記電磁波が照射されない接合
部(間隙部)14は周囲の電極部13よりも超伝導性が
劣る状態になるので、接合部(間隙部)14を弱結合部
分とするジョセフソン接合が作製される。ここで、熱処
理の方法としては、少なくとも酸素を含むガス中で、8
00〜1000℃に加熱する。
処理時間は30分以下が有効である。上記電磁波照射は
、減圧雰囲気中、または、不活性ガス中で行なう。この
照射処理は試料を加熱する必要がない上に、比較的短時
間で処理が終る利点がある。
前述のように、金属酸化物薄膜に熱処理を行なった後に
、X線、紫外線またはγ線など紫外線よりも波長の短い
電磁波を照射処理することにより、この薄膜の超伝導特
性を、発現または向上させることができることを本発明
者らは見いだした。
この効果を示す実験例を次に示す。
(100)面MgO単結晶を基板上に、高周波プレナー
マグネトロンスパッタにより、Bi、Sr、Ca、Cu
の各元素を含む酸化物からなる焼結したターゲットをA
rと02の混合ガス雰囲気でスパッタリング蒸着して、
C軸配向性のあるBi  Sr  CaCu2O□薄膜
として付着させた。
この薄膜の結晶構造は、単位結晶格子中にCu−0面が
2面含まれているいわゆる低温層と呼ばれる構造である
この場合、ガス圧力は0.5Pa、スパッタリング電力
150W、  スパッタリング時間10分、薄膜の膜厚
110nm、基板温度580℃であった。このようにし
て得られた薄膜は超伝導性を示し、その超伝導転移温度
のうち、ゼロ抵抗温度(Tc)は60に1オンセット温
度は70にであった。
次に、この薄膜を1気圧酸素中で920℃で20分間熱
処理を行なった。この処理では、薄膜を直径6anの石
英管中に置き、酸素ガスを単位時間あたりの流量100
m1/minで流しながら、周囲より電気ヒータで加熱
した。温度変化率は、温度上昇時は2000℃/h、下
降時は自然冷却(900℃付近で約二2000℃/h)
とした。
さらに、この熱処理を施した薄膜を真空中(10’Pa
以下)に置いて、室温で30分間紫外線照射を行なった
。紫外線光源には低圧水銀ランプ(最大強度発光波長:
250nm)を用いた。試料面での紫外線強度は約3m
W/car)であった。
第3図に、薄膜形成直後(a)、および、熱処理と紫外
線照射を行なった後(b)での薄膜の抵抗率の温度変化
を示す。第3図かられかるように、形成直後はオンセッ
ト温度は70に程度であったものが、処理の後には20
に程上昇して約90Kに上昇していることがわかる。し
かしながら、形成直後の薄膜に、熱処理のみを、または
、電磁波照射処理のみを行なっただけでは、超伝導特性
は処理前よりもむしろ劣化することを確認している。
第3図に示すような超伝導特性の向上の原因は、薄膜形
成過程では、薄膜へのイオンの衝突や膜堆積量に伴う諸
条件の変化(例えば、膜の輻射熱吸収量の変化に伴い実
効的な基板温度が変化)等のために、結晶性が不完全で
あったが、熱処理によって結晶性を回復させ、さらに、
後の紫外線照射によって酸化状態の最適化が施されたも
のと考えられる。
前述の紫外線または紫外線よりも波長の短い電磁波とし
ては通常のW、Mo、Rh、Cu、Fe。
Co、Cr、AI、Mg、ZrなどのX線管またはH,
He、Neなどの紫外線源または水銀ランプからの輻射
光、または、放射性元素からγ崩壊によって放射される
γ線などをもちい、この電磁波を超伝導薄膜に照射する
ことにより照射処理はおこなわれる。この効果は薄膜超
伝導体にこれら電磁波を照射して薄膜をある程度還元し
、結晶中の酸素量を制御して超伝導に対する酸素の最適
条件を作り出すものと考えられる。
(具体的実施例) 具体的な実施例を、第2図を用いて説明する。
第2図は本発明のジョセフソン素子の製造方法の一実施
例の一過程の概念図である。
(100)面MgO単結晶を基板21とし、その上に、
高周波プレナーマグネトロンスパッタにより、Bi、S
r、Ca、Cuの各元素を含む酸化物からなる焼結した
ターゲットをArと02の混合ガス雰囲気でスパッタリ
ング蒸着して、C軸配向性のあるBi2 Sr2 Ca
Cu20x薄膜を金属酸化物薄膜22として付着させた
。この薄膜の結晶構造は、単位結晶格子中にCu−0面
が2面含まれているいわゆる低温層と呼ばれる構造であ
る。
この場合、ガス圧力は0,5Pa、スパッタリング電力
150W、  スパッタリング時間10分、薄膜22の
膜厚110nm、基板温度580℃であった。
次に、この薄膜22を1気圧酸素中で920℃で20分
間熱処理を行なった。この処理では、薄膜22を直径6
anの石英管中に置き、酸素ガスを単位時間あたりの流
量100m1/minで流しながら、周囲より電気ヒー
タで加熱した。温度変化率は、温度上昇時は2000℃
/h、下降時は自然冷却(900℃付近で約−2000
℃/h)とした。
さらに、この熱処理を施した薄膜22の表面上に、電磁
波を遮るためのマスクとしてレジスト膜23を形成した
のち、真空中(10’Pa以下)に置いて、室温で低圧
水銀ランプを用いて紫外線を約3時間、薄膜22の表面
に照射した。レジスト膜23としては、ネガ形レジスト
OMRを塗布の後、フォトリソグラフィーの手法でパタ
ーン化されたものを用いた。照射後、有機溶剤を用いて
、このレジスト膜23を除去した。紫外線光源には低圧
水銀ランプ(最大強度発光波長:250nm)を用いた
。試料面での紫外線強度は約3mW/co?)であった
。これら処理によって、電極部24は超伝導性が発現ま
たは他の部分よりも向上するため、紫外線が照射されて
いない接合部(間隙部)25は照射された電極部24よ
りも超伝導性が劣っているか、または、接合部(間隙部
)25のみが超伝導性を有しない状態になる。
2つの電極部24に測定用端子を導電ペーストで接着し
、この端子に85Hzの交流電圧を印加し、この端子を
通して間隙部25を流れる電流との関係を観測した。そ
の結果、観測された電流・電圧特性はジョセフソン接合
特有の非線形性を有していた。さらに、この間隙部25
に20GHzのマイクロ波を照射したところ、電流・電
圧特性の曲線上に電圧のステップが観測され、このステ
ップの位置とマイクロ波の周波数の関係からこのステッ
プはジョセフソン接合特有のいわゆるシャピロステップ
であることがわかった。これらの結果から、試作した素
子は、SNS形(超伝導体・常伝導体・超伝導体)のジ
ョセフソン接合が形成されていることが分かった。
この方法により、制御性良く弱結合形のジョセフソン素
子を形成することができた。この場合、レジスト膜23
には有機溶剤のみで現像できるポリメチルメタクリレー
ト(PMMA)(電子線用)、またはネガレジスト等が
適している。通常これらのレジストは200℃以上に加
熱された場合変質してしまいレジストとしての機能を発
揮できないものが多いが本発明の紫外線または紫外線よ
りも波長の短い電磁波照射は室温で行えるのでレジスト
を侵すことはなく効果的である。また、必ずしもレジス
ト膜23を電磁波用のマスクに用いる必要はな(、通常
のフォトリソグラフィーの手法に従い、例えば、パター
ン化されたクロム等の薄膜をガラス板等上に形成してで
きた通常のフォトマスクを金属酸化物薄膜22上に接触
させ、このフォトマスクを通して紫外線を照射すること
によっても、選択的に電極部24のみに電磁波を照射す
ることが可能である。
本発明者らは、結晶性向上のための工程である熱処理で
は、最適な温度及び処理時間があることを見いだした。
温度は高すぎると膜材料の再結晶化が進むと同時に膜内
の原子が一部蒸発することなどによって、膜の表面状態
が劣化し、最終的にはむしろ超伝導特性が悪化すること
がある。また、温度が低いと結晶性改善の効果がなくな
る。処理温度としては800℃〜1000℃が有効な範
囲で、とりわけ950℃付近が特に有効である。また、
熱処理は酸化性の雰囲気で行なう必要があり、特に酸素
中で行なうことが最も適当である。処理時間についても
、長すぎると、膜材料の極度の再結晶化と原子の蒸発の
影響が現れ、むしろ超伝導特性向上には逆効果となるこ
とから30分以下の処理時間が有効であることを見いだ
した。
この熱処理過程のみでは、結晶性は改善されるが、酸化
物薄膜の酸化状態が不確定となる。金属酸化物超伝導体
は、適度の酸素欠損が超伝導特性に重要な役割を果たす
ことが知られている。このことは、超伝導体の酸化状態
、言い替えれば、酸素量が多すぎても少なすぎても超伝
導特性の劣化の原因になることを意味している。1−た
がって、熱処理過程の後に、酸化状態を最適の値に制御
できればさらに超伝導特性を向上させることが可能であ
る。本発明者らは、紫外線または紫外線よりも波長の短
い電磁波を金属酸化物超伝導体に照射すれば、結晶中の
特に銅イオンのまわりの酸素サイトに効率よく酸素欠損
が生じることを既に確認している。そこで、本発明の薄
膜超伝導体の製造方法では、この手法を適用し、非常に
制御性良い酸素欠損量、つまり、酸化状態の最適化を実
現している。また、紫外線または紫外線よりも波長の短
い電磁波の照射によって、結晶性もさらに幾分改善され
る効果もあり、この手法の適用は極めて有効である。
このような酸化状態の最適化の方法としては、適当な雰
囲気中で加熱したり、還元性のイオン(例えば水素イオ
ン)を照射することなどによっても実現できる。しかし
、本発明の紫外線よりも波長の短い電磁波の照射では、
試料を加熱する必要がなく、また、照射時間によって精
度良く酸化状態を制御でき、さらに、結晶性を劣化させ
ることがないなど非常に有効な方法である。
また、ここでは、電磁波照射を真空中で行なったが、特
に真空中に限定されるものではなく、1気圧以下の減圧
下またはAr、He等の不活性なガス中でも同様の効果
があることを確認している。
上記電磁波の利用はイオンビームや電子ビームの利用と
異なり、金属元素同士の比率の変化や局所的な大きな温
度上昇、また薄膜の結晶性の低下等を引き起こさずに均
一性の良好な処理を可能とするので、本発明は被照射部
の薄膜に大きな損傷を与えないという利点を有する。こ
れら電磁波はその波長が短く、加工する超伝導薄膜の領
域を微細に制御し、精密、微細な銅酸化物薄膜の還元処
理を可能とする。これより、サブミクロン加工を必要と
するジョセフソンデバイス等の作製がこれら電磁波の照
射により容易に行われるようになる。
また、前記具体的実施例では紫外線または紫外線よりも
波長の短い電磁波として紫外線を例に取って実験を行っ
ていたが、紫外線に限らず、X線、γ線でも同様の効果
があることを確認している。
また、第1図において、金属酸化物薄膜12には、B 
i−8r−Ca−Cu−0の他にA−B−Cu−〇、ま
たは、Tl−Ba−Ca−Cu−0複合化合物を熱蒸着
例えば電子ビーム蒸着、レーザビーム蒸着等の物理的気
相成長法で基板上に付着させたものを用いても同様の効
果がある。これら金属酸化物超伝導体は組成式がまだ明
確には決定されていないが、A−B−Cu−0に関して
は酸素欠損ペロブスカイト(AlB ) 3 Cu 3
07.、、といわれており、この種の材料に関して、本
発明者らは、作製された薄膜の元素比率が、 0.5≦(A+B)/Cu≦2.5 の範囲にあれば、臨界温度に多少の差があっても超伝導
現象が見いだされることを確認した。また、B i−8
r−Ca−Cu−O、Tl−Ba−Ca−Cu−0超伝
導体は、臨界温度がLOOKを越えるものができ、実用
上極めて有用であるが、含まれる元素数も多く、優れた
超伝導膜形成は比較的困難であった。本発明者らは、作
製条件などを厳密に制御すれば、これら材料についても
先のA−B−Cu−0超伝導体と同様の方法で再現性よ
く薄膜化できることを確認した。
以上説明した本発明方法の実施例によれば、薄膜化した
均一性の良い金属酸化物薄膜に熱処理と紫外線または紫
外線よりも波長の短い電磁波の照射とを施すところに大
きな特徴がある。紫外線または紫外線よりも波長の短い
電磁波の照射による金属酸化物薄膜の処理は薄膜の温度
上昇がなく。
制御性もよく、かつ、処理が簡単である。
従って、非常に高精度の弱結合部をもつ均一性の良いジ
ョセフソン素子が本発明により容易に実現される。
以上の説明のごとく本発明のジョセフソン素子の製造方
法により例えばSiまたはGaAs等のデバイスとの集
積化が可能となる。また、本発明のジョセフソン素子の
製造方法は5QUID等の各種超伝導デバイスの製造に
実用される。特に、この種の金属酸化物超伝導体の転移
温度が室温になる可能性もあり、実用の範囲は広く本発
明の工業的価値は高い。
[発明の効果コ 以上説明した通り本発明のジョセフソン素子によれば、
金属酸化物薄膜は、少なくとも2つの電極部と、電極部
と電極部との間に接合部を備え、前記電極部は前記接合
部に比較して超伝導特性が高いので、高精度の弱結合部
をもつ均一性の良いジョセフソン素子とすることができ
る。また形状の変化も無く、積層化など1ヒも有効であ
る。
次に本発明方法によれば、金属酸化物薄膜に熱処理を施
した後、前記金属酸化物薄膜上の微小な間隙部で分離さ
れた少なくとも2つの領域に、紫外線または紫外線より
も波長の短い電磁波を照射するので、これら照射された
領域のみの超伝導性を部分的に向上、または、発現させ
ることができると共に、前記本発明のジョセフソン素子
を効率よく合理的に製造することができる。
また金属酸化物薄膜として、A−B−Cu−0複合化合
物、B i−8r−Ca−Cu−0,またはT l−B
a−Ca−Cu−0複名化合物を用いるという本発明方
法の好ましい構成によれば臨界温度の高いジョセフソン
素子を得ることができる。
また、熱処理が酸素ガス中で800〜1000℃の範囲
の温度に加熱するという本発明方法の好ましい構成によ
れば、超伝導膜層の結晶性を向上することができる。
また、熱処理の時間が30分以内の範囲であるという本
発明方法の好ましい構成によれば、超伝導膜層の超伝導
特性を良好に保つことができる。
また、紫外線または紫外線よりも波長の短い電磁波の照
射が、減圧下、または、不活性ガス雰囲気中で行なう条
件であるという本発明方法の好ましい構成によれば、酸
化状態を精度良く制御でき、結晶性の劣化を有効に防止
できる。
【図面の簡単な説明】
第1図は本発明の一実施例のジョセフソン素子の基本概
念図、第2図は本発明の一実施例のジョセフソン素子の
製造方法の内の1過程の概念図、第3図(a)は本発明
の一実施例の金属酸化物薄膜の作製直後の抵抗率の温度
変化曲線、第3図(b)は同熱処理と紫外線または紫外
線よりも波長の短い電磁波を照射した後の抵抗率の温度
変化曲線を示す。 11.21・・・基板、 12.22・・・金属酸化物
薄膜、 13.24・・・電極部、 14.25・・・
接合部(間隙部)、 23・・・レジスト膜。 21・・・基板 22・・・金属酸化物薄膜 第2図 第3図(a) 第3図(b)

Claims (1)

  1. 【特許請求の範囲】 (1)基板上に少なくとも金属酸化物薄膜が形成された
    ジョセフソン素子であって、前記金属酸化物薄膜は、少
    なくとも2つの電極部と、電極部と電極部との間に接合
    部を備え、前記電極部は前記接合部に比較して超伝導特
    性が高いことを特徴とするジョセフソン素子。 (2)基板上に少なくとも金属酸化物薄膜が形成された
    ジョセフソン素子の製造方法であって、金属酸化物薄膜
    に熱処理を施した後、前記金属酸化物薄膜上の微小な間
    隙部で分離された少なくとも2つの領域に、紫外線また
    は紫外線よりも波長の短い電磁波を照射することを特徴
    とするジョセフソン素子の製造方法。 (3)金属酸化物薄膜として、A−B−Cu−O複合化
    合物を用いる請求項2記載のジョセフソン素子の製造方
    法。 [ここで、AはY、La、およびLa系列元素(原子番
    号57、59〜60、62〜71)から選ばれる少なく
    とも1種の元素、Bは周期律表のIIa族元素から選ば
    れる少なくとも1種の元素、かつA、B元素とCu元素
    の濃度は 0.5≦(A+B)/Cu≦2.5] (4)金属酸化物薄膜として、Bi−Sr−Ca−Cu
    −O、またはTl−Ba−Ca−Cu−複合化合物を用
    いる請求項2記載のジョセフソン素子の製造方法。 (5)熱処理が、酸素ガス中で800〜1000℃の範
    囲の温度に加熱する条件である請求項2記載のジョセフ
    ソン素子の製造方法。 (6)熱処理時間が、30分以内である請求項2記載の
    ジョセフソン素子の製造方法。 (7)紫外線または紫外線よりも波長の短い電磁波の照
    射が、減圧下、または、不活性ガス雰囲気中で行なう条
    件である請求項2記載のジョセフソン素子の製造方法。
JP2300393A 1990-11-05 1990-11-05 ジョセフソン素子およびその製造方法 Pending JPH04171874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300393A JPH04171874A (ja) 1990-11-05 1990-11-05 ジョセフソン素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300393A JPH04171874A (ja) 1990-11-05 1990-11-05 ジョセフソン素子およびその製造方法

Publications (1)

Publication Number Publication Date
JPH04171874A true JPH04171874A (ja) 1992-06-19

Family

ID=17884250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300393A Pending JPH04171874A (ja) 1990-11-05 1990-11-05 ジョセフソン素子およびその製造方法

Country Status (1)

Country Link
JP (1) JPH04171874A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717253C1 (ru) * 2019-09-18 2020-03-19 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Сверхпроводящая цепь с участком слабой связи

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717253C1 (ru) * 2019-09-18 2020-03-19 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Сверхпроводящая цепь с участком слабой связи

Similar Documents

Publication Publication Date Title
EP0286106B1 (en) Process for manufacturing a superconductive device
JPH01157579A (ja) 超電導体の製造方法及び超電導回路の作製方法
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JP2965641B2 (ja) 超伝導素子の製造方法
JPH0355889A (ja) 超電導多層回路の製造方法
JPH04171874A (ja) ジョセフソン素子およびその製造方法
JP2713343B2 (ja) 超電導回路の作製方法
WO1989003125A1 (en) A process for producing an electric circuit including josephson diodes
JPH04275470A (ja) 超電導体/絶縁体層構造からなる製品、およびその製品の製造方法
JP2776004B2 (ja) ジョセフソン素子の製造方法
JPH04171872A (ja) ジョセフソン素子およびその製造方法
JP2001244511A (ja) ランプエッジ構造を持つジョセフソン素子の製造方法および成膜装置
JPH01208878A (ja) 超電導デバイス及び超電導配線の製造方法
JP3037396B2 (ja) 薄膜超伝導体の製造方法
JPH07187614A (ja) 超電導酸化物の製造方法及び超電導体装置
JP2969068B2 (ja) 超伝導素子の製造方法
JP3149460B2 (ja) ジョセフソン素子の製造方法
JPH0764678B2 (ja) 超電導薄膜の作製方法
JP2822623B2 (ja) 超伝導体への電極形成方法
JPS63306677A (ja) 超電導装置およびその製造方法
JP2899287B2 (ja) ジョセフソン素子
JPH06338639A (ja) ジョセフソン素子の製造方法
JPH03297175A (ja) 薄膜超電導素子の製造方法
JPH06177443A (ja) 超伝導接合素子
JPH01286373A (ja) ジョセフソン素子およびその製造方法