JP2880428B2 - 遠心鋳造装置 - Google Patents

遠心鋳造装置

Info

Publication number
JP2880428B2
JP2880428B2 JP16791995A JP16791995A JP2880428B2 JP 2880428 B2 JP2880428 B2 JP 2880428B2 JP 16791995 A JP16791995 A JP 16791995A JP 16791995 A JP16791995 A JP 16791995A JP 2880428 B2 JP2880428 B2 JP 2880428B2
Authority
JP
Japan
Prior art keywords
mold
casting
molten metal
alloy
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16791995A
Other languages
English (en)
Other versions
JPH08332557A (ja
Inventor
洋一 広瀬
寛 長谷川
史郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP16791995A priority Critical patent/JP2880428B2/ja
Publication of JPH08332557A publication Critical patent/JPH08332557A/ja
Application granted granted Critical
Publication of JP2880428B2 publication Critical patent/JP2880428B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、偏析の無い組織が微細
なインゴットの製造に適した鋳造装置に関する。特に、
最近希土類合金系の優れた磁気特性を活かした希土類焼
結磁石あるいは希土類ボンド磁石が注目されてきてお
り、本発明は、かかる希土類磁石に用いられる原料用の
合金の製造に適した合金の鋳造装置に関するものであ
る。またニッケル水素電池の負極材料として用いられ
る、希土類遷移金属系合金材料の鋳造装置としても最適
な装置に関する。
【0002】
【従来の技術】希土類合金の鋳造方法として従来から知
られている方法は、箱型の鋳型に溶湯を流し込み凝固さ
せる方法である。近年、例えばNd−Fe−B系磁石に
おいて、磁気特性をさらに向上させた磁石の開発が行わ
れている。このような高性能磁石においては磁性を担う
Nd2 Fe14Bの比率を高める必要性から過剰のNd量
を減らし化学量論組成に近い組成とする必要が生じる。
ところで、平衡状態図からNd2 Fe14Bは、溶解鋳造
時に初晶のγFeと液相との包晶反応で溶湯から生成す
ることが知られており、化学量論組成に近い合金ほど、
凝固過程でγFeが生成し、かつ残留し易い。このよう
なγFeは冷却途中でαFeに変態し、凝固後のインゴ
ットにはαFeとして残留する。このようなαFeがイ
ンゴット中に残留していると、磁石化工程で最もコスト
比率の高い粉砕工程で、粉砕できないといった問題が生
じる。
【0003】また、実際に工業生産されている磁石合金
は全て化学量論組成より希土類元素が若干多い組成とな
っており、磁石合金インゴット中にはNd等の希土類元
素の濃度の高い相(Rリッチ相と呼ぶ)も生成する。R
リッチ相はNd系磁石合金において、液相焼結性を高
め、高密度化させ、保磁力を高める役割を果す。このよ
うなRリッチ相はインゴットの冷却が遅いほど、より大
きく生成し、均一分散性が悪くなる。このようにRリッ
チ相の均一分散性が悪い磁石合金インゴットを出発原料
として粉砕すると、液相焼結が進みにくく、高密度とな
りにくく、また比較的結晶粒度が細かく、かつ粒径が揃
った高性能の磁石を得ることは難しくなる。また、αF
eもインゴットの冷却が遅いほど生成し易く、またより
粗大に、不均一に分散生成し易くなる。このようなαF
eも粉砕性を著しく害し、また粉砕時の組成変動の原因
となり、磁気特性の低下、バラツキの増加を引き起こ
す。
【0004】このため、従来の箱型の鋳型による鋳造で
は高性能の希土類磁石を得ることはできない。また従来
の箱形の鋳型を用いた鋳造法で冷却速度を高めるために
は、インゴットの厚さが薄くなるように鋳型を設定する
必要が生じ、その場合、大容量の溶湯を鋳造するために
はインゴットを薄くした分、面積を大きくする必要が生
じる。しかし、そのような鋳型では、鋳型間隔の狭い注
湯部に大量の溶湯を注ぐ必要があり、鋳型が溶損し易い
といった問題が生じる。また、溶湯は鋳型内を流れる
際、温度が低下し、一方鋳型は溶湯の通過量の多い注湯
部に近い鋳型壁面ほど、より高温に加熱される。そのた
め、注湯部近くと注湯部から離れた部分では溶湯及び凝
固後のインゴットの冷却形態が異なり、得られるインゴ
ットもその影響を受け、場所により異なった組織とな
り、全体として望ましい組織のインゴットとすることは
極めて難しくなる。例えば、高性能Nd−Fe−B系磁
石合金では、注湯部近傍は溶湯の鋳型の予熱効果により
冷却速度が遅くなり、αFeが生成し易くなる。一方、
注湯部から離れた部分では溶湯がその位置に到達するま
でに温度が下がり過ぎ、γFeが生成し始める液相線温
度以下まで下がってしまう可能性が高く、そのためやは
りαFe(高温域ではγFe)が生成し易くなる。
【0005】ニッケル水素電池用負極合金においても、
特性を高めるために化学量論組成に近づけようとする
と、従来の箱型の鋳型による溶解鋳造法では凝固時の偏
析により、インゴット内部には粒界にAlやMnが優先
的に析出することが知られている。そのような合金を電
池に組込んだ場合、AlやMnが電池溶液内に優先的に
溶け出し、溶け出したAlやMnイオンが電池の特性を
劣化させるといった問題を生じる。このような問題を解
決する方法として、単ロール、双ロール等の薄板連鋳法
(ストリップキャスティング法)の設備を用いて、薄い
インゴットを連続的に鋳造し、冷却速度を高め、微細な
組織の希土類磁石合金やニッケル水素電池の負極材用合
金を製造する方法が提案されている(例えば、特開平5
−222488、特開平5−295490、特開平5−
320832)。しかし、これらの設備を用いた方法で
は鋳造に時間がかかり、高活性の希土類元素を含む溶湯
を長時間保持し、少量ずつ供給するためルツボ、保持炉
あるいはタンディッシュと溶湯の反応により成分が変動
し易い。また、温度を一定に保ち、定常状態で安定した
鋳造を持続させるのが極めて難しく、収率が低いといっ
た問題がある。さらに、特殊な高価な鋳造設備を必要と
する等の問題もある。
【0006】また、別の方法として希土類磁石合金やニ
ッケル水素電池の負極材用合金を雰囲気アトマイズ設備
を用いて粉末状の合金を得る方法も提案されている。し
かしながら、アトマイズするにはまず溶湯の細流を造
り、それに高速のガス流を当てる必要があるが、希土類
元素は極めて活性で耐火物と反応し易く、そのような用
途に使える耐火物製ノズルが存在しないため、実用化は
極めて難しい。さらに、アトマイズ粉を半凝固状態で基
板上に堆積させてインゴットを得る、いわゆるスプレー
フォーミング法の設備を用いて製造する方法についても
提案されている。この場合も、前述のアトマイズ法と同
じ、溶湯の細流を得るための耐火物ノズルの問題があ
り、さらに特殊な高価な設備を必要とし、また、基板上
に堆積しないで飛散してしまう、いわゆるオーバースプ
レー粉となる比率も高く、収率が低いといった問題があ
る。
【0007】
【発明が解決しようとする課題】本発明はこのような問
題点を解決した、高性能希土類磁石合金やニッケル水素
電池用希土類遷移金属系合金等の偏析のない、微細組織
の高機能合金の製造に適し、さらに生産性や設備の耐久
性にも優れた遠心鋳造装置を提供するものである。遠心
鋳造方法は管状の鉄鋳物の鋳造に用いられているが、鋳
物は鋳型面で溶湯が一体に凝固すればよく、溶湯の供給
方法については特に工夫を要しない。また、遠心鋳造法
を希土類合金に応用した例はあるが(特開平1−171
217)、その場合、円筒状の磁石の製造方法として提
案されているに過ぎず、溶湯の供給方法については何ら
言及されていない。
【0008】
【課題を解決するための手段】本発明は、鋳造された合
金の結晶を微細とし、かつ均一にするため遠心鋳造装置
を改良したものである。即ち、本発明は回転機構を備え
た円筒状鋳型内にタンディッシュが挿入設置され、該タ
ンディッシュは複数の注湯用ノズルを有し、かつ前記鋳
型の軸方向に動作する往復運動機構を備えてなる遠心鋳
造装置である。この遠心鋳造装置の実施態様として、注
湯用ノズルの間隔は200mm以下、往復運動機構はノ
ズル間隔の1/2以上である場合が含まれる。
【0009】以下、図面に示す実施例に従い本発明の装
置を説明する。図1は本発明の遠心鋳造装置の概略断面
図である。図2は図1のA−A断面矢視図である。図に
おいて1が円筒状鋳型である。鋳型の材質は通常の鋳型
に用いられる鋳鉄や鋼材が使用可能である。なお、熱伝
導度がこれらの材料より大きな純銅あるいは銅系合金を
用いることにより、鋳型内部の熱拡散が速まるため、イ
ンゴットの冷却速度もさらに速めることが可能となる。
溶解鋳造する合金と必要な鋳造速度あるいは目標とする
合金組成に応じて、鋳型材質を選定すればよい。
【0010】本発明の装置を用いて合金を鋳造する場
合、外観形状よりインゴットの組織が重要であり、形状
については、設備の作り易さ、鋳造のし易さ、鋳造の保
守やセットのし易さ、鋳造インゴットの取出し易さ等の
作業性を考慮して決めることができる。そのような要因
を考慮して、鋳型の内径は少なくとも200mm以上と
し、長さは鋳型内径の5倍以下とするのが適当である。
鋳造の厚さは冷却速度を高める上で重要な要因となる。
鋳造しようとするインゴット厚さの3倍以上とすること
により、鋳型のインゴットに対する相対的な熱容量が大
きくなり、冷却速度を高めることが可能となる。鋳型は
回転ローラー5の上に載置され、駆動装置(図示してい
ない)によるローラーの回転に従い回転する。鋳型の回
転は少なくとも注湯された溶湯が鋳型の回転により上部
に到達したとき落下しないよう、遠心力が重力加速度1
G以上になるような速さとする必要がある。さらに遠心
力を大きくすることにより、注湯された溶湯が遠心力で
広がり易くなり、冷却効果が高まり、均質性も向上させ
ることができる。そのような効果を期待するためには、
遠心力は3G以上、さらに望ましくは5G以上となるよ
うに回転速度を設定する。
【0011】鋳型内には回転軸方向(図では左右方向)
に往復運動するタンディッシュ2が設置される。タンデ
ィッシュはアルミナ等の耐火物で構成され、多数のノズ
ル21が設けられている。ノズルの大きさは直径5〜2
0mm程度が適当である。各ノズル間の間隔は大き過ぎ
ると溶湯を鋳型面で均一の厚さにすることが難しくなる
ので200mm以下が好ましい。このタンディッシュの
往復の距離は同様の理由でノズル間隔の1/2以上であ
る。タンディッシュの往復運動は回転軸6でその両端を
支持し、回転軸を所定の周期で反復回転させることによ
り行うことができる。
【0012】鋳造する合金は、例えば誘導溶解炉4によ
り合金を溶解し、その溶湯41を往復タンディッシュ2
に注湯する。誘導溶解炉は図示していないが胴体部をチ
ェーンで回転可能に吊り下げ、その下部の一端をチェー
ンで引上げることにより、あるいは油圧シリンダー等を
用いて溶湯を傾注する構造になっている。溶湯は往復タ
ンディッシュに設けられたノズルの間隔が狭く、従って
往復運動距離が短くてよい場合は直接誘導溶解から往復
タンディッシュに注入することも可能である。しかし、
特にノズル間隔の幅が例えば50mm以上になる場合、
それに伴いタンディッシュの移動距離も長くなり、溶解
ルツボから常に安定して溶湯を受けることが難しくなる
ため、固定タンディッシュ3を設け、先ず溶湯をこの固
定タンディッシュで受け、次いで往復タンディッシュに
注湯することが望ましい。固定タンディッシュの材質は
往復タンディッシュと同様のものでよい。固定タンディ
ッシュの先端は溶湯を均一に鋳型面に滴下させるため、
往復タンディッシュの中央部が適当である。
【0013】鋳型内には、好ましくは空冷用のガス吹付
け管8を鋳型の長さ方向に挿入設置し、その長さ方向に
所定の間隔で設けられたガス噴出孔81より鋳型内の鋳
造体表面に向けてヘリウム、アルゴン等の冷却用ガスを
吹付け、鋳造体を冷却する。ガスの吹付け方向は鋳型面
に対して入射角が95〜45°の範囲になるように設定
するのがよい。本発明の装置において、希土類磁石合金
のように酸化され易い合金の場合は溶解、鋳造の装置全
体を真空チャンバー7の中に設置することが好ましい。
【0014】鋳造された合金は円筒状鋳型の内面に円筒
状に堆積凝固する。堆積された鋳造体は薄層が多数重な
った積層構造となる。それは注湯された溶湯の薄層が1
回転する間に半固状に凝固し、その上に溶湯が注湯さ
れ、それが半固状となり、この繰り返しのよるものであ
る。積層凝固したインゴットの取出しは真空チャンバー
をフランジ71のところで分離し、鋳型内面のインゴッ
トを掻き取る。
【0015】
【作用】鋳型に注湯するタンディッシュを往復運動させ
ることにより、鋳型内壁に溶湯を均一に堆積させるよう
に鋳造することが可能となり、厚さが均一なインゴット
の製造が可能となる。さらに、本装置を用いて注湯速度
を制御することにより、鋳造された溶湯は次の溶湯が注
ぎ込まれる前に凝固が進行するような条件を選ぶことが
可能となり、偏析の無い微細組織のインゴットの製造も
可能となる。
【0016】(本発明装置の使用例)合金組成がFe−
32wt%Nd−1.05%B−0.40%Alとなる
ように、電解鉄、Fe−Nd母合金、フェロボロン、純
アルミニウムを配合し、アルゴンガス200Torrの
減圧雰囲気中でアルミナルツボを使用して高周波溶解炉
で溶解し、さらに鋳造直前に炉内圧力が大気圧になるま
でArガスを入れた後、図に示すような鋳型内径500
mm、長さ1000mmの遠心鋳造装置を用いて、単位
時間の溶湯体積流量を鋳型内面積で除した値が0.03
cm/秒となるように鋳造した。このときの鋳型の回転
数は、遠心力が20Gとなるように267rpmに設定
した。また、タンディッシュ2の注湯用ノズル21を7
cm間隔で設け、タンディッシュ2をストローク6cm
で鋳型の長手方向に1秒/1往復で動かした。得られた
合金インゴットの厚さは5〜6mmであった。さらに、
その断面の組織を反射電子顕微鏡で観察した結果、αF
eは認められず、Ndリッチ相の平均間隔も20μmと
小さく微細な均一な組織のインゴットが得られた。
【0017】
【発明の効果】金属の固定鋳型を用いた鋳造では、鋳造
体がある程度の厚みがあると表面と内部では微細な組織
が異なり均質な製品が得られない。本発明の装置によれ
ば、薄い層状鋳造、凝固、さらにその上に同様の鋳造を
繰り返し、従って得られた鋳造体は表面から内部まで微
細な均一な組織の金属、合金が得られる。鋳型に注湯さ
れた合金は円筒が1回転される間に冷却され、ほぼ凝固
するので注湯、凝固のサイクルが能率的であり、また鋳
造体はある程度の厚みとしても内部まで微細組織とする
ことができるので生産性が高い。
【0018】鋳型自体も円筒状鋳型は箱型の鋳型に見ら
れるような鋳型の歪み、変形が少ない。また、回転ロー
ル面に注湯するストリップキャスティング法は多層に鋳
造することができないので、ロールと溶湯の接触が遠心
鋳造に較べて多くなりロールの損傷が大きい。この点、
遠心鋳造では鋳型面への溶湯の接触は、円筒が1回転す
る間だけであり鋳型の損傷が少ない。
【図面の簡単な説明】
【図1】本発明の遠心鋳造装置の概略断面図である。
【図2】図1のA−A断面矢視図である。
【符号の説明】
1 円筒状鋳型 2 往復運動タンディッシュ 21 ノズル 3 固定タンディッシュ 4 誘導溶解炉 41 溶湯 5 回転ローラー 6 回転軸 7 真空チャンバー 71 フランジ接合部 8 冷却用ガス吹付け管 81 ガス噴出孔
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−161556(JP,A) 特開 昭51−60632(JP,A) 実開 昭52−129718(JP,U) (58)調査した分野(Int.Cl.6,DB名) B22D 13/02 B22D 13/10

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 回転機構を備えた円筒状鋳型内にタンデ
    ィッシュが挿入設置され、該タンディッシュは間隔が2
    00mm以下の複数の注湯用ノズルを有し、かつ前記鋳
    型の軸方向にノズル間隔の1/2以上に動作する往復運
    動機構を備えてなる遠心鋳造装置。
  2. 【請求項2】 鋳型内空間部に、鋳型内壁に向けてガス
    を吹込む冷却ノズルを設けたことを特徴とする請求項1
    記載の遠心鋳造装置。
  3. 【請求項3】 遠心鋳造装置が真空チャンバー内に設け
    られたことを特徴とする請求項1又は2記載の遠心鋳造
    装置。
JP16791995A 1995-06-09 1995-06-09 遠心鋳造装置 Expired - Lifetime JP2880428B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16791995A JP2880428B2 (ja) 1995-06-09 1995-06-09 遠心鋳造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16791995A JP2880428B2 (ja) 1995-06-09 1995-06-09 遠心鋳造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10217434A Division JP3121577B2 (ja) 1998-07-31 1998-07-31 遠心鋳造方法

Publications (2)

Publication Number Publication Date
JPH08332557A JPH08332557A (ja) 1996-12-17
JP2880428B2 true JP2880428B2 (ja) 1999-04-12

Family

ID=15858494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16791995A Expired - Lifetime JP2880428B2 (ja) 1995-06-09 1995-06-09 遠心鋳造装置

Country Status (1)

Country Link
JP (1) JP2880428B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801669A (zh) * 2014-01-16 2014-05-21 厦门钨业股份有限公司 离心铸造方法及其设备和工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001282578A1 (en) * 2000-08-31 2002-03-13 Showa Denko K K Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
JP4818547B2 (ja) * 2000-08-31 2011-11-16 昭和電工株式会社 遠心鋳造方法、遠心鋳造装置、それにより製造した合金
CN100547700C (zh) 2004-04-07 2009-10-07 昭和电工株式会社 用于r-t-b型烧结磁体的合金块其制造方法和磁体
GB2459509B (en) 2008-04-25 2011-05-11 Goodwin Plc An apparatus for casting and a method of casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801669A (zh) * 2014-01-16 2014-05-21 厦门钨业股份有限公司 离心铸造方法及其设备和工艺
CN103801669B (zh) * 2014-01-16 2016-01-20 厦门钨业股份有限公司 离心铸造方法及其设备和工艺

Also Published As

Publication number Publication date
JPH08332557A (ja) 1996-12-17

Similar Documents

Publication Publication Date Title
US6478889B2 (en) Iron-base alloy permanent magnet powder and method for producing the same
JP3502107B2 (ja) 永久磁石材料の製造方法
JP4048568B2 (ja) 希土類磁石用合金の製造方法
JP2004122230A (ja) ナノコンポジット磁石用急冷合金の製造方法
JP2018167298A (ja) Fe−Si−B系ナノ結晶合金の製造方法
US20020153062A1 (en) Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
JP2639609B2 (ja) 永久磁石用合金鋳塊及びその製造法
JP2880428B2 (ja) 遠心鋳造装置
JP4879503B2 (ja) R−t−b系焼結磁石用合金塊、その製造法および磁石
JP3121577B2 (ja) 遠心鋳造方法
US8105446B2 (en) Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
JP2817624B2 (ja) 希土類磁石合金の製造方法
JP2002045952A (ja) 金属薄帯の製造装置および製造方法
JPH09180716A (ja) 水素吸蔵合金の製造方法
JP4818547B2 (ja) 遠心鋳造方法、遠心鋳造装置、それにより製造した合金
JP4120253B2 (ja) ナノコンポジット磁石用急冷合金およびその製造方法
JP4715245B2 (ja) 鉄基希土類ナノコンポジット磁石およびその製造方法
KR100879208B1 (ko) 윈심응고법에 의한 희토류자석 합금스트립 제조방법
JP3776069B2 (ja) マグネシウム急速凝固合金製品の製造方法
JP3647420B2 (ja) 急冷合金の製造方法
JP2001244107A (ja) 鉄基合金永久磁石粉末およびその製造方法
JP2003077717A (ja) 希土類磁石用合金塊、その製造方法および焼結磁石
JP4574820B2 (ja) 希土類ボンド磁石用磁石粉末の製造方法
JPH05287307A (ja) 希土類ボンド磁石用合金の製造方法
JP3548568B2 (ja) 窒素原子を含む希土類金属−鉄系永久磁石用合金の製造法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 15

EXPY Cancellation because of completion of term