JP4228009B2 - Method for producing acrylonitrile-based precursor fiber for carbon fiber - Google Patents

Method for producing acrylonitrile-based precursor fiber for carbon fiber Download PDF

Info

Publication number
JP4228009B2
JP4228009B2 JP2006230438A JP2006230438A JP4228009B2 JP 4228009 B2 JP4228009 B2 JP 4228009B2 JP 2006230438 A JP2006230438 A JP 2006230438A JP 2006230438 A JP2006230438 A JP 2006230438A JP 4228009 B2 JP4228009 B2 JP 4228009B2
Authority
JP
Japan
Prior art keywords
fiber
stretching
acrylonitrile
carbon fiber
pressurized steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006230438A
Other languages
Japanese (ja)
Other versions
JP2006348462A (en
Inventor
孝浩 奥屋
光夫 浜田
義隆 景山
竹昭 甘川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006230438A priority Critical patent/JP4228009B2/en
Publication of JP2006348462A publication Critical patent/JP2006348462A/en
Application granted granted Critical
Publication of JP4228009B2 publication Critical patent/JP4228009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、炭素繊維製造用ポリアクリロニトリル系前駆体繊維およびその製造方法に関するものである。   The present invention relates to a polyacrylonitrile-based precursor fiber for producing carbon fibers and a method for producing the same.

ポリアクリロニトリル系繊維を前駆体とする炭素繊維および黒鉛繊維(本出願では、一括して「炭素繊維」という。)はその優れた力学的性質により、航空宇宙用途を始め、スポーツ・レジャー用途等の高性能複合材料の補強繊維素材として商業的に生産・販売されている。また近年では自動車・船舶用途、建材用途など一般産業分野への用途要求が増加している。そして市場においてはこれらの複合材料の高性能化のために高品質でかつ安価な炭素繊維が要求されている。   Carbon fiber and graphite fiber (collectively referred to as “carbon fiber” in the present application) having polyacrylonitrile fiber as a precursor are used for aerospace applications, sports / leisure applications, etc. due to their excellent mechanical properties. Commercially produced and sold as a high-performance composite reinforcing fiber material. In recent years, demands for applications in general industrial fields such as automobile / ship use and building material use are increasing. In the market, high-quality and inexpensive carbon fibers are required to improve the performance of these composite materials.

炭素繊維の前駆体としてのアクリロニトリル系繊維は、衣料用アクリル繊維とは異なりあくまでも最終製品である炭素繊維を製造するための中間製品である。従って、品質、性能の優れた炭素繊維を与えるようなものが求められると同時に、前駆体繊維紡糸時の安定性に優れ、かつ炭素繊維となす焼成工程において生産性が高く、低コストで提供し得るものであることが極めて重要である。   Unlike the acrylic fiber for clothing, the acrylonitrile-based fiber as a precursor of the carbon fiber is an intermediate product for producing the final carbon fiber. Therefore, it is required to provide carbon fibers with excellent quality and performance. At the same time, it is excellent in stability during spinning of the precursor fiber, and has high productivity in the firing process of carbon fibers, and is provided at low cost. It is extremely important to be able to obtain.

このような観点から、炭素繊維の高強度、高弾性化を目的としたアクリル繊維について数多くの提案がなされてきた。その中で、原料重合体の高重合度化、アクリロニトリル以外の共重合成分含有量を低下させる等の提案がある。また、紡糸方式に関しては、乾−湿式紡糸法の採用が一般的である。   From such a viewpoint, many proposals have been made on acrylic fibers for the purpose of increasing the strength and elasticity of carbon fibers. Among them, there are proposals such as increasing the degree of polymerization of the raw material polymer and reducing the content of copolymerization components other than acrylonitrile. As for the spinning method, a dry-wet spinning method is generally employed.

しかしながらアクリロニトリル以外の共重合成分含有量を低下させた場合、一般的に原料共重合体の溶剤への溶解性が低下し、紡糸原液の安定性が損なわれると共に、原液粘度が急激に増大するために、これに対応して紡糸原液の共重合体濃度を低下させる必要がある。その結果、共重合体の析出凝固性が著しく高くなり、得られる繊維を失透させたり、内部に多数のボイドを発生させやすくなるため、安定した製造方法とは言えないものであった。   However, when the content of copolymer components other than acrylonitrile is reduced, the solubility of the raw material copolymer in the solvent is generally lowered, the stability of the spinning stock solution is impaired, and the viscosity of the stock solution increases rapidly. Correspondingly, it is necessary to decrease the copolymer concentration of the spinning dope. As a result, the precipitation and solidification properties of the copolymer are remarkably increased, and the resulting fiber is easily devitrified and a large number of voids are easily generated therein. Therefore, this is not a stable production method.

乾−湿式紡糸方式はノズルから押し出された重合体溶液を一旦空気中に吐出した後、連続的に凝固浴に導き、繊維形成を行うことから、緻密な凝固糸が得やすい反面、ノズル孔ピッチを小さくすると隣接する繊維が接着する問題が生じ、多ホール化に限界がある。   In the dry-wet spinning method, the polymer solution extruded from the nozzle is once discharged into the air, and then continuously led to a coagulation bath to form fibers. If this is made smaller, there will be a problem of adhering adjacent fibers, and there is a limit to increasing the number of holes.

一般にアクリロニトリル系前駆体繊維の低コストな製造には、ノズル孔の高密度化が有利で、製造設備への投資が比較的少なくて済むなどの点により、紡糸方式として湿式紡糸法が採用されている。しかし、得られる繊維トウは一般に単繊維切れや毛羽が多く、得られる前駆体繊維の引っ張り強度・弾性率が低く、前駆体繊維構造の緻密性や配向度が低い。従ってこれを焼成して得られる炭素繊維の力学的性能は概して不十分である。   In general, low-cost production of acrylonitrile-based precursor fibers is advantageous in increasing the density of nozzle holes and requires relatively little investment in production equipment. Yes. However, the obtained fiber tow generally has many single fiber cuts and fluffs, the resulting precursor fiber has low tensile strength and elastic modulus, and the precursor fiber structure has low density and orientation. Therefore, the mechanical performance of the carbon fiber obtained by firing this is generally insufficient.

高品質の炭素繊維を得るための前駆体繊維の条件としては、炭素繊維に変換された後に、破断の原因となる微少な欠陥がないことが非常に重要であり、このような欠陥を減少するためには、前駆体繊維の引っ張り強度・弾性率が高く、繊維構造の緻密性が高いこと、および共重合体が繊維軸方向に高度に配向していること、さらにはトウ繊度の変動率が小さいことなどが要求される。   As a condition of the precursor fiber to obtain high-quality carbon fiber, it is very important that there is no minute defect that causes breakage after being converted to carbon fiber, reducing such defects For this purpose, the tensile strength and elastic modulus of the precursor fiber are high, the denseness of the fiber structure is high, the copolymer is highly oriented in the direction of the fiber axis, and the fluctuation rate of tow fineness is high. Smallness is required.

例えば、特許文献1では湿式紡糸法を用いながら繊維構造の緻密性に言及した報告がなされており、緻密性を表す尺度として、ヨウ素吸着量と、ヨウ素の吸着するスキン層の厚さを規定している。しかし、ここで得られた前駆体繊維は、ヨウ素吸着量が約1〜3重量%と緻密性が低く、また得られた前駆体繊維の引っ張り強度・弾性率も低いため、高品質の炭素繊維を得ることは非常に難しかった。   For example, Patent Document 1 reports that the denseness of the fiber structure is referred to while using a wet spinning method. As a measure representing the denseness, the amount of iodine adsorbed and the thickness of the skin layer to which iodine is adsorbed are defined. ing. However, the precursor fiber obtained here has a low density of about 1 to 3% by weight of iodine, and the obtained precursor fiber has a low tensile strength and elastic modulus. It was very difficult to get.

一方、特許文献2には乾−湿式紡糸法によって表面構造が高度に緻密化された前駆体繊維が開示されている。また、特許文献3および特許文献4にはやはり乾−湿式紡糸法によって、引っ張り強度・弾性率が高く、共重合体が繊維軸方向に高度に配向した前駆体繊維が開示されている。これらの前駆体繊維を用いることにより、得られる炭素繊維の品質向上が図られているが、乾−湿式紡糸法を用いていることから、生産性が低い。また、湿式紡糸により得られる繊維に比べ、乾−湿式紡糸により得られる繊維は表面形態が平滑であるため収束性がよい反面、焼成過程での繊維間融着や、シート状プリプレグ成型時の開繊性不良を生じやすい等の欠点を抱えている。さらに、これらの発明における重合体のアクリロニトリル含有量は実質99.0重量%以上であり、紡糸原液の安定性や共重合体の析出凝固性の面から、前駆体繊維の安定した製造方法としては不十分なものであった。   On the other hand, Patent Document 2 discloses a precursor fiber whose surface structure is highly densified by a dry-wet spinning method. Further, Patent Document 3 and Patent Document 4 disclose precursor fibers having high tensile strength and elastic modulus and highly oriented copolymer in the fiber axis direction by dry-wet spinning method. Although the quality of the obtained carbon fiber is improved by using these precursor fibers, the productivity is low because the dry-wet spinning method is used. Compared with fibers obtained by wet spinning, fibers obtained by dry-wet spinning have a smooth surface, so that the convergence is good. On the other hand, fusion between fibers in the firing process, and opening during sheet prepreg molding are possible. It has drawbacks such as being susceptible to poor fineness. Furthermore, the acrylonitrile content of the polymer in these inventions is substantially 99.0% by weight or more, and from the viewpoint of the stability of the spinning dope and the precipitation solidification of the copolymer, It was insufficient.

湿式紡糸法を用いながら、緻密化された表面構造をもつ前駆体繊維を得るために、より高延伸倍率が得られる延伸方法として、加圧水蒸気延伸を用いた検討がなされている。   In order to obtain a precursor fiber having a densified surface structure while using a wet spinning method, studies using pressurized steam drawing have been made as a drawing method that can obtain a higher draw ratio.

例えば、特許文献5には湿式紡糸法を用いながら、緻密化された表面構造をもつ前駆体繊維が開示されている。特定の共重合体の組成や特定の物性の凝固繊維を用い、同時に加圧水蒸気延伸を用いることにより、前駆体繊維の緻密化を図ったものである。しかしながら、凝固以降の延伸条件の適正範囲については全く考慮されていないため、緻密性と配同性の高い前駆体繊維を得るには不十分であった。また、得られた前駆体繊維の強度・弾性率、結晶配向度、トウ繊度の変動率について記載がなく、品質の優れた炭素繊維を得るために必要な前駆体繊維の物性および性状については依然として知られていなかった。さらに、紡糸速度100m/分以上のような高速で紡糸を行うと、安定した紡糸が困難なものであった。   For example, Patent Document 5 discloses a precursor fiber having a densified surface structure using a wet spinning method. Precursor fibers are densified by using coagulated fibers having a specific copolymer composition and specific physical properties and simultaneously using pressurized steam drawing. However, since an appropriate range of drawing conditions after coagulation is not considered at all, it is insufficient to obtain a precursor fiber having high density and high congruency. Moreover, there is no description about the fluctuation rate of the strength / elastic modulus, crystal orientation degree, and tow fineness of the obtained precursor fiber, and the physical properties and properties of the precursor fiber necessary for obtaining a high-quality carbon fiber are still available. It was not known. Furthermore, when spinning at a high speed such as a spinning speed of 100 m / min or more, stable spinning is difficult.

このように、従来の技術はいずれも高品質かつ安価な炭素繊維を得るための前駆体繊維およびその製造方法として不十分であった。
特開昭58−214518号公報 特開昭63−35821号公報 特開昭60−21905号公報 特開昭62−117814号公報 特開平7−70812号公報
As described above, any of the conventional techniques is insufficient as a precursor fiber for obtaining a high-quality and inexpensive carbon fiber and a method for producing the precursor fiber.
JP 58-214518 A JP-A-63-35821 JP 60-21905 A Japanese Patent Laid-Open No. 62-117814 JP-A-7-70812

本発明は、このような従来の問題点に鑑みてなされたものであり、より短時間の焼成で高品質の炭素繊維を安価に製造することが可能な、高強度・高弾性率で緻密性および配向度が高く、かつトウ繊度の変動率の小さい炭素繊維用アクリロニトリル系前駆体繊維の、湿式紡糸方法による長時間糸切れすることがなく毛羽の発生の少ない高速で安定な製造方法を提供することを目的とする。   The present invention has been made in view of such conventional problems, and can produce high-quality carbon fiber at a low cost by firing in a shorter time, and has high strength, high elastic modulus and denseness. And a high-speed and stable production method of acrylonitrile-based precursor fibers for carbon fibers with a high degree of orientation and a small tow fineness variation rate, with no yarn breakage for a long time by a wet spinning method and less generation of fuzz. For the purpose.

本発明は、アクリロニトリル単位96.0〜98.5重量%、アクリルアミド単位1.0〜3.5重量%、およびカルボキシル基含有ビニル系モノマー単位0.5〜1.0重量%からなるアクリロニトリル系共重合体を湿式紡糸して、引っ張り弾性率が1.1〜1.59cN/dtexである凝固繊維とした後、浴中延伸、または空中延伸と浴中延伸による一次延伸を行い、油剤付与、加熱ローラーによる乾燥緻密化後、連続して加圧水蒸気延伸を伴う二次延伸を行う炭素繊維用アクリロニトリル系前駆体繊維の製造方法であって、加圧水蒸気延伸装置に糸条を導入する直前の加熱ローラーの温度を120〜190℃に設定し、前記加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御し、かつ全延伸倍率に対する二次延伸倍率の割合が0.2より大きくなるように延伸することを特徴とする炭素繊維用アクリロニトリル系前駆体繊維の製造方法に関する。 The present invention relates to an acrylonitrile copolymer comprising 96.0 to 98.5% by weight of acrylonitrile units, 1.0 to 3.5% by weight of acrylamide units and 0.5 to 1.0% by weight of carboxyl group-containing vinyl monomer units. The polymer is wet-spun to obtain a coagulated fiber having a tensile modulus of 1.1 to 1.59 cN / dtex, and then stretched in the bath, or primary stretched in the air and stretched in the bath, and the oil agent is applied and heated. A method for producing an acrylonitrile-based precursor fiber for carbon fiber that continuously performs secondary stretching accompanied by pressurized steam stretching after drying and densification by a roller, wherein the heating roller just before introducing the yarn into the pressurized steam stretching apparatus The temperature is set to 120 to 190 ° C., the fluctuation rate of the water vapor pressure in the pressurized water vapor drawing is controlled to 0.5% or less, and the secondary draw ratio relative to the total draw ratio Ratio relates to a method for producing a carbon fiber for acrylonitrile based precursor fiber characterized by stretching to greater than 0.2.

このとき本発明の1態様においては、全延伸倍率として13以上とすることが好ましい。   At this time, in one aspect of the present invention, the total draw ratio is preferably 13 or more.

本発明によれば、より短時間の焼成で高品質の炭素繊維を安価に製造することが可能な、高強度・高弾性率で緻密性および配向度が高く、かつトウ繊度変動率の小さい炭素繊維用アクリロニトリル系前駆体繊維を提供することができる。   According to the present invention, carbon capable of producing high-quality carbon fiber at a low cost by firing in a shorter time, high strength, high elastic modulus, high density and high degree of orientation, and low tow fineness variation rate An acrylonitrile-based precursor fiber for fibers can be provided.

また、そのような性質の炭素繊維用アクリロニトリル系前駆体繊維を、湿式紡糸方法によって長時間糸切れすることがなく毛羽の発生が少なく、高速で安定に製造することができる。   In addition, the acrylonitrile-based precursor fiber for carbon fiber having such properties can be stably produced at high speed with no generation of fuzz by a wet spinning method without causing yarn breakage for a long time.

本発明の炭素繊維用アクリロニトリル系前駆体繊維は、長手方向の繊度むらが少なく、これを焼成して得られる炭素繊維も長手方向の繊度むらが少ない。これにより長手方向の開繊性のむらが少なくなるため、従来の炭素繊維より30%ほど高い生産性でプリプレグ化が可能である。   The acrylonitrile-based precursor fiber for carbon fiber of the present invention has little longitudinal fineness unevenness, and the carbon fiber obtained by firing the same has little longitudinal fineness unevenness. As a result, the unevenness of the spreadability in the longitudinal direction is reduced, so that the prepreg can be formed with a productivity about 30% higher than that of the conventional carbon fiber.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

なお、本明細書は、以下の炭素繊維用アクリロニトリル系前駆体繊維の発明も開示している。
(1)アクリロニトリル単位96.0〜98.5重量%を含むアクリロニトリル系共重合体より製造された炭素繊維用アクリロニトリル系前駆体繊維であって、引っ張り強度7.0cN/dtex以上、引っ張り弾性率130cN/dtex以上、ヨウ素吸着量が繊維重量当たり0.5重量%以下、広角X線回析による結晶配向度πが90%以上であり、かつトウ繊度の変動率が1.0%以下である炭素繊維用アクリロニトリル系前駆体繊維。
(2)前記アクリロニトリル系共重合体がアクリロニトリル単位96.0〜98.5重量%、アクリルアミド単位1.0〜3.5重量%、およびカルボキシル基含有ビニル系モノマー単位0.5〜1.0重量%からなる前記(1)記載の炭素繊維用アクリロニトリル系前駆体繊維。
(3)湿式紡糸法により製造された前記(1)又は(2)記載の炭素繊維用アクリロニトリル系前駆体繊維。
The present specification also discloses the invention of the following acrylonitrile-based precursor fiber for carbon fiber.
(1) An acrylonitrile-based precursor fiber for carbon fibers produced from an acrylonitrile-based copolymer containing 96.0 to 98.5% by weight of acrylonitrile units, having a tensile strength of 7.0 cN / dtex or more and a tensile modulus of 130 cN Carbon having an iodine adsorption amount of 0.5% by weight or less per fiber weight, a crystal orientation degree π by wide-angle X-ray diffraction of 90% or more, and a variation rate of tow fineness of 1.0% or less. Acrylonitrile precursor fiber for fiber.
(2) The acrylonitrile copolymer is 96.0 to 98.5 wt% of acrylonitrile units, 1.0 to 3.5 wt% of acrylamide units, and 0.5 to 1.0 wt% of carboxyl group-containing vinyl monomer units. The acrylonitrile-based precursor fiber for carbon fiber according to (1), comprising:
(3) The acrylonitrile-based precursor fiber for carbon fiber according to (1) or (2), which is produced by a wet spinning method.

さらに、本明細書は、前記(1)〜(3)のいずれかに記載の炭素繊維用アクリロニトリル系前駆体繊維を、耐炎化し、炭素化して得られる炭素繊維の発明も開示している。   Further, the present specification also discloses an invention of a carbon fiber obtained by making the acrylonitrile-based precursor fiber for carbon fiber according to any one of (1) to (3) flameproofed and carbonized.

本発明の炭素繊維用アクリロニトリル系前駆体繊維(以下、前駆体繊維という。)の製造に用いるアクリロニトリル系共重合体(以下、単に共重合体ともいう。)は、モノマー単位としてアクリロニトリルを96.0〜98.5重量%含有する。共重合体中のアクリロニトリル単位が96重量%未満の場合は、炭素繊維に転換する際の焼成工程(耐炎化工程および炭素化工程)で繊維の熱融着を招き、炭素繊維の品質および性能を損ない易い。また、共重合体自体の耐熱性が低くなり、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着が生じ易くなる。一方、共重合体中のアクリロニトリル単位の含有量が98.5重量%を越える場合には、溶剤への溶解性が低下し、紡糸原液の安定性が損なわれると共に共重合体の析出凝固性が著しく高くなり、前駆体繊維の安定した製造が困難となりやすい。   The acrylonitrile-based copolymer (hereinafter also simply referred to as copolymer) used for the production of the acrylonitrile-based precursor fiber for carbon fiber (hereinafter referred to as precursor fiber) of the present invention has 96.0 acrylonitrile as a monomer unit. Contains ˜98.5% by weight. If the acrylonitrile unit in the copolymer is less than 96% by weight, the fiber is heat-sealed in the firing process (flame-proofing process and carbonization process) when converted to carbon fiber, and the quality and performance of the carbon fiber are reduced. Easy to lose. Further, the heat resistance of the copolymer itself is lowered, and when spinning the precursor fiber, adhesion between single fibers is likely to occur in a process such as fiber drying or stretching with a heating roller or pressurized steam. On the other hand, when the content of the acrylonitrile unit in the copolymer exceeds 98.5% by weight, the solubility in the solvent is lowered, the stability of the spinning dope is impaired, and the precipitation and solidification properties of the copolymer are reduced. It becomes remarkably high and stable production of precursor fibers tends to be difficult.

また本発明では、共重合体中にモノマー単位としてアクリルアミド単位1.0〜3.5重量%を含むことが好ましい。共重合体中のアクリルアミド単位の含有量を1.0重量%以上とすることにより、前駆体繊維の構造が十分緻密になり、優れた性能の炭素繊維が得られる。また、耐炎化工程での耐炎化反応性は、共重合体組成の微妙な変動の影響を大きく受けるが、アクリルアミド単位の含有量が1.0重量%以上であれば、安定した炭素繊維の生産ができる。また、アクリルアミドはアクリロニトリルとランダム共重合性が高く、しかも熱処理によりアクリロニトリルと極めて似通った形で環構造が形成されると考えられ、特に酸化性雰囲気中での熱分解は非常に少ないので、後述するカルボキシル基含有ビニル系モノマーと比較すると多量に含有させることができる。しかし、共重合体中のアクリルアミド単位の含有量が多くなると、共重合体中のアクリロニトリル単位含有量が少なくなり、前述したように共重合体の耐熱性が低下してくるので3.5重量%以下が適当である。   In the present invention, the copolymer preferably contains 1.0 to 3.5% by weight of acrylamide units as monomer units. By setting the content of acrylamide units in the copolymer to 1.0% by weight or more, the structure of the precursor fiber becomes sufficiently dense, and carbon fibers having excellent performance can be obtained. In addition, the flame resistance in the flame resistance process is greatly affected by subtle fluctuations in the copolymer composition. If the acrylamide unit content is 1.0% by weight or more, stable carbon fiber production is possible. Can do. Acrylamide is highly random copolymerizable with acrylonitrile, and it is thought that a ring structure is formed in a form very similar to acrylonitrile by heat treatment, and thermal decomposition in an oxidizing atmosphere is very small. Compared with a carboxyl group-containing vinyl monomer, it can be contained in a large amount. However, if the content of acrylamide units in the copolymer is increased, the content of acrylonitrile units in the copolymer is decreased, and the heat resistance of the copolymer is lowered as described above. The following are appropriate.

さらに本発明では、共重合体中にモノマー単位としてカルボキシル基含有ビニル系モノマー単位を0.5〜1.0重量%含有することが好ましい。カルボキシル基含有ビニル系モノマーとしては、例えばアクリル酸、メタクリル酸、イタコン酸等を挙げることができる。カルボキシル基含有ビニル系モノマー単位の含有量が少なすぎる場合、耐炎化反応が遅いため短時間の焼成では高性能の炭素繊維を得ることが難しくなる。そして短時間で耐炎化処理する場合は耐炎化温度を高温にせざるを得ないので、暴走反応が起きやすく、工程通過性、安全性の面で問題が生じる場合がある。また、共重合体中のカルボキシル基含有ビニル系モノマー単位の含有量が多くなると、耐炎化反応性は高くなるので、耐炎化処理時に繊維の表層付近が急激に反応する一方、中心部の反応が遅れるため耐炎化繊維は断面二重構造を形成する。しかしこのような構造では、次のさらに高温の炭素化工程において、繊維中心部の耐炎化構造が未発達な部分の分解が抑制できないため、炭素繊維の性能、特に引っ張り弾性率が著しく低下する。この傾向は耐炎化処理時間の短縮にしたがって顕著となる。   Furthermore, in this invention, it is preferable to contain 0.5 to 1.0 weight% of carboxyl group containing vinylic monomer units as a monomer unit in a copolymer. Examples of the carboxyl group-containing vinyl monomer include acrylic acid, methacrylic acid, itaconic acid and the like. When the content of the carboxyl group-containing vinyl monomer unit is too small, the flameproofing reaction is slow, so that it is difficult to obtain high-performance carbon fibers by short-time firing. In the case where the flameproofing treatment is performed in a short time, the flameproofing temperature must be increased, so that a runaway reaction is likely to occur, which may cause problems in terms of process passability and safety. In addition, when the content of the carboxyl group-containing vinyl monomer unit in the copolymer increases, the flame resistance reactivity increases, so that the vicinity of the fiber surface layer reacts rapidly during the flame resistance treatment, while the reaction at the center portion Due to the delay, the flame-resistant fiber forms a double-section structure. However, in such a structure, in the next higher temperature carbonization step, the decomposition of the portion where the flameproof structure in the fiber center portion is not developed cannot be suppressed, so that the performance of the carbon fiber, particularly the tensile elastic modulus, is significantly lowered. This tendency becomes conspicuous as the flameproofing time is shortened.

また前駆体繊維紡糸での延伸性や炭素繊維性能発現性などの点から、共重合体の重合度は極限粘度〔η〕が0.8以上のものが好ましい。重合度があまり高すぎると溶媒に対する溶解性が低下するので、共重合体濃度を下げることによるボイドの発生や延伸性および紡糸安定性の低下などが見られるので、通常は極限粘度〔η〕が3.5以下が好ましい。   From the viewpoints of stretchability in precursor fiber spinning and carbon fiber performance, etc., the degree of polymerization of the copolymer is preferably such that the intrinsic viscosity [η] is 0.8 or more. If the degree of polymerization is too high, the solubility in a solvent will decrease, and voids due to lowering the copolymer concentration, reduction in stretchability and spinning stability, etc. can be seen, so usually the intrinsic viscosity [η] is 3.5 or less is preferable.

本発明の前駆体繊維は、このような共重合体を用いて湿式紡糸法により製造されたものであって、引っ張り強度が7.0cN/dtex以上、引っ張り弾性率が130cN/dtex以上、ヨウ素吸着量が繊維重量当たり0.5重量%以下、広角X線回析による結晶配向度πが90%以上であり、かつトウ繊度の変動率が1.0%以下である。   The precursor fiber of the present invention is manufactured by a wet spinning method using such a copolymer, and has a tensile strength of 7.0 cN / dtex or more, a tensile modulus of 130 cN / dtex or more, and an iodine adsorption. The amount is 0.5% by weight or less per fiber weight, the degree of crystal orientation π by wide-angle X-ray diffraction is 90% or more, and the variation rate of tow fineness is 1.0% or less.

前駆体繊維の引っ張り強度が7.0cN/dtex未満、または引っ張り弾性率が130cN/dtex未満では、これを焼成して得られる炭素繊維の力学的性能が不十分になる。   When the tensile strength of the precursor fiber is less than 7.0 cN / dtex, or the tensile elastic modulus is less than 130 cN / dtex, the mechanical performance of the carbon fiber obtained by firing the precursor fiber becomes insufficient.

前駆体繊維のヨウ素吸着量が0.5重量%を越えると、繊維構造の緻密性または配同性が損なわれ不均質になり、炭素繊維に転換する焼成時に欠陥点となるため、得られる炭素繊維の性能が低下する。ここで、ヨウ素吸着量とは、繊維が吸着するヨウ素量であり、繊維構造の緻密性の程度を示す尺度である。小さいほど繊維が緻密であることを示す。   If the amount of iodine adsorbed by the precursor fiber exceeds 0.5% by weight, the denseness or congruency of the fiber structure is impaired and becomes inhomogeneous, which becomes a defect point when firing into carbon fiber. The performance of is reduced. Here, the iodine adsorption amount is the amount of iodine adsorbed by the fiber, and is a scale indicating the degree of denseness of the fiber structure. The smaller the value, the denser the fiber.

前駆体繊維の結晶配向度πが90%未満になると、前駆体繊維の引っ張り強度・弾性率が低くなり、これを焼成して得られる炭素繊維の力学的性能が不十分になる。また、結晶配向度πの非常に高いものを得ようとすると、さらに高い延伸倍率が必要になり、安定した紡糸が困難になるので、工業的に製造が容易な範囲は通常95%以下である。   When the crystal orientation degree π of the precursor fiber is less than 90%, the tensile strength / elastic modulus of the precursor fiber is lowered, and the mechanical performance of the carbon fiber obtained by firing the precursor fiber becomes insufficient. Further, if an attempt is made to obtain a crystal with a very high degree of crystal orientation π, a higher draw ratio is required, and stable spinning becomes difficult, so the industrially easy range is usually 95% or less. .

ここで、広角X線解析による結晶配向度とは、繊維を構成する共重合体分子鎖の繊維軸方向における配向の程度を示す尺度であり、広角X線解析法による繊維の赤道線上回折点の円周方向強度分布の半価幅Hから、配向度π(%)=((180−H)/180)×100によって算出される値である。   Here, the degree of crystal orientation by wide-angle X-ray analysis is a scale indicating the degree of orientation of the copolymer molecular chains constituting the fiber in the fiber axis direction, and the diffraction point on the equator line of the fiber by wide-angle X-ray analysis. It is a value calculated from the half width H of the circumferential intensity distribution by the degree of orientation π (%) = ((180−H) / 180) × 100.

また、前駆体繊維のトウ繊度の変動率が1.0%より大きくなると、炭素繊維に変換された後の単位長さ当たりのトウ重量のばらつきが大きくなるだけでなく、破断の原因となる欠陥が増加し、引っ張り強度が低下したり、シート状プリプレグ成型時にトウとトウの間に隙間が発生するなどの問題を引き起こす可能性がある。ここで、トウ繊度の変動率とは、トウの長手方向にトウ繊度を連続して測定した場合の変動率である。   Further, when the variation rate of the toe fineness of the precursor fiber is larger than 1.0%, not only the variation in the tow weight per unit length after being converted into the carbon fiber increases, but also a defect that causes breakage. May cause problems such as an increase in tensile strength and a gap between the tows during molding of the sheet-like prepreg. Here, the fluctuation rate of the toe fineness is a fluctuation rate when the tow fineness is continuously measured in the longitudinal direction of the tow.

さらに本発明の前駆体繊維は、表面粗滑係数が2.0〜4.0の範囲にあることが好ましい。表面の凹凸度がこの程度であると耐炎化処理時の繊維間の融着が抑制されるので耐炎化処理時の工程通過性が良好になる。また、得られた炭素繊維をプリプレグ等のコンポジットに成形する際に、マトリックス樹脂の炭素繊維間への含浸性が向上する。表面粗滑係数がこの範囲にあるものは湿式紡糸法により得ることができる。ここで、表面粗滑係数とは、走査型電子顕微鏡を用いて、繊維軸に直角の方向(繊維直径方向)に一次電子を走査し、繊維表面から反射される二次(反射)電子曲線を観察したときに、繊維直径の中心部60%の直径方向長さd’と、d’の範囲における二次電子曲線の全長(直線換算長さ)lから、l/d’で求められる値である。   Further, the precursor fiber of the present invention preferably has a surface roughness coefficient in the range of 2.0 to 4.0. When the degree of unevenness on the surface is this level, fusion between fibers at the time of flameproofing treatment is suppressed, so that the process passability at the time of flameproofing treatment becomes good. Further, when the obtained carbon fiber is formed into a composite such as a prepreg, the impregnation property between the carbon fibers of the matrix resin is improved. Those having a surface roughness coefficient in this range can be obtained by a wet spinning method. Here, the surface roughness coefficient is a secondary (reflected) electron curve reflected from the fiber surface by scanning primary electrons in a direction perpendicular to the fiber axis (fiber diameter direction) using a scanning electron microscope. When observed, it is a value obtained by l / d ′ from the diameter direction length d ′ of the central part 60% of the fiber diameter and the total length (linear conversion length) l of the secondary electron curve in the range of d ′. is there.

次に本発明の前駆体繊維の製造方法について説明する。   Next, the manufacturing method of the precursor fiber of this invention is demonstrated.

本発明で使用されるアクリロニトリル系共重合体の重合方法は溶液重合、スラリー重合等公知の重合法の何れでも用いることができるが、未反応モノマーや重合触媒残査、その他の不純物を極力除くことが好ましい。   The polymerization method of the acrylonitrile copolymer used in the present invention can be any of known polymerization methods such as solution polymerization and slurry polymerization, but removes unreacted monomer, polymerization catalyst residue, and other impurities as much as possible. Is preferred.

本発明では、前記共重合体を湿式紡糸して、凝固繊維とした後、浴中延伸、または空中延伸と浴中延伸による一次延伸と、加圧水蒸気延伸による二次延伸とを行う。   In the present invention, the copolymer is wet-spun into a coagulated fiber, and then stretched in a bath, or primary stretched by air stretch and stretch in a bath, and secondary stretched by pressurized steam stretch.

まず湿式紡糸の際には、前述のアクリロニトリル系共重合体を、溶剤に溶解し紡糸原液とする。このときの溶剤は、ジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミド等の有機溶剤や塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液等の公知のものから適宜選択して使用することができる。   First, in the case of wet spinning, the aforementioned acrylonitrile copolymer is dissolved in a solvent to obtain a spinning dope. The solvent at this time can be appropriately selected from known solvents such as organic solvents such as dimethylacetamide, dimethylsulfoxide and dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate.

紡糸賦形は、上記紡糸原液を円形断面を有するノズル孔より凝固浴中に紡出することで行う。凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液を通常用いる。   The spinning shaping is performed by spinning the spinning solution into a coagulation bath through a nozzle hole having a circular cross section. As the coagulation bath, an aqueous solution containing a solvent used for the spinning dope is usually used.

このとき得られた延伸前の凝固繊維は、引っ張り弾性率が1.1〜2.2cN/dtex(dtex=デシテックスは凝固繊維中の共重合体の重量に基づいたもの)の範囲にあることが好ましい。凝固繊維の引っ張り弾性率が約1.1cN/dtex未満の場合、凝固浴中など紡糸工程の初期段階において不均一な伸張を招き易く、トウ繊度やトウ内部の単繊維繊度の変動を招く場合がある。さらに紡糸各工程での延伸負荷の増加や延伸性の変動が顕著になることから、安定した連続紡糸が困難となる場合がある。   The solidified fiber before stretching obtained at this time has a tensile modulus of 1.1 to 2.2 cN / dtex (dtex = decitex is based on the weight of the copolymer in the solidified fiber). preferable. When the tensile elastic modulus of the coagulated fiber is less than about 1.1 cN / dtex, it tends to cause non-uniform stretching in the initial stage of the spinning process such as in a coagulation bath, and may cause variations in tow fineness and single fiber fineness inside the tow. is there. Furthermore, since the increase in the drawing load and the change in drawability become remarkable in each spinning step, stable continuous spinning may be difficult.

一方、引っ張り弾性率が約2.2cN/dtexを越えると、凝固浴中での単繊維切れが発生し易くなり、後工程での延伸性低下や安定性低下を招き、繊維に高度な配向を持たせることが困難になる。   On the other hand, if the tensile modulus exceeds about 2.2 cN / dtex, single fiber breakage in the coagulation bath is likely to occur, leading to a decrease in stretchability and stability in the subsequent process, and a high degree of orientation in the fibers. It becomes difficult to have.

このような凝固繊維は、共重合体の組成、溶剤、紡糸ノズル、ノズルからの吐出量を調節し、原液濃度、凝固浴濃度、凝固浴温度、紡糸ドラフトなどを適正な範囲に制御することにより得られる。   Such coagulated fibers are controlled by adjusting the copolymer composition, solvent, spinning nozzle, discharge rate from the nozzle, and controlling the stock solution concentration, coagulating bath concentration, coagulating bath temperature, spinning draft, etc. to an appropriate range. can get.

次に、凝固繊維を一次延伸する。浴中延伸は、凝固糸を凝固浴中または延伸浴中で延伸する。あるいは、一部空中延伸した後に、浴中延伸してもよい。浴中延伸は通常50〜98℃の延伸浴中で1回あるいは2回以上の多段に分割するなどして行われ、その前後あるいは同時に洗浄を行ってもよい。   Next, the coagulated fiber is primarily stretched. In the drawing in the bath, the coagulated yarn is drawn in a coagulation bath or a drawing bath. Or you may extend | stretch in a bath, after partially extending | stretching in the air. Stretching in the bath is usually carried out in a stretching bath at 50 to 98 ° C. by dividing it into multiple stages of once or twice, and washing may be performed before or after or simultaneously.

浴中延伸、洗浄後の繊維は公知の方法によって油剤処理を行った後、乾燥緻密化する。乾燥緻密化の温度は、繊維のガラス転移温度を超えた温度で行う必要があるが、実質的には含水状態から乾燥状態によって異なることもあり、温度は100〜200℃程度の加熱ローラーによる方法が好ましい。このとき加熱ローラーの個数は、1個でも複数個でもよい。   The fiber after drawing and washing in the bath is subjected to oil agent treatment by a known method and then dried and densified. The temperature for drying and densification needs to be performed at a temperature exceeding the glass transition temperature of the fiber, but the temperature may vary depending on the drying state from the water-containing state, and the temperature is a method using a heating roller of about 100 to 200 ° C. Is preferred. At this time, the number of heating rollers may be one or more.

このようにして、一次延伸後に油剤付与および加熱ローラーにより繊維の水分含有率を2重量%以下、特に1重量%以下に乾燥してから、連続して加圧水蒸気延伸を伴う二次延伸を行うことが好ましい。加圧水蒸気中での糸条の加熱効率が向上し、よりコンパクトな装置で延伸を行うことができると同時に、単繊維間の接着など品質を損なう現象の発生を極めて少なくでき、得られる繊維の緻密性や配向度をさらに高めることができるからである。   In this way, after the primary stretching, after applying the oil agent and drying the moisture content of the fiber to 2% by weight or less, particularly 1% by weight or less by a heating roller, the secondary stretching with continuous pressurized steam stretching is performed. Is preferred. The heating efficiency of the yarn in pressurized steam is improved, drawing can be done with a more compact device, and at the same time, the occurrence of phenomena such as adhesion between single fibers can be greatly reduced, and the resulting fibers can be dense. This is because the properties and the degree of orientation can be further increased.

次に、加圧水蒸気延伸を伴う二次延伸について説明する。加圧水蒸気延伸法は、加圧水蒸気雰囲気中で延伸を行う方法であって、高倍率の延伸が可能であることから、より高速で安定な紡糸が行えると同時に、得られる繊維の緻密性や配向度向上にも寄与する。   Next, secondary stretching accompanied by pressurized steam stretching will be described. The pressurized steam stretching method is a method of stretching in a pressurized steam atmosphere, and since it can be stretched at a high magnification, it can perform stable spinning at a higher speed, and at the same time, the denseness and orientation degree of the resulting fiber. Contributes to improvement.

本発明では、この加圧水蒸気延伸を伴う二次延伸において、加圧水蒸気延伸装置直前の加熱ローラーの温度を120〜190℃、加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御することが重要である。このようにすることにより、糸条になされる延伸倍率の変動およびそれによって発生するトウ繊度の変動を抑制することができる。120℃未満では炭素繊維用アクリロニトリル系前駆体繊維の温度が十分に上がらず延伸性が低下する。   In the present invention, in the secondary stretching accompanying this pressurized steam stretching, the temperature of the heating roller immediately before the pressurized steam stretching apparatus is controlled to 120 to 190 ° C., and the variation rate of the steam pressure in the pressurized steam stretching is controlled to 0.5% or less. is important. By doing in this way, the fluctuation | variation of the draw ratio made to a thread | yarn and the fluctuation | variation of the tow | fineness degree generated by it can be suppressed. If it is less than 120 degreeC, the temperature of the acrylonitrile type | system | group precursor fiber for carbon fibers will not fully rise, but a drawability will fall.

二次延伸倍率は、加圧水蒸気延伸装置の入口側および出口側にある双方のローラーの速度差により決定される。本発明では、通常、蒸気延伸装置直前のローラーは加熱ローラーであり、これは乾燥緻密化の最終段の加熱ローラーを兼ねることができる。本発明では、二次延伸は加圧水蒸気延伸装置の入口側・出口側の双方のローラーの速度差により行われる加熱ローラーによる延伸と加圧水蒸気による延伸の二段延伸となる。   The secondary stretching ratio is determined by the speed difference between both rollers on the inlet side and the outlet side of the pressurized steam stretching apparatus. In the present invention, the roller immediately before the vapor stretching apparatus is usually a heating roller, which can also serve as the final heating roller for drying and densification. In the present invention, the secondary stretching is a two-stage stretching of stretching by a heating roller and stretching by pressurized steam performed by the difference in speed between the rollers on the inlet side and the outlet side of the pressurized steam stretching apparatus.

この加熱ローラーにより延伸される倍率は、加熱ローラーの温度と、二次延伸における糸条の延伸張力によって決定されるため、二次延伸の延伸張力が変動すれば、加熱ローラーにより延伸される倍率は変動する。同一時間における二次延伸倍率は、加圧水蒸気延伸装置の入口側・出口側にある双方のローラーの速度差により常に一定に保たれているので、加圧水蒸気による延伸倍率は、加熱ローラーによる延伸倍率の変動に伴って変動する。つまり、加熱ローラーによる延伸と加圧水蒸気による延伸の配分が変動するのである。   Since the magnification stretched by this heating roller is determined by the temperature of the heating roller and the stretching tension of the yarn in the secondary stretching, if the stretching tension of the secondary stretching varies, the magnification stretched by the heating roller is fluctuate. The secondary stretch ratio at the same time is always kept constant due to the difference in speed between the rollers on the inlet side and the outlet side of the pressurized steam stretcher, so the stretch ratio with the pressurized steam is the stretch ratio of the heated roller. It fluctuates with fluctuation. That is, the distribution of stretching by a heating roller and stretching by pressurized steam varies.

加圧水蒸気延伸においては、糸条の走行速度や水蒸気圧力などに応じて、優れた延伸性能を発揮するための適正な処理時間が異なり、糸条の走行速度が速いほど、また水蒸気圧力が低いほど、長い処理時間が必要となる。工業的な前駆体繊維の製造では、通常数十cmから数mの処理長が必要であり、また、スチームの漏れを抑制する部分も必要であるため、加熱ローラーによる延伸から加圧水蒸気による延伸までに時間差が生じる。同一時間において、加熱ローラーによる延伸倍率と加圧水蒸気による延伸倍率の相乗は一定であるが、糸条になされる延伸倍率は、装置上、双方の延伸が全く同時間に行われていないため、加熱ローラーによる延伸と加圧水蒸気による延伸の配分が変動することにより変動し、結果としてトウ繊度の変動をもたらすことになる。   In pressurized steam drawing, the appropriate processing time for exhibiting excellent drawing performance varies depending on the yarn running speed, water vapor pressure, etc., the faster the yarn running speed and the lower the water vapor pressure. Long processing time is required. In the production of industrial precursor fibers, a treatment length of several tens of centimeters to several meters is usually required, and a part that suppresses steam leakage is also required. A time difference occurs. In the same time, the synergy between the draw ratio by the heating roller and the draw ratio by the pressurized steam is constant, but the draw ratio applied to the yarn is not heated at the same time on the device. It fluctuates due to fluctuations in the distribution of the stretching by the roller and the stretching by the pressurized steam, resulting in a variation in the tow fineness.

このため、加熱ローラーによる延伸と加圧水蒸気による延伸の遅延時間をできるだけ小さくすることが、糸条になされる延伸倍率の変動抑制に効果的であり、加圧水蒸気延伸装置の長さをできるだけ短くすることが有効である。しかし、糸条の加熱を十分に行い、工業的に安定な延伸性を確保するためには、ある程度の長さの加圧水蒸気延伸装置が必要となり、これまでの技術では糸条になされる延伸倍率の変動を避けられなかった。本発明者らは、この問題を解決すべく検討を行い、糸条になされる延伸倍率の変動抑制、つまり加熱ローラーによる延伸と加圧水蒸気による延伸の配分変動の抑制するためには、加熱ローラーによる延伸倍率を抑えることと、二次延伸における糸条の延伸張力の変動を少なくすることが重要であることを明らかにした。   For this reason, reducing the delay time between drawing with a heated roller and drawing with pressurized steam as much as possible is effective in suppressing fluctuations in the draw ratio applied to the yarn, and reducing the length of the pressurized steam drawing device as much as possible. Is effective. However, in order to sufficiently heat the yarn and to ensure industrially stable stretchability, a pressurized steam stretcher of a certain length is required. The fluctuation of was inevitable. The present inventors have studied to solve this problem, and in order to suppress fluctuations in the draw ratio applied to the yarn, that is, to suppress fluctuations in the distribution between the drawing by the heating roller and the drawing by the pressurized steam, the heating roller is used. It was clarified that it is important to suppress the draw ratio and to reduce the fluctuation of the drawing tension of the yarn in the secondary drawing.

加熱ローラーによる延伸は、前述したように、加熱ローラーの温度と二次延伸における糸条の発生張力によって決定されるため、加熱ローラーの温度の低下や、加圧水蒸気延伸における水蒸気の圧力を高くすることにより抑えることができる。加熱ロール温度を低下しすぎると加圧水蒸気中での糸条の加熱効率が低下するため、130〜190℃の範囲で適正な温度に制御する。また、加圧水蒸気延伸における水蒸気の圧力は、加熱ローラーによる延伸の抑制や加圧水蒸気延伸法の特徴が明確に現れるようにするため、200kPa・g(ゲージ圧、以下同じ。)以上が好ましい。この水蒸気圧は、処理時間との兼ね合いで適宜調節することが好ましいが、高圧にすると水蒸気の漏れが増大したりする場合があるので、工業的には600kPa・g程度以下で十分である。   As described above, since the stretching by the heating roller is determined by the temperature of the heating roller and the generated tension of the yarn in the secondary stretching, the temperature of the heating roller is decreased and the water vapor pressure in the pressurized steam stretching is increased. Can be suppressed. If the heating roll temperature is lowered too much, the heating efficiency of the yarn in the pressurized steam is lowered, so the temperature is controlled within the range of 130 to 190 ° C. Further, the pressure of the water vapor in the pressurized steam stretching is preferably 200 kPa · g (gauge pressure, the same applies hereinafter) or more so that the stretching of the heated roller and the characteristics of the pressurized steam stretching method appear clearly. The water vapor pressure is preferably adjusted as appropriate in consideration of the processing time, but if the pressure is increased, the leakage of water vapor may increase. Therefore, about 600 kPa · g or less is sufficient industrially.

一方、二次延伸における糸条の延伸張力変動は、加圧水蒸気延伸における水蒸気の圧力を一定に保つことにより抑えることができる。加圧水蒸気の圧力の変動は0.5%以下に制御することが好ましい。また加圧水蒸気の性状は、当該圧力の飽和水蒸気温度より約3℃を越えて高くならないよう、かつ液適状の水が含まれないように制御することが好ましい。   On the other hand, fluctuations in the stretching tension of the yarn in the secondary stretching can be suppressed by keeping the water vapor pressure constant in the pressurized steam stretching. It is preferable to control the fluctuation of the pressure of the pressurized steam to 0.5% or less. The property of the pressurized steam is preferably controlled so as not to exceed about 3 ° C. higher than the saturated steam temperature of the pressure and not include liquid-suitable water.

このように二次延伸の条件を設定することにより、初めて糸条へなされる延伸倍率の変動を抑制し、かつ高倍率で安定に延伸することが可能になり、全延伸倍率に対する二次延伸の割合を大きくすることができる。特に高い延伸倍率が必要となる例えば巻き取り速度が100m/分以上の高速紡糸においても、安定に品質の高い前駆体繊維を製造することができる。   By setting the conditions for secondary stretching in this way, it is possible to suppress the fluctuation of the draw ratio made to the yarn for the first time, and to stably stretch at a high ratio, and the secondary stretch for all the draw ratios. The ratio can be increased. Even in a high-speed spinning where a high draw ratio is required, for example, a winding speed of 100 m / min or more, high-quality precursor fibers can be produced stably.

さらに本発明では、全延伸倍率に対する二次延伸倍率の割合(二次延伸倍率/全延伸倍率)を0.2より大きくすることにより、より好ましい態様においてはさらに全延伸倍率を13以上とすることにより、紡糸安定性に優れ、湿式紡糸法を用いたものであっても、引っ張り特性および緻密性や配向性が極めて優れた前駆体繊維が得られる。   Furthermore, in the present invention, the ratio of the secondary draw ratio to the total draw ratio (secondary draw ratio / total draw ratio) is set to be larger than 0.2, and in a more preferred embodiment, the total draw ratio is further set to 13 or more. As a result, a precursor fiber having excellent spinning stability and extremely excellent tensile properties, denseness, and orientation can be obtained even if a wet spinning method is used.

全延伸倍率が13未満の場合、繊維に十分な配向を与えることができないので、緻密性や配向度が十分でない。また、生産性を上げるために延伸倍率を下げた分凝固浴中でのドラフトを上げると、凝固浴中でのドラフトが高いため単繊維切れが発生しやすく、後工程での延伸性低下や安定性低下を招きやすい。また、全延伸倍率が大きすぎると、一次延伸や二次延伸において延伸負荷の増大により安定した連続紡糸が困難であるので、通常の条件では全延伸倍率25以下が好ましい。   When the total draw ratio is less than 13, sufficient orientation cannot be given to the fiber, so that the denseness and the degree of orientation are not sufficient. Also, if the draft in the coagulation bath is increased by reducing the draw ratio in order to increase the productivity, the single fiber breakage tends to occur due to the high draft in the coagulation bath, and the stretchability is reduced and stabilized in the subsequent process. It is easy to cause deterioration. In addition, if the total draw ratio is too large, it is difficult to perform stable continuous spinning due to an increase in the draw load in primary stretching or secondary stretching. Therefore, the total draw ratio is preferably 25 or less under normal conditions.

また、加圧水蒸気延伸法の高い延伸性や、繊維の緻密性や配向度を向上する特性を十分に発揮させるためには、全延伸倍率に対する二次延伸倍率の割合を0.2より大きくすることが必要である。そうすることで一次延伸での延伸負荷を下げることができるので単繊維切れの発生がなく、また、加圧水蒸気延伸での延伸性低下や安定性の低下がない。従って、緻密性や配同性、機械的特性、品質および生産安定性のすべてにおいて満足できる前駆体繊維を得ることができる。これらの現象は紡糸速度が速い場合に、より顕著になる。尚、全延伸倍率に対する二次延伸倍率の割合は、大きすぎても二次延伸の負荷の増大により連続紡糸の安定性が低下しやすくなるので、全延伸倍率に対する二次延伸倍率の割合は通常0.35以下にすることが好ましい。   In addition, in order to fully exhibit the high stretchability of the pressurized steam stretching method and the properties that improve the denseness and degree of orientation of the fibers, the ratio of the secondary stretching ratio to the total stretching ratio should be larger than 0.2. is required. By doing so, the drawing load in the primary drawing can be reduced, so there is no occurrence of single fiber breakage, and there is no reduction in drawability or stability in pressurized steam drawing. Therefore, it is possible to obtain a precursor fiber that is satisfactory in all of denseness, congruency, mechanical properties, quality, and production stability. These phenomena become more prominent when the spinning speed is high. In addition, since the ratio of the secondary draw ratio to the total draw ratio is too large, the stability of continuous spinning tends to decrease due to an increase in the load of the secondary draw even if it is too large. It is preferable to make it 0.35 or less.

本発明の炭素繊維用アクリロニトリル系前駆体繊維を焼成した炭素繊維は、一方向に引き揃えてプリプレグとする際、従来の炭素繊維より30%ほど高い生産性でプリプレグ化が可能である。これは炭素繊維用アクリロニトリル系前駆体繊維の、ひいては炭素繊維の長手方向の繊度むらが少なく、これにより長手方向の開繊性のむらが少なくなっているためである。   When the carbon fiber obtained by firing the acrylonitrile-based precursor fiber for carbon fiber of the present invention is aligned in one direction to be a prepreg, it can be prepreg with a productivity about 30% higher than that of the conventional carbon fiber. This is because the carbon fiber acrylonitrile-based precursor fiber, and hence the carbon fiber, has less unevenness in the longitudinal direction, and thus the unevenness in the longitudinal direction of the fiber decreases.

以下に実施例を用いて本発明をさらに具体的に説明する。なお、以下に示す実施例のうち、実施例1および3〜6が本発明の範囲に含まれる実施例であり、実施例2は本発明に関連する参考例である。実施例および比較例における共重合体組成、共重合体の極限粘度〔η〕、凝固繊維の引っ張り弾性率、前駆体繊維の引っ張り強度・弾性率、および炭素繊維(表中ではCFと略す)のストランド強度・弾性率、ヨウ素吸着量、広角X線解析による結晶配向度、トウ繊度の変動率、表面粗滑係数、繊維の水分含有率、加圧水蒸気延伸における水蒸気圧力の変動率は以下の方法で測定した。 Hereinafter, the present invention will be described more specifically with reference to examples. Of the following examples, Examples 1 and 3 to 6 are examples included in the scope of the present invention, and Example 2 is a reference example related to the present invention. Copolymer composition, intrinsic viscosity [η] of copolymer, tensile elastic modulus of coagulated fiber, tensile strength / elastic modulus of precursor fiber, and carbon fiber (abbreviated as CF in the table) in Examples and Comparative Examples Strand strength / elastic modulus, iodine adsorption amount, crystal orientation degree by wide-angle X-ray analysis, tow fineness fluctuation rate, surface roughness coefficient, fiber moisture content, and water vapor pressure fluctuation rate in pressurized steam drawing are as follows. It was measured.

(イ)「共重合体組成」
1H−NMR法(日本電子GSX−400型超伝導FT−NMR)により測定した。
(B) “Copolymer composition”
It was measured by 1 H-NMR method (JEOL GSX-400 type superconducting FT-NMR).

(ロ)「共重合体の極限粘度〔η〕」
25℃のジメチルホルムアミド溶液で測定した。
(B) “Intrinsic viscosity of copolymer [η]”
Measured with a dimethylformamide solution at 25 ° C.

(ハ)「凝固繊維の引っ張り弾性率」
凝固繊維束を採取後、速やかに温度23℃、湿度50%の雰囲気中、試料長(掴み間隔)10cm、引っ張り速度100m/分にてテンシロンによる引っ張り試験を行った。
(C) “Tensile modulus of coagulated fiber”
After collecting the coagulated fiber bundle, a tensile test with Tensilon was quickly conducted in an atmosphere at a temperature of 23 ° C. and a humidity of 50% at a sample length (grip interval) of 10 cm and a pulling speed of 100 m / min.

弾性率表示は、下式により凝固繊維束の繊度(dtex:凝固繊維束10000mあたりの共重合体のしめる重量)を求め、cN/dtexにて示した。
dtex=10000×f×Qp/V
f:フィラメント数、Qp:ノズル1ホールあたりの共重合体吐出量(g/分)、V:凝固繊維引き取り速度(m/分)
(ニ)「前駆体繊維の引っ張り強度・弾性率」
単繊維を採取し、温度23℃、湿度50%の雰囲気中、試料長(掴み間隔)2cm、引っ張り速度2cm/分にてテンシロンによる引っ張り試験を行った。
The elastic modulus was expressed by cN / dtex by obtaining the fineness of the coagulated fiber bundle (dtex: the weight of the copolymer per 10,000 m of coagulated fiber bundle) by the following formula.
dtex = 10000 × f × Qp / V
f: number of filaments, Qp: copolymer discharge amount per nozzle hole (g / min), V: solidified fiber take-up speed (m / min)
(D) "Tensile strength / elastic modulus of precursor fiber"
Single fibers were collected and subjected to a tensile test with Tensilon in an atmosphere of a temperature of 23 ° C. and a humidity of 50% at a sample length (grip interval) of 2 cm and a pulling speed of 2 cm / min.

強度・弾性率表示は、単繊維の繊度(dtex;単繊維10000mあたりの重量)を求め、cN/dtexにて示した。   For the strength / elastic modulus display, the fineness (dtex; weight per 10000 m of single fiber) of the single fiber was obtained and indicated by cN / dtex.

(ホ)「炭素繊維のストランド強度・弾性率」
JIS−7601に準じて測定した。
(E) “Strand strength and elastic modulus of carbon fiber”
It measured according to JIS-7601.

(ヘ)「ヨウ素吸着量の測定法」
前駆体繊維2gを精秤採取し、100mlの三角フラスコに入れる。これにヨウ素溶液(ヨウ化カリウム100g、酢酸90g、2,4−ジクロロフェノール10g、ヨウ素50gを蒸留水に溶解し1000mlの溶液とする)100mlを入れ60℃で50分間振とうしヨウ素吸着処理を行った。この後吸着処理糸を30分間イオン交換水にて洗浄し、さらに蒸留水にて洗い流した後、遠心脱水する。脱水糸を300mlビーカーに入れ、ジメチルスルホキシド200mlを加え60℃にて溶解した。この溶液を0.01mol/l硝酸銀水溶液で電位差滴定しヨウ素吸着量を求めた。
(F) "Method for measuring iodine adsorption"
Precisely weigh 2 g of precursor fiber and place it in a 100 ml Erlenmeyer flask. 100 ml of an iodine solution (100 g of potassium iodide, 90 g of acetic acid, 10 g of 2,4-dichlorophenol, and 50 g of iodine dissolved in distilled water) was added to 100 ml, and the mixture was shaken at 60 ° C. for 50 minutes for iodine adsorption treatment. went. Thereafter, the adsorbed yarn is washed with ion-exchanged water for 30 minutes, rinsed with distilled water, and then subjected to centrifugal dehydration. The dehydrated yarn was put in a 300 ml beaker, 200 ml of dimethyl sulfoxide was added and dissolved at 60 ° C. This solution was subjected to potentiometric titration with an aqueous 0.01 mol / l silver nitrate solution to determine the amount of iodine adsorbed.

(ト)「広角X線解析による結晶配向度の測定法]
広角X線解析法によるポリアクリロニトリル系繊維の赤道線上解析点の円周方向強度分布の半価幅Hから次式によって算出される値である。
配向度π(%)=((180−H)/180)×100
広角X線解析(カウンター法)
(1)X線発生装置
理学電気(株)製 RU−200
X線源:CuKα(Niフィルター使用)
出力:40KV 190mA
(2)ゴニオメーター
理学電気(株)製 2155D1
スリット系:2MM 0.5°×1°
検出器:シンチレーションカウンター
(チ)「トウ繊度の変動率」
前駆体繊維トウの長手方向に、1mの長さのトウを連続して100回正確に切断して、それぞれ85℃の乾燥機で12時間乾燥したのち、乾燥後の重量を測定して、次式によりその変動率を求めた。
変動率(%)=(σ/E)×100
σ:測定データの標準偏差、E:測定データの平均値
(リ)「表面粗滑係数の測定法」
まず、走査型電子顕微鏡装置のコントラスト条件を磁気テープを標準試料として調整した。すなわち、標準試料として高性能磁気テープを使用し、加速電圧:13kV、倍率:1000倍、スキャンニング速度:3.60m/秒の条件下に二次電子曲線を観察し、その平均振幅が約40mmとなるようコントラスト条件を調整した。ついで、かかる調整後、試料の前駆体繊維軸に直角の方向(繊維直径方向)に一時電子を走査し、繊維表面から反射される二次(反射)電子曲線をラインプロファイル装置を用いてブラウン管上に像映させ、これを10000倍の撮影倍率でフィルムに撮影した。なお、この際の加速電圧は13kV、スキャンニング速度は0.18cm/秒である。
(G) “Measurement of crystal orientation by wide-angle X-ray analysis”
This is a value calculated from the half-value width H of the circumferential intensity distribution at the analysis point on the equator line of the polyacrylonitrile fiber by the wide-angle X-ray analysis method.
Degree of orientation π (%) = ((180−H) / 180) × 100
Wide-angle X-ray analysis (counter method)
(1) X-ray generator RU-200 manufactured by Rigaku Denki Co., Ltd.
X-ray source: CuKα (using Ni filter)
Output: 40KV 190mA
(2) Goniometer Rigaku Denki Co., Ltd. 2155D1
Slit system: 2MM 0.5 ° × 1 °
Detector: Scintillation counter (H) “Change rate of toe fineness”
In the longitudinal direction of the precursor fiber tow, 1 m long tow was cut accurately 100 times continuously, dried for 12 hours with a dryer at 85 ° C., and the weight after drying was measured. The rate of change was determined by the formula.
Fluctuation rate (%) = (σ / E) × 100
σ: Standard deviation of measurement data, E: Average value of measurement data (I) “Measurement method of surface roughness coefficient”
First, contrast conditions of the scanning electron microscope apparatus were adjusted using a magnetic tape as a standard sample. That is, using a high-performance magnetic tape as a standard sample, a secondary electron curve was observed under the conditions of acceleration voltage: 13 kV, magnification: 1000 times, scanning speed: 3.60 m / sec, and the average amplitude was about 40 mm. The contrast condition was adjusted so that Then, after such adjustment, temporary electrons are scanned in the direction perpendicular to the precursor fiber axis of the sample (fiber diameter direction), and the secondary (reflected) electron curve reflected from the fiber surface is displayed on the cathode ray tube using a line profile device. This was photographed on a film at a photographing magnification of 10,000 times. In this case, the acceleration voltage is 13 kV and the scanning speed is 0.18 cm / second.

このようにして得られた二次電子曲線写真をさらに焼き付け時に2倍に引き延ばして、すなわち倍率は合計20000倍として、二次電子曲線図(写真)とする。その典型的な例を図1に示す。同図においてdは繊維直径、d’は繊維直径の左右両端部をそれぞれ20%除いた領域、すなわち繊維直径の中心部60%の直径方向長さであり、d’=0.6dである。また、lはd’の範囲における二次電子曲線の全長(直線換算長さ)である。   The secondary electron curve photograph thus obtained is further doubled at the time of printing, that is, the total magnification is 20000 times to obtain a secondary electron curve diagram (photograph). A typical example is shown in FIG. In the figure, d is the fiber diameter, d 'is the area obtained by removing 20% of the left and right ends of the fiber diameter, that is, the length in the diameter direction of the central portion of the fiber diameter, and d' = 0.6d. Further, l is the total length (linear conversion length) of the secondary electron curve in the range of d ′.

lとd’から、表面粗滑係数はl/d’で求められる。   From l and d ', the surface roughness coefficient is obtained by l / d'.

(ヌ)「繊維の水分含有率の測定」
繊維を85℃の乾燥機で12時間乾燥し、乾燥前後の重量W1、W2を測定し、次式により算出した。
水分率(%)=((W1−W2)/W2)×100
(ル)「加圧水蒸気延伸における水蒸気圧力の変動率」
加圧水蒸気延伸において、延伸装置内部の圧力を40秒間モニターし、0.04秒ごとの圧力データを採取して、次式によりその変動率を求めた。
変動率(%)=(σ/E)×100
σ:測定データの標準偏差、E:測定データの平均値
[実施例1]
アクリロニトリル97.1重量%、アクリルアミド2.0重量%、メタクリル酸0.9重量%からなり極限粘度〔η〕が1.7の共重合体を、共重合体濃度23重量%となるようにジメチルホルムアミドに溶解して紡糸原液とした。この紡糸原液を12000ホールのノズルを用いて、濃度70重量%、温度35℃のジメチルホルムアミド水溶液中に吐出して湿式紡糸した。得られた凝固繊維の引っ張り弾性率は1.59cN/dtexであった。
(Nu) "Measurement of moisture content of fiber"
The fiber was dried with an oven at 85 ° C. for 12 hours, and the weights W1 and W2 before and after drying were measured and calculated by the following formula.
Moisture content (%) = ((W1-W2) / W2) × 100
(L) “Variation rate of water vapor pressure in pressurized water vapor drawing”
In pressurized steam stretching, the pressure inside the stretching apparatus was monitored for 40 seconds, pressure data was collected every 0.04 seconds, and the variation rate was determined by the following equation.
Fluctuation rate (%) = (σ / E) × 100
σ: standard deviation of measurement data, E: average value of measurement data [Example 1]
A copolymer consisting of 97.1% by weight of acrylonitrile, 2.0% by weight of acrylamide and 0.9% by weight of methacrylic acid and having an intrinsic viscosity [η] of 1.7 is converted to dimethyl so as to have a copolymer concentration of 23% by weight. Dissolved in formamide to obtain a spinning dope. This spinning dope was discharged into a dimethylformamide aqueous solution having a concentration of 70% by weight and a temperature of 35 ° C. using a 12000 hole nozzle, and was wet-spun. The tensile modulus of the obtained coagulated fiber was 1.59 cN / dtex.

次に凝固繊維を沸水中で4.75倍延伸しながら洗浄・脱溶剤した後、シリコン系油剤浴液中に浸漬し、140℃の加熱ローラーにて乾燥緻密化した。このときの水分含有率は、0.1重量%以下であった。引き続いて294kPa・gの加圧水蒸気中にて2.8倍延伸した後、再乾燥して前駆体繊維を得た。このときの巻き取り速度は100m/分であった。また、加圧水蒸気延伸に際して、加圧水蒸気延伸装置直前の加熱ローラーの温度は140℃、加圧水蒸気延伸における水蒸気圧力の変動率は0.2%以下になるよう制御し、加圧水蒸気延伸室に供給される水蒸気は、ドレントラップにより液適状の水を除去し、加圧水蒸気延伸室の温度は142℃に温度調節した。   Next, the coagulated fiber was washed and desolvated while being stretched 4.75 times in boiling water, then immersed in a silicone-based oil bath solution, and dried and densified with a 140 ° C. heating roller. The water content at this time was 0.1% by weight or less. Subsequently, the film was stretched 2.8 times in pressurized steam of 294 kPa · g and then re-dried to obtain a precursor fiber. The winding speed at this time was 100 m / min. In addition, during the pressurized steam stretching, the temperature of the heating roller immediately before the pressurized steam stretching apparatus is controlled to 140 ° C., and the variation rate of the steam pressure in the pressurized steam stretching is controlled to 0.2% or less, and supplied to the pressurized steam stretching chamber. Water vapor was removed from the liquid by a drain trap, and the temperature of the pressurized steam drawing chamber was adjusted to 142 ° C.

全延伸倍率は13.3、全延伸倍率に対する二次延伸倍率の割合は0.21であった。   The total draw ratio was 13.3, and the ratio of the secondary draw ratio to the total draw ratio was 0.21.

尚、加圧水蒸気延伸における水蒸気圧力の調整は、延伸機中に設けたヤマタケハネウェル社製JPG940A、BSTJ300圧力伝送機で得たデータを横河電機社製PIDデジタル指示調整機に送り、この指示調整機の指示で自動圧力調整弁の開度を変化させることによって行なった。   In addition, the adjustment of the water vapor pressure in the pressurized water vapor drawing is performed by sending the data obtained by the Yamatake Honeywell's JPG940A and BSTJ300 pressure transmitters installed in the drawing machine to the Yokogawa Electric PID digital indicating and adjusting machine. Was performed by changing the opening degree of the automatic pressure control valve.

紡糸工程中、単繊維切れ・毛羽の発生はほとんど認められず、紡糸安定性は良好であった。この前駆体繊維の引っ張り強度は7.5cN/dtex、引っ張り弾性率は147cN/dtex、ヨウ素吸着量は0.2重量%、広角X線解析による結晶配向度πは93%、トウ繊度の変動率は0.6%、表面祖滑係数は3.0であった。   During the spinning process, almost no single fiber breakage or fluff was observed, and the spinning stability was good. This precursor fiber has a tensile strength of 7.5 cN / dtex, a tensile elastic modulus of 147 cN / dtex, an iodine adsorption amount of 0.2% by weight, a crystal orientation degree π of 93% by wide-angle X-ray analysis, and a variation rate of tow fineness. Was 0.6% and the surface slip coefficient was 3.0.

この繊維を空気中230〜260℃の熱風循環式耐炎化炉にて5%の伸張を付与しながら30分熱処理し、繊維密度が1.368g/cm3の耐炎化繊維とし、引き続きこの繊維を窒素雰囲気下最高温度600℃、伸張率5%にて1.5分間低温熱処理し、さらに同雰囲気下で最高温度が1400℃の高温熱処理炉にて−4%の伸張の下、約1.5分処理した。得られた炭素繊維のストランド強度は4800MPa、ストランド弾性率は284GPaであった。 This fiber was heat-treated for 30 minutes in a hot-air circulating flame-proofing furnace at 230 to 260 ° C. in air while giving 5% elongation to obtain a flame-resistant fiber having a fiber density of 1.368 g / cm 3. A low temperature heat treatment is performed for 1.5 minutes at a maximum temperature of 600 ° C. and an elongation rate of 5% in a nitrogen atmosphere, and further, about 1.5% under a high temperature heat treatment furnace having a maximum temperature of 1400 ° C. under a −4% elongation. Minute processed. The obtained carbon fiber had a strand strength of 4800 MPa and a strand elastic modulus of 284 GPa.

[比較例1〜3]
凝固浴条件をそれぞれ濃度60重量%、温度35℃のジメチルホルムアミド水溶液(比較例1)、濃度73重量%、温度35℃のジメチルホルムアミド水溶液(比較例2)、濃度70重量%、温度50℃のジメチルホルムアミド水溶液(比較例3)とし、それ以外は実施例1と同様にして紡糸を行った。
[Comparative Examples 1-3]
The coagulation bath conditions were 60% by weight of a dimethylformamide aqueous solution (Comparative Example 1) at a temperature of 35 ° C., 73% by weight of a dimethylformamide aqueous solution (Comparative Example 2) at a temperature of 35 ° C., a concentration of 70% by weight and a temperature of 50 ° C. Spinning was carried out in the same manner as in Example 1 except that the aqueous solution was dimethylformamide (Comparative Example 3).

比較例1においては毛羽の発生が多く、連続的に前駆体繊維を得ることが困難であった。比較例2および3では前駆体繊維を得た後、実施例1と同様な条件で焼成した。このときの凝固繊維の引っ張り弾性率、前駆体繊維の毛羽の程度・引っ張り強度と弾性率・ヨウ素吸着量・広角X線配向度、および炭素繊維のストランド特性を表1に示した。   In Comparative Example 1, fluff was frequently generated, and it was difficult to obtain precursor fibers continuously. In Comparative Examples 2 and 3, after obtaining the precursor fiber, it was fired under the same conditions as in Example 1. Table 1 shows the tensile elastic modulus of the coagulated fiber, the fuzziness of the precursor fiber, the tensile strength and elastic modulus, the amount of iodine adsorbed, the wide-angle X-ray orientation, and the strand properties of the carbon fiber.

[比較例4、5]
加圧水蒸気延伸の条件をそれぞれ、加圧水蒸気延伸装置直前の加熱ローラーの温度を195℃、加圧水蒸気延伸における水蒸気圧力の変動率は0.7%程度(比較例4)、加圧水蒸気延伸装置直前の加熱ローラーの温度は140℃、加圧水蒸気延伸における水蒸気圧力の変動率は0.7%程度(比較例5)とし、それ以外は実施例1と同様にして紡糸を行った。
[Comparative Examples 4 and 5]
The conditions of the pressurized steam stretching are respectively the temperature of the heating roller immediately before the pressurized steam stretching apparatus is 195 ° C., the variation rate of the steam pressure in the pressurized steam stretching is about 0.7% (Comparative Example 4), the heating just before the pressurized steam stretching apparatus Spinning was carried out in the same manner as in Example 1 except that the temperature of the roller was 140 ° C., the fluctuation rate of the water vapor pressure in pressurized steam drawing was about 0.7% (Comparative Example 5).

比較例4においては前駆体繊維のトウ繊度の変動率は1.7%、比較例5ではは前駆体繊維のトウ繊度の変動率は1.2%であった。   In Comparative Example 4, the variation rate of the toe fineness of the precursor fiber was 1.7%, and in Comparative Example 5, the variation rate of the toe fineness of the precursor fiber was 1.2%.

[実施例2〜4]
実施例1と同様のアクリロニトリル系共重合体を用い、共重合体濃度21重量%のジメチルアセトアミド溶液を紡糸原液とし、12000ホールのノズルを用いて濃度70重量%、温度35℃のジメチルアセトアミド水溶液中に吐出して湿式紡糸した。
[Examples 2 to 4]
The same acrylonitrile copolymer as in Example 1 was used, and a dimethylacetamide solution having a copolymer concentration of 21% by weight was used as a spinning stock solution. In a dimethylacetamide aqueous solution having a concentration of 70% by weight and a temperature of 35 ° C. using a 12,000-hole nozzle. And wet spinning.

引き続きこの繊維を空中にて1.5倍の延伸を施し、沸水中で延伸しながら洗浄・脱溶剤した後、シリコン系油剤浴液中に浸漬し、140℃の加熱ローラーにて乾燥緻密化した。引き続いて、294kPa・gの加圧水蒸気中にて延伸した後、再乾燥して前駆体繊維を得た。このときの巻き取り速度は100m/分であった。また、加圧水蒸気延伸に際して、加圧水蒸気延伸装置直前の加熱ローラーの温度は140℃、加圧水蒸気延伸における水蒸気圧力の変動率は0.2%以下になるよう制御し、加圧水蒸気延伸室に供給される水蒸気は、ドレントラップにより液適状の水を除去し、加圧水蒸気延伸室の温度は142℃に温度調節した。   Subsequently, the fiber was stretched 1.5 times in the air, washed and desolvated while being stretched in boiling water, then immersed in a silicon-based oil bath solution, and dried and densified with a 140 ° C. heating roller. . Subsequently, after stretching in pressurized steam of 294 kPa · g, re-drying was performed to obtain a precursor fiber. The winding speed at this time was 100 m / min. In addition, during the pressurized steam stretching, the temperature of the heating roller immediately before the pressurized steam stretching apparatus is controlled to 140 ° C., and the variation rate of the steam pressure in the pressurized steam stretching is controlled to 0.2% or less, and supplied to the pressurized steam stretching chamber. Water vapor was removed from the liquid by a drain trap, and the temperature of the pressurized steam drawing chamber was adjusted to 142 ° C.

さらにこの繊維を実施例1と同様の条件にて焼成して炭素繊維を得た。それぞれの全延伸倍率および全延伸倍率に対する二次延伸倍率の割合、凝固繊維の引っ張り弾性率、前駆体繊維の毛羽の程度・引っ張り強度と弾性率・ヨウ素吸着量・広角X線配向度・トウ繊度変動率、および炭素繊維のストランド特性を表1に示した。   Furthermore, this fiber was baked on the same conditions as Example 1, and the carbon fiber was obtained. Ratio of secondary draw ratio to total draw ratio and total draw ratio, tensile modulus of coagulated fiber, fluff degree of precursor fiber, tensile strength and modulus, iodine adsorption, wide-angle X-ray orientation, tow fineness The variation rate and the strand characteristics of the carbon fiber are shown in Table 1.

[比較例6]
全延伸倍率に対する二次延伸倍率の割合を表1の値とし、それ以外の条件は実施例2と同様とした。さらに、この繊維を実施例2と同様の条件にて焼成して炭素繊維を得た。凝固繊維の引っ張り弾性率、前駆体繊維の毛羽の程度・引っ張り強度と弾性率・ヨウ素吸着量・広角X線配向度、および炭素繊維のストランド特性を表1に示した。
[Comparative Example 6]
The ratio of the secondary draw ratio to the total draw ratio was the value shown in Table 1, and the other conditions were the same as in Example 2. Further, this fiber was fired under the same conditions as in Example 2 to obtain a carbon fiber. Table 1 shows the tensile elastic modulus of the coagulated fiber, the degree of fluff of the precursor fiber, the tensile strength and elastic modulus, the amount of iodine adsorbed, the wide-angle X-ray orientation degree, and the strand characteristics of the carbon fiber.

[比較例7〜11]
アクリロニトリル系共重合体の組成を表2の値とし、それ以外の条件は全て実施例2と同様にして前駆体繊維を得た後、さらに焼成した。それぞれの凝固繊維の引っ張り弾性率、前駆体繊維の毛羽の程度・引っ張り強度と弾性率・ヨウ素吸着量・広角X線配向度、および炭素繊維のストランド特性を表2に示した。なお、比較例7の場合は耐炎化工程で燃焼・発煙が生じた。
[Comparative Examples 7 to 11]
The composition of the acrylonitrile copolymer was set to the value shown in Table 2, and all other conditions were obtained in the same manner as in Example 2 to obtain a precursor fiber, followed by further firing. Table 2 shows the tensile elastic modulus of each coagulated fiber, the degree of fluff of the precursor fiber, the tensile strength and elastic modulus, the amount of iodine adsorbed, the wide-angle X-ray orientation, and the strand properties of the carbon fiber. In the case of Comparative Example 7, combustion and smoke generation occurred in the flameproofing process.

[実施例5]
実施例1と同様のアクリロニトリル系共重合体を用い、共重合体濃度21重量%のジメチルアセトアミド溶液を紡糸原液とし、12000ホールのノズルを用いて濃度70重量%、温度35℃のジメチルアセトアミド水溶液中に湿式紡糸した。
[Example 5]
The same acrylonitrile copolymer as in Example 1 was used, and a dimethylacetamide solution having a copolymer concentration of 21% by weight was used as a spinning stock solution. In a dimethylacetamide aqueous solution having a concentration of 70% by weight and a temperature of 35 ° C. using a 12,000-hole nozzle. Wet spinning.

引き続きこの繊維を空中にて1.5倍の延伸を施し、沸水中で延伸しながら洗浄・脱溶剤した後、シリコン系油剤浴液中に浸漬し、160℃の加熱ローラーにて乾燥緻密化した。引き続いて、294kPa・gの加圧水蒸気中にて延伸した後、再乾燥して前駆体繊維を得た。このときの巻き取り速度は140m/分であった。また、加圧水蒸気延伸に際して、加圧水蒸気延伸装置直前の加熱ローラーの温度は140℃、加圧水蒸気延伸における水蒸気圧力の変動率は0.2%以下になるよう制御し、加圧水蒸気延伸室に供給される水蒸気は、ドレントラップにより液適状の水を除去し、加圧水蒸気延伸室の温度は142℃に温度調節した。   Subsequently, this fiber was stretched 1.5 times in the air, washed and desolvated while being stretched in boiling water, then immersed in a silicone-based oil bath solution, and dried and densified with a 160 ° C. heating roller. . Subsequently, after stretching in pressurized steam of 294 kPa · g, re-drying was performed to obtain a precursor fiber. The winding speed at this time was 140 m / min. In addition, during the pressurized steam stretching, the temperature of the heating roller immediately before the pressurized steam stretching apparatus is controlled to 140 ° C., and the variation rate of the steam pressure in the pressurized steam stretching is controlled to 0.2% or less, and supplied to the pressurized steam stretching chamber. Water vapor was removed from the liquid by a drain trap, and the temperature of the pressurized steam drawing chamber was adjusted to 142 ° C.

さらにこの繊維を実施例1と同様の条件にて焼成して炭素繊維を得た。全延伸倍率および全延伸倍率に対する二次延伸倍率の割合、凝固繊維の引っ張り弾性率、前駆体繊維の毛羽の程度・引っ張り強度と弾性率・ヨウ素吸着量・広角X線配向度・トウ繊度変動率、および炭素繊維のストランド特性を表2に示した。   Furthermore, this fiber was baked on the same conditions as Example 1, and the carbon fiber was obtained. Ratio of secondary draw ratio to total draw ratio and total draw ratio, tensile elastic modulus of coagulated fiber, degree of fluff of precursor fiber, tensile strength and elastic modulus, iodine adsorption amount, wide-angle X-ray orientation degree, tow fineness fluctuation rate Table 2 shows the strand characteristics of carbon fiber and carbon fiber.

[実施例6]
比較例4で得られた得られた炭素繊維をそれぞれ炭素繊維目付が125g/m2となるように引き揃えシート状とした。その上下面に離型紙上に三菱レイヨン株式会社製エポキシ樹脂#340を塗布した樹脂フィルム(樹脂目付27g/m2)をエポキシ樹脂が炭素繊維に接するように重ね、プリプレグ製造機に通し、125g/m2のプリプレグを製造した。製造速度を徐々に上げていくと、炭素繊維の開繊性が低下していき、炭素繊維のない約1mm幅スプリットが4〜5m毎に2〜3ヶ所発生するようになった。尚、このとき用いたプリプレグ製造機は、加熱した7対のフラットな金属製プレスロール、1対の冷却ロール、1対のゴム製の引き取りロールからなるもので、離型紙上にエポキシ樹脂を塗布した樹脂フィルムの間に、炭素繊維を挟んだ状態で供給し、プレスロール表面で加熱して樹脂を流動化すると共にプレスし、炭素繊維層に樹脂を含浸させる。その後冷却したのちゴム製ロール対により引き取ってプリプレグを得る。
[Example 6]
The obtained carbon fibers obtained in Comparative Example 4 were each formed into a sheet-like shape so that the carbon fiber basis weight was 125 g / m 2 . A resin film (resin basis weight 27 g / m 2 ) coated with Mitsubishi Rayon Co., Ltd. epoxy resin # 340 on the release paper is stacked on the upper and lower surfaces so that the epoxy resin is in contact with the carbon fiber, passed through a prepreg manufacturing machine, and 125 g / An m 2 prepreg was produced. As the production rate was gradually increased, the spreadability of the carbon fibers was lowered, and about 1 mm wide splits without carbon fibers were generated at 2 to 3 locations every 4 to 5 m. The prepreg manufacturing machine used at this time was composed of 7 pairs of heated flat metal press rolls, 1 pair of cooling rolls, and 1 pair of rubber take-up rolls, and an epoxy resin was applied onto the release paper. The carbon fiber is supplied in a state of being sandwiched between the resin films, heated on the surface of the press roll to fluidize and press the resin, and the carbon fiber layer is impregnated with the resin. Then, after cooling, it is taken up by a pair of rubber rolls to obtain a prepreg.

次に炭素繊維を実施例1で得られた炭素繊維にかえたところ、比較例4の炭素繊維でスプリットが発生した製造速度より30%増しの製造速度においてもスプリットのないプリプレグが安定して製造できた。   Next, when the carbon fiber was replaced with the carbon fiber obtained in Example 1, a prepreg without split was stably produced even at a production rate 30% higher than the production rate at which splitting occurred in the carbon fiber of Comparative Example 4. did it.

[比較例12]
実施例1加熱水蒸気延伸装置前のローラー温度を115℃とした他は実施例1と同様に操作して、炭素繊維用アクリロニトリル系前駆体繊維を得た。毛羽の程度が多く、巻き取りが困難であった。
[Comparative Example 12]
Example 1 An acrylonitrile-based precursor fiber for carbon fiber was obtained in the same manner as in Example 1 except that the roller temperature before the heated steam stretching apparatus was 115 ° C. There was much fuzz and winding was difficult.

Figure 0004228009
Figure 0004228009

Figure 0004228009
Figure 0004228009

本発明によれば、より短時間の焼成で高品質の炭素繊維を安価に製造することが可能な、高強度・高弾性率で緻密性および配向度が高く、かつトウ繊度変動率の小さい炭素繊維用アクリロニトリル系前駆体繊維を提供することができる。   According to the present invention, carbon capable of producing high-quality carbon fiber at a low cost by firing in a shorter time, high strength, high elastic modulus, high density and high degree of orientation, and low tow fineness variation rate An acrylonitrile-based precursor fiber for fibers can be provided.

また、そのような性質の炭素繊維用アクリロニトリル系前駆体繊維を、湿式紡糸方法によって長時間糸切れすることがなく毛羽の発生が少なく、高速で安定に製造することができる。   In addition, the acrylonitrile-based precursor fiber for carbon fiber having such properties can be stably produced at high speed with no generation of fuzz by a wet spinning method without causing yarn breakage for a long time.

本発明の炭素繊維用アクリロニトリル系前駆体繊維は、長手方向の繊度むらが少なく、これを焼成して得られる炭素繊維も長手方向の繊度むらが少ない。これにより長手方向の開繊性のむらが少なくなるため、従来の炭素繊維より30%ほど高い生産性でプリプレグ化が可能である。   The acrylonitrile-based precursor fiber for carbon fiber of the present invention has little longitudinal fineness unevenness, and the carbon fiber obtained by firing the same has little longitudinal fineness unevenness. As a result, the unevenness of the spreadability in the longitudinal direction is reduced, so that the prepreg can be formed with a productivity about 30% higher than that of the conventional carbon fiber.

表面粗滑係数を測定するための二次電子曲線図である。It is a secondary electron curve figure for measuring a surface roughness coefficient.

符号の説明Explanation of symbols

d 繊維直径
d’ 繊維直径の中心部60%の直径方向の長さ
l d’の範囲における二次電子曲線の全長(直線換算長さ)
d Fiber diameter d ′ The total length of the secondary electron curve in the range of the length l d ′ of the diameter direction of the central portion 60% of the fiber diameter (linear conversion length)

Claims (4)

アクリロニトリル単位96.0〜98.5重量%、アクリルアミド単位1.0〜3.5重量%、およびカルボキシル基含有ビニル系モノマー単位0.5〜1.0重量%からなるアクリロニトリル系共重合体を湿式紡糸して、引っ張り弾性率が1.1〜1.59cN/dtexである凝固繊維とした後、浴中延伸、または空中延伸と浴中延伸による一次延伸を行った後、加圧水蒸気延伸を伴う二次延伸を行う炭素繊維用アクリロニトリル系前駆体繊維の製造方法であって、加圧水蒸気延伸装置に糸条を導入する直前の加熱ローラーの温度を120〜190℃に設定し、前記加圧水蒸気延伸における水蒸気圧力の変動率を0.5%以下に制御し、かつ全延伸倍率に対する二次延伸倍率の割合が0.2より大きくなるように延伸することを特徴とする炭素繊維用アクリロニトリル系前駆体繊維の製造方法。 An acrylonitrile copolymer comprising 96.0 to 98.5% by weight of acrylonitrile units, 1.0 to 3.5% by weight of acrylamide units, and 0.5 to 1.0% by weight of carboxyl group-containing vinyl monomer units is wet. spun involves pulling after the elastic modulus was coagulated fiber is 1.1~1.59cN / dtex, after primary drawing by Shin Nakanobu bath with the bath during stretching or air stretching, the pressurized steam drawing In the method for producing acrylonitrile-based precursor fiber for carbon fiber that performs secondary stretching, the temperature of the heating roller immediately before introducing the yarn into the pressurized steam stretching apparatus is set to 120 to 190 ° C. The water vapor pressure fluctuation rate is controlled to 0.5% or less, and stretching is performed such that the ratio of the secondary stretching ratio to the total stretching ratio is greater than 0.2. Method of producing a carbon fiber for acrylonitrile based precursor fiber. 全延伸倍率が13以上である請求項1記載の炭素繊維用アクリロニトリル系前駆体繊維の製造方法。   The method for producing an acrylonitrile-based precursor fiber for carbon fiber according to claim 1, wherein the total draw ratio is 13 or more. 前記加圧水蒸気延伸時の水蒸気圧が200kPa(ゲージ圧)以上である請求項1または2に記載の炭素繊維用アクリロニトリル系前駆体繊維の製造方法。 The method for producing an acrylonitrile-based precursor fiber for carbon fiber according to claim 1 or 2 , wherein a water vapor pressure at the time of the pressurized water vapor stretching is 200 kPa (gauge pressure) or more. 前記加圧水蒸気延伸を行うときの繊維の水分率が2重量%以下である請求項1〜のいずれかに記載の炭素繊維用アクリロニトリル系前駆体繊維の製造方法。 The method for producing an acrylonitrile-based precursor fiber for carbon fiber according to any one of claims 1 to 3 , wherein the moisture content of the fiber when performing the pressurized steam drawing is 2% by weight or less.
JP2006230438A 1998-07-22 2006-08-28 Method for producing acrylonitrile-based precursor fiber for carbon fiber Expired - Lifetime JP4228009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230438A JP4228009B2 (en) 1998-07-22 2006-08-28 Method for producing acrylonitrile-based precursor fiber for carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20667398 1998-07-22
JP2006230438A JP4228009B2 (en) 1998-07-22 2006-08-28 Method for producing acrylonitrile-based precursor fiber for carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000561384 Division 1999-07-22

Publications (2)

Publication Number Publication Date
JP2006348462A JP2006348462A (en) 2006-12-28
JP4228009B2 true JP4228009B2 (en) 2009-02-25

Family

ID=37644592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230438A Expired - Lifetime JP4228009B2 (en) 1998-07-22 2006-08-28 Method for producing acrylonitrile-based precursor fiber for carbon fiber

Country Status (1)

Country Link
JP (1) JP4228009B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012089B2 (en) * 2007-03-02 2012-08-29 東レ株式会社 Carbon fiber precursor fiber bundle and method for producing the same
JP4979478B2 (en) * 2007-06-19 2012-07-18 三菱レイヨン株式会社 Acrylonitrile-based carbon fiber precursor fiber bundle, carbon fiber bundle using the same, and method for producing the same
JP4983709B2 (en) * 2008-04-17 2012-07-25 東レ株式会社 Carbon fiber precursor fiber and method for producing carbon fiber
JP5313788B2 (en) * 2009-07-02 2013-10-09 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle and method for producing the same
JP5313797B2 (en) * 2009-07-17 2013-10-09 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP5892455B2 (en) * 2011-03-14 2016-03-23 三菱レイヨン株式会社 Acrylonitrile precursor fiber for carbon fiber and method for producing the same
JP6004816B2 (en) * 2012-08-02 2016-10-12 東邦テナックス株式会社 Method for producing flame-resistant fiber bundle
JP6264819B2 (en) * 2013-10-04 2018-01-24 三菱ケミカル株式会社 Acrylonitrile copolymer, carbon fiber precursor acrylonitrile fiber, carbon fiber, and method for producing carbon fiber

Also Published As

Publication number Publication date
JP2006348462A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
KR100570592B1 (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
KR870000533B1 (en) Carbon fiber's making method
JP2006257580A (en) Polyacrylonitrile-based polymer for precursor fiber of carbon fiber, precursor fiber of carbon fiber and method for producing carbon fiber
JP2007162144A (en) Method for producing carbon fiber bundle
JPH0711086B2 (en) High-strength, high-modulus acrylic fiber manufacturing method
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
US5413858A (en) Acrylic fiber and process for production thereof
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP3154595B2 (en) Method for producing acrylonitrile fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2009256831A (en) Carbon fiber precursors and method for producing carbon fibers
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2001131833A (en) Carbon yarn and method for producing the same
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
KR100207979B1 (en) Acrylic fiber and process for production thereof
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4228009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term