JP2826182B2 - Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance - Google Patents

Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Info

Publication number
JP2826182B2
JP2826182B2 JP24947690A JP24947690A JP2826182B2 JP 2826182 B2 JP2826182 B2 JP 2826182B2 JP 24947690 A JP24947690 A JP 24947690A JP 24947690 A JP24947690 A JP 24947690A JP 2826182 B2 JP2826182 B2 JP 2826182B2
Authority
JP
Japan
Prior art keywords
acid
pva
hot water
strength
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24947690A
Other languages
Japanese (ja)
Other versions
JPH04126829A (en
Inventor
昭夫 大森
俊平 楢村
友之 佐野
駛視 吉持
洋文 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP24947690A priority Critical patent/JP2826182B2/en
Publication of JPH04126829A publication Critical patent/JPH04126829A/en
Application granted granted Critical
Publication of JP2826182B2 publication Critical patent/JP2826182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、セメントやゴムの補強材などの分野におい
て有用な耐熱水性に優れた高強力ポリビニルアルコール
(以下PVAと略記)系繊維の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a high-strength polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having excellent hot water resistance and useful in fields such as cement and rubber reinforcing materials. .

<従来の技術> 従来、汎用ポリマー繊維の中でPVA系繊維は、ポリエ
ステル、ポリアミド、ポリアクリルニトリル系繊維など
に比べて強度、弾性率が高く、産業資材用としてはもち
ろんセメント、ゴムなどの補強材用などに実用されてい
る。近年汎用ポリマーであるポリエチレンにおいて超高
分子量の原料をゲル紡糸し超延伸することにより、高強
力高弾性率繊維が得られることがわかつた。しかしポリ
エチレン自体が低融点で耐熱性が不十分であること及び
補強用繊維としてはマトリツクスとの接着性がわるいな
どの点で不十分である。
<Conventional technology> Conventionally, among general-purpose polymer fibers, PVA-based fibers have higher strength and elastic modulus than polyester, polyamide, polyacrylonitrile-based fibers, etc., and are reinforced not only for industrial materials but also for cement and rubber. It is practically used for materials. In recent years, it has been found that high-strength, high-modulus fibers can be obtained by gel-spinning and ultra-drawing ultrahigh-molecular-weight raw materials in polyethylene, which is a general-purpose polymer. However, polyethylene itself is insufficient in that it has a low melting point and insufficient heat resistance, and as a reinforcing fiber, adhesiveness to matrix is poor.

そこで他の汎用ポリマーにおいてもゲル紡糸超延伸の
手法を用いて高強力、高弾性率化の試みがなされてい
る。中でもPVAはポリエチレンと同じ平面ジグザク構造
を有し、しかも活性な水酸基を有するため、分子間水素
結合を生じ易く高強力、高弾性率、高耐熱性、高親和性
の繊維を得る可能性があり、例えば特開昭59−100710
号、特開昭59−130314号等が提案されている。これらの
PVA繊維は市販のPVA繊維に比べると高強度、高弾性率と
なつており、耐熱性も前記のポリエチレン繊維に比べる
と優れている。一方PVA繊維はポリマー自体が水に溶け
るため耐熱水性に劣る問題がある。上記高強度、高弾性
率のPVA繊維の耐熱水性は従来のPVA繊維に比べると向上
しているものの充分ではない。
Therefore, attempts have been made to increase the strength and elasticity of other general-purpose polymers by using a gel spinning super-drawing technique. Among them, PVA has the same planar zigzag structure as polyethylene and also has an active hydroxyl group, so it is easy to generate intermolecular hydrogen bonds and it is possible to obtain fibers with high strength, high elastic modulus, high heat resistance, and high affinity. For example, JP-A-59-100710
And JP-A-59-130314 have been proposed. these
PVA fibers have higher strength and higher elastic modulus than commercially available PVA fibers, and also have better heat resistance than the above-mentioned polyethylene fibers. On the other hand, the PVA fiber has a problem that it is inferior in hot water resistance because the polymer itself is soluble in water. The hot water resistance of the high-strength, high-modulus PVA fibers is improved, but not sufficient, as compared with conventional PVA fibers.

そこで高強力PVA系繊維の耐熱水性を改善する提案が
なされている。例えば特開昭63−120107号においては、
15倍以上延伸した延伸糸に5〜15%のアセタール化を施
こすことが提案されている。しかし軽アセタール化のみ
では耐熱水性向上効果が充分でななく、かつ工程的にも
複雑である。また特開平1−156517号においては、3倍
以上に紡糸延伸し、部分延伸糸の表面に有機過酸化物、
イソシアネート系化合物、エポキシ系化合物などの架橋
性薬剤を付与し、その後乾熱延伸を行なうことにより、
繊維表面に架橋を施こすことが提案されている。しかし
架橋性薬剤は主に表面に存在させて表面架橋を主体とし
ているため延伸性が不十分となり、弾性率がせいぜい31
0g/dと低い。また安全面、健康面で注意を要する特別な
有機化合物を取り扱わねばならないという問題もある。
さらに特開平2−84587号にはPVA繊維コードの耐疲労性
を改善するため、15g/d以上の強度を有するPVA繊維を、
アルデヒド、イソシアネート、有機過酸化物、カルボン
酸等の有機化合物や、リン酸、塩酸、チタニウム等の無
機化合物などの架橋剤で処理することが提案されてい
る。しかし、分子の配向や結晶化が進んでいる延伸され
た高強度繊維に後処理を施こすため高濃度及び/または
高温及び/または長時間の処理とならざるを得ず、繊維
強度が低下するとともに製造工程上問題であり、ひいて
は製造コストが高くなる。また特開平2−133605号に
は、PVAとアクリル酸系ポリマーをブレンド紡糸し、両
ポリマー間で架橋を形成させたり、さらに有機過酸化物
など架橋性薬剤を付与することにより架橋させることが
提案されている。しかし強度に関与しないPVA以外のも
のを2%程度以上含有させるため強度の点で充分でな
い。さらにPVA以外のポリマーを原液に添加するため種
々の問題がある。
Therefore, proposals have been made to improve the hot water resistance of high-strength PVA-based fibers. For example, in JP-A-63-120107,
It has been proposed to apply 5 to 15% acetalization to a drawn yarn drawn 15 times or more. However, the effect of improving hot water resistance is not sufficient only by light acetalization, and the process is complicated. In Japanese Patent Application Laid-Open No. 1-156517, spin drawing is performed three times or more, and an organic peroxide is applied to the surface of the partially drawn yarn.
By providing a crosslinking agent such as an isocyanate compound and an epoxy compound, and then performing dry heat drawing,
It has been proposed to crosslink the fiber surface. However, since the cross-linking agent is mainly present on the surface and is mainly made of surface cross-linking, the stretchability becomes insufficient, and the elastic modulus is at most 31.
Low at 0g / d. There is also a problem in that special organic compounds that require attention in terms of safety and health must be handled.
JP-A-2-84587 further discloses a PVA fiber having a strength of 15 g / d or more in order to improve the fatigue resistance of the PVA fiber cord.
It has been proposed to treat with a crosslinking agent such as an organic compound such as aldehyde, isocyanate, organic peroxide and carboxylic acid, and an inorganic compound such as phosphoric acid, hydrochloric acid and titanium. However, since post-treatment is performed on a drawn high-strength fiber in which the orientation and crystallization of molecules are progressing, a high-concentration and / or high-temperature and / or long-term treatment must be performed, and the fiber strength decreases. In addition, it is a problem in the manufacturing process, and the manufacturing cost is increased. Japanese Patent Application Laid-Open No. 2-133605 proposes that PVA and an acrylic acid-based polymer are blended and spun to form a cross-link between the two polymers, or to further cross-link by adding a cross-linking agent such as an organic peroxide. Have been. However, it is not sufficient in strength because it contains about 2% or more other than PVA which does not affect the strength. Further, there are various problems because a polymer other than PVA is added to the stock solution.

以上の如く、高強力PVA繊維の耐熱水性や耐疲労性を
改善するための架橋方法は種々提案されているが、性能
及び製造コストの両方を満足させる方法はない。
As described above, various cross-linking methods for improving the hot water resistance and fatigue resistance of high-strength PVA fibers have been proposed, but there is no method that satisfies both performance and manufacturing cost.

<発明が解決しようとする課題> 従つて本発明は、セメントやゴムの補強材などに有用
な耐熱水性と強度に優れたPVA繊維をシンプルな製造工
程で得んとしたものである。
<Problems to be Solved by the Invention> Accordingly, the present invention is to obtain PVA fiber having excellent hot water resistance and excellent strength, which is useful as a reinforcing material for cement or rubber, by a simple manufacturing process.

<課題を解決するための手段> 本発明者らは上記課題を追求し、後述するような乾熱
延伸前の高含液率状態の糸篠に酸を接触させて糸篠内に
酸を均一に浸透させ、乾燥後乾熱延伸を行なうことによ
り、繊維表面のみならず繊維内部にも均一に架橋構造を
有する繊維を公知の方法より簡単な製造工程で得ること
ができ、しかも該繊維は、強度、耐熱水性がともに優れ
ていることを認め、本発明に至つたものである。
<Means for Solving the Problems> The present inventors have pursued the above-mentioned problems, and contact the acid with the high-liquid-content-state itoshino before dry-heat stretching, as described later, to uniformly disperse the acid inside the itoshino. By performing dry heat drawing after drying, it is possible to obtain a fiber having a crosslinked structure uniformly not only on the fiber surface but also inside the fiber by a simpler manufacturing process than a known method. It was recognized that both the strength and the hot water resistance were excellent, which led to the present invention.

本発明は、高強力PVA繊維の耐熱水性改善のための架
橋を導入するに際して、公知の方法では乾熱延伸して分
子配向及び結晶化が進んでいる延伸糸に架橋性薬剤を付
与して繊維表面を主体に架橋を導入するのに対し、架橋
性薬剤を繊維内部にまで浸透させ、均一架橋を行なわん
とするもので、該架橋性薬剤を繊維内に浸透させる際の
架橋性薬剤の種類と付与量、さらに糸篠の含液率を適正
化することにより、架橋薬剤の繊維内部均一浸透をはか
り、その後乾熱延伸して配向結晶化と同時に脱水架橋を
させ、これにより均一架橋を導入したものである。また
この方法は公知の方法より簡単な製造工程で得るところ
に特徴を有する。すなわち架橋剤としてPVAと本質的に
は親和性のある酸を用い、しかも糸篠の含液率が高く酸
が浸透し易い状態で接触させることがポイントである。
The present invention provides a cross-linking agent for improving the hot water resistance of a high-strength PVA fiber by applying a cross-linking agent to a drawn yarn in which molecular orientation and crystallization are progressing by dry heat drawing by a known method. Introducing crosslinking mainly on the surface, while penetrating the crosslinking agent into the interior of the fiber to achieve uniform crosslinking, the type of crosslinking agent used when the crosslinking agent is penetrated into the fiber By optimizing the applied amount and the liquid content of Itoshino, uniform penetration of the cross-linking agent inside the fiber is achieved, followed by dry heat stretching, orientation crystallization and dehydration cross-linking, thereby introducing uniform cross-linking. It was done. Also, this method is characterized in that it is obtained by a simpler manufacturing process than known methods. In other words, it is important to use an acid having essentially an affinity for PVA as a cross-linking agent, and to make contact with the product in a state where the liquid content of Itoshino is high and the acid easily penetrates.

以下本発明をより具体的に説明する。本発明に用いる
PVAの重合度は特に限定されるものではないが、より高
重合度のPVAを用いると強度、耐熱水性とも優れるので
好ましい。本発明の如く酸付着後乾熱延伸して均一架橋
させることにより耐熱水性を向上させる場合、高重合度
程耐熱水性向上効果が大きいことがわかつたので、30℃
水溶液の粘度より求めた平均重合度が3000以上であると
好ましい。さらに平均重合度が7000以上であると均一架
橋による耐熱水性向上の相乗効果が特に大きく好まし
い。用いるPVAのケン化度は98モル%以上が好ましく、9
9モル%以上であるとさらに好ましい。さらに99.9モル
%以上であると耐熱水性の点で特に好ましい。また用い
るPVAは、他のビニル基を有するモノマー、例えばエチ
レン、イタコン酸、ビニルピロリドンなどのモノマーを
10モル%以下の比率で共重合したPVA系ポリマーであっ
てもよい。
Hereinafter, the present invention will be described more specifically. Used in the present invention
Although the degree of polymerization of PVA is not particularly limited, it is preferable to use a PVA having a higher degree of polymerization because both strength and hot water resistance are excellent. When improving the hot water resistance by uniformly stretching by dry stretching after acid adhesion as in the present invention, it was found that the higher the degree of polymerization, the greater the effect of improving the hot water resistance.
The average degree of polymerization determined from the viscosity of the aqueous solution is preferably 3000 or more. Further, when the average degree of polymerization is at least 7000, the synergistic effect of improving the hot water resistance by uniform crosslinking is particularly large and is preferable. The saponification degree of PVA used is preferably 98 mol% or more,
More preferably, it is at least 9 mol%. It is particularly preferable that the content be 99.9 mol% or more in view of hot water resistance. The PVA used is a monomer having another vinyl group, for example, a monomer such as ethylene, itaconic acid, or vinylpyrrolidone.
It may be a PVA-based polymer copolymerized at a ratio of 10 mol% or less.

本発明に用いるPVAの溶媒は、ジメチルスルホキシド
(以下DMSOと略記)、グリセリン、エチレングリコー
ル、ジメチルホルムアミド、ジメチルイミダゾリジノ
ン、水、ロダン塩水溶液などの溶媒及びこれら溶媒同志
の混合溶媒などが挙げられる。PVAを各溶媒に適した温
度で溶解し脱泡して紡糸原液とする。
Solvents for PVA used in the present invention include dimethylsulfoxide (hereinafter abbreviated as DMSO), glycerin, ethylene glycol, dimethylformamide, dimethylimidazolidinone, water, and aqueous solutions of rodane salts, and a mixture of these solvents. . PVA is dissolved at a temperature suitable for each solvent and defoamed to obtain a spinning stock solution.

得られた紡糸原液をノズルを通して、メタノール、エ
タノール、アセトンなどPVAに対して凝固作用を示す有
機溶媒を主体とする20℃以下の凝固浴に湿式あるいは乾
湿式紡糸する。もちろん凝固浴として凝固性有機溶媒と
原液溶媒との混合溶媒も用いることができる。凝固浴の
温度が20℃を越えると固化糸篠が不均一となり高強力繊
維を得ることができない。凝固浴温度を10℃以下とする
と固化糸篠がさらに均質となるので好ましい。なお、所
謂「ゲル化紡糸」は冷却のみで固化する系であり、通常
一旦空気中に押し出すものであり、本発明では、該「ゲ
ル化紡糸」は本明細書でいう乾湿式紡糸に包含されるも
のである。
The obtained spinning dope is wet- or dry-wet spun through a nozzle into a coagulation bath of 20 ° C. or lower mainly composed of an organic solvent having a coagulation effect on PVA such as methanol, ethanol and acetone. Of course, a mixed solvent of a coagulable organic solvent and a stock solution can also be used as the coagulation bath. If the temperature of the coagulation bath exceeds 20 ° C., the solidified yam becomes uneven and high-strength fibers cannot be obtained. It is preferable to set the coagulation bath temperature to 10 ° C. or lower because the solidified yam becomes more homogeneous. The so-called "gelling spinning" is a system that solidifies only by cooling, and is usually once extruded into the air. In the present invention, the "gelling spinning" is included in the dry-wet spinning referred to in the present specification. Things.

凝固浴にて固化した糸篠は湿延伸、溶媒抽出、乾燥
し、乾熱延伸を施こすが、本発明では乾熱延伸工程でPV
Aが脱水架橋するように、乾熱延伸前の工程におてPVAに
対して5〜10,000ppmの酸を糸篠に付与することが最も
重要なポイントの1つである。PVAの架橋性薬剤として
は、アルデヒド類、イソシアネート類、エポキシ類、メ
チロール類、有機過酸化物類、有機酸あるいは無機酸類
などが挙げられるが、糸篠への浸透性、取扱い性の点で
有機及び無機の酸でなければならない。本発明の酸とし
て炭素数1〜5のカルボン酸及びスルホン酸、硝酸、塩
酸、硫酸、リン酸などが挙げられる。さらに220〜260℃
で分解して酸を生成するものも包含される。中でも乾熱
延伸時不揮発性であり、かつ脱水触媒としての作用が強
い硫酸やリン酸類が好ましい。架橋反応を促進する触
媒、例えばリン酸の使用時に尿素などを併用すると好都
合である場合がある。酸は、乾熱延伸前の工程で含液率
が30%/PVA以上の糸篠に5〜10,000ppm/PVA付着させる
必要がある。含液率が30%未満であると酸が糸篠内部ま
で均一に浸透しないので好ましくない。含液率が80%/P
VA以上であると均一性の点でさらに好ましい。
Itoshino solidified in the coagulation bath is subjected to wet stretching, solvent extraction, drying, and dry heat drawing.
It is one of the most important points that 5 to 10,000 ppm of acid is added to PVA with respect to PVA in the step before the dry heat drawing so that A undergoes dehydration crosslinking. Examples of the crosslinking agent for PVA include aldehydes, isocyanates, epoxies, methylols, organic peroxides, organic acids and inorganic acids. And inorganic acids. Examples of the acid of the present invention include carboxylic acids having 1 to 5 carbon atoms and sulfonic acids, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like. 220-260 ° C
And those which decompose to produce an acid. Among them, sulfuric acid and phosphoric acid, which are non-volatile at the time of stretching under dry heat and have a strong action as a dehydration catalyst, are preferable. In some cases, it may be advantageous to use a catalyst that promotes the crosslinking reaction, such as urea when using phosphoric acid. It is necessary that the acid adhere to the yarn having a liquid content of 30% / PVA or more at 5 to 10,000 ppm / PVA in the step before the dry heat drawing. If the liquid content is less than 30%, the acid does not uniformly penetrate into the inside of the thread, which is not preferable. 80% / P liquid content
VA or more is more preferable in terms of uniformity.

尚本発明にいう糸篠の含液率とは、工程中の糸篠を手
で3回力強く振つて液切りし、素早くその重量を測定
(W1)し、その後凝固浴及び原液溶媒が完全に蒸発し恒
量となるまで減圧乾燥して重量%を測定(W2)し、次式
で与えられる値(W)である。
In the present invention, the liquid content of itoshino is defined as the liquid content of itoshino during the process, which is shaken vigorously three times by hand to drain the liquid, quickly measure its weight (W 1 ), and then the coagulation bath and the undiluted solvent are completely removed. The weight% is measured (W 2 ) by evaporating to a constant weight and dried under reduced pressure to a constant weight, and is a value (W) given by the following equation.

酸の付着量は酸強度、乾熱延伸時の温度と滞留時間に
よつて異なるが、5ppm/PVA未満であると乾熱延伸時の脱
水架橋が不十分となるので目標とする耐熱水性改良効果
が得られない。15ppm/PVA以上であるとさらに好まし
く、最も好ましくは40ppm以上である。特にリン酸や硫
酸の如く強酸を使用する場合は、酸の付着量が10,000pp
mを越えると乾熱延伸時脱水架橋より分解反応が優先的
となるので糸強度が低下し不都合である。酸強度、乾熱
延伸時の温度と滞留時間によつて、適正な酸の付着量を
選定すべきである。
The amount of acid adhered varies depending on the acid strength, the temperature during hot drawing and the residence time, but if it is less than 5 ppm / PVA, the dehydration crosslinking during dry drawing becomes insufficient, so the target effect of improving hot water resistance is achieved. Can not be obtained. It is more preferably at least 15 ppm / PVA, most preferably at least 40 ppm. Especially when a strong acid such as phosphoric acid or sulfuric acid is used, the acid adhesion amount is 10,000pp.
If it exceeds m, the decomposition reaction has a higher priority than the dehydration crosslinking at the time of dry heat drawing, so that the yarn strength is disadvantageously reduced. An appropriate amount of acid to be deposited should be selected depending on the acid strength, the temperature at the time of dry heat drawing and the residence time.

酸を付与する工程は乾熱延伸前でなければならない
が、乾熱延伸前で糸篠の含液率が30%/PVA以上の工程で
あれば特に限定はない。例えば乾燥直前の油剤浴に酸を
共存させてもよいし、油剤浴前の溶媒抽出浴に酸を添加
してもよい。さらに原液がノズルから吐出されて固化す
る一浴に酸を添加してもよい。この場合繊維内部の均一
性は優れているが、一浴以降の浴(湿延伸浴、抽出浴、
油剤浴など)にも同じ程度の濃度の酸を添加しないと酸
が流去される可能性があるので、全浴に酸を添加する方
が好ましい。
The step of applying the acid must be performed before the hot drawing, but is not particularly limited as long as the liquid content of the yarn is 30% / PVA or more before the hot drawing. For example, an acid may coexist in an oil bath immediately before drying, or an acid may be added to a solvent extraction bath before the oil bath. Further, an acid may be added to one bath in which the undiluted solution is discharged from the nozzle and solidified. In this case, the uniformity inside the fiber is excellent, but after the first bath (wet stretching bath, extraction bath,
If the same concentration of acid is not added to the oil bath, the acid may be washed away, so it is preferable to add the acid to the entire bath.

凝固浴にて固化した糸篠はメタノールなどの凝固性有
機溶媒の抽出液により糸中の原液溶媒などを抽出洗浄除
去し乾燥する。乾燥前に1段あるいはより好ましくは多
段で合計2倍以上の湿延伸を施こしておくと乾燥時の硬
着を防止することが出来好ましい。より好ましい湿延伸
倍率は2.5〜5.5倍である。湿延伸倍率が6倍を越えると
単糸切れや断面変形し易いので避けるべきである。乾燥
温度は30℃〜150℃が乾燥効率、性能の点で好ましい。5
0℃〜120℃であるとさらに好ましい。
The itoshino solidified in the coagulation bath is subjected to extraction washing, removal of the stock solution solvent and the like in the yarn with an extract of a coagulating organic solvent such as methanol, and drying. It is preferable to perform wet stretching in a single stage or more preferably in multiple stages before drying, so that hard adhesion during drying can be prevented. A more preferred wet stretching ratio is 2.5 to 5.5 times. If the wet stretching ratio exceeds 6 times, the single yarn breakage or cross-sectional deformation is liable to occur, so that it should be avoided. The drying temperature is preferably from 30C to 150C in terms of drying efficiency and performance. Five
It is more preferable that the temperature be 0 ° C to 120 ° C.

次いで、全延伸倍率15倍以上となるように温度220℃
以上の乾熱延伸を行なつて分子の配向結晶化を行なわせ
るとともに酸による脱水架橋をも行なわせることが本発
明の重要なポイントの1つである。酸を付与した乾燥後
原糸を乾熱延伸する場合、PVAが架橋することにより乾
熱延伸性が大幅に低下し、分子の配向結晶化が十分に行
なえないのではないかと危惧したが、適正な架橋性薬剤
の種類、付着量及び付着状態、さらに乾熱延伸温度を選
択すれば、意外にも乾熱延伸性は殆んど低下しないこと
を見出したことが本発明のキーポイントとなつた。この
理由は不明であるが、乾熱延伸時まず分子の配向結晶化
の物理的構造変化が優先し、次いで脱水架橋の化学構造
変化が起るためと推定される。乾熱延伸前に付与する架
橋性薬剤として本発明において選定した酸は、このよう
な機能を有するため優れていると考えられる。繊維の強
度及び脱水架橋度は、付与する酸の種類(酸強度)と
量、乾熱延伸温度と滞留時間のバランスによつて異なる
ので適宜選択すべきである。一例として、酸を付与しな
い状態で最も高強度となる延伸温度と滞留時間を見出
し、それとほぼ同じ延伸温度と延伸時間で、酸を付与し
た原糸を延伸し、架橋度が30〜100%となるよう、所定
の酸の付与量を決定すればよい。ここにいう架橋度とは
酸を付与しないPVA繊維の延伸糸が完全に溶解する熱水
温度より5℃高い温度の熱水中で浴比1:1000でフリーで
1時間処理した後未溶解の繊維を300メッシュの金網で
過した時に金網に残つたゲルを80℃で恒量となるまで
減圧乾燥した時の未溶解残量を測定し、初めに用いた量
に対しての残存率より算出する。延伸温度はPVAの重合
度によつて異なるが、220℃以上でなければならない。
高重合度程高温にする必要があるが、270℃以上では分
解が先行するので好ましくない。湿延伸と乾熱延伸を加
えた全延伸倍率が15倍未満では繊維強度が低いので15倍
以上としなければならない。全延伸倍率は高い方が好ま
しいが、毛羽や断糸の発生を考慮し、最大延伸倍率の0.
75〜0.95倍とすべきである。乾熱延伸後さらに定長熱処
理あるいは乾熱収縮を施こして結晶化を促進するととも
に、脱水架橋を促進させてもよい。
Then, at a temperature of 220 ° C. so that the total draw ratio becomes 15 times or more.
One of the important points of the present invention is to carry out the above dry heat stretching to carry out orientational crystallization of molecules and also to carry out dehydration crosslinking by acid. In the case of drawing the fiber after dry drying with acid, it was feared that the cross-linking of PVA significantly reduced the dry heat drawability and that the orientation and crystallization of molecules could not be performed sufficiently. The key point of the present invention was that it was surprisingly found that if the type, amount and state of adhesion of the cross-linking agent and the dry heat stretching temperature were selected, the dry heat stretchability was unexpectedly hardly reduced. . The reason for this is unknown, but it is presumed that the dry heat drawing first gives rise to a change in the physical structure of oriented crystallization of molecules, followed by a change in the chemical structure of dehydration crosslinking. It is considered that the acid selected in the present invention as a crosslinkable agent to be applied before the dry heat stretching has such a function and is excellent. The fiber strength and the degree of dehydration cross-linking differ depending on the type and amount of acid to be applied (acid strength) and the balance between the dry heat drawing temperature and the residence time, and should be appropriately selected. As an example, the stretching temperature and the residence time at which the strength is the highest in the state where the acid is not applied are found, and at approximately the same stretching temperature and the same stretching time, the raw yarn to which the acid is applied is stretched, and the degree of crosslinking is 30 to 100%. What is necessary is just to determine the amount of application of a predetermined acid so that it may become. The degree of cross-linking referred to here is the undissolved after treatment for 1 hour at a bath ratio of 1: 1000 free in hot water at a temperature 5 ° C higher than the hot water temperature at which the drawn yarn of the PVA fiber that does not impart acid is completely dissolved. Measure the undissolved residual amount when the gel remaining on the wire mesh when the fiber is passed through a 300 mesh wire mesh is dried at 80 ° C. under reduced pressure until a constant weight is obtained, and calculated from the residual ratio with respect to the initially used amount. . The stretching temperature depends on the degree of polymerization of the PVA, but must be at least 220 ° C.
The higher the degree of polymerization, the higher the temperature must be. If the total draw ratio of the wet draw and the dry heat draw is less than 15 times, the fiber strength is low, so it must be 15 times or more. The higher the total draw ratio, the better, but in consideration of the occurrence of fluff and breakage, the maximum draw ratio of 0.
Should be 75-0.95 times. After the dry heat stretching, a constant-length heat treatment or dry heat shrinkage may be further performed to promote crystallization and promote dehydration crosslinking.

以上の如く、含液率の高い糸篠に酸を所定量接触させ
て酸を内部まで均一に浸透させてから乾燥し、乾熱延伸
時分子の配向結晶化と脱水架橋を行なうことにより、架
橋を繊維内部まで均一に行なうことができ、耐熱水性、
耐疲労性に優れたPVA繊維を安価に製造することを可能
にしたものである。
As described above, a predetermined amount of acid is brought into contact with the high-moisture content of itoshino to uniformly penetrate the acid into the inside, and then dried. Can be performed uniformly to the inside of the fiber,
This makes it possible to produce inexpensively PVA fibers having excellent fatigue resistance.

<発明の効果> 従来の高強力PVA繊維の架橋処理法は、表面架橋を主
体としていたのに対し、本発明では含液率の高い糸篠に
酸を付与し、乾燥後乾熱延伸することにより、分子の配
向結晶化と同時に繊維内部まで均一に架橋を施こし、こ
れにより耐熱水性を改善するとともに、新しい設備、製
造工程を追加することなく高強度高耐熱水性の架橋PVA
繊維を得ることができるので安価に製造することを可能
としたものである。従つて、得られた高強度、耐熱水性
PVA繊維は、従来のPVA繊維やパラ系アラミドなど他のス
ーパー繊維に比べてコストパーフオーマンスに優れてお
り、ホース、タイヤなどのゴム資材分野や、FRCおよびF
RPなどの補強材分野などに広く用いられることができ
る。
<Effect of the Invention> In contrast to the conventional crosslinking treatment method for high-strength PVA fibers, which mainly involves surface crosslinking, in the present invention, acid is applied to a high liquid content yarn, dried and then stretched by dry heat. In order to improve the hot water resistance, the cross-linking PVA has high strength and high heat resistance without adding new equipment and manufacturing process.
Since the fibers can be obtained, it is possible to manufacture the fibers at low cost. Therefore, the obtained high strength, hot water resistance
PVA fiber is superior in cost performance to other super fibers such as conventional PVA fiber and para-aramid, and is used in the field of rubber materials such as hoses and tires, FRC and FRC.
It can be widely used in the field of reinforcing materials such as RP.

以下実施例により具体的に説明するが、本発明はこれ
ら実施例に限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

実施例1 粘度平均重合度4100、ケン化度99.8モル%のPVAを濃
度9.5重量%となるようDMSOに添加し、70℃にて窒素雰
囲気で溶解した。得られた紡糸原液を孔径0.12mm、孔数
300のノズルから3℃のメタノール/DMSO=7/3(重量
比)よりなる凝固浴(第1浴)中に湿式紡糸し、得られ
た凝固糸を第1浴と同じメタノール/DMSO浴(第2浴)
にさらに浸漬した。次いでリン酸50ppmを含むメタノー
ル浴(第3浴)に浸漬してDMSOを抽出するとともに、リ
ン酸を糸篠内に浸透させた。第2浴後の糸篠の含液率は
290%であつた。次いでリン酸50ppmを含む40℃のメタノ
ール浴(第4浴)に浸漬して湿延伸を行ない、全湿延伸
率を5倍とし、さらにリン酸50ppmを含むメタノール浴
(第5浴)を通してDMSOをさらに抽出し、100℃の熱風
で乾燥した。このようにしてリン酸が120ppm/PVA付着し
た乾燥後原糸を得た。次に第1炉200℃、第2炉236℃の
温度勾配を有する熱風炉中で延伸したところ、全延伸倍
率は21倍まで可能であつた。21倍延伸時の炉内滞留時間
は合計で79秒であつた。
Example 1 PVA having a viscosity average degree of polymerization of 4100 and a saponification degree of 99.8 mol% was added to DMSO at a concentration of 9.5% by weight, and dissolved at 70 ° C. in a nitrogen atmosphere. The obtained spinning dope was used with a pore size of 0.12 mm and the number of pores.
Wet spinning from a nozzle of 300 into a coagulation bath (first bath) consisting of methanol / DMSO = 7/3 (weight ratio) at 3 ° C., and the obtained coagulated yarn was subjected to the same methanol / DMSO bath (first bath) as the first bath. 2 baths)
Was further immersed. Next, it was immersed in a methanol bath containing 50 ppm of phosphoric acid (third bath) to extract DMSO, and at the same time, phosphoric acid was allowed to permeate into the shinoshino. The liquid content of Itoshino after the second bath is
It was 290%. Then, it is dipped in a methanol bath (fourth bath) at 40 ° C. containing 50 ppm of phosphoric acid and wet stretched to make the total wet stretching ratio 5 times, and then DMSO is passed through a methanol bath containing 50 ppm of phosphoric acid (fifth bath). It was further extracted and dried with hot air at 100 ° C. In this way, a dried yarn having phosphoric acid of 120 ppm / PVA was obtained. Next, when the film was stretched in a hot-air furnace having a temperature gradient of 200 ° C. in the first furnace and 236 ° C. in the second furnace, the total stretching ratio was possible up to 21 times. The residence time in the furnace during the 21-fold stretching was 79 seconds in total.

この21倍延伸糸は黒紫色に着色し、脱水架橋反応が起
つていると推定された。ヤーンの強度は18.7g/dであつ
た。またこの糸をオークレーブ中150℃の熱水に定長で
1時間浸漬後取り出して乾燥後、強力残存率を測定した
ところ92%とほとんど低下しておらず、優れた耐熱水性
を示した。
This 21-fold drawn yarn was colored black-purple, and it was presumed that a dehydration crosslinking reaction had occurred. The yarn strength was 18.7 g / d. The yarn was immersed in hot water at 150 ° C. for 1 hour in an oak clave at a constant length, taken out and dried, and the strong residual ratio was measured. As a result, the strength was hardly reduced to 92%, indicating excellent hot water resistance.

比較例1 1浴〜5浴にリン酸を添加しない以外は実施例1と同
様に紡糸、延伸を行なつた。全延伸倍率は21.5倍まで可
能であつた。
Comparative Example 1 Spinning and stretching were performed in the same manner as in Example 1 except that phosphoric acid was not added to baths 1 to 5. The total draw ratio was possible up to 21.5 times.

得られた延伸糸は極く僅か黄色に着色している程度で
あつた。ヤーン強度は19.6g/dであつた。またこの糸を
オートクレーブ中いろいろの温度の熱水に定長で1時間
浸漬後取り出して溶解状態を観察した。その結果135℃
以上の熱水では殆んど溶解し、糸の形状を保持していな
かつた。
The drawn yarn obtained was colored to a very slight yellow color. The yarn strength was 19.6 g / d. The yarn was immersed in hot water of various temperatures in an autoclave at a constant length for 1 hour, taken out, and the dissolution state was observed. 135 ° C as a result
Most of the above hot water dissolved, and the shape of the yarn was not maintained.

比較例2 比較例1で得た延伸糸をリン酸10%と尿素25%を含む
60℃の水溶液中に30分浸漬し、常温で5分水洗後80℃で
乾燥し、次いで190℃で6分定長熱処理した。得られた
繊維は濃紫色に着色し、実施例1と同じ傾向が見られ
た。耐熱水性は145℃と優れていたが、ヤーン強度は15.
3g/dと実施例1、比較例1に比べて低く、重合度4100の
高強力PVA繊維としては不満足のものであつた。
Comparative Example 2 The drawn yarn obtained in Comparative Example 1 contains 10% of phosphoric acid and 25% of urea
It was immersed in an aqueous solution at 60 ° C. for 30 minutes, washed with water at room temperature for 5 minutes, dried at 80 ° C., and then heat-treated at 190 ° C. for 6 minutes. The obtained fiber was colored deep purple, and the same tendency as in Example 1 was observed. The hot water resistance was excellent at 145 ° C, but the yarn strength was 15.
3 g / d, which was lower than that of Example 1 and Comparative Example 1, was unsatisfactory as a high-strength PVA fiber having a degree of polymerization of 4100.

実施例2 粘度平均重合度8000、ケン化度99.8モル%のPVAにDMS
Oを加え窒素雰囲気下70℃で加熱溶解して濃度7%のPVA
溶液を得た。この紡糸原液を孔径0.15mm、孔数500のノ
ズルから、6℃のメタノール/DMSO=7/3よりなる凝固浴
(第1浴)中に湿式紡糸し、得られた凝固糸をメタノー
ル/DMSO=9/1の湿延伸浴(第2浴)で湿延伸を行ない、
全湿延伸倍率を4倍とし、次いでメタノール浴(第3
浴)を通してDMSOを抽出し、70℃の熱風で乾燥した。第
1浴〜第3浴の全ての浴にリン酸と尿素を各々60ppmと1
00ppmになるよう添加した。この例では第1浴にリン酸
を添加しているので酸と接触時の糸篠の含液率は500%
以上であつた。乾燥後原糸のリン酸の付着量は150ppmで
あつた。
Example 2 DMS was applied to PVA having a viscosity average degree of polymerization of 8000 and a saponification degree of 99.8 mol%.
Add O and heat and dissolve at 70 ℃ in nitrogen atmosphere to make 7% PVA
A solution was obtained. This spinning stock solution was wet-spun from a nozzle having a pore diameter of 0.15 mm and a number of holes of 500 into a coagulation bath (first bath) composed of 7/3 methanol / DMSO = 7/3, and the obtained coagulated yarn was methanol / DMSO = Perform wet stretching in a wet stretching bath (second bath) on 9/1,
The total wet stretching ratio was set to 4 times, and then a methanol bath (3rd
DMSO was extracted through a bath) and dried with hot air at 70 ° C. 60 ppm and 1 ppm of phosphoric acid and urea in all of the first to third baths
It was added so as to be 00 ppm. In this example, since the phosphoric acid is added to the first bath, the liquid content of Itoshino upon contact with the acid is 500%.
That was all. After drying, the attached amount of phosphoric acid on the yarn was 150 ppm.

次にこの原糸を炉温150℃、180℃、246℃を有する乾
熱延伸機で全延伸倍率が20.5倍となるよう乾熱延伸し
た。この際の滞留時間は150℃で38秒、180℃で29秒、24
6℃で20秒であつた。
Next, the raw yarn was dry-heat drawn by a dry-heat drawing machine having furnace temperatures of 150 ° C., 180 ° C., and 246 ° C. so that the total draw ratio was 20.5 times. The residence time at this time is 38 seconds at 150 ° C, 29 seconds at 180 ° C, 24
20 seconds at 6 ° C.

得られた延伸糸は濃紫色に着色し、ヤーンの強度は2
0.1g/dであつた。またこの糸をオートクレーブ中165℃
の熱水に定長で1時間浸漬後取り出して乾燥後の強力残
存率を測定したところ90%であつた。
The drawn yarn obtained is colored deep purple and the yarn strength is 2
It was 0.1 g / d. In addition, this yarn is placed in an autoclave at 165 ° C.
After being immersed in hot water at a constant length for 1 hour, the sample was taken out, and the residual strength after drying was measured to be 90%.

リン酸を加えずに同様に製造した対照の未架橋糸の耐
熱水性は140℃であつた。尚実施例1と比較例1から重
合度4100での架橋による耐熱水性向上効果が15℃である
のに対し、重合度8000での本実施例の効果は25℃であ
り、高重合度PVA程向上効果が大きい。
The hot water resistance of a control uncrosslinked yarn similarly prepared without the addition of phosphoric acid was 140 ° C. Incidentally, the effect of improving the hot water resistance by crosslinking at a degree of polymerization of 4100 is 15 ° C., whereas the effect of this example at a degree of polymerization of 8000 is 25 ° C. from Example 1 and Comparative Example 1; Great improvement effect.

実施例3 粘度平均重合度6000、ケン化度99.2モル%のPVAにDMS
Oを加えて窒素雰囲気下70℃で加熱溶解して濃度8%のP
VA溶液を得た。この紡糸原液を孔径0.18mm、孔数100の
ノズルから、エヤギヤツプ1cmとして−5℃のメタノー
ル/DMSO=80/20よりなる第1浴中に乾湿式紡糸した。
Example 3 DMS was applied to PVA having a viscosity average degree of polymerization of 6000 and a saponification degree of 99.2 mol%.
Add O and heat and dissolve at 70 ° C in a nitrogen atmosphere to obtain a P concentration of 8%.
A VA solution was obtained. The spinning stock solution was spin-dry-spun from a nozzle having a hole diameter of 0.18 mm and a number of holes of 100 into a first bath of methanol / DMSO = 80/20 at −5 ° C. as an air gap of 1 cm.

得られた凝固糸篠を実施例2と同様に湿延伸、DMSO抽
出を行ない、乾燥直前の最終メタノール浴に硫酸を加え
て、ローラータツチ方式で糸篠に硫酸を付着させた後乾
燥した。硫酸と接触時の糸篠の含液率は190%であつ
た。また乾燥後の糸篠の硫酸付着量は80ppmであつた。
次いで、この原糸を第1炉180℃、第2炉239℃の延伸機
で全延伸倍率が20倍となるよう乾熱延伸した。
The obtained coagulated Ishino was subjected to wet stretching and DMSO extraction in the same manner as in Example 2, sulfuric acid was added to the final methanol bath immediately before drying, and sulfuric acid was adhered to the Ishino by a roller touch method, followed by drying. The liquid content of Itoshino upon contact with sulfuric acid was 190%. The amount of sulfuric acid adhering to the dried itoshino was 80 ppm.
Next, the raw yarn was dry-heat drawn by a drawing machine at a first furnace of 180 ° C. and a second furnace of 239 ° C. so that the total drawing ratio was 20 times.

得られた延伸糸のヤーン強度は19.1g/dであり、耐熱
水性は155℃といずれも優れていた。
The yarn strength of the obtained drawn yarn was 19.1 g / d, and the hot water resistance was 155 ° C., all of which were excellent.

実施例4 粘度平均重合度3500、ケン化度99.9モル%のPVAにグ
リセリンを加えて窒素雰囲気下180℃で加熱溶解して濃
度14%のPVA溶液を得た。この紡糸原液を孔径0.16mm、
孔数150のノズルから、エヤギヤツプ5mmとして−10℃の
メタノール/グリセリン=85/15よりなる第1浴中に乾
湿式紡糸した。得られた凝固糸篠を40℃のメタノール/
グリセリン=95/5の湿延伸浴で4.5倍の湿延伸を行な
い、しかる後リン酸200ppmを含むメタノール抽出浴にて
DMSOを洗條後乾燥した。湿延伸後の糸篠の含液率は150
%であつた。またリン酸の付着量は300ppmであつた。次
いでこの原糸を第1炉180℃、第2炉232℃の延伸機で全
延伸倍率が22倍となるよう乾熱延伸した。
Example 4 Glycerin was added to PVA having a viscosity average degree of polymerization of 3500 and a saponification degree of 99.9 mol%, and was dissolved by heating at 180 ° C. in a nitrogen atmosphere to obtain a 14% concentration PVA solution. This spinning stock solution has a pore size of 0.16 mm,
From a nozzle having 150 holes, dry and wet spinning was performed as a 5 mm air gap in a first bath of methanol / glycerin = 85/15 at −10 ° C. The obtained coagulated yarn is treated with methanol /
Glycerin is subjected to 4.5 times wet stretching in a 95/5 wet stretching bath, and then in a methanol extraction bath containing 200 ppm of phosphoric acid.
DMSO was dried after washing. The liquid content of itoshino after wet stretching is 150
%. The amount of phosphoric acid attached was 300 ppm. Next, this raw yarn was dry-heat drawn by a drawing machine at a first furnace of 180 ° C. and a second furnace of 232 ° C. so that the total drawing ratio was 22 times.

得られた延伸糸のヤーン強度は16.3g/d、耐熱水性141
℃であり、重合度3500のPVA使用としては非常に優れた
ものであつた。
The yarn strength of the obtained drawn yarn is 16.3 g / d, hot water resistance 141.
° C, which was very excellent for use of PVA having a polymerization degree of 3500.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 洋文 岡山県倉敷市酒津1621番地 株式会社ク ラレ内 審査官 澤村 茂実 (56)参考文献 特開 平3−213510(JP,A) 特開 平3−287812(JP,A) 特開 平1−156517(JP,A) 特公 昭44−2509(JP,B1) 特公 昭31−9893(JP,B1) (58)調査した分野(Int.Cl.6,DB名) D01F 11/06 D01F 6/14 D06M 11/00 - 11/84────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirofumi Sano 1621 Sazu, Kurashiki-shi, Okayama Prefecture Kuraray Co., Ltd. Examiner Shigemi Sawamura (56) References JP-A-3-213510 (JP, A) JP-A-3 -287812 (JP, A) JP-A-1-156517 (JP, A) JP-B-44-2509 (JP, B1) JP-B-31-9893 (JP, B1) (58) Fields investigated (Int. . 6, DB name) D01F 11/06 D01F 6/14 D06M 11/00 - 11/84

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリビニルアルコールを溶解した紡糸原液
を20℃以下の有機溶媒系凝固浴に湿式あるいは乾湿式紡
糸後乾熱延伸してポリビニルアルコール系繊維を製造す
るに際して、乾熱延伸前の工程の含液率が30%/ポリビ
ニルアルコール以上の糸篠に酸を接触させ、該酸をポリ
ビニルアルコールに対して5〜10,000ppm付着させて乾
燥し、次いで温度220℃以上、全延伸倍率15倍以上とな
るよう乾熱延伸を施すことを特徴ととする耐熱水性に優
れた高強力ポリビニルアルコール系繊維の製法。
1. A method for producing a polyvinyl alcohol-based fiber by spin-drying a spinning stock solution in which polyvinyl alcohol is dissolved in an organic solvent-based coagulation bath at 20 ° C. or lower after wet- or dry-wet spinning to produce polyvinyl alcohol-based fiber. An acid is brought into contact with a yarn having a liquid content of 30% / polyvinyl alcohol or more, and the acid is adhered to polyvinyl alcohol at 5 to 10,000 ppm and dried. Then, the temperature is 220 ° C. or more, and the total draw ratio is 15 times or more. A method for producing a high-strength polyvinyl alcohol-based fiber excellent in hot water resistance, characterized by performing dry heat drawing.
JP24947690A 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance Expired - Fee Related JP2826182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24947690A JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24947690A JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Publications (2)

Publication Number Publication Date
JPH04126829A JPH04126829A (en) 1992-04-27
JP2826182B2 true JP2826182B2 (en) 1998-11-18

Family

ID=17193533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24947690A Expired - Fee Related JP2826182B2 (en) 1990-09-18 1990-09-18 Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance

Country Status (1)

Country Link
JP (1) JP2826182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778580A (en) * 2020-07-08 2020-10-16 安徽皖维高新材料股份有限公司 Concrete applicable polyvinyl alcohol fiber and preparation method thereof

Also Published As

Publication number Publication date
JPH04126829A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US4535027A (en) High strength polyacrylonitrile fiber and method of producing the same
KR0182655B1 (en) Polyvinyl alcohol-based fiber and manufacturing thereof
CN101161880A (en) Method for preparing polyacrylonitrile-based carbon fiber precursor fiber
JP2826182B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JP2858923B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH04257313A (en) Production of precursor fiber for carbon fiber
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP2833887B2 (en) Method for producing polyvinyl alcohol fiber with excellent strength
KR100611891B1 (en) Cellulose fiber and its manufacturing process
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JP2856837B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH05117911A (en) Production of highly strong polyvinyl alcohol fiber having excellent high temperature performance
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JPS6156328B2 (en)
JP2927304B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH08284013A (en) Polyvinyl alcohol monofilament yarn having excellent hot-water resistance, high strength and high initial modulus of elasticity
JPH1077572A (en) Hot water-resistant polyvinyl alcohol-based fiber and its production
JPS6385108A (en) Highly strong acrylic fiber and production thereof
JPS6156326B2 (en)
JPH05163609A (en) Production of polyvinyl alcohol synthetic fiber
KR20040095903A (en) Polyvinyl alcohol fiber for the reinforcement of tire and method for the production of the same
JPH08260235A (en) Wet heat resistant polyvinyl alcohol-based yarn and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees