JP2898296B2 - 薄板鋼板用鋳片の連続鋳造方法 - Google Patents

薄板鋼板用鋳片の連続鋳造方法

Info

Publication number
JP2898296B2
JP2898296B2 JP6629489A JP6629489A JP2898296B2 JP 2898296 B2 JP2898296 B2 JP 2898296B2 JP 6629489 A JP6629489 A JP 6629489A JP 6629489 A JP6629489 A JP 6629489A JP 2898296 B2 JP2898296 B2 JP 2898296B2
Authority
JP
Japan
Prior art keywords
gas
molten steel
continuous casting
steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6629489A
Other languages
English (en)
Other versions
JPH02247052A (ja
Inventor
直人 堤
正樹 岩崎
秀明 木村
孝文 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6629489A priority Critical patent/JP2898296B2/ja
Publication of JPH02247052A publication Critical patent/JPH02247052A/ja
Application granted granted Critical
Publication of JP2898296B2 publication Critical patent/JP2898296B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧延後ならびに焼鈍処理後に、ふくれ欠陥
のない熱延、冷延薄板鋼板用鋳片の連続鋳造方法に関す
るものである。
従来の技術 薄板鋼板は、一般に連続鋳造機にて鋳造された低炭素
鋼鋳片を、熱間圧延、あるいは熱間圧延後、冷間圧延を
施した後焼鈍工程を経て製品とされる。この熱間圧延後
の鋼板あるいは、焼鈍後の冷間圧延鋼板の板表面に、し
ばしば、幅1〜4mm、長さ数mmに隆起した、あるいはこ
れら数mmの隆起が点状に連続して300mmにもわたって連
なった、いわゆるふくれ状の欠陥(以下ふくれ欠陥と称
す)が生じることがある。
これらの欠陥は、自動車用鋼板といった加工が施され
る薄板用鋼板において、その加工性を高めるため鋼板中
の炭素濃度を極力低下させた、鋼中の炭素含有量が0.01
5wt%以下の極低炭素鋼の場合に、とりわけ多く発生し
がちであり、製品の歩留まりの大幅な低下を招く、大き
な原因に数えられている。
この極低炭素鋼板は、溶鋼二次精錬技術の発展、中で
もRHやDH等の真空脱ガス技術の著しい技術開発の結果、
清浄性の高い極低炭素鋼として連続鋳造が可能となった
ことから、上記のように連続鋳造の鋳片として、後の工
程に送られる。
これら鋳片は、熱間圧延さらには冷間圧延、焼鈍工程
を経て製品とされるが、この最終工程で検出されるふく
れ欠陥は、多段におよぶ溶製、加工工程の手順を踏んで
おり、その歩留まり低下は、製鋼工程のみならず、製品
製造コストに大きく影響する。
このふくれ欠陥の主な原因としては、連続鋳造の際
に、モールドに溶鋼を供給する浸漬ノズルから吹き込ま
れるArガスが、鋳片内部に捕捉されたためと言われてい
る。
すなわち、第1図に示すように、一般に低炭素鋼の連
続鋳造の際には、タンディッシュ1からモールド2へ溶
鋼を供給するために、タンディッシュ1に設置した、上
ノズル3、スライディングプレート4,下ノズル5ならび
にモールド内浸漬管6等から構成される、いわやる浸漬
ノズルが広く用いられる。
この浸漬ノズルは、そのノズル内部の溶鋼と接触する
部分、中でも接触する溶鋼の流速が特に速い、スライデ
ィングプレート部4、あるいは逆Y字型の下向き2孔の
形式が広く一般的に取られている溶鋼流出部7(以下吐
出口と称す)等の部分に、溶鋼との接触の時間が長くな
るにつれて、鋼中に存在する酸化アルミニウム(以下ア
ルミナと称す)といった鋼の脱酸生成物からなる鋼中介
在物が集積し、ノズル閉塞と言われる、溶鋼供給が安定
に行えなくなるという連続鋳造の操業上での問題を有す
る。
そこで、介在物の集積を抑制するために、浸漬ノズル
を介して溶鋼注入流に対して多量のガスの放出が行える
構造となっており、現在Arガスが広く吹き込まれ連続鋳
造の安定な操業に不可欠となっている。
この吹き込まれたArガスは、その大部分はモールド2
に供給される溶鋼中に混入し、モールド内あるいは連続
鋳造機内で、周辺溶鋼の流速の低下に伴って、溶鋼とガ
スの比重差に基づく浮力によってその大部分が浮上し、
モールド上層に設置されたパウダー層8内に吸収、ある
いはパウダー層8を濾過して機外へ放出され、またこの
浮上の間に周辺に存在する介在物を伴うため、鋳造され
た鋳片の清浄化にも大きく寄与する。
ところが、一部の浮上中のガスは鋳片の凝固殻9に捕
捉され、鋳片内に気泡として残留することが認められて
おり、この傾向は特に湾曲型連続鋳造機で顕著である。
この気泡は、その径が大きいものほど、熱間圧延を経
たのちも鋼中に気泡のまま残りやすく、とくに気泡内に
微細なアルミナ系等の介在物を捕捉している場合には、
圧着が妨げられることになり、鋼板の表面にてふくれ状
の欠陥を呈する。
またその後の冷間圧延に際して、Arといった鋼板への
溶解度も小さく、拡散による系外への放出がほとんど無
い気泡の場合には、このような未圧着な気泡の内圧が増
加し、その後の焼鈍工程において、鋼材の軟質化ととも
に、薄板の表面を局部的に隆起させるに至る。
さらに、未圧着気泡内面に存在するアルミナ系等の介
在物が存在する場合は、この固い介在物と柔らかい鋼材
の両者の境界にボイドと称する空隙が形成されやすい。
この部分は、水素の分圧が極めて低いため、焼鈍工程で
酸化抑制のために雰囲気ガス中に成分として使用される
HNX等の還元ガスから、鋼板中を拡散して侵入する水素
ガスによる内圧の上昇も、このふくれ欠陥を助長する因
子となる。
以上のように、低炭素薄板鋼板の表面に、しばしば発
生するふくれ欠陥が、その主たる原因としてArガス気泡
に由来することから、欠陥発生の抑制のために浸漬ノズ
ルからのArガスの吹き込み流量を低下させると、本来の
目的であるノズル閉塞防止の効果を充分に発揮すること
ができなくなるという問題がある。
そこで、浸漬ノズルの閉塞防止を確実に享受しつつ、
ふくれ欠陥の発生を抑制するために、溶鋼トン当たり4N
以下に制限したArと残余N2との混合ガスを用い、鋳片
の内部に捕捉されるガス気泡に基づく1mmφ以上のピン
ホール数をトン当たり10個以内に低減させる方法(特開
昭62−38747)、ガスを吹き込む浸漬ノズル耐火物の気
孔径を大きくすることにより、溶鋼中に混入する気泡径
を大きくさせ、連続鋳造機内への気泡侵入深さを浅くす
ることで、気泡を浮上させやすく、すなわち気泡を鋳片
内へ残留させないようにする方法(材料とプロセス、1
(1988)、1270)等が報告され効果を発揮している。
発明が解決しようとする課題 しかしながら、浸漬ノズルからN2ガスを吹き込んだ場
合には、例えば特に鋳造速度が遅くなり溶鋼とN2ガスの
接触時間が長くなると、鋳片の一部分ではあるが、この
N2ガスが溶鋼中に少なからず吸収され、すでに存在する
以上に溶鋼中の窒素濃度が増加する。この窒素成分は、
鋳片の凝固段階あるいは冷却段階において種々の窒化物
として鋼材中に析出してくるため、薄板鋼板の加工性、
成形性に支障をきたす恐れがあり、極力低いほうが好ま
しいと言われている。
実際に現状の窒素濃度の鋼材においても、材料の加工
性を確保するために、Tiといった成分を鋼中成分として
添加し、製品段階で窒素成分を窒化物として固定させて
おく方法がとられている。ここで、窒素濃度が現状以上
に増加した場合に、鋼板長手方向で材質上の不均一が生
じうること、このばらつきを考慮して均一な材質を確保
するためには、これら添加合金の量が増加し、精錬上で
のコスト増加はまぬがれない。
一方、浸漬ノズル耐火物の気孔径を最初から大きくす
ることで、溶鋼中に混入する気泡径を大きくさせ、連続
鋳造機内への気泡侵入深さを浅くする方法に対しては、
鋳造時に2つの吐出口から注入される溶鋼の流量が均等
が場合には目的どおりに気泡侵入深さを浅く確保するこ
とができる。
しかしながら、この両吐出流量は常に均等ではなく、
ある場合には片側から多く流出することがあり、この場
合には連続鋳造機内の流動状態は浸漬ノズルを中心に両
側が非対称な状態となってしまい、強い側の流れは連続
鋳造機内奥深くまで到達してしまう。浸漬ノズルから吹
き込まれたガスがこの流れにのった場合には気泡は当初
の目的よりもさらに深い位置まで侵入してしまい、全て
が浮上しきれずに鋳片内に残留してしまう現象が生じ
て、常に安定、完全なふくれ欠陥の解決は難しい。
これらのような問題点を鑑み、本発明は、これら問題
点を解決し、ノズル閉塞の防止に必要なガス吹き込み量
を充分に確保し、かつ大幅な精錬コストの上昇もなく、
また連続鋳造の操業状態の変動にも常に安定な効果を享
受することができ、しかもふくれ欠陥を伴わない、低炭
素鋼薄板鋼板用の鋳片を供給する連続鋳造方法を提供す
ることを目的とするものである。
課題を解決するための手段 本発明は、熱間圧延、あるいは熱間圧延後、冷間圧延
および焼鈍各工程を経て、薄板鋼板に仕向ける鋳片の連
続鋳造において、連続鋳造のモールド内へ溶鋼を注入す
る浸漬ノズルの閉塞防止として、浸漬ノズルを介して溶
鋼中にガスを吹き込むに当たり、その流量として、溶鋼
流量Q(ton/min)に対して2Q+1N/min以下のHeガス
を吹き込むことを特徴とする、ならびに(2)溶鋼トン
あたり1N/min以下のArガスと、残量Heガスからなる混
合ガスを、その全流量として、溶鋼流量Q(ton/min)
に対して2Q+1N/min以下吹き込むことを特徴とする、
ふくれ欠陥を伴わぬ熱延、冷延薄板鋼板用鋳片の連続鋳
造方法に関するものである。
作用 発明者等は、ノズル閉塞を防止するための浸漬ノズル
からのガス吹き込みは従来どうり積極的に実施し、かつ
浸漬ノズルからモールド内へ供給される溶鋼中に吹き込
まれたガスが混入し、その一部が凝固殻に捕捉され、鋳
片内部に気泡として残留しても、熱間、冷間の各圧延の
段階で、その内圧が上昇しないガスがないかという検討
を重ねた結果、Heガスを吹き込めば、ふくれ欠陥を伴わ
ぬ熱延、冷延薄板鋼板用鋳片の連続鋳造が可能ではない
かと考えた。
Heガスは、従来広く用いられているArガスと同様の不
活性ガスであり、一方、その原子量は2と、Arの原子量
40に比較してはるかに小さい。このため、この両者の例
えば1000℃における拡散定数を比べるとHeガスの拡散定
数が10-4cm2/secのオーダーであるのに対して、Arガス
の拡散定数は10-11cm2/secのオーダーであり、Heガスの
ほうがはるかに拡散しやすいことがわかる。
すなわち、これらの拡散定数から拡散速度を算出し、
1000℃における単位時間内での拡散距離を求めると、He
ガスのほうがArガスよりも約3000倍ほど拡散、言い換え
れば系外へ放散されやすいことが推算される。この理由
として、He原子はその原子半径が水素原子と同様に小さ
いため、鉄原子の格子間に容易に侵入できる元素である
ことからも考えらえる。
すなわち、浸漬ノズルから吹き込まれたHeガスは、そ
の一部分が鋳片内部に気泡として残留した後に、熱間圧
延の際に圧下を受けてその体積が減少し、内圧が上昇し
ても、高温の条件下において、周辺の鋼材を介して容易
に外部へ放散されてしまい、圧延の程度にもよるが、最
終的な内圧上昇がなく、ほぼ完全に圧着されてしまうも
のと考えられる。
この考えに基づき、実際に、従来浸漬ノズルからArガ
スを吹き込んでいた、ノズル閉塞を完全に防止できる流
量と同一流量のHeガスを吹き込んで鋳造を行い、その鋳
片の内部に残留する気泡を調べたところ、その組成はHe
であるが、個数が少なく、かつその径がArを吹き込んだ
場合と比較すると全般的に小さいという事実を得た。
すなわち、Arガスを吹き込んだ場合に鋳片内に残留し
てふくれ欠陥につながると言われている1mmφ以上の気
泡(ピンホール)は、該鋳片内にほとんどなく、吹き込
まれたHeガスは非常に小さな気泡としてのみ鋳片内に残
留する傾向にあることが判明した。
この理由として、一つには吹き込んだHeガスの比重が
小さいために、Arガスに比較すれば浮力が大きく浮上し
やすいことが考えられる。
また、この結果として鋳片内に残留する気泡は、その
径が非常に小さくなり、鋳片の板厚方向では、従来のAr
ガス吹き込みの鋳片内に残留する気泡よりも全般的に深
い位置に分布していることもわかった。この現象は、気
泡の上面に存在する鋼材の体積が増加することから、気
泡が後の工程で鋼板表面をふくらます際に要する応力も
増大せざるを得ず、すなわちふくれ欠陥の発生には不利
な方向となる。
こうして鋳造したこれらの鋳片を、常法に従って従来
と同様の温度、圧下条件で熱間圧延るいは熱間圧延後、
冷間圧延ならびに焼鈍処理を行い、薄板鋼板として製造
し、その鋼板表面を入念に検査したが、ふくれ欠陥は全
く発生していないという結果を得た。
一方、これらの鋳造は、鋳造中の操業条件も極めて安
定であり、ノズル閉塞等の徴候は一切認められず、また
鋳造を終了した浸漬ノズルを解体し、従来吹き込みガス
量を減少した際に著しく介在物が付着するノズル内面部
分への主にアルミナ系介在物の付着状況を調査した結
果、介在物の付着はほとんど認められず、健全な状態を
示していた。
現在、浸漬ノズルから吹き込まれているArガスの流量
は、各連続鋳造機において、浸漬ノズルの形状や、ガス
を吹き込む部位等が設備条件によって異なっており、あ
るいは鋳片の厚みや幅、鋳造速度等の鋳造条件によって
も細かな設定がなされており、いずれにしてもそれぞれ
の操業条件から、ノズル閉塞の起こらない流量下限、モ
ールド内パウダーの巻き込まない流量上限が設定されて
いる。
後者のモールド内パウダーの巻き込みの一原因とし
て、浸漬ノズル周辺でのガスの吹き抜け現象が考えら
れ、この現象は、溶鋼とモールド内パウダーの界面を著
しく乱し、パウダーの溶鋼への巻き込みを助長し、内部
欠陥の増加を引き起こすため避けなければならない。
ここで、本発明の要件である浸漬ノズルから吹き込む
Heガスの流量としては、浸漬ノズル周辺でのガスの吹き
抜け現象が観察される流量以下までは吹きこんでよい。
第2図には、溶鋼流量Q(ton/min)に対して、ガス吹
き込み流量を変化させて、浸漬ノズル周辺でのガス吹き
抜け現象の発生を観察した結果を示したが、本図に示さ
れるように溶鋼流量Q(ton/min)に対するガスの吹き
込み流量としては、2Q+1N/min以下が適切である。
本流量範囲以下で極力大量のガスを吹き込むことが、
ノズル閉塞の観点から好ましい。
実際に、ガスの流量を低下させていった場合の、ガス
吹き込み流量とノズル閉塞現象の発生状況を第2図に併
せて示したが、ノズル閉塞抑制の観点からは、いかなる
溶鋼流量Q(ton/min)に対しても、1N/min以上のガ
スを吹き込むことが好ましいといえる。
この点に関しては、今後積極的な溶鋼の清浄化を図
り、溶鋼中の介在物量を減少させる等の付加技術によ
り、一層の吹き込む流量低減を行うことも充分に可能と
考えられる。
第3図には、本発明により吹き込むHeガスの一部をAr
ガスに置き換え、このArガス流量を徐々に増加させてい
った際のふくれ欠陥の発生状態を示す。この図から、Ar
ガスを溶鋼トンあたり、1N超吹き込むと、次に示すふ
くれ欠陥発生指数が0でなくなり、ふくれ欠陥が発生す
るという結果を得た。ここでふくれ発生指数は、 によって規定することにした。
このことから、浸漬ノズル内面から吹き込むガスとし
て、HeガスとArガスの混合ガスを用いても良いが、その
Ar流量としては、溶鋼トンあたり、1N以下でなければ
ならない。
実施例 実施例1 C:0.002wt%、Si:0.01wt%、Mn:0.10wt%、Al:0.030w
t%、P:0.01wt%、S:0.005wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、タンディッシュからモールドに溶鋼を供給する浸
漬ノズルを介し溶鋼注入流に向かって、8N/minのHeガ
スを吹き込んだところ、この鋳片を常法に従って、熱間
圧延を行った際の板厚4.0mmの鋼板表面のふくれ欠陥の
発生は、先に示したふくれ発生指数表示で0であった。
実施例12 C:0.002wt%、Si:0.01wt%、Mn:0.09wt%、Al:0.028w
t%、P:0.01wt%、S:0.005wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、タンディッシュからモールドに溶鋼を供給する浸
漬ノズルを介し溶鋼注入流に向かって、8N/minのHeガ
スを吹き込んだところ、この鋳片を常法に従って、熱間
圧延ならびに冷間圧延を経たのち、焼鈍処理を実施した
際の板厚1.0mmの鋼板表面のふくれ欠陥の発生は、先に
示したふくれ発生指数表示で0であった。
実施例3 C:0.002wt%、Si:0.01wt%、Mn:0.12wt%、Al:0.032w
t%、P:0.01wt%、S:0.004wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1800mmの鋳
片に、鋳造速度1.0m/min(3.2ton/min)にて連続鋳造す
る際に、タンディッシュからモールドに溶鋼を供給する
浸漬ノズルを介し溶鋼注入流に向かって、7N/minのHe
ガスを吹き込んだところ、この鋳片を常法に従って、熱
間圧延ならびに冷間圧延を経たのち、焼鈍処理を実施し
た際の板厚0.9mmの鋼板表面のふくれ欠陥の発生は、ふ
くれ発生指数表示で0であった。
実施例4 C:0.002wt%、Si:0.01wt%、Mn:0.10wt%、Al:0.031w
t%、P:0.01wt%、S:0.004wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、タンディッシュからモールドに溶鋼を供給する浸
漬ノズルを介し溶鋼注入流に向かって、3N/minのArガ
ス(0.75N/トン)と4N/minのHeガスを混合して吹
き込んだところ、この鋳片を常法に従って、熱間圧延な
らびに冷間圧延を経たのち、焼鈍処理を実施した際の板
厚1.2mmの鋼板表面のふくれ欠陥の発生はふくれ発生指
数表示で0であった。
比較例1 C:0.002wt%、Si:0.01wt%、Mn:0.11wt%、Al:0.030w
t%、P:0.01wt%、S:0.005wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、タンディッシュからモールドに溶鋼を供給する浸
漬ノズルを介し溶鋼注入流に向かって、10N/minのAr
ガスを吹き込んだところ、この鋳片を常法に従って、熱
間圧延ならびに冷間圧延を経たのち、焼鈍処理を実施し
た際の板厚1.0mmの鋼板表面のふくれ欠陥の発生は、ふ
くれ発生指数表示で2.0であった。
比較例2 C:0.002wt%、Si:0.01wt%、Mn:0.10wt%、Al:0.030w
t%、P:0.01wt%、S:0.005wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、タンディッシュからモールドに溶鋼を供給する浸
漬ノズルを介し溶鋼注入流に向かって、6N/minのArガ
スと6N/minのN2ガスの混合ガスを吹き込んだところ、
この鋳片を常法に従って、熱間圧延ならびに冷間圧延を
経たのち、焼鈍処理を実施した際の板厚0.9mmの鋼板表
面のふくれ欠陥の発生は、ふくれ発生指数表示で0.12で
あった。また、この鋼板の窒素成分値は0.004wt%に増
加していた。
比較例3 C:0.002wt%、Si:0.01wt%、Mn:0.10wt%、Al:0.031w
t%、P:0.01wt%、S:0.004wt%、N:0.003wt%の組成か
らなる低炭素Alキルド鋼を、厚み250mm、幅1500mmの鋳
片に、鋳造速度1.5m/min(4ton/min)にて連続鋳造する
際に、二次精錬でスラグの酸化度を徹底してさげ、また
取鍋内にて充分なArによる撹拌を行い介在物を浮上除去
させる清浄化を図り、タンディッシュからモールドに溶
鋼を供給する浸漬ノズルを介し溶鋼注入流に向かって、
5N/miのArガスと2Nl/minのN2ガスの混合ガスを吹き
込んだところ、この鋳片を常法に従って、熱間圧延なら
びに冷間圧延を経たのち、焼鈍処理を実施した際の板厚
1.2mmの鋼板表面のふくれ欠陥の発生は、ふくれ発生指
数表示で0.07であった。
発明の効果 以上のように、本発明によれば、低炭素アルミキルド
鋼に代表される、薄板鋼板に向けられる鋳片の連続鋳造
の際に、タンディッシュからモールドへ溶鋼を供給する
浸漬ノズルの内面から、溶鋼注入流に吹き込まれるガス
組成に配慮を加えることによって、浸漬ノズル内の介在
物集積によるノズル閉塞の防止機能を低下させることな
く、吹き込まれたガスが気泡として鋳片内に残留する機
会を低減することにより、この残留気泡が原因となる、
薄板鋼板の圧延時、焼鈍時におけるふくれ欠陥の発生を
適切に回避することができ、歩留の向上等大きな効果が
享受できる。
【図面の簡単な説明】
第1図はタンディッシュかたモールドに至る溶鋼の注入
挙動、ならびに浸漬ノズルを介して溶鋼中に吹き込まれ
たガスの挙動を示す説明図である。 第2図は、溶鋼流量に対し、浸漬ノズルから吹き込まれ
たHeガス流量とノズル周辺のガス吹き抜け現象、ならび
に浸漬ノズルの閉塞現象の関係を示す図、第3図は浸漬
ノズルから吹き込むHeガスの一部をArガスに置き換えた
際のArガス流量とふくれ発生指数の関係を示す図であ
る。 1……タンディッシュ、2……モールド、3……上ノズ
ル、4……スライディングプレート、5……下ノズル、
6……モールド内浸漬管、7……溶鋼流出部(吐出
口)、8……モールド内パウダー層、9……凝固殻。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 孝文 大分県大分市大字西ノ洲1番地 新日本 製鐵株式會社大分製鐵所内 (56)参考文献 特開 昭62−38747(JP,A) 特開 平2−121755(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/10 320 B22D 11/10 360

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】熱間圧延、あるいは熱間圧延後、冷間圧延
    および焼純各工程を経て、薄板鋼板に仕向ける鋳片の連
    続鋳造において、連続鋳造のモールド内へ溶鋼を注入す
    る浸漬ノズルの閉塞防止として浸漬ノズルを介して溶鋼
    中にガスを吹き込むに当たり、その流量として、溶鋼流
    量Q(ton/min)に対して2Q+1N/min以下のHeガスを
    吹き込むことを特徴とするふくれ欠陥を伴わぬ熱延、冷
    延薄板鋼板用鋳片の連続鋳造方法。
  2. 【請求項2】熱間圧延、あるいは熱間圧延後、冷間圧延
    および焼鈍各工程を経て、薄板鋼板に仕向ける鋳片の連
    続鋳造において、連続鋳造のモールド内へ溶鋼を注入す
    る浸漬ノズルの閉塞防止として浸漬ノズルを介して溶鋼
    中にガスを吹き込むに当たり、その流量として、溶鋼流
    量Q(ton/min)に対して2Q+1N/min以下のArガスとH
    eガスとの混合ガスを溶鋼流量トンあたり1N/min以下
    のArガスと、残量Heガスの条件で吹き込むことを特徴と
    するふくれ欠陥を伴わぬ熱延、冷延薄板鋼板用鋳片の連
    続鋳造方法。
JP6629489A 1989-03-20 1989-03-20 薄板鋼板用鋳片の連続鋳造方法 Expired - Lifetime JP2898296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6629489A JP2898296B2 (ja) 1989-03-20 1989-03-20 薄板鋼板用鋳片の連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6629489A JP2898296B2 (ja) 1989-03-20 1989-03-20 薄板鋼板用鋳片の連続鋳造方法

Publications (2)

Publication Number Publication Date
JPH02247052A JPH02247052A (ja) 1990-10-02
JP2898296B2 true JP2898296B2 (ja) 1999-05-31

Family

ID=13311658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6629489A Expired - Lifetime JP2898296B2 (ja) 1989-03-20 1989-03-20 薄板鋼板用鋳片の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP2898296B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279262A (ja) * 1991-03-06 1992-10-05 Nippon Steel Corp 鋼の連続鋳造方法
JP2891307B2 (ja) * 1991-04-16 1999-05-17 新日本製鐵株式会社 鋼の連続鋳造方法
JPH04319054A (ja) * 1991-04-16 1992-11-10 Nippon Steel Corp 鋼の連続鋳造方法

Also Published As

Publication number Publication date
JPH02247052A (ja) 1990-10-02

Similar Documents

Publication Publication Date Title
KR101087318B1 (ko) 극저 탄소 주물편의 제조 방법
JP2898296B2 (ja) 薄板鋼板用鋳片の連続鋳造方法
KR0184240B1 (ko) 전자장을 사용한 강 슬래브의 연속주조방법
JP3216384B2 (ja) 鋼の連続鋳造における介在物の除去方法
JP2891757B2 (ja) 浸漬ノズル
JP2001113347A (ja) 給湯装置および鋼の連続鋳造方法
JP3464856B2 (ja) 高清浄度鋼連続鋳造用タンディッシュ
JP4259232B2 (ja) 極低炭素鋼のスラブ連続鋳造方法
JP4932985B2 (ja) 鋼の連続鋳造方法
JPH0577007A (ja) 静磁場を用いる鋼スラブの連続鋳造法
JP3375862B2 (ja) ブローホールの発生しない極低炭素鋼の製造方法
JP4595186B2 (ja) 連続鋳造方法
JPH06599A (ja) 冷延用アルミキルド鋼の連続鋳造方法
JP2000202603A (ja) 溶鋼の連続鋳造方法
JP4409167B2 (ja) 連続鋳造方法
JP2888155B2 (ja) Ti含有極低炭素鋼の連続鋳造方法
JPH0324296B2 (ja)
JP2006225727A (ja) 極低炭素鋼材の製造方法
JP3558815B2 (ja) 底部を密閉した固定堰を備えたタンディッシュによる高清浄度鋼連続鋳造方法
JP3642015B2 (ja) ステンレス鋼の連続鋳造方法
JPS6345901B2 (ja)
JP3426117B2 (ja) 溶鋼の連続鋳造方法
KR100367453B1 (ko) 게이트 및 개스 커튼이 구비된 반연속주조장치
JP2008043979A (ja) 低Al鋼の連続鋳造方法
JPH05123840A (ja) 連続鋳造用浸漬ノズル