JPH0255549B2 - - Google Patents

Info

Publication number
JPH0255549B2
JPH0255549B2 JP57117405A JP11740582A JPH0255549B2 JP H0255549 B2 JPH0255549 B2 JP H0255549B2 JP 57117405 A JP57117405 A JP 57117405A JP 11740582 A JP11740582 A JP 11740582A JP H0255549 B2 JPH0255549 B2 JP H0255549B2
Authority
JP
Japan
Prior art keywords
fiber
acrylonitrile
ammonium salt
fibers
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57117405A
Other languages
Japanese (ja)
Other versions
JPS599272A (en
Inventor
Hiroyasu Ogawa
Fumio Myatake
Tetsuo Shigei
Sho Takahashi
Tetsuya Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP11740582A priority Critical patent/JPS599272A/en
Publication of JPS599272A publication Critical patent/JPS599272A/en
Publication of JPH0255549B2 publication Critical patent/JPH0255549B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強度炭素繊維を得るに好適な、繊
維相互に膠着のない耐炎性繊維を得るためのアク
リロニトリル系繊維、及び、このアクリロニトリ
ル系繊維の製造方法に関するものである。 従来、アクリロニトリル系繊維を空気中200〜
300℃で張力下に耐炎化処理して耐炎性繊維とし、
又は、更にこの耐炎性繊維を500℃以上の不活性
ガス雰囲気中張力下で炭素化処理して、炭素繊維
を得ることは知られている。 耐炎性繊維は、防炎防熱材又はパツキング材と
して使用されているが、品質性能の一層の改善が
望まれている。 上記のようにして得た炭素繊維は、比強度と比
弾性に優れているため、スポーツ、レジヤー用品
をはじめ自動車、高速駆動体、更には、航空、宇
宙分野にも採用され、需要が拡大している。しか
し、こうした需要の拡大に伴い用途によつては従
来の引張強度300〜350Kg/mm2程度のもので不満足
で、更に、これを超えた、より高強度の炭素繊維
が要望されるようになつた。 本発明者等はかかる事情にかんがみ、所望の繊
維を得べく検討の結果、従来の耐炎性繊維の品質
性能が充分でなく、また、炭素繊維の引張強度が
前記の如き値にとどまつている要因が、耐炎化処
理過程における単繊維相互間の膠着にあることを
見出し、この膠着防止の対策について研究を進め
た結果、本発明に至つた。 本発明は、単繊維相互間に膠着のない耐炎性繊
維製造用又は炭素繊維製造用のアクリロニトリル
系繊維、及び、その製造方法を提供することを目
的とするものである。 本発明は下記の通りである。 一般式 (式中R1は炭素数11〜17個の脂肪族炭化水素
基、R2及びR3は水素原子、低級アルキル基、ヒ
ドロキシエチル基、ヒドロキシイソプロピル基、
Xは有機酸の陰イオンを表わす。ただし、R2
はR3がヒドロキシイソプロピル基である場合、
Xは塩素原子を表わす。) で示される脂肪酸エステルアンモニウム塩の少く
とも1種を付着した耐炎性繊維製造用又は炭素繊
維製造用のアクリロニトリル系繊維。〔特許請求
の範囲1〕 アクリロニトリル系繊維の製造工程における脱
溶媒後から繊維製造完了まで、又は、完了後の何
れかの段階で一般式〔A〕 (式中R1は炭素数11〜17個の脂肪族炭化水素
基、R2及びR3は水素原子、低級アルキル基、ヒ
ドロキシエチル基、ヒドロキシイソプロピル基、
Xは有機酸の陰イオンを表わす。ただし、R2
はR3がヒドロキシイソプロピル基である場合、
Xは塩素原子を表わす。) で示される脂肪酸エステルアンモニウム塩の少く
とも1種を含有する水溶液又は水分散液にて付着
処理をした後、熱処理をすることを特徴とする耐
炎性繊維製造用又は炭素繊維製造用のアクリロニ
トリル系繊維の製造方法。〔特許請求の範囲5〕 本発明にかかるアクリロニトリル系繊維を使用
して耐炎化処理をすることにより、単繊維相互間
の膠着のない耐炎性繊維が得られる。 このような耐炎性繊維を、次いで炭素化するこ
とによつて、高強度の炭素繊維が得られる。上記
耐炎性繊維は、自体として品質が向上しているた
め、紡績性が改善されている。 本発明にかかるアクリロニトリル系繊維は、高
強度の炭素繊維の製造用には、特にアクリロニト
リル95モル%以上とアクリロニトリルと共重合し
うるビニル系単量体5モル%以下からなる重合体
より得られたものが好ましい。 共重合成分であるビニル系単量体は、通常アク
リロニトリル系繊維の製造に使用されるものであ
り、例えば、アクリル酸メチル、アクリル酸エチ
ル、酢酸ビニル等の中性単量体やアクリル酸、メ
タクリル酸、イタコン酸又はそれらの塩、アリル
スルホン酸ソーダ、メタクリルスルホン酸ソーダ
等の酸性基含有単量体、更にビニルピリジン、ビ
ニルイミダゾール等の塩基性基含有単量体が挙げ
られる。 上記アクリロニトリル系繊維の製造は、従来既
知の方法で行うことができる。即ち、例えばアク
リロニトリル又はアクリロニトリルとこれと共重
合しうるビニル系単量体とを原料として、ポリア
クリロニトリル用の溶剤(例えばジメチルホルム
アミド、濃厚塩化亜鉛系水溶液、ジメチルスルホ
キサイド、ジメチルアセトアミド、など)中で触
媒(例えば過酸化ベンゾイル、過酸化水素、過硫
酸ソーダなど)を用いて重合反応をする。かくし
て得た通常分子量40000〜100000のアクリロニト
リル系重合体の溶液を、溶剤の希溶液中に細孔を
通して圧出し、脱溶剤した後、乾燥、延伸、弛緩
等を施す。 得られたものは、通常0.1〜3.0デーニルの単繊
維が500〜100000本集合した繊維束からなつてい
る。 本発明においてアクリロニトリル系繊維に対し
て付着させるアンモニウム塩は、前記一般式
〔A〕で示される脂肪酸エステルアンモニウム塩
である。 式中R1は炭素数11〜17個の脂肪族炭化水素基、
特に直鎖状飽和脂肪族炭化水素基、R2及びR3は、
水素原子、低級アルキル基(メチル基、エチル基
等の炭素数1〜3のアルキル基)、ヒドロキシエ
チル基、ヒドロキシイソプロピル基を表わし、X
は有機酸の陰イオン、例えば、酢酸イオン、乳酸
イオン、ホスホリルジオキシエタノールイオンを
表わす。ただし、R2又はR3がヒドロキシイソプ
ロピル基である場合、Xは塩素原子を表わす。 これら一般式に含まれるアンモニウム塩の1種
又は2種以上を使用するか、或いは、他の界面活
性剤と併用することもできる。他の界面活性剤と
併用する場合、その比は50重量%以下とするのが
よい。 上記一般式〔A〕で示される化合物としては、
例えば次の如きものである。 これらアンモニウム塩の製法は、下記の反応に
基づいて行われる。 (式中R1R2R3及びXは前記と同じ。) 何れの製造法においても反応物はすべて当モル
を使用し、第1段の反応では、100〜200℃ではげ
しく撹拌し、5〜15時間反応させ、第2段の反応
では、150〜200℃で5〜15時間反応させる。 本発明に使用されるアンモニウム塩は、N原子
にヒドロキシル基を1個以上含有する立体的に大
きな化合物であるために、水への溶解、分散性が
きわめて優れているという特徴を有しているにも
かかわらず、繊維内部への浸透力は弱く繊維表面
に均一に被覆するように付着するという特性を有
している。 しかも、耐炎化初期の段階で、更に大きな分子
へと反応するとともにアクリロニトリル系繊維表
面層とも化学反応するという特異な性質を有して
いる。このために、繊維表面の分子の熱運動に伴
う収縮、分子配向の乱れを抑制するという働きを
する。 一般にアクリロニトリル系繊維の製造において
は、紡糸の脱溶媒後、延伸、乾燥、弛緩等の処理
が行われる。本発明においてアンモニウム塩の付
着処理は、アクリロニトリル系繊維の製造工程に
おける脱溶媒後から繊維製造完了まで、又は、繊
維製造完了後の何れかの段階で行われる。即ち、
上記の少くとも1つの処理工程において、又は、
1つの処理工程と次の処理工程との間において行
われる。アンモニウム塩の付着処理に当つては、
所定のアンモニウム塩の1種又は2種以上を水に
溶解又は分散させた液を繊維に付着させる。通常
は、この液を繊維にスプレーするか、又は、この
液の浴中に繊維束を浸漬させることによつて付着
処理が行われる。アンモニウム塩を繊維束の単繊
維間に十分侵入させるためには、好ましくは浴温
20〜70℃で1〜5分浸漬を行う。70℃より高い
と、該塩が水中で凝集する傾向を示すため、付着
斑(むら)を生ずることや、繊維内部への浸透性
を増すなどのため、得られる炭素繊維の強度が低
くなる。他方、20℃より低い場合、水への溶解分
散が因難で、分散した粒子が大きすぎるために、
付着斑を生じ膠着を発生させるので好ましくな
い。液の濃度としては通常1〜20g/が使用さ
れる。アンモニウム塩含有液のPH条件が製品性能
に影響を与え、一層高品質の耐炎性繊維及び炭素
繊維を得るには、PH4以下が好ましい。PH4より
高くなると、該塩が凝集し易くなり、膠着を増加
させる傾向となるので好ましくない。PHは4以下
ならいくらでもよいが、通常1以上、好ましくは
2〜3.5がよい。また、PHの調整は、好ましくは、
該塩のXと同種の陰イオンを有する酸又は苛性ソ
ーダで行う。付着量は、繊維重量に対し0.01〜
0.5%がよい。付着量が0.01%未満では、膠着防
止効果が十分に得られず、0.5%を超えると炭素
化処理の際繊維表面で炭化物を生じ易く、炭素繊
維の強度もそれだけ低下する。付着量を0.3%以
下とすると、アンモニウム塩の繊維内部への浸透
が少いため特に高強度の炭素繊維を製造するのに
よい。 アンモニウム塩を含有する液を付着させた後乾
燥を行う。乾燥は、繊維を炭素繊維とした場合の
強度が低下しないよう注意して行う。例えば、繊
維がゲル状の場合は70〜140℃の間の温度で徐々
に昇温しながら行う。繊維がゲル状でない場合は
通常100〜150℃において乾燥を行う。なお、アン
モニウム塩の付着量の測定は、ソツクスレー抽出
器を用いて付着繊維をアルコール及びベンゼンの
等量混合液で、3時間抽出して行う。 本発明のアンモニウム塩付着アクリロニトリル
系繊維を200〜300℃に加熱すると、アンモニウム
塩は反応して水不溶性の化合物になり、また、ア
クリロニトリル系繊維とも反応していると考えら
れる変化が認められる。これによつて膠着防止が
できると考えられる。 アンモニウム塩を付着させたアクリロニトリル
系繊維を耐炎化処理前に200〜300℃の間で少くと
も0.7分間予め加熱処理をし、アンモニウム塩を
上記の如く変化させておくこともできる。 この加熱処理の際の好ましい加熱温度は230℃
以上であるが、温度を200℃よりも高くする場合
は昇温速度を10℃/sec以下、通常1〜5℃/sec
にすると膠着防止の点で一層大きな効果が得ら
れ、高強度の炭素繊維を得るのに適した繊維とな
る。このように昇温速度10℃/sec以下で200〜
300℃で熱処理されたアリロニトリル系繊維は、
一旦巻きとつた後、耐炎化処理工程に供してもよ
く、また、この熱処理工程を耐炎化工程と連続的
に行つてもよい。 アンモニウム塩付着アクリロニトリル系繊維
は、上記の如き熱処理後又はこの処理を行わずに
耐炎化処理される。耐炎化処理は従来公知の方法
で行われる。即ち、酸化性雰囲気、例えば空気中
200〜300℃、好ましくは250〜300℃の温度で0.1
〜15時間、耐炎化処理を行う。高強度の炭素繊維
を得るためには、200mg/デニール以下の張力下
で、また、更に高強度の炭素繊維を得るために
は、10〜100mg/デニールの張力下で行うのが好
ましい。耐炎化処理は、繊維の比重が1.30〜1.45
g/cm3となるまで行うことが好適である。 このようにして得られた耐炎性繊維は、膠着が
極めて少く、これを炭化して高強度炭素繊維を製
造するのに適している。耐炎性繊維の炭素化処理
は、窒素、アルゴン、ヘリウムの如き不活性雰囲
気中1000〜1500℃で行う。この際、高強度の炭素
繊維を得るためには、10〜100mg/デニールの張
力下で行うのが好ましい。 以上の如くして本発明のアクリロニトリル系繊
維から得られた炭素繊維は極めて高い強度を有す
る。 以下、実施例を挙げて本発明を具体的に説明す
る。実施例中「%」、「部」とあるは、特に事柄の
性質に反さない限り重量基準である。 実施例 1 60%塩化亜鉛水溶液1000部中に、アクリロニト
リル98%、アクリル酸0.5モル%、アクリル酸メ
チル1.5モル%とからなる単量体混合物100部及び
過硫酸アンモニウム1部を溶解し、55℃で4時間
重合して、スタウジンガー式で求められる分子量
55000の粘度98ポイズを有するアクリロニトリル
系重合体溶液を得た。 このものを、直径0.05mm、孔数10000のノズル
を通して25%塩化亜鉛系水溶液中に圧出し、水洗
によつて脱塩化亜鉛しつつ3倍延伸した。 別に、ステアリン酸と当モルのトリエタノール
アミンの混合物を165℃で10時間加熱し、次いで、
得られた化合物に対して当モルの乳酸とジヒドロ
オキシエチルリン酸とをそれぞれ90℃で反応させ
て得た一般式〔A〕の前記化合物(1)、及び同(2)を
含むPH3.3の4g/水分散液をそれぞれ調製し
た。 上記2種のものをそれぞれ用いて、前記の3倍
延伸後の繊維を60℃で0.2分浸漬した後、120℃で
乾燥した。次いで、連続的に飽和水蒸気125℃中
で4.5倍延伸して、アンモニウム塩付着アクリロ
ニトリル系繊維を得た。これらの繊維は、何れも
引張強度5.4〜5.6g/d、引張伸度11〜12%で繊
度が、1.1デニールであつた。このものについて
アンモニウム塩の付着量を測定したところ0.025
%であつた。 このようにして得たアクリロニトリル系繊維を
空気中において255℃、張力50mg/dの下で40分、
次いで、280℃、張力40mg/dの下で20分間耐炎
化処理をした(200℃から255℃までの昇温速度は
30℃/secである。) 耐炎性繊維は、何れも引張強度3.0〜3.3g/
d、引張伸度13〜14%、比重1.4g/c.c.であり、
電子顕微鏡による観察では単繊維に膠着は認めら
れなかつた。 この耐炎性繊維を、窒素気流中1300℃、50mg/
dの張力下で40秒間炭素化した。得られた炭素繊
維の性質は第1表の通りであり、耐炎性繊維にお
けると同様、膠着は認められなかつた。
The present invention relates to an acrylonitrile-based fiber for obtaining flame-resistant fibers that are suitable for obtaining high-strength carbon fibers and that do not stick to each other, and a method for producing the acrylonitrile-based fibers. Previously, acrylonitrile fibers were exposed to 200 ~
Flame-resistant fibers are made by flame-retardant treatment under tension at 300℃.
Alternatively, it is known to further carbonize this flame-resistant fiber under tension in an inert gas atmosphere at 500° C. or higher to obtain carbon fiber. Flame-resistant fibers are used as flame-retardant and heat-insulating materials or packing materials, but further improvement in quality and performance is desired. The carbon fiber obtained as described above has excellent specific strength and specific elasticity, so it is used in sports and leisure products, automobiles, high-speed drives, and even in the aviation and space fields, and demand is expanding. ing. However, as demand expands, the conventional tensile strength of 300 to 350 Kg/ mm2 is unsatisfactory for some applications, and there is a growing demand for carbon fibers with even higher strength. Ta. In view of the above circumstances, the inventors of the present invention conducted studies to obtain the desired fibers, and found that the quality performance of conventional flame-resistant fibers was insufficient, and that the tensile strength of carbon fibers remained at the above-mentioned values. However, it was discovered that this is caused by adhesion between the single fibers during the flame-retardant treatment process, and as a result of conducting research on measures to prevent this adhesion, the present invention was achieved. An object of the present invention is to provide an acrylonitrile fiber for producing flame-resistant fibers or carbon fibers in which single fibers do not stick together, and a method for producing the same. The present invention is as follows. general formula (In the formula, R 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms, R 2 and R 3 are hydrogen atoms, lower alkyl groups, hydroxyethyl groups, hydroxyisopropyl groups,
X represents an anion of an organic acid. However, if R 2 or R 3 is a hydroxyisopropyl group,
X represents a chlorine atom. ) Acrylonitrile fibers for producing flame-resistant fibers or for producing carbon fibers, to which at least one fatty acid ester ammonium salt shown is attached. [Claim 1] General formula [A] at any stage from after solvent removal to completion of fiber production in the production process of acrylonitrile fibers or after completion of the production process. (In the formula, R 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms, R 2 and R 3 are hydrogen atoms, lower alkyl groups, hydroxyethyl groups, hydroxyisopropyl groups,
X represents an anion of an organic acid. However, if R 2 or R 3 is a hydroxyisopropyl group,
X represents a chlorine atom. ) Acrylonitrile-based for flame-resistant fiber production or carbon fiber production, which is characterized in that it is subjected to adhesion treatment with an aqueous solution or aqueous dispersion containing at least one fatty acid ester ammonium salt represented by (a) and then heat-treated. Fiber manufacturing method. [Claim 5] By subjecting the acrylonitrile fiber according to the present invention to flame-retardant treatment, a flame-resistant fiber without adhesion between single fibers can be obtained. By subsequently carbonizing such flame-resistant fibers, high-strength carbon fibers can be obtained. The flame-resistant fiber itself has improved quality, and therefore has improved spinnability. The acrylonitrile fiber according to the present invention is particularly suitable for producing high-strength carbon fibers, and is obtained from a polymer consisting of 95 mol% or more of acrylonitrile and 5 mol% or less of a vinyl monomer that can be copolymerized with acrylonitrile. Preferably. Vinyl monomers, which are copolymerization components, are those normally used in the production of acrylonitrile fibers, and include neutral monomers such as methyl acrylate, ethyl acrylate, and vinyl acetate, as well as acrylic acid and methacrylate. Examples include monomers containing acidic groups such as acids, itaconic acid or salts thereof, sodium allylsulfonate and sodium methacrylsulfonate, and monomers containing basic groups such as vinylpyridine and vinylimidazole. The above-mentioned acrylonitrile fiber can be produced by a conventionally known method. That is, for example, acrylonitrile or a vinyl monomer copolymerizable with acrylonitrile is used as a raw material in a solvent for polyacrylonitrile (for example, dimethylformamide, concentrated zinc chloride aqueous solution, dimethyl sulfoxide, dimethylacetamide, etc.). A polymerization reaction is carried out using a catalyst (e.g. benzoyl peroxide, hydrogen peroxide, sodium persulfate, etc.). The thus obtained solution of an acrylonitrile polymer having a normal molecular weight of 40,000 to 100,000 is extruded into a dilute solution of a solvent through a pore, and after removing the solvent, it is subjected to drying, stretching, relaxation, etc. The resulting product usually consists of a fiber bundle of 500 to 100,000 single fibers of 0.1 to 3.0 denier. In the present invention, the ammonium salt attached to the acrylonitrile fiber is a fatty acid ester ammonium salt represented by the general formula [A]. In the formula, R 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms,
In particular, the linear saturated aliphatic hydrocarbon groups, R 2 and R 3 ,
Represents a hydrogen atom, a lower alkyl group (alkyl group having 1 to 3 carbon atoms such as a methyl group or an ethyl group), a hydroxyethyl group, or a hydroxyisopropyl group,
represents an anion of an organic acid, such as an acetate ion, a lactate ion, or a phosphoryldioxyethanol ion. However, when R 2 or R 3 is a hydroxyisopropyl group, X represents a chlorine atom. One or more ammonium salts included in these general formulas may be used, or they may be used in combination with other surfactants. When used in combination with other surfactants, the ratio is preferably 50% by weight or less. As the compound represented by the above general formula [A],
For example: The method for producing these ammonium salts is carried out based on the following reaction. (In the formula, R 1 R 2 R 3 and The reaction is carried out for ~15 hours, and in the second stage reaction, the reaction is carried out at 150-200°C for 5-15 hours. The ammonium salt used in the present invention is a sterically large compound containing one or more hydroxyl groups in the N atom, and is therefore characterized by extremely excellent solubility and dispersibility in water. However, it has a characteristic that it has a weak ability to penetrate into the fibers and adheres to the fiber surfaces uniformly. Furthermore, it has the unique property of reacting to larger molecules and chemically reacting with the surface layer of acrylonitrile fibers at the initial stage of flame resistance. For this reason, it functions to suppress shrinkage and disturbance of molecular orientation caused by thermal movement of molecules on the fiber surface. Generally, in the production of acrylonitrile fibers, treatments such as stretching, drying, and relaxation are performed after the solvent is removed during spinning. In the present invention, the ammonium salt adhesion treatment is performed at any stage from after solvent removal in the acrylonitrile fiber manufacturing process until the fiber manufacturing is completed, or at any stage after the fiber manufacturing is completed. That is,
In at least one treatment step as described above, or
It is carried out between one processing step and the next processing step. For ammonium salt adhesion treatment,
A solution in which one or more predetermined ammonium salts are dissolved or dispersed in water is applied to the fibers. The deposition process is usually carried out by spraying the liquid onto the fibers or by immersing the fiber bundles in a bath of the liquid. In order to sufficiently penetrate the ammonium salt between the single fibers of the fiber bundle, the bath temperature is preferably
Soak for 1 to 5 minutes at 20 to 70°C. If the temperature is higher than 70°C, the salt tends to aggregate in water, resulting in uneven adhesion and increased permeability into the interior of the fiber, resulting in a decrease in the strength of the resulting carbon fiber. On the other hand, if the temperature is lower than 20℃, dissolution and dispersion in water is difficult, and the dispersed particles are too large.
This is not preferable because it causes adhesion spots and agglutination. The concentration of the liquid used is usually 1 to 20 g/. The pH condition of the ammonium salt-containing liquid affects the product performance, and in order to obtain higher quality flame-resistant fibers and carbon fibers, the pH condition is preferably 4 or less. If the pH is higher than 4, the salt tends to aggregate, which tends to increase adhesion, which is not preferable. The pH may be any value as long as it is 4 or less, but it is usually 1 or more, preferably 2 to 3.5. In addition, PH adjustment is preferably done by
This is carried out with an acid or caustic soda having the same type of anion as X in the salt. The amount of adhesion is 0.01 to fiber weight
0.5% is good. If the adhesion amount is less than 0.01%, a sufficient anti-sticking effect cannot be obtained, and if it exceeds 0.5%, carbides are likely to be formed on the fiber surface during carbonization treatment, and the strength of the carbon fiber will decrease accordingly. When the amount of adhesion is 0.3% or less, the ammonium salt permeates into the fibers to a small extent, which is particularly suitable for producing high-strength carbon fibers. After applying the liquid containing ammonium salt, drying is performed. Drying is carried out with care so as not to reduce the strength of carbon fibers. For example, if the fiber is in a gel state, the temperature is gradually increased between 70 and 140°C. If the fiber is not gel-like, it is usually dried at 100 to 150°C. The amount of ammonium salt attached is measured by extracting the attached fibers with a mixture of equal amounts of alcohol and benzene for 3 hours using a Soxhlet extractor. When the ammonium salt-attached acrylonitrile fiber of the present invention is heated to 200 to 300°C, the ammonium salt reacts to become a water-insoluble compound, and a change is observed that is considered to be a reaction with the acrylonitrile fiber. It is thought that this can prevent sticking. The ammonium salt can be changed as described above by heat-treating the acrylonitrile fiber to which the ammonium salt has been attached for at least 0.7 minutes at 200 to 300° C. before the flame-retardant treatment. The preferred heating temperature for this heat treatment is 230℃
However, if the temperature is higher than 200℃, the heating rate should be 10℃/sec or less, usually 1 to 5℃/sec.
By doing so, a greater effect can be obtained in terms of preventing sticking, and the fiber becomes suitable for obtaining high-strength carbon fiber. In this way, at a heating rate of 10℃/sec or less,
Allylonitrile fibers heat-treated at 300℃,
Once rolled up, it may be subjected to a flame-retardant treatment step, or this heat treatment step may be performed continuously with the flame-retardant step. The ammonium salt-attached acrylonitrile fibers are subjected to flame-retardant treatment after or without heat treatment as described above. The flameproofing treatment is performed by a conventionally known method. That is, in an oxidizing atmosphere, e.g.
0.1 at a temperature of 200-300℃, preferably 250-300℃
Flame retardant treatment for ~15 hours. In order to obtain high-strength carbon fibers, it is preferable to carry out the process under a tension of 200 mg/denier or less, and in order to obtain even higher-strength carbon fibers, it is preferable to carry out the process under a tension of 10 to 100 mg/denier. Flame-retardant treatment is applied when the specific gravity of the fiber is 1.30 to 1.45.
It is preferable to carry out the treatment until the amount reaches g/cm 3 . The flame-resistant fiber thus obtained has extremely little agglutination and is suitable for carbonizing it to produce high-strength carbon fiber. The carbonization treatment of flame-resistant fibers is carried out at 1000 to 1500°C in an inert atmosphere such as nitrogen, argon, or helium. At this time, in order to obtain high-strength carbon fibers, it is preferable to carry out the process under a tension of 10 to 100 mg/denier. The carbon fiber obtained from the acrylonitrile fiber of the present invention as described above has extremely high strength. The present invention will be specifically described below with reference to Examples. In the examples, "%" and "part" are based on weight unless otherwise contrary to the nature of the matter. Example 1 100 parts of a monomer mixture consisting of 98% acrylonitrile, 0.5 mol% acrylic acid, and 1.5 mol% methyl acrylate and 1 part ammonium persulfate were dissolved in 1000 parts of a 60% zinc chloride aqueous solution, and the mixture was heated at 55°C. After polymerization for 4 hours, the molecular weight determined by the Stausinger formula
An acrylonitrile polymer solution having a viscosity of 55,000 and a viscosity of 98 poise was obtained. This material was extruded into a 25% zinc chloride aqueous solution through a nozzle having a diameter of 0.05 mm and 10,000 holes, and was stretched three times while removing zinc chloride by washing with water. Separately, a mixture of stearic acid and equimolar triethanolamine was heated at 165°C for 10 hours, and then
Compound (1) of the general formula [A] obtained by reacting the obtained compound with equimolar amounts of lactic acid and dihydroxyethyl phosphoric acid at 90°C, and PH3.3 containing the same (2). A 4 g/water dispersion of each was prepared. Using each of the above two types, the fibers after being stretched 3 times were immersed at 60°C for 0.2 minutes, and then dried at 120°C. Next, the fibers were continuously stretched 4.5 times in saturated steam at 125° C. to obtain ammonium salt-attached acrylonitrile fibers. All of these fibers had a tensile strength of 5.4 to 5.6 g/d, a tensile elongation of 11 to 12%, and a fineness of 1.1 denier. The amount of ammonium salt attached to this product was measured and was 0.025.
It was %. The acrylonitrile fiber thus obtained was placed in air at 255°C under a tension of 50 mg/d for 40 minutes.
Next, flame-retardant treatment was performed at 280℃ for 20 minutes under a tension of 40mg/d (the temperature increase rate from 200℃ to 255℃ was
30℃/sec. ) All flame-resistant fibers have a tensile strength of 3.0 to 3.3 g/
d, tensile elongation 13-14%, specific gravity 1.4 g/cc,
No agglutination was observed in the single fibers when observed using an electron microscope. This flame-resistant fiber was heated at 1300℃ in a nitrogen stream at 50mg/
Carbonization was carried out for 40 seconds under a tension of d. The properties of the obtained carbon fibers are shown in Table 1, and as with the flame-resistant fibers, no adhesion was observed.

【表】 比較例 1 アンモニウム塩の代りに、ポリオキシエチレン
15モル付加シロキサン4g/を含むPH3.3、50
℃の水分散液を用いて、実施例1と同様の処理を
行つた。得られたアクリロニトリル系繊維と耐炎
性繊維に関する物性及び膠着性は実施例1と同様
であつた。得られた炭素繊維は、引張強度345
Kg/mm2、引張弾性率24.2t/mm2であり、本発明の
アンモニウム塩を用いた場合に比し引張強度にお
いて見劣りがした。 なお、得られた炭素繊維に膠着は認められなか
つたが、繊維内にシリコンの存在が認められ、こ
れが引張強度の低い原因と思われる。 実施例 2 実施例1におけると同様にして、アクリロニト
リル系重合体溶液を紡糸し、水洗、脱塩化亜鉛し
つつ3倍延伸した。別に、ステアリン酸と当モル
のヒドロキシイソプロピルジエタノールアミンを
180℃、15時間反応させ、更に、この反応物と当
モルの36%塩酸と90℃で反応させた得た一般式
〔A〕の前記化合物(4)を塩酸でPH3.5に調整した。
上記のものを用いて、実施例1と同様の処理を行
つた。 得られたアクリロニトリル系繊維は、単繊維デ
ニール1.0、引張強度5.2g/d、引張伸度12%、
アンモニウム塩付着量0.022%であつた。このも
のを実施例1と同様にして、耐炎化処理及び炭素
化処理行い炭素繊維を得た。この炭素繊維の引張
強度は、410Kg/mm2、引張弾性率は24.4t/mm2であ
つた。 実施例 3 実施例1において一般式〔A〕の化合物(1)ステ
アリン酸エステルアンモニウム塩の付着量を
0.015%、0.038%になるように浴濃度を調整して
付着させた以外は、実施例1におけると同様にし
てアクリロニトリル系繊維を得た。これらから得
られた炭素繊維の引張強度は、それぞれ405Kg/
mm2、360Kg/mm2であり、引張弾性率は何れも
24.3t/mm2であつた。 実施例 4 実施例1において一般式〔A〕の化合物(1)ステ
アリン酸エステルアンモニウム塩の水分散液のPH
を3.0と4.8との2種に調整して得た液を用いてそ
れぞれ付着を行つた以外は、実施例1と同様にし
て、アクリロニトリル系繊維及び炭素繊維を得
た。得られた炭素繊維の引張強度は、それぞれ
407Kg/mm2、360Kg/mm2であり、引張弾性率は何れ
も24.4t/mm2であつた。 比較例 2 本発明のアンモニウム塩に属さない下記式 のアンモニウム塩においてn=1、n=5、n=
20の3種類のものを用いて、実施例1と同様にし
て耐炎化処理し、次いで、炭素化処理を行つた。 得られた炭素繊維の引張強度は、下記の通りで
あり、何れも低い値を示した。 n= 1の場合 330Kg/mm2 n= 5 〃 320 〃 n=20 〃 308 〃 実施例 5 60%塩化亜鉛水溶液1000部中にアクリロニトリ
ル97モル%、アクリル酸メチル2.5モル%、メタ
リルスルホン酸ナトリウム0.5モル%とからなる
単量体混合物95部及び過硫酸アンモニウム0.85部
を溶解し、50℃で5時間重合してスタウジンガー
式で求められる分子量75000、粘度100ポイズ(45
℃)を有するアクリロニトリル重合体溶液を得
た。このものを直径0.06mm、孔数48000のノズル
を通して28%塩化亜鉛系水溶液中に圧出し、水洗
によつて脱塩化亜鉛しつつ2.5倍延伸し、更に、
一般式〔A〕の化合物(2)のステアリン酸エステル
アンモニウム塩の7g/水分散液中に45℃にお
いて、0.2分間通して105℃において10分、120℃
において15分間乾燥した。 次いで、連続的に115℃の飽和水蒸気中で更に
5.5倍延伸し、次いで、120℃で30秒間飽和水蒸気
中で4%収縮させ、単繊維デニール1.5、引張強
度5g/d、引張伸度15%のアクリロニトリル系
繊維を得た。 この繊維を第1図に示す如き多段ローラー群を
有する耐炎化炉を用いて耐炎化を行つた。第1図
において、1は耐炎化炉、2はローラー、3はア
クリロニトリル系繊維、4は耐炎性繊維である。
耐炎化処理はトータルの収縮率が10%となるよう
にして、250℃2時間行つた(200℃から250℃ま
での昇温速度は10℃/secである)。 得られた耐炎性繊維は、比重1.42g/c.c.、引張
り強度3.1g/d、引張伸度15%を有し、単繊維
間の膠着は認められなかつた。 この耐炎性繊維をターボステープラーにてスラ
イバーとしたのちリング紡績機にて紡績糸とした
ところ、糸切れ、毛羽立ち等の問題なく、紡績糸
とすることができた。 また、このようにして得られた耐炎性繊維を実
施例1と同条件で炭素化処理して得た炭素繊維の
引張強度は、432Kg/mm2であり非常に優れていた。 比較例 3 本発明のアンモニウム塩に属さないデシルトリ
メチルアンモニウムクロライドを実施例5で使用
した一般式〔A〕の化合物(2)のステアリン酸エス
テルアンモニウム塩の代りに用いる以外は、実施
例5と同様にしてアクリロニトリル系繊維とし
た。このものを耐炎化処理し、次いで、実施例1
と同一条件で炭素化処理を行つた。得られた炭素
繊維の引張強度は、320Kg/mm2であり、これは実
施例5で得られた炭素繊維に比べ非常に劣つてい
た。 実施例 6 実施例5と同様にしてアンモニウム塩を付着し
たアクリロニトリル系繊維を製造し、連続して3
%の収縮を与えながら200℃より250℃まで7℃/
secで昇温し、250℃で1分間処理してアンモニウ
ム塩に熱変化を起させた。 この繊維は、毛羽の発生もなく、単繊維デニー
ル1.55、引張強度5g/d、引張伸度18%の膠着
のない繊維であつた。 この繊維を実施例5と同様にして耐炎化処理
し、次いで、実施例1と同様にして炭素化したと
ころ、引張強度440Kg/mm2と極めて高い強度を有
し、且つ電子顕微鏡で観察した結果膠着のない炭
素繊維が得られた。 実施例 7 実施例5のアンモニウム塩を付着したアクリロ
ニトリル系繊維を、更に連続して下記第2表の如
き条件で耐炎化処理前の熱処理に付してアクリロ
ニトリル系繊維を得た。このものを出発原料とし
て第1図に示す如き耐炎化炉で、実施例1と同様
にして耐炎化し、次いで、窒素気流中1400℃、30
mg/dの張力下で、1分間炭素化し炭素繊維とし
た。この炭素繊維について引張強度を測定した結
果を第2表に示す。
[Table] Comparative example 1 Polyoxyethylene instead of ammonium salt
PH3.3, 50 containing 4g/15mol addition siloxane
The same treatment as in Example 1 was carried out using an aqueous dispersion at .degree. The physical properties and adhesion properties of the obtained acrylonitrile fiber and flame-resistant fiber were the same as in Example 1. The resulting carbon fiber has a tensile strength of 345
Kg/mm 2 and tensile modulus of 24.2 t/mm 2 , which was inferior in tensile strength to the case where the ammonium salt of the present invention was used. Although no adhesion was observed in the obtained carbon fibers, the presence of silicon was observed within the fibers, which is thought to be the cause of the low tensile strength. Example 2 In the same manner as in Example 1, an acrylonitrile polymer solution was spun, and stretched 3 times while washing with water and dechlorinating zinc. Separately, add stearic acid and equimolar amounts of hydroxyisopropyldiethanolamine.
The reaction was carried out at 180°C for 15 hours, and the reaction product was further reacted with equimolar amount of 36% hydrochloric acid at 90°C. The obtained compound (4) of the general formula [A] was adjusted to pH 3.5 with hydrochloric acid.
The same treatment as in Example 1 was carried out using the above-mentioned material. The obtained acrylonitrile fiber had a single fiber denier of 1.0, a tensile strength of 5.2 g/d, a tensile elongation of 12%,
The amount of ammonium salt deposited was 0.022%. This material was subjected to flameproofing treatment and carbonization treatment in the same manner as in Example 1 to obtain carbon fibers. This carbon fiber had a tensile strength of 410 Kg/mm 2 and a tensile modulus of 24.4 t/mm 2 . Example 3 In Example 1, the amount of the compound (1) stearate ammonium salt of general formula [A] was determined.
Acrylonitrile fibers were obtained in the same manner as in Example 1, except that the bath concentrations were adjusted to 0.015% and 0.038%. The tensile strength of the carbon fibers obtained from these is 405Kg/
mm 2 , 360Kg/mm 2 , and the tensile modulus is
It was 24.3t/ mm2 . Example 4 PH of aqueous dispersion of compound (1) stearic acid ester ammonium salt of general formula [A] in Example 1
Acrylonitrile fibers and carbon fibers were obtained in the same manner as in Example 1, except that the liquids obtained by adjusting the fibers to 3.0 and 4.8 were used for deposition. The tensile strength of the obtained carbon fibers is
407Kg/mm 2 and 360Kg/mm 2 , and the tensile modulus was 24.4t/mm 2 in both cases. Comparative Example 2 The following formula does not belong to the ammonium salt of the present invention n=1, n=5, n= in the ammonium salt of
Using three types of No. 20, flameproofing treatment was performed in the same manner as in Example 1, and then carbonization treatment was performed. The tensile strengths of the obtained carbon fibers were as follows, and all showed low values. When n=1 330Kg/mm 2 n=5 〃 320 〃 n=20 〃 308 〃 Example 5 97 mol% of acrylonitrile, 2.5 mol% of methyl acrylate, sodium methallylsulfonate in 1000 parts of 60% zinc chloride aqueous solution 95 parts of a monomer mixture consisting of 0.5 mol% and 0.85 parts of ammonium persulfate were polymerized at 50°C for 5 hours to obtain a molecular weight of 75,000 and a viscosity of 100 poise (45
℃) was obtained. This material was extruded into a 28% zinc chloride aqueous solution through a nozzle with a diameter of 0.06 mm and 48,000 holes, and was stretched 2.5 times while removing zinc chloride by washing with water.
7 g/water dispersion of compound (2) of the compound (2) of general formula [A] at 45°C for 0.2 minutes, at 105°C for 10 minutes, at 120°C.
and dried for 15 minutes. Then, continuously further in saturated steam at 115℃
It was stretched 5.5 times and then shrunk by 4% in saturated steam at 120° C. for 30 seconds to obtain an acrylonitrile fiber having a single fiber denier of 1.5, a tensile strength of 5 g/d, and a tensile elongation of 15%. This fiber was made flameproof using a flameproofing furnace having a multistage roller group as shown in FIG. In FIG. 1, 1 is a flame-resistant furnace, 2 is a roller, 3 is an acrylonitrile fiber, and 4 is a flame-resistant fiber.
The flameproofing treatment was carried out at 250°C for 2 hours so that the total shrinkage rate was 10% (the temperature increase rate from 200°C to 250°C was 10°C/sec). The obtained flame-resistant fiber had a specific gravity of 1.42 g/cc, a tensile strength of 3.1 g/d, and a tensile elongation of 15%, and no adhesion between single fibers was observed. When this flame-resistant fiber was made into a sliver using a turbo stapler and then spun into yarn using a ring spinning machine, the yarn could be spun without any problems such as yarn breakage or fluffing. Further, the tensile strength of the carbon fiber obtained by carbonizing the thus obtained flame-resistant fiber under the same conditions as in Example 1 was 432 Kg/mm 2 , which was very excellent. Comparative Example 3 Same as Example 5 except that decyltrimethylammonium chloride, which does not belong to the ammonium salts of the present invention, is used instead of the stearate ammonium salt of compound (2) of general formula [A] used in Example 5. It was made into an acrylonitrile fiber. This material was subjected to flameproofing treatment, and then Example 1
Carbonization treatment was carried out under the same conditions. The tensile strength of the obtained carbon fiber was 320 Kg/mm 2 , which was very inferior to the carbon fiber obtained in Example 5. Example 6 Acrylonitrile fibers with ammonium salt attached were produced in the same manner as in Example 5, and three
7℃/from 200℃ to 250℃ while giving % shrinkage.
The temperature was raised at sec and treated at 250°C for 1 minute to cause a thermal change in the ammonium salt. This fiber was a non-adhesive fiber with no fluff, a single fiber denier of 1.55, a tensile strength of 5 g/d, and a tensile elongation of 18%. When this fiber was flame-retardant treated in the same manner as in Example 5 and then carbonized in the same manner as in Example 1, it had an extremely high tensile strength of 440 Kg/ mm2 , and as a result of observation with an electron microscope. Carbon fibers without sticking were obtained. Example 7 The acrylonitrile fiber to which the ammonium salt of Example 5 was attached was further continuously subjected to heat treatment under the conditions shown in Table 2 below before flame-retardant treatment to obtain an acrylonitrile fiber. Using this material as a starting material, it was made flameproof in a flameproofing furnace as shown in Figure 1 in the same manner as in Example 1, and then heated at 1400°C for 30 minutes in a nitrogen stream.
The carbon fiber was carbonized for 1 minute under a tension of mg/d. Table 2 shows the results of measuring the tensile strength of this carbon fiber.

【表】 まで昇温する時間と最高温度での保持時間の合
計で示す。
第2表の結果から明らかな如く、本発明のアン
モニウム塩化合物を付着させたアクリロニトリル
系繊維を一度特殊な昇温速度で昇温して一定時間
熱処理して耐炎化に供する場合、更に高い強度の
炭素繊維が得られ、一層有利である。
[Table] Shows the total time to raise the temperature to the maximum temperature and the holding time at the maximum temperature.
As is clear from the results in Table 2, when the acrylonitrile fiber to which the ammonium salt compound of the present invention is attached is once heated at a special heating rate and heat treated for a certain period of time to make it flame resistant, even higher strength can be obtained. Carbon fibers are obtained, which is even more advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアクリロニトリル系繊維を耐炎化処理
する装置の1例を示すものである。 1:耐炎化炉、2:ローラー、3:アクリロニ
トリル系繊維、4:耐炎性繊維。
FIG. 1 shows an example of an apparatus for flame-proofing acrylonitrile fibers. 1: Flame-resistant furnace, 2: Roller, 3: Acrylonitrile fiber, 4: Flame-resistant fiber.

Claims (1)

【特許請求の範囲】 1 一般式 (式中R1は炭素数11〜17個の脂肪族炭化水素
基、R2及びR3は水素原子、低級アルキル基、ヒ
ドロキシエチル基、ヒドロキシイソプロピル基、
Xは有機酸の陰イオンを表わす。ただし、R2
はR3がヒドロキシイソプロピル基である場合、
Xは塩素原子を表わす。) で示される脂肪酸エステルアンモニウム塩の少く
とも1種を付着した耐炎性繊維製造用又は炭素繊
維製造用のアクリロニトリル系繊維。 2 アクリロニトリル系繊維がアクリロニトリル
95モル%以上と、アクリロニトリルと共重合しう
るビニル系単量体5モル%以下とからなる重合体
より得られたものである特許請求の範囲1の繊
維。 3 一般式〔A〕で示される化合物が である特許請求の範囲1の繊維。 4 アンモニウム塩の付着量が繊維重量に対し
0.01〜0.5%である特許請求の範囲1の繊維。 5 アクリロニトリル系繊維の製造工程における
脱溶媒後から繊維製造完了まで、又は、完了後の
何れかの段階で一般式〔A〕 (式中R1は炭素数11〜17個の脂肪族炭化水素
基、R2及びR3は水素原子、低級アルキル基、ヒ
ドロキシエチル基、ヒドロキシイソプロピル基、
Xは有機酸の陰イオンを表わす。ただし、R2
はR3がヒドロキシイソプロピル基である場合、
Xは塩素原子を表わす。) で示される脂肪酸エステルアンモニウム塩の少く
とも1種を含有する水溶液又は水分散液にて付着
処理をした後、熱処理をすることを特徴とする耐
炎性繊維製造用又は炭素繊維製造用のアクリロニ
トリル系繊維の製造方法。 6 アンモニウム塩の付着処理を、該塩を含むPH
4以下の水溶液又は水分散液によつて行うことを
特徴とする特許請求の範囲5の製造方法。 7 PHが2〜3.5である特許請求の範囲6の製造
方法。 8 アンモニウム塩の水溶液又は水分散液の付着
処理温度が20℃以上70℃以下である特許請求の範
囲5の製造方法。 9 アンモニウム塩の付着後、更にアンモニウム
塩が水不溶化するまで200〜300℃にて加熱処理を
することを特徴とする特許請求の範囲5の製造方
法。 10 加熱処理を230〜300℃で行う特許請求の範
囲9の製造方法。 11 加熱処理に際し温度が200℃に達した後、
加熱を1〜10℃/secの昇温速度で行うことを特
徴とする特許請求の範囲10の製造方法。
[Claims] 1. General formula (In the formula, R 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms, R 2 and R 3 are hydrogen atoms, lower alkyl groups, hydroxyethyl groups, hydroxyisopropyl groups,
X represents an anion of an organic acid. However, if R 2 or R 3 is a hydroxyisopropyl group,
X represents a chlorine atom. ) Acrylonitrile fibers for producing flame-resistant fibers or for producing carbon fibers, to which at least one fatty acid ester ammonium salt shown is attached. 2 Acrylonitrile fiber is acrylonitrile
The fiber according to claim 1, which is obtained from a polymer comprising 95 mol% or more of acrylonitrile and 5 mol% or less of a vinyl monomer copolymerizable with acrylonitrile. 3 The compound represented by the general formula [A] is The fiber according to claim 1. 4 The amount of ammonium salt attached to the fiber weight
The fiber of claim 1 which is 0.01-0.5%. 5 General formula [A] at any stage from after solvent removal to completion of fiber production in the production process of acrylonitrile fibers, or after completion of the production process. (In the formula, R 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms, R 2 and R 3 are hydrogen atoms, lower alkyl groups, hydroxyethyl groups, hydroxyisopropyl groups,
X represents an anion of an organic acid. However, if R 2 or R 3 is a hydroxyisopropyl group,
X represents a chlorine atom. ) Acrylonitrile-based for flame-resistant fiber production or carbon fiber production, which is characterized in that it is subjected to adhesion treatment with an aqueous solution or aqueous dispersion containing at least one fatty acid ester ammonium salt represented by (a) and then heat-treated. Fiber manufacturing method. 6 The ammonium salt adhesion treatment is carried out on the PH containing the salt.
The manufacturing method according to claim 5, characterized in that the manufacturing method is carried out using an aqueous solution or an aqueous dispersion of 4 or less. 7. The manufacturing method according to claim 6, wherein the PH is 2 to 3.5. 8. The manufacturing method according to claim 5, wherein the temperature for adhering the aqueous solution or dispersion of ammonium salt is 20°C or more and 70°C or less. 9. The manufacturing method according to claim 5, characterized in that after the ammonium salt has been deposited, heat treatment is further carried out at 200 to 300°C until the ammonium salt becomes insoluble in water. 10. The manufacturing method according to claim 9, wherein the heat treatment is performed at 230 to 300°C. 11 After the temperature reaches 200℃ during heat treatment,
11. The manufacturing method according to claim 10, wherein the heating is performed at a temperature increase rate of 1 to 10° C./sec.
JP11740582A 1982-07-06 1982-07-06 Acrylonitrile fiber and method Granted JPS599272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11740582A JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11740582A JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Publications (2)

Publication Number Publication Date
JPS599272A JPS599272A (en) 1984-01-18
JPH0255549B2 true JPH0255549B2 (en) 1990-11-27

Family

ID=14710830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11740582A Granted JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Country Status (1)

Country Link
JP (1) JPS599272A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183320A (en) * 1984-09-26 1986-04-26 Nikkiso Co Ltd Production of carbon fiber
JPS61119717A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Bundle of water-absorbing carbon fiber of high performance
JP5242273B2 (en) * 2008-07-22 2013-07-24 松本油脂製薬株式会社 Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same
JP5497881B2 (en) * 2012-12-19 2014-05-21 松本油脂製薬株式会社 Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137776B2 (en) * 1972-09-01 1976-10-18
JPS54113972A (en) * 1978-02-25 1979-09-05 Kazuo Muraoka Washing auxiliary portion material
JPS57112410A (en) * 1980-12-27 1982-07-13 Toho Rayon Co Ltd Acrylonitrile fiber and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105274U (en) * 1974-01-31 1975-08-29
JPS5137776U (en) * 1974-09-13 1976-03-22
JPS52156280U (en) * 1976-05-22 1977-11-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137776B2 (en) * 1972-09-01 1976-10-18
JPS54113972A (en) * 1978-02-25 1979-09-05 Kazuo Muraoka Washing auxiliary portion material
JPS57112410A (en) * 1980-12-27 1982-07-13 Toho Rayon Co Ltd Acrylonitrile fiber and its production

Also Published As

Publication number Publication date
JPS599272A (en) 1984-01-18

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
US4080417A (en) Process for producing carbon fibers having excellent properties
EP0159365B1 (en) Carbon fibers with high strength and high modulus, and process for their production
US4536448A (en) Preoxidized fiber and process for producing the same
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
EP0165465B1 (en) Process for producing carbon fibers
US4898700A (en) Process for producing preoxidized fibers from acrylic fibers
JPH0255549B2 (en)
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
JPH02242920A (en) Carbon fiber containing composite metal
US5413858A (en) Acrylic fiber and process for production thereof
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JPS5920004B2 (en) Carbon fiber manufacturing method
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JP3048449B2 (en) Acrylonitrile precursor fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP3154595B2 (en) Method for producing acrylonitrile fiber
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JP4745855B2 (en) Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JPH0157165B2 (en)
JP2001164431A (en) Flame resistant fiber and method for producing carbon fiber
JPS6156328B2 (en)