JP2001288613A - Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber - Google Patents

Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber

Info

Publication number
JP2001288613A
JP2001288613A JP2000095557A JP2000095557A JP2001288613A JP 2001288613 A JP2001288613 A JP 2001288613A JP 2000095557 A JP2000095557 A JP 2000095557A JP 2000095557 A JP2000095557 A JP 2000095557A JP 2001288613 A JP2001288613 A JP 2001288613A
Authority
JP
Japan
Prior art keywords
precursor
carbon fiber
less
fiber
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000095557A
Other languages
Japanese (ja)
Inventor
Sho Takahashi
捷 高橋
Koichi Sakamoto
晃一 坂本
Shinichi Muto
進一 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2000095557A priority Critical patent/JP2001288613A/en
Publication of JP2001288613A publication Critical patent/JP2001288613A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a precursor for carbon fiber which has a high degree of orientation, a low degree of delustering and only a small amount of surface imperfection, and to provide carbon fiber having strength of >=4,900 MPa and an elongation of >=2.0% under a stabilized condition without breakage, cementing, or the like. SOLUTION: An acrylic precursor for producing carbon fiber having a delustering degree of <=18 and a content of fibers each having a ripple-like surface due to draw resonance of <=50% is obtained by the wet spinning of a spinning dope which is made of a copolymer comprising at least 90% of acrylonitrile and having an intrinsic viscosity [η] of 1.0-3.5 and an ratio (Mw/Mn) (wherein Mw is an weight average molecular weight; and Mn is an number average molecular weight) of <=2.5 and has a copolymer concentration of 6-13%, followed by washing wet-spun filaments with water, and then by drying and drawing them. A method for producing carbon fiber is to shrink the precursor in a shrinkage percentage of >=20% until the precursor rises in its fiber specific gravity up to 1.3-1.4, and than to draw the precursor by 2-10% at 300-700 deg.C in an inert atmosphere and further to treat it at 1,200-1,700 deg.C in such a way as to shrink by 2-7% when treating the precursor having those characteristics to impart to it flame resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度炭素繊維を
得るためのアクリル系プリカーサーとその製造方法及び
炭素繊維の製造方法に関する。
The present invention relates to an acrylic precursor for obtaining high-strength carbon fibers, a method for producing the same, and a method for producing carbon fibers.

【0002】[0002]

【従来の技術】炭素繊維製造用にアクリル系プリカーサ
ーを使用し、耐炎化処理及び炭素化処理を経て炭素繊維
が得られることは広く知られており、このようにして得
られた炭素繊維は、高い比強度、比弾性率の特性を生か
して、スポーツ・レジャー用品から航空宇宙分野及び一
般産業分野に用途展開されている。
2. Description of the Related Art It is widely known that an acrylic precursor is used for the production of carbon fiber, and that carbon fiber can be obtained through oxidization treatment and carbonization treatment. Utilizing the characteristics of high specific strength and specific elastic modulus, it has been used for applications from sports and leisure goods to aerospace field and general industrial field.

【0003】高性能炭素繊維の製造において、プリカー
サーの特性は目的物である炭素繊維の性能に直接影響す
るため、プリカーサーの高性能化、即ち、配向度及び緻
密性を向上させ、欠陥を抑制することが必要であり、従
来種々の提案がなされている。
In the production of high-performance carbon fibers, the properties of the precursor directly affect the performance of the target carbon fiber, so that the precursor has high performance, that is, improves the degree of orientation and denseness, and suppresses defects. And various proposals have hitherto been made.

【0004】プリカーサーの配向度を上げるには、紡糸
原液中の共重合体の極限粘度[η]を大きくして延伸倍
率を高くすること、そして緻密性を向上させるには、紡
糸原液の重合体濃度を高くすること、さらに欠陥を抑制
するには、紡糸原液の濾過を強化し、紡糸工程の浄化を
行うことが効果的であること等が、知られている。例え
ば、特開昭63ー295713号公報には重量平均分子
量50万以上(極限粘度[η]4.2以上)でX線配向
度92%以上を得ることができると提案されている。し
かし、この方法だと配向度は向上するが緻密性を向上さ
せることは困難である。又、極限粘度を0.9〜1.5
に抑えて、共重合体濃度を22〜35%に高くした紡糸
方法が特開平11-12856号公報に提案されている
が、共重合体濃度を20%以上高くすると紡糸原液の粘
度が上昇し、湿式紡糸では紡糸速度が著しく低下すると
いう問題がある。
In order to increase the degree of orientation of the precursor, it is necessary to increase the intrinsic viscosity [η] of the copolymer in the spinning dope to increase the draw ratio, and to improve the denseness, it is necessary to increase the draw ratio of the polymer in the spinning dope. It is known that in order to increase the concentration and further suppress defects, it is effective to enhance the filtration of the spinning solution and to purify the spinning process. For example, JP-A-63-295713 proposes that an X-ray orientation degree of 92% or more can be obtained at a weight average molecular weight of 500,000 or more (intrinsic viscosity [η] 4.2 or more). However, with this method, the degree of orientation is improved, but it is difficult to improve the denseness. In addition, the intrinsic viscosity is 0.9 to 1.5
Japanese Patent Application Laid-Open No. H11-12856 proposes a spinning method in which the concentration of the copolymer is increased to 22 to 35%, but when the concentration of the copolymer is increased by 20% or more, the viscosity of the spinning solution increases. In wet spinning, there is a problem that the spinning speed is significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解決すること、即ち、高性能炭素繊維を製造す
るための、配向度が高く、失透度が低く、欠陥の少な
い、アクリル系プリカーサーを提供することにある。
An object of the present invention is to solve the above-mentioned problems, that is, to produce high-performance carbon fibers, the orientation is high, the devitrification is low, and the number of defects is small. An object of the present invention is to provide an acrylic precursor.

【0006】[0006]

【課題を解決するための手段】本発明は次の構成からな
る。
The present invention has the following construction.

【0007】本発明は、アクリル系重合体の極限粘度
[η]が1.0〜3.5、重量平均分子量Mwと数平均
分子量Mnの比(Mw/Mn)が2.5以下、重合体濃
度が6〜13%からなる紡糸原液を、湿式紡糸し、水
洗、乾燥、延伸して得た、失透度18以下X線配向度9
0%以上、脈状化率50%以下で、水分率30〜50%
からなる炭素繊維製造用アクリル系プリカーサー、及び
このような特性を有するプリカーサーを耐炎化処理する
際、繊維比重が1.3〜1.4に上昇するまでに20%
以下の収縮を与えた後に、炭素化時、不活性雰囲気中3
00〜700℃の温度で2〜10%の延伸を加え、更に
不活性雰囲気中1200〜1700℃の温度で2〜7%
の収縮処理を行って炭素繊維を得る方法。このようにし
て、強度4900MPa以上、伸度2.0%以上を有す
る炭素繊維を糸切れ、膠着がなく、安定した条件で工業
的に得ることができる。
According to the present invention, an acrylic polymer having an intrinsic viscosity [η] of 1.0 to 3.5, a ratio (Mw / Mn) of a weight average molecular weight Mw to a number average molecular weight Mn of 2.5 or less, is used. An undiluted spinning solution having a concentration of 6 to 13% is wet-spun, washed with water, dried and stretched, and has a devitrification degree of 18 or less and an X-ray orientation degree of 9
0% or more, pulsation rate 50% or less, moisture content 30-50%
When an acryl-based precursor for producing carbon fiber comprising: and a precursor having such properties are subjected to a flame-proof treatment, the fiber specific gravity increases by 20% until the fiber specific gravity increases to 1.3 to 1.4.
After giving the following shrinkage, 3
2-10% stretching at a temperature of 00-700 ° C, and 2-7% at a temperature of 1200-1700 ° C in an inert atmosphere
To obtain carbon fibers by performing shrinkage treatment. In this way, carbon fibers having a strength of 4900 MPa or more and an elongation of 2.0% or more can be industrially obtained under stable conditions without thread breakage and sticking.

【0008】本発明は、重合体の極限粘度[η]が普通
の1.0〜3.5においてMw/Mnを2.5以下と小
さくすることによって、配向度を90%以上とし、しか
も重合体濃度が6〜13%と低くても失透度18以下で
表される緻密性の高いプリカーサーが得られることに特
徴がある。 このようなアクリル系繊維をプリカーサー
として使用することにより高強度、高伸度の炭素繊維を
得るという課題を解決できた。
According to the present invention, when the intrinsic viscosity [η] of the polymer is 1.0 to 3.5, the Mw / Mn is reduced to 2.5 or less so that the degree of orientation is 90% or more, and It is characterized in that a highly dense precursor represented by a devitrification degree of 18 or less can be obtained even if the coalescence concentration is as low as 6 to 13%. By using such an acrylic fiber as a precursor, the problem of obtaining carbon fibers having high strength and high elongation could be solved.

【0009】本発明においてアクリル系重合体は、アク
リル酸、メタクリル酸、イタコン酸等のカルボキシル基
を有する化合物またはその塩類、及びアクリル酸メチ
ル、メタクリル酸メチルのようなアクリル酸エステル、
メタクリル酸メチルのようなメタクリル酸エステル、酢
酸ビニル、スチレン、メタクリロニトリル等の中性基を
有する共重合成分を1〜10重量%含み、残部がアクリ
ロニトリルからなるアクリル系共重合体であり、炭素繊
維製造用アクリル系プリカーサーはこれらの重合体から
なる繊維である。共重合成分が10重量%を越えると、
プリカーサーの耐熱性が低下して、炭素繊維の膠着が増
大するため得策ではない。少なくとも90%のアクリロ
ニトリルを含む共重合体は公知の方法、例えば、水系に
おける懸濁重合、エマルジョン重合あるいは溶剤中での
溶液重合によって製造される。
In the present invention, the acrylic polymer includes a compound having a carboxyl group such as acrylic acid, methacrylic acid and itaconic acid or salts thereof, and acrylic acid esters such as methyl acrylate and methyl methacrylate;
An acrylic copolymer comprising 1 to 10% by weight of a copolymer component having a neutral group such as methacrylic acid ester such as methyl methacrylate, vinyl acetate, styrene, and methacrylonitrile, and a balance of acrylonitrile; Acrylic precursors for fiber production are fibers made of these polymers. If the copolymer component exceeds 10% by weight,
This is not advisable because the heat resistance of the precursor decreases and the sticking of carbon fibers increases. Copolymers containing at least 90% acrylonitrile are prepared by known methods, for example by aqueous suspension polymerization, emulsion polymerization or solution polymerization in solvents.

【0010】アクリル系共重合体の紡糸溶剤として、多
くの有機溶媒及び無機塩系溶剤が使用されるが、特に、
塩化亜鉛系水溶液中での均一系溶液重合によって重合体
溶液を直接得る方法は、分子量分布を狭くできるので好
ましい。ここで、塩化亜鉛系水溶液とは、アクリロニト
リル系繊維製造用溶剤として周知の溶液で、塩化亜鉛単
独又はこれとナトリウム、カリウム、マグネシウム、等
の塩化物との混合塩溶液である。溶剤の塩化亜鉛系水溶
液は、56〜65%で酸化亜鉛を含まないものが好まし
く、重合缶に仕込む前に、目開き0.6μm以下のフイ
ルターで濾過することが好ましい。
As the spinning solvent for the acrylic copolymer, many organic solvents and inorganic salt solvents are used.
A method of directly obtaining a polymer solution by homogeneous solution polymerization in a zinc chloride aqueous solution is preferable because the molecular weight distribution can be narrowed. Here, the zinc chloride-based aqueous solution is a solution well-known as a solvent for producing acrylonitrile-based fibers, and is a salt solution of zinc chloride alone or a mixed salt thereof with a chloride such as sodium, potassium, magnesium, or the like. The zinc chloride-based aqueous solution of the solvent is preferably 56 to 65% and does not contain zinc oxide, and is preferably filtered with a filter having an opening of 0.6 μm or less before charging the polymerization vessel.

【0011】重合体の極限粘度[η]は1.0以上必要
であり、1.0未満では延伸性が低下し、高配向度の繊
維を得ることは困難となり、炭素繊維の強度も低下す
る。極限粘度[η]が3.5を越えると紡糸原液の急激
な粘度の増大により、紡糸速度が低下し、延伸性も低下
する等の問題がある。このため極限粘度[η]は、1.
0〜3.5が良い。 好ましい範囲は、1.5〜2.5
である。
The intrinsic viscosity [η] of the polymer is required to be 1.0 or more. If the intrinsic viscosity [η] is less than 1.0, the stretchability decreases, it becomes difficult to obtain a fiber having a high degree of orientation, and the strength of the carbon fiber also decreases. . If the intrinsic viscosity [η] exceeds 3.5, there is a problem that the spinning speed decreases and the drawability decreases due to a sharp increase in the viscosity of the spinning dope. Therefore, the intrinsic viscosity [η] is 1.
0 to 3.5 is good. The preferred range is 1.5-2.5
It is.

【0012】分子量分布Mw/Mnを2.5以下にする
には、塩化亜鉛水溶液中で連続溶液重合を行い、重合収
率を95%程度で止めるのがよい。重合収率が95%を
越えると分子量分布が大きくなり、Mw/Mnを2.5
以下にすることは困難となる。Mw/Mnの比が2.5
を越えて大きくなる(分子量分布が大きくなる)と、紡
糸時の延伸性が低下し、単糸切れによる毛羽が増大する
と言う問題が生じ、配向度の高い、毛羽の少ないプリカ
ーサーを得ることが困難となり、高性能の炭素繊維が得
られない。
In order to reduce the molecular weight distribution Mw / Mn to 2.5 or less, it is preferable to carry out continuous solution polymerization in an aqueous zinc chloride solution and stop the polymerization yield at about 95%. If the polymerization yield exceeds 95%, the molecular weight distribution becomes large, and Mw / Mn becomes 2.5
It is difficult to: Mw / Mn ratio of 2.5
When the molecular weight distribution exceeds (the molecular weight distribution increases), the drawability during spinning decreases, and the problem of increased fluff due to breakage of single yarns occurs. It is difficult to obtain a precursor with a high degree of orientation and less fluff. And high performance carbon fibers cannot be obtained.

【0013】極限粘度[η]が3.5を超えて高い場合
には、Mw/Mnの比が2.5以上になっても、配向度
90%以上を得ることが出来るが、紡糸原液の粘度上昇
により生産性が著しく低下する。従って[η]が1.0
〜3.5の重合体の場合には、Mw/Mnが2.5以下
が必要である。
When the intrinsic viscosity [η] is higher than 3.5, the orientation degree of 90% or more can be obtained even when the ratio of Mw / Mn is 2.5 or more. The productivity is significantly reduced due to the increase in viscosity. Therefore, [η] is 1.0
In the case of the polymer of ~ 3.5, Mw / Mn needs to be 2.5 or less.

【0014】紡糸原液の重合体濃度は高い程、凝固浴で
の溶剤と凝固剤の置換量が減り、ボイドの少ない、失透
度の低い繊維を得るのに有利であるが、重合体濃度が1
3%を越えると、紡糸原液の粘度が急激に増大し、紡糸
原液のゲル化や、延伸性の低下、紡糸速度の低下等の問
題がある。
The higher the polymer concentration of the spinning dope, the lower the amount of solvent and coagulant in the coagulation bath is reduced, which is advantageous for obtaining fibers having less voids and low devitrification. 1
If it exceeds 3%, the viscosity of the spinning dope increases sharply, and there are problems such as gelation of the spinning dope, a decrease in stretchability, and a decrease in spinning speed.

【0015】一方、重合体濃度が6%未満では、ボイド
の発生が多く、失透度が高くなり、延伸性も低下し、炭
素繊維の機械的特性が低下するため、プリカーサーとし
ては好ましくない。 従って、紡糸原液の重合体濃度
は、6〜13%とすることによって、生産性良く高い紡
糸速度で紡糸することができる。
On the other hand, when the polymer concentration is less than 6%, voids are frequently generated, the devitrification is increased, the stretchability is lowered, and the mechanical properties of the carbon fiber are lowered, which is not preferable as a precursor. Therefore, by setting the polymer concentration of the spinning dope to 6 to 13%, spinning can be performed at a high spinning speed with high productivity.

【0016】炭素繊維製造用アクリル系プリカーサーの
紡糸方法は、乾式紡糸法、乾湿式紡糸法、湿式紡糸法等
を使用できるが、生産性の高い、湿式紡糸法が好まし
い。湿式紡糸法で、塩化亜鉛系溶剤を使用して紡糸する
場合、ノズルから吐出される紡糸原液の温度はできるだ
け低い方が凝固糸のボイドを少なくし、失透度を小さく
するのに効果的であるが、低すぎると紡糸原液の粘度の
増大により、ノズル背圧の上昇、吐出速度の低下等のた
め生産性が低下する等の問題がある。このため紡糸原液
の吐出時の温度としては、20〜50℃が好ましい。凝
固浴には紡糸原液と同種の溶剤を水で希薄したものが使
用され、凝固糸のボイドを少なくするために凝固速度を
遅くする条件が採用される。具体的には、温度0〜10
℃、濃度20〜30%の塩化亜鉛系水溶液が好ましい。
As the spinning method of the acrylic precursor for producing carbon fibers, a dry spinning method, a dry-wet spinning method, a wet spinning method, or the like can be used, but a wet spinning method with high productivity is preferred. In the case of spinning using a zinc chloride-based solvent in the wet spinning method, it is effective to lower the temperature of the spinning solution discharged from the nozzle as much as possible to reduce voids in the coagulated yarn and reduce the devitrification degree. However, if it is too low, there is a problem that the viscosity of the spinning solution increases, the back pressure of the nozzle increases, the discharge speed decreases, and the productivity decreases. For this reason, the temperature at the time of discharging the spinning solution is preferably 20 to 50 ° C. For the coagulation bath, a solution prepared by diluting the same kind of solvent as the spinning solution with water is used, and conditions for lowering the coagulation speed are employed to reduce voids in the coagulated yarn. Specifically, temperature 0-10
A zinc chloride-based aqueous solution having a temperature of 20 ° C and a concentration of 20 to 30% is preferable.

【0017】凝固浴中でのドラフト率(吐出線速度S1
と引き取りローラの表面速度S2との比S2/S1)
は、凝固糸のボイドを少なくし、表面欠陥を少なくする
ためにできるだけ小さい方が良いが、小さすぎるとノズ
ル背圧の上昇や、ノズル吐出面の膨らみ等の問題を生ず
るため、具体的には15〜40%にて紡糸するのが好ま
しい。凝固糸のボイドは、後工程での繊維の緻密性(失
透度)に大きく影響するため、できるだけボイドを少な
くする必要がある。凝固糸は続いて、水洗、浴中延伸を
行うが、水洗及び浴中延伸は多段で行う。水洗温度は1
0〜95℃で、浴中延伸は2〜4倍で行い、繊維の脱溶
剤を促進するために、水洗浴のPHは4以下になるよう
に塩酸や酢酸等の酸を添加して調整するのが好ましい。
Draft rate in the coagulation bath (discharge linear velocity S1
Of the take-up roller and the surface speed S2 of the take-off roller (S2 / S1)
In order to reduce voids in the coagulated yarn and reduce surface defects, it is better to be as small as possible.However, if too small, problems such as an increase in nozzle back pressure and swelling of the nozzle discharge surface may occur. Spinning at 15-40% is preferred. Since voids in the coagulated yarn greatly affect the denseness (devitrification) of the fibers in the subsequent step, it is necessary to reduce the voids as much as possible. The coagulated yarn is subsequently washed with water and stretched in a bath, and the washing and stretching in a bath are performed in multiple stages. Washing temperature is 1
At 0 to 95 ° C., stretching in the bath is performed 2 to 4 times, and in order to promote the desolvation of the fiber, the pH of the washing bath is adjusted by adding an acid such as hydrochloric acid or acetic acid so that the pH is 4 or less. Is preferred.

【0018】炭素繊維用プリカーサーは、単繊維の接着
や融着があると、炭素化工程で膠着の原因となるため、
紡糸工程でのこのような接着や融着は防がなければなら
ない。単繊維の接着を防ぐには水洗工程上がりの繊維に
油剤を付与し、サクションドラム式乾燥機で0〜15%
の収縮を掛けながら緻密化を行い、その後延伸を行うこ
とが好ましい。
In the case of a precursor for carbon fiber, if there is adhesion or fusion of a single fiber, it causes sticking in the carbonization step.
Such adhesion and fusion in the spinning process must be prevented. To prevent the adhesion of single fibers, apply an oil agent to the fibers after the washing process, and use a suction drum type drier for 0 to 15%.
It is preferable to perform densification while applying shrinkage, and then perform stretching.

【0019】油剤は、シリコーン系化合物、高級アルコ
ール、高級脂肪酸エステル等、単独またはそれらの混合
物を使用することができるが、油剤の附着量は必要最小
限にすべきで、附着量が多いと、繊維内部へ油剤が浸透
して緻密化を阻害し、繊維の欠陥として残るので好まし
くない。油剤の附着量は炭素繊維の膠着を防止できる量
で良く、具体的には0.01〜1.0%程度である。乾
燥時に繊維を収縮させることにより、繊維の緻密化が進
み、更に、単繊維の収縮速度差により単繊維間のズレが
生じて、接着糸を防止することができる。
As the oil, a silicone compound, a higher alcohol, a higher fatty acid ester or the like can be used alone or in a mixture thereof. However, the amount of the oil should be minimized. The oil agent penetrates into the interior of the fiber to inhibit densification and remains as a defect in the fiber, which is not preferable. The attachment amount of the oil agent may be an amount capable of preventing the sticking of the carbon fibers, and is specifically about 0.01 to 1.0%. By shrinking the fibers during drying, the densification of the fibers progresses, and further, a difference between the single fibers due to a difference in shrinkage speed of the single fibers occurs, so that the adhesive yarn can be prevented.

【0020】乾燥緻密化後の繊維は次に水蒸気中で2〜
10倍の延伸を行うが、この工程はプリカーサーの配向
度を向上するために重要な工程である。水蒸気を使用す
ると、水がアクリル繊維の可塑剤として働き、高い延伸
が可能となる。延伸前の繊維(乾燥緻密化後の繊維)
は、撥水性の場合には、水の可塑効果が得られないの
で、水に対する濡れ性を良くすることが必要である。
The fiber after drying and densification is then
The stretching is performed 10 times, and this step is an important step for improving the degree of orientation of the precursor. When water vapor is used, water acts as a plasticizer for the acrylic fiber, and high drawing is possible. Fiber before drawing (fiber after drying and densification)
In the case of water repellency, since a plasticizing effect of water cannot be obtained, it is necessary to improve wettability to water.

【0021】繊維にシリコーン系油剤を付与すると、一
般的に繊維は撥水性となるので、親水性の界面活性剤、
例えばポリエチレングリコール誘導体、多価アルコール
アルコール誘導体、スルホン酸塩、燐酸エステル、カル
ボン酸塩等の併用により繊維を親水性することが好まし
い。
When a silicone oil is applied to the fiber, the fiber generally becomes water repellent, so that a hydrophilic surfactant,
For example, the fibers are preferably made hydrophilic by using a combination of a polyethylene glycol derivative, a polyhydric alcohol derivative, a sulfonate, a phosphate, a carboxylate, and the like.

【0022】更に、水の可塑効果を高めるために、水蒸
気延伸の前に、10〜30%の水を繊維に付与すること
が好ましい。水の付与は、スプレー法、浸漬法、ローラ
転写法を採用できるが、水の温度は、70〜90℃が好
ましい。
Further, in order to enhance the plasticizing effect of water, it is preferable to add 10 to 30% of water to the fiber before the steam drawing. Spraying, immersion, and roller transfer can be used to apply water, but the temperature of water is preferably 70 to 90 ° C.

【0023】プリカーサーの配向度90%以上を得るに
は、紡糸工程の全延伸倍率(最終ローラ速度S3と引き
取りローラ速度S2の比S3/S2)を10倍以上とす
ることが必要である。全延伸倍率は10倍未満では、配
向度を90%以上をえることは困難である。一方、延伸
倍が高い程、配向度が向上する傾向にあるが、延伸限界
(最大延伸倍率)まで延伸すると、繊維表面が脈状化
し、脈状化率が50%を越えるプリカーサーを使用した
場合、この脈状が焼成後も炭素繊維の表面欠陥として残
り、高強度の炭素繊維を得ることが出来ない。 従っ
て、延伸は最大延伸倍率の80〜95%で行うことが好
まく、全延伸倍率の実質的上限は、25倍である。延伸
倍率が最大延伸倍率の80%以下では結晶配向度90%
以上を得ることが出来ず、また最大延伸倍率の95%以
上で延伸を行うと配向度は向上するが、延伸時の糸切れ
が増大し、工程が不安定になるだけでなく脈状化率が5
0%を超え、失透度は18以下にならない。
In order to obtain a degree of orientation of the precursor of 90% or more, it is necessary to make the total draw ratio (the ratio S3 / S2 between the final roller speed S3 and the take-up roller speed S2) of the spinning process 10 times or more. If the total stretching ratio is less than 10 times, it is difficult to obtain an orientation degree of 90% or more. On the other hand, the higher the draw ratio, the higher the degree of orientation tends to be. However, when the fiber is stretched to the draw limit (maximum draw ratio), the fiber surface becomes pulsed, and when a precursor having a pulse rate exceeding 50% is used. The veins remain as surface defects of the carbon fibers even after firing, and high-strength carbon fibers cannot be obtained. Therefore, the stretching is preferably performed at 80 to 95% of the maximum stretching ratio, and the substantial upper limit of the total stretching ratio is 25 times. When the stretching ratio is 80% or less of the maximum stretching ratio, the degree of crystal orientation is 90%.
When the stretching is performed at 95% or more of the maximum stretching ratio, the degree of orientation is improved, but the yarn breakage at the time of stretching is increased, and not only the process becomes unstable, but also the pulsation ratio is increased. Is 5
It exceeds 0%, and the devitrification does not become 18 or less.

【0024】また、失透度は、延伸時の温度にも大きく
影響されるため、延伸筒の飽和蒸気圧力は、245KP
a(127℃)以下であることが必要である。飽和蒸気
圧力が245KPaを超えると失透度18以下を得るこ
とは出来ない。
Since the devitrification degree is greatly affected by the temperature at the time of stretching, the saturated steam pressure of the stretching cylinder is 245 KP.
a (127 ° C.) or less. If the saturated vapor pressure exceeds 245 KPa, a devitrification degree of 18 or less cannot be obtained.

【0025】延伸直後の繊維は、繊維構造が固定されて
いないため、残留収縮等の歪みを有している。 本発明
者等は、繊維構造を安定化する方法として、延伸直後の
繊維に水を付与して、水分率30〜50%にすることを
見出した。延伸直後の繊維は、温度80〜100℃で5
〜30%の水分を含んでいるが、これに30℃以下の水
をスプレー法、浸漬法、ローラ転写法等により付与する
ことにより、残留歪みを無くすることができる。
The fiber immediately after drawing has a distortion such as residual shrinkage because the fiber structure is not fixed. The present inventors have found that, as a method for stabilizing the fiber structure, water is applied to the fiber immediately after drawing to make the water content 30 to 50%. The fiber immediately after drawing is 5 at a temperature of 80 to 100 ° C.
Although water content of about 30% is contained, residual strain can be eliminated by applying water of 30 ° C. or lower to the water by a spray method, an immersion method, a roller transfer method, or the like.

【0026】次に、こうして得られたプリカーサーを焼
成して炭素繊維とする。耐炎化工程は、空気中200〜
300℃の範囲で、繊維の蓄熱切断温度より低い温度で
段階的に昇温するのが好ましい。また、耐炎化工程で
は、比重が1.3〜1.4に上昇するまでに20%以下
の収縮を与えることが好ましい。高配向度のプリカーサ
ーは、耐炎化初期(比重が1.2程度)において、強い
収縮力のためストランドに高い張力が働く、このため適
度の収縮を与えることによって、ストランドの毛羽立ち
や糸切れを防ぐことが重要である。
Next, the precursor thus obtained is fired to obtain carbon fibers. The flameproofing process is performed in air 200 ~
It is preferable to raise the temperature stepwise at a temperature lower than the heat storage cutting temperature of the fiber in the range of 300 ° C. Further, in the flame-proofing step, it is preferable to give a shrinkage of 20% or less before the specific gravity rises to 1.3 to 1.4. In the precursor with a high degree of orientation, a high tension acts on the strand due to a strong shrinkage force in the initial stage of flame resistance (specific gravity is about 1.2). Therefore, by giving an appropriate shrinkage, the strand is prevented from fluffing and yarn breakage. This is very important.

【0027】収縮率は、20%以下が良く、20%を超
えると、繊維の配向度が低下し、高性能の炭素繊維が得
られない。より好ましい範囲は、3〜15%ある。耐炎
化繊維の比重が低いと、炭素繊維の収率が減少するが、
第一炭素化工程での延伸性が向上する。また耐炎化繊維
の比重が高いと、炭素繊維の収率が向上するが、延伸性
は低下する。これらを総合的に判断すると、耐炎化比重
の好ましい範囲は1.3〜1.4となる。繊維の比重が
1.3〜1.4の耐炎化繊維を炭素化する場合、炭素化
工程は2段で行うのが良い。
The shrinkage is preferably 20% or less, and if it exceeds 20%, the degree of fiber orientation is reduced, and a high-performance carbon fiber cannot be obtained. A more preferred range is 3 to 15%. If the specific gravity of the oxidized fiber is low, the yield of carbon fiber decreases,
The stretchability in the first carbonization step is improved. Also, when the specific gravity of the oxidized fiber is high, the yield of carbon fiber is improved, but the drawability is reduced. Judging comprehensively from these, the preferable range of the specific gravity for flame resistance is 1.3 to 1.4. When carbonizing oxidized fiber having a specific gravity of 1.3 to 1.4, the carbonization step is preferably performed in two stages.

【0028】第一炭素化炉では、不活性雰囲気中300
〜700℃で2〜10%の延伸を行うのが良い。ここで
は、耐炎化繊維の熱分解が起こり、重量が減少すると共
に配向度が低下する。 第一炭素化炉の温度は、300
℃未満では熱分解反応が遅すぎて、炭素化に長時間を要
し、生産性が低下すという問題があり、一方、700℃
以上では、熱分解速度が速すぎて、配向度の低下が著し
いと言う問題がある。好ましい範囲は400〜650℃
である。配向度の低下を抑制するには、2〜10%延伸
を行うことが有効である。延伸率が2%以下では、配向
度の低下を抑えるには不十分で、また、10%を超える
と配向度は飽和に達し、それ以上の向上は見られない。
延伸率の好ましい範囲は2〜10%である。
In the first carbonization furnace, 300
It is preferable to perform stretching at 2 to 10% at ~ 700 ° C. Here, thermal decomposition of the oxidized fiber occurs, so that the weight is reduced and the degree of orientation is reduced. The temperature of the first carbonization furnace is 300
When the temperature is lower than 700 ° C., the thermal decomposition reaction is too slow, and it takes a long time for carbonization, and there is a problem that the productivity is reduced.
Above, there is a problem that the thermal decomposition rate is too fast and the degree of orientation is significantly reduced. The preferred range is 400-650 ° C
It is. In order to suppress a decrease in the degree of orientation, it is effective to perform stretching by 2 to 10%. When the stretching ratio is 2% or less, it is insufficient to suppress the decrease in the degree of orientation, and when it exceeds 10%, the degree of orientation reaches saturation and no further improvement is observed.
The preferred range of the stretching ratio is 2 to 10%.

【0029】第二炭素化炉では、不活性雰囲気中120
0〜1700℃で2〜7%の収縮を与えながら炭素化を
完了する。第二炭素化炉の温度は、1200℃未満では
炭素繊維の強度4900MPaを得ることが困難となり
好ましくない。また1700℃を超えると弾性率は高く
なるが、強度は低下する傾向を示すため好ましくない。
第二炭素化炉では、収縮率が2%未満では延伸性が低下
するため単糸切れによる毛羽が増大し、また7%を超え
ると繊維の張力が低下して炉内で糸の弛みを生じ、工程
通過性が不安定となり好ましくない。本発明者等の検討
によると、第二炭素化炉での収縮率は炭素繊維の強度に
は殆ど影響しないため、工程通過性の点で2〜7%が適
正である。
In the second carbonization furnace, 120 in an inert atmosphere.
The carbonization is completed while giving 2-7% shrinkage at 0-1700 ° C. If the temperature of the second carbonization furnace is less than 1200 ° C., it is difficult to obtain a carbon fiber strength of 4900 MPa, which is not preferable. If it exceeds 1700 ° C., the elastic modulus increases, but the strength tends to decrease, which is not preferable.
In the second carbonization furnace, if the shrinkage ratio is less than 2%, the stretchability is reduced, so that fluff due to breakage of single yarn increases, and if it exceeds 7%, the tension of the fiber decreases, causing slackness of the yarn in the furnace. In addition, the process passability becomes unstable, which is not preferable. According to the study of the present inventors, since the shrinkage rate in the second carbonization furnace hardly affects the strength of the carbon fiber, 2 to 7% is appropriate in terms of processability.

【0030】[0030]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
EXAMPLES The present invention will be described more specifically with reference to the following examples.

【0031】(失透度)75℃で24時間通風乾燥機に
て乾燥した試料を、繊維長40mmに切断し、2gを採
取し、ハンドカードにて開繊する。開繊された試料を直
径20mmの円盤状にし、油圧プレスで490KPa
、30秒間プレスする。20mmの円盤状の繊維塊を
測定用セルに入れ、アニソールを満たして10分間静置
して脱泡し、ハンター型色差計で明度(L値)を測定す
る(L1)。一方、標準綿(完全無失透綿)を同様にハ
ンター型色差計で明度(L2)を測定する。失透度は次
式(1)から求めた。(標準綿の明度L2は5である) 失透度(L値)=L1ーL2 ・・・・(1)
(Devitrification degree) A sample dried by a ventilation dryer at 75 ° C. for 24 hours is cut into a fiber length of 40 mm, 2 g is collected, and opened with a hand card. The opened sample is made into a disc shape with a diameter of 20 mm, and 490 KPa is applied with a hydraulic press.
Press for 30 seconds. A 20 mm disk-shaped fiber mass is placed in a measuring cell, filled with anisole, left standing for 10 minutes to remove bubbles, and the lightness (L value) is measured with a Hunter-type color difference meter (L1). On the other hand, the lightness (L2) of a standard cotton (completely devitrified cotton) is measured in the same manner using a Hunter-type color difference meter. The devitrification degree was determined from the following equation (1). (The lightness L2 of the standard cotton is 5.) Devitrification (L value) = L1−L2 (1)

【0032】(分子量分布Mw/Mn)数平均分子量M
nは浸透圧法によって測定した値であり、重量平均分子
量Mwはジメチルホルムアミド(DMF)により重合体
の極限粘度[η]を測定し、式(2)によって算出した
値である。 [η]=2.83×10ー4Mw0.75 ・・・・(2)
(Molecular weight distribution Mw / Mn) Number average molecular weight M
n is a value measured by an osmotic pressure method, and a weight average molecular weight Mw is a value obtained by measuring the intrinsic viscosity [η] of the polymer using dimethylformamide (DMF) and calculating by the formula (2). [Η] = 2.83 × 10 −4 Mw 0.75 (2)

【0033】(広角X線回折による結晶配向度)X線源
としてNiフイルターで単色化されたCuのKα線を使
用し、2θ=17°付近に観察される面指数(400)
のピークを円周方向にスキャンして得られたピークの半
値幅H(°)より式(3)から求めた。 配向度(%)={(180-H)/180}×100 ・・・・(3)
(Degree of Crystal Orientation by Wide-Angle X-Ray Diffraction) Using a Kα ray of Cu monochromated with a Ni filter as an X-ray source, a plane index (400) observed near 2θ = 17 °
From the half-value width H (°) of the peak obtained by scanning the peak in the circumferential direction. Degree of orientation (%) = {(180-H) / 180} × 100 (3)

【0034】(脈状化率)75℃で24時間通風乾燥機
にて乾燥した試料を、繊維長約10mmに切断し、単繊
維100本を採取し、光学顕微鏡にて繊維の表面を観察
し、脈状化繊維の本数(n)を数える。(脈状化繊維は
縞模様が見える) 脈状化率(%)=(n/100)×100 ・・・・(4)
(Pulsation rate) A sample dried by a ventilation dryer at 75 ° C for 24 hours was cut into a fiber length of about 10 mm, 100 single fibers were collected, and the surface of the fiber was observed with an optical microscope. Then, the number (n) of the pulsating fibers is counted. (Stripes are visible in the pulsating fibers.) Pulsating rate (%) = (n / 100) × 100 (4)

【0035】(実施例1)60%塩化亜鉛水溶液中で溶
液重合して得られたところの重合体組成アクリロニトリ
ル96.5重量%、アクリル酸メチル2.5重量%、イ
タコン酸1重量%の極限粘度[η]が1.8、Mw/M
n=2.0、共重合体濃度7.5重量%の紡糸原液を孔
数12,000のノズルを用いて6℃、25%の塩化亜
鉛水溶液中にドラフト率25%で吐出、凝固させ、10
〜90℃の温度勾配を有する多段水洗浴で3倍の延伸を
行い、水分率150%のゲル糸条を得た。
Example 1 Polymer composition obtained by solution polymerization in a 60% aqueous zinc chloride solution. Limit of 96.5% by weight of acrylonitrile, 2.5% by weight of methyl acrylate, 1% by weight of itaconic acid. Viscosity [η] 1.8, Mw / M
A stock solution for spinning with n = 2.0 and a copolymer concentration of 7.5% by weight was discharged and coagulated at a draft rate of 25% into a 25% aqueous zinc chloride solution at 6 ° C. using a nozzle having 12,000 holes. 10
The film was stretched three times in a multi-stage washing bath having a temperature gradient of ~ 90 ° C to obtain a gel yarn having a water content of 150%.

【0036】このゲル糸条をアミノ変性シリコーン(粘
度:2500cst、アミノ当量3000)30部と燐
酸エステル(ジエタノールアミノステアリールエトキシ
ホスフェート)70部の混合物を0.4重量%含む油剤
浴を通過させ、続いて80℃〜140℃のサクションド
ラム乾燥機にて7%の収縮を掛けながら乾燥緻密化を行
い、その後、167KPa の飽和水蒸気中で4.5倍
延伸し、15℃の純水をスプレーして水分率37%と
し、ケンスに収納した。単繊維繊度0.65dtex、
失透度15、配向度91.2%、脈状化率0%の炭素繊
維製造用アクリル系プリカーサーを得た。
The gel yarn was passed through an oil bath containing 0.4 parts by weight of a mixture of 30 parts of an amino-modified silicone (viscosity: 2500 cst, amino equivalent 3000) and 70 parts of a phosphoric ester (diethanolaminostearylethoxyphosphate). Subsequently, it is dried and densified by applying a 7% shrinkage with a suction drum dryer at 80 ° C. to 140 ° C., and then stretched 4.5 times in saturated steam of 167 KPa, and sprayed with pure water at 15 ° C. To a water content of 37%, and stored in a can. Single fiber fineness 0.65 dtex,
An acrylic precursor for carbon fiber production having a devitrification degree of 15, an orientation degree of 91.2% and a pulsation rate of 0% was obtained.

【0037】このプリカーサーを240〜250℃の温
度で、10%収縮させながら繊維比重が1.35の耐炎
化糸とし、引き続き300〜500℃の窒素雰囲気中で
3%の延伸を行った後、1350℃の窒素雰囲気中で5
%の収縮を行い、炭素繊維を得た。得られた炭素繊維の
繊維径は5.2μmで、引張り強度は5600MPa、
弾性率245GPa、伸度2.2%であった。
This precursor was shrunk at a temperature of 240 to 250 ° C. by 10% while shrinking it by 10% to obtain an oxidized yarn having a fiber specific gravity of 1.35. Subsequently, it was stretched by 3% in a nitrogen atmosphere at 300 to 500 ° C. 5 in a nitrogen atmosphere at 1350 ° C
% Shrinkage to obtain a carbon fiber. The fiber diameter of the obtained carbon fiber is 5.2 μm, the tensile strength is 5600 MPa,
The elastic modulus was 245 GPa and the elongation was 2.2%.

【0038】(実施例2〜5、比較例1〜4)60%塩
化亜鉛水溶液中での溶液重合において、重合条件を変え
て、種々の極限粘度[η]及び分子量分布(Mw/M
n)を持った紡糸原液を作製し、実施例1と同じ条件で
紡糸及び炭素化を行い、結果を表1に示した。
(Examples 2 to 5, Comparative Examples 1 to 4) In solution polymerization in a 60% aqueous zinc chloride solution, polymerization conditions were changed to obtain various intrinsic viscosities [η] and molecular weight distributions (Mw / M
A spinning stock solution having n) was prepared, and spinning and carbonization were performed under the same conditions as in Example 1. The results are shown in Table 1.

【0039】(実施例6)60%塩化亜鉛水溶液中で溶
液重合して得られたところの重合体組成アクリロニトリ
ル95重量%、アクリル酸メチル4重量%、イタコン酸
1重量%の極限粘度[η]1.4、Mw/Mn=1.
9、共重合体濃度8.5重量%の紡糸原液を孔数24,
000のノズルを用いて0℃、25%の塩化亜鉛水溶液
中にドラフト率30%で吐出、凝固させ、水洗、延伸を
行い、水分率130%のゲル糸条を得た。
Example 6 Polymer Composition Obtained by Solution Polymerization in 60% Aqueous Zinc Chloride Solution 95% by weight of acrylonitrile, 4% by weight of methyl acrylate, 1% by weight of itaconic acid Intrinsic viscosity [η] 1.4, Mw / Mn = 1.
9. A spinning dope having a copolymer concentration of 8.5% by weight was filled with 24 pores.
Using a 000 nozzle, the mixture was discharged into a 25% zinc chloride aqueous solution at 0 ° C. at a draft rate of 30%, solidified, washed with water and stretched to obtain a gel yarn having a water content of 130%.

【0040】このゲル糸条をアミノ変性シリコーン(粘
度:3500cst、アミノ当量2000)75部とソ
ジュウムジオクチルスルホサクシネート25部の混合物
を1.5重量%含む油剤浴を通過させ、続いて80〜1
30℃のサクションドラム乾燥機にて7%の収縮を掛け
ながら乾燥緻密化を行い、その後、162KPa の飽
和水蒸気中で5倍延伸し、15℃の純水をスプレーして
水分率35%とし、ケンスに収納した。単繊維繊度0.
60dtex、失透度14、配向度が91.5%、脈状
化率10%の炭素繊維製造用アクリル系プリカーサーを
得た。
The gel yarn was passed through an oil bath containing 1.5 parts by weight of a mixture of 75 parts of amino-modified silicone (viscosity: 3500 cst, amino equivalent: 2000) and 25 parts of sodium dioctyl sulfosuccinate. 1
Drying and densification are performed while applying 7% shrinkage in a suction drum dryer at 30 ° C., then stretched 5 times in saturated steam of 162 KPa, sprayed with pure water at 15 ° C. to a moisture content of 35%, Stored in Kens. Single fiber fineness 0.
An acrylic precursor for carbon fiber production having a dtex of 60 dtex, a degree of devitrification of 14, a degree of orientation of 91.5%, and a pulsating rate of 10% was obtained.

【0041】このプリカーサーを240〜250℃の温
度で、10%収縮させながら繊維比重が1.35の耐炎
化糸とし、引き続き300〜500℃の窒素雰囲気中で
8%の延伸を行った後、1100〜1350℃の窒素雰
囲気中で5.5%の収縮を行い炭素繊維を得た。得られ
た炭素繊維の繊維径は4.9μmで、引張り強度は57
50MPa、弾性率250GPa、伸度2.3%であっ
た。
This precursor was shrunk by 10% at a temperature of 240 to 250 ° C. to give an oxidized yarn having a fiber specific gravity of 1.35, followed by drawing 8% in a nitrogen atmosphere at 300 to 500 ° C. 5.5% shrinkage was performed in a nitrogen atmosphere at 1100 to 1350 ° C to obtain carbon fibers. The fiber diameter of the obtained carbon fiber is 4.9 μm, and the tensile strength is 57.
It was 50 MPa, the elastic modulus was 250 GPa, and the elongation was 2.3%.

【0042】(比較例5)第一炭素化炉の延伸率を1
%、第二炭素化炉の収縮率5%とした以外は実施例6と
同様にして炭素繊維を得た。得られた炭素繊維は強度4
630MPaと不満足なものであった。
(Comparative Example 5) The stretching ratio of the first carbonization furnace was 1
%, And the contraction rate of the second carbonization furnace was 5%, to obtain carbon fibers in the same manner as in Example 6. The obtained carbon fiber has a strength of 4
630 MPa, which was unsatisfactory.

【0043】(実施例7)60%塩化亜鉛水溶液中で溶
液重合して得られたところの重合体組成アクリロニトリ
ル97重量%、アクリル酸メチル3重量%の極限粘度
[η]1.5、Mw/Mn=1.7、共重合体濃度8.
0重量%の紡糸原液を孔数24,000のノズルを用い
て0℃、28%の塩化亜鉛水溶液中にドラフト率25%
で吐出、凝固させ、水洗、延伸を行い、水分率150%
のゲル糸条を得た。
Example 7 Polymer composition obtained by solution polymerization in a 60% aqueous zinc chloride solution 97% by weight of acrylonitrile, 3% by weight of methyl acrylate, intrinsic viscosity [η] 1.5, Mw / Mn = 1.7, copolymer concentration 8.
A 0% by weight spinning solution was introduced into a 28% aqueous zinc chloride solution at 0 ° C. using a nozzle having 24,000 holes at a draft rate of 25%.
And solidified, washed with water and stretched, with a moisture content of 150%
Was obtained.

【0044】このゲル糸条をアミノ変性シリコーン(粘
度:3500cst、アミノ当量2000)75部とソ
ジュウムジオクチルスルホサクシネート25部の混合物
を1.5重量%含む油剤浴を通過させ、続いて80〜1
30℃のサクションドラム乾燥機にて7%の収縮を掛け
ながら乾燥緻密化を行い、その後、162KPa の飽
和水蒸気中で5倍延伸し、15℃の純水をスプレーして
水分率37%とし、ケンスに収納した。単繊維繊度0.
60dtex、失透度16、配向度が91.2%、脈状
化率10%の炭素繊維製造用アクリル系プリカーサーを
得た。
The gel yarn was passed through an oil bath containing 1.5 parts by weight of a mixture of 75 parts of an amino-modified silicone (viscosity: 3500 cst, amino equivalent: 2000) and 25 parts of sodium dioctyl sulfosuccinate. 1
Drying and densification are performed while applying 7% shrinkage with a 30 ° C. suction drum dryer, and then stretched 5 times in saturated steam of 162 KPa, and sprayed with pure water at 15 ° C. to a moisture content of 37%. Stored in Kens. Single fiber fineness 0.
An acrylic precursor for carbon fiber production having a dtex of 60 dtex, a degree of devitrification of 16, a degree of orientation of 91.2%, and a pulsation rate of 10% was obtained.

【0045】このプリカーサーを245〜256℃の温
度で、10%収縮させながら繊維比重が1.35の耐炎
化糸とし、引き続き300〜500℃の窒素雰囲気中で
6%の延伸を行った後、1100〜1350℃の窒素雰
囲気中で6%の収縮を行い炭素繊維を得た。得られた炭
素繊維の繊維径は5μmで、引張り強度は5450MP
a、弾性率250GPa、伸度2.2%であった。
This precursor was shrunk by 10% at a temperature of 245 to 256 ° C. into a flame-resistant yarn having a fiber specific gravity of 1.35, and then stretched by 6% in a nitrogen atmosphere of 300 to 500 ° C. 6% shrinkage was performed in a nitrogen atmosphere at 1100 to 1350 ° C to obtain carbon fibers. The fiber diameter of the obtained carbon fiber is 5 μm, and the tensile strength is 5450MP.
a, the elastic modulus was 250 GPa, and the elongation was 2.2%.

【0046】(比較例6)実施例7において第一炭素化
炉の延伸率を11%にした結果、糸が切断し、炭素繊維
を得ることができなかった。
(Comparative Example 6) As a result of setting the stretching ratio of the first carbonization furnace to 11% in Example 7, the yarn was cut, and carbon fibers could not be obtained.

【0047】(実施例8)60%塩化亜鉛水溶液中で溶
液重合して得られたところの重合体組成アクリロニトリ
ル99重量%、イタコン酸1重量%の極限粘度[η]
2.0、Mw/Mn=2.0、共重合体濃度7.0重量
%の紡糸原液を孔数24,000のノズルを用いて0
℃、22%の塩化亜鉛水溶液中にドラフト率24%で吐
出、凝固させ、水洗、延伸を行い、水分率150%のゲ
ル糸条を得た。
Example 8 Polymer Composition Obtained by Solution Polymerization in 60% Aqueous Zinc Chloride Solution 99% by weight of acrylonitrile and 1% by weight of itaconic acid have intrinsic viscosity [η].
2.0, Mw / Mn = 2.0, and a copolymer concentration of 7.0% by weight were fed to a spinning dope using a nozzle having 24,000 holes.
The mixture was discharged and solidified in a zinc chloride aqueous solution at 22 ° C. and a draft rate of 24%, solidified, washed with water and stretched to obtain a gel yarn having a water content of 150%.

【0048】このゲル糸条をアミノ変性シリコーン(粘
度:3500cst、アミノ当量2000)75部とソ
ジュウムジオクチルスルホサクシネート25部の混合物
を1.5重量%含む油剤浴を通過させ、続いて80〜1
30℃のサクションドラム乾燥機にて7%の収縮を掛け
ながら乾燥緻密化を行い、その後、162KPa の飽
和水蒸気中で5倍延伸し、15℃の純水をスプレーして
水分率38%とし、ケンスに収納した。単繊維繊度0.
60dtex、失透度17、配向度が91.0%、脈状
化率10%の炭素繊維製造用アクリル系プリカーサーを
得た。
The gel yarn was passed through an oil bath containing 1.5 parts by weight of a mixture of 75 parts of amino-modified silicone (viscosity: 3500 cst, amino equivalent: 2000) and 25 parts of sodium dioctyl sulfosuccinate. 1
Drying and densification were carried out while applying a 7% shrinkage in a suction drum dryer at 30 ° C., then stretched 5 times in saturated steam at 162 KPa, and sprayed with pure water at 15 ° C. to a moisture content of 38%. Stored in Kens. Single fiber fineness 0.
An acrylic precursor for carbon fiber production having a dtex of 60 dtex, a degree of devitrification of 17, a degree of orientation of 91.0%, and a pulsating rate of 10% was obtained.

【0049】このプリカーサーを240〜250℃の温
度で、10%収縮させながら繊維比重が1.35の耐炎
化糸とし、引き続き300〜500℃の窒素雰囲気中で
2%の延伸を行った後、1100〜1350℃の窒素雰
囲気中で5%の収縮を行い炭素繊維を得た。得られた炭
素繊維の繊維径は5μmで、引張り強度は5370MP
a、弾性率250GPa、伸度2.2%であった。
The precursor was shrunk by 10% at a temperature of 240 to 250 ° C. while shrinking by 10% to obtain an oxidized yarn having a fiber specific gravity of 1.35. Subsequently, it was stretched by 2% in a nitrogen atmosphere at 300 to 500 ° C. 5% shrinkage was performed in a nitrogen atmosphere at 1100 to 1350 ° C to obtain carbon fibers. The fiber diameter of the obtained carbon fiber is 5 μm, and the tensile strength is 5370MP.
a, the elastic modulus was 250 GPa, and the elongation was 2.2%.

【0050】(比較例7)第一炭素化炉の延伸率を5
%、第二炭素化炉の収縮率8%とした以外は実施例8と
同様にした。第二炭素化炉内で糸が弛み、断糸を生じ
た。
(Comparative Example 7) The elongation ratio of the first carbonization furnace was 5
%, And the contraction rate of the second carbonization furnace was set to 8%. The yarn slackened in the second carbonization furnace, and the yarn was broken.

【0051】(比較例8)比較例7において、第二炭素
化炉の収縮率を1%しした結果、糸が毛羽立ちはじめ、
ついには断糸を生じた。
(Comparative Example 8) In Comparative Example 7, as a result of reducing the shrinkage of the second carbonization furnace by 1%, the yarn started to fluff.
Eventually, thread breakage occurred.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【発明の効果】本発明により配向度が高く、失透度が低
く、表面欠陥の少ない炭素繊維製造用アクリル系プリカ
ーサーを提供し、強度の高い炭素繊維を糸切れや膠着が
なく安定した条件で提供すること効率よく得ることがで
きる。
According to the present invention, there is provided an acrylic precursor for producing carbon fiber having a high degree of orientation, a low degree of devitrification and a small number of surface defects, and is capable of producing a high-strength carbon fiber under stable conditions without thread breakage or sticking. Offering can be obtained efficiently.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武藤 進一 静岡県駿東郡長泉町上土狩234 東邦レー ヨン株式会社研究所内 Fターム(参考) 4L035 BB03 BB06 BB10 BB15 BB17 BB20 BB22 BB60 BB66 BB80 BB85 BB91 DD13 EE07 EE20 FF01 FF04 GG04 HH04 HH10 MB04 MB06 MB19 4L037 CS03 FA03 FA06 FA08 FA11 PA54 PA55 PA70 PC10 PC11 PC14 PF45 PF54 PS00 PS02 PS18 UA20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinichi Muto 234 Kamitsukari, Nagaizumi-cho, Sunto-gun, Shizuoka Toho Rayon Co., Ltd. F-term (reference) 4L035 BB03 BB06 BB10 BB15 BB17 BB20 BB22 BB60 BB66 BB80 BB85 BB91 DD13 EE07 EE20 FF01 FF04 GG04 HH04 HH10 MB04 MB06 MB19 4L037 CS03 FA03 FA06 FA08 FA11 PA54 PA55 PA70 PC10 PC11 PC14 PF45 PF54 PS00 PS02 PS18 UA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アクリル系重合体の極限粘度[η]が1.
0〜3.5、重量平均分子量Mwと数平均分子量Mnの
比(Mw/Mn)が2.5以下、本文中に定義する失透
度が18以下、広角X線回折による結晶配向度が90%
以上、脈状化率が50%以下で、水分率30〜50%か
らなる炭素繊維製造用プリカーサー。
1. An acrylic polymer having an intrinsic viscosity [η] of 1.
0 to 3.5, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn) is 2.5 or less, the devitrification degree defined in the text is 18 or less, and the crystal orientation degree by wide-angle X-ray diffraction is 90. %
As described above, a precursor for carbon fiber production having a pulsation rate of 50% or less and a water content of 30 to 50%.
【請求項2】アクリル系重合体の極限粘度[η]が1.
0〜3.5、重量平均分子量Mwと数平均分子量Mnの
比(Mw/Mn)が2.5以下、重合体濃度が6〜13
%からなる紡糸原液を紡糸し、水洗、乾燥緻密化後、圧
力が245KPa以下の飽和水蒸気中で延伸し、水分率
30〜50%とする炭素繊維製造用プリカーサーの製造
方法。
2. An acrylic polymer having an intrinsic viscosity [η] of 1.
0 to 3.5, the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn) is 2.5 or less, and the polymer concentration is 6 to 13.
%, Spinning, spin-drying, drying and densifying, and stretching in saturated steam at a pressure of 245 KPa or less to produce a precursor for carbon fiber production with a water content of 30 to 50%.
【請求項3】請求項1及び2で得られたプリカーサーを
使用し、繊維比重が1.3〜1.4に上昇するまでに2
0%以下の収縮を与えた後に、不活性雰囲気中300〜
700℃で2〜10%の延伸を加え、更に不活性雰囲気
中1200〜1700℃の温度で2〜7%の収縮処理を
行って、引張り強度4900MPa以上、伸度2.0%
以上の炭素繊維を得る製造方法。
3. Use of the precursor obtained in claim 1 or 2 until the fiber specific gravity rises to 1.3 to 1.4.
After giving a shrinkage of 0% or less, 300-
A stretch of 2 to 10% is added at 700 ° C., and a shrinkage treatment of 2 to 7% is performed at a temperature of 1200 to 1700 ° C. in an inert atmosphere to obtain a tensile strength of 4900 MPa or more and an elongation of 2.0%.
A method for producing the above carbon fibers.
【請求項4】請求項1、2及び3から得られた引張り強
度4900MPa以上、伸度2.0%以上の炭素繊維。
4. A carbon fiber having a tensile strength of not less than 4900 MPa and an elongation of not less than 2.0% obtained from claim 1, 2 or 3.
JP2000095557A 2000-03-30 2000-03-30 Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber Pending JP2001288613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095557A JP2001288613A (en) 2000-03-30 2000-03-30 Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095557A JP2001288613A (en) 2000-03-30 2000-03-30 Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2001288613A true JP2001288613A (en) 2001-10-19

Family

ID=18610448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095557A Pending JP2001288613A (en) 2000-03-30 2000-03-30 Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2001288613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053468A (en) * 2008-08-27 2010-03-11 Toray Ind Inc Method for producing carbon fiber precursor fiber
KR102212026B1 (en) * 2019-09-03 2021-02-05 효성첨단소재 주식회사 Carbon fiber manufacturing method and carbon fiber using the same
WO2022186921A1 (en) * 2021-03-05 2022-09-09 Cytec Industries, Inc. A process for producing polymer fiber and polymer fiber made therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199410A (en) * 1989-12-27 1991-08-30 Toho Rayon Co Ltd Method for wet-spinning and storing acrylic fiber
JPH1181053A (en) * 1997-08-28 1999-03-26 Toho Rayon Co Ltd High-strength acrylic fiber, its production and production of carbon fiber
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199410A (en) * 1989-12-27 1991-08-30 Toho Rayon Co Ltd Method for wet-spinning and storing acrylic fiber
JPH1181053A (en) * 1997-08-28 1999-03-26 Toho Rayon Co Ltd High-strength acrylic fiber, its production and production of carbon fiber
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053468A (en) * 2008-08-27 2010-03-11 Toray Ind Inc Method for producing carbon fiber precursor fiber
KR102212026B1 (en) * 2019-09-03 2021-02-05 효성첨단소재 주식회사 Carbon fiber manufacturing method and carbon fiber using the same
WO2021045462A1 (en) * 2019-09-03 2021-03-11 효성첨단소재 주식회사 Carbon fiber production method and carbon fiber produced using same
TWI769513B (en) * 2019-09-03 2022-07-01 南韓商曉星高新材料股份有限公司 Carbon fiber manufacturing method and carbon fiber using the same
EP4026942A4 (en) * 2019-09-03 2023-10-25 Hyosung Advanced Materials Corporation Carbon fiber production method and carbon fiber produced using same
WO2022186921A1 (en) * 2021-03-05 2022-09-09 Cytec Industries, Inc. A process for producing polymer fiber and polymer fiber made therefrom

Similar Documents

Publication Publication Date Title
CN109518309B (en) Carbon fiber bundle and method for producing carbon fiber bundle
JPS6336365B2 (en)
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP2021139062A (en) Production method of carbon fiber bundle
JP3048449B2 (en) Acrylonitrile precursor fiber
JP2589192B2 (en) Wet spinning and storage of acrylic fibers
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP4048230B2 (en) Precursor fiber for carbon fiber and method for producing the same
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
JPH0255549B2 (en)
JP2004091943A (en) Method for producing acrylic fiber
JP3154595B2 (en) Method for producing acrylonitrile fiber
JPH0657524A (en) Production of acrylic fiber
JP2002266159A (en) Precursor fiber bundle for carbon fiber and method for producing the same
JPH0742605B2 (en) Method for producing acrylic fiber
JPS6156328B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020