JP5313797B2 - Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle - Google Patents

Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle Download PDF

Info

Publication number
JP5313797B2
JP5313797B2 JP2009169089A JP2009169089A JP5313797B2 JP 5313797 B2 JP5313797 B2 JP 5313797B2 JP 2009169089 A JP2009169089 A JP 2009169089A JP 2009169089 A JP2009169089 A JP 2009169089A JP 5313797 B2 JP5313797 B2 JP 5313797B2
Authority
JP
Japan
Prior art keywords
fiber bundle
acrylonitrile
mass
precursor fiber
coagulation bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009169089A
Other languages
Japanese (ja)
Other versions
JP2011021302A (en
Inventor
宏子 松村
勝彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009169089A priority Critical patent/JP5313797B2/en
Publication of JP2011021302A publication Critical patent/JP2011021302A/en
Application granted granted Critical
Publication of JP5313797B2 publication Critical patent/JP5313797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylonitrile-based precursor fiber bundle for carbon fibers, giving a carbon fiber bundle having good resin impregnation property and openability and high bulkiness, and having excellent bundling property and processability of a baking process; a method for producing the precursor fiber bundle; and a carbon fiber bundle. <P>SOLUTION: There are provided the acrylonitrile-based precursor fiber bundle for carbon fibers composed of single fibers having an average surface roughness (Ra) of 36-55 nm, a maximum peak-to-valley difference (P-V) of 170-270 nm and a surface area ratio (Sratio) of 1.18-1.25; the method for producing the precursor fiber bundle; and the carbon fiber bundle produced by flame-proofing treatment and carbonization treatment of the acrylonitrile-based precursor fiber bundle for carbon fiber. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、繊維強化複合材料の強化材として使用される炭素繊維束の製造に適した炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束に関する。   The present invention relates to an acrylonitrile-based precursor fiber bundle for carbon fibers suitable for producing a carbon fiber bundle used as a reinforcing material for a fiber-reinforced composite material, a method for producing the same, and a carbon fiber bundle.

炭素繊維束の製造に用いられる前駆体繊維束には、焼成工程において繊維束がばらけたり、繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラーに巻き付いたりしないように、高い集束性が要求される。
炭素繊維束は、通常、マトリックス樹脂を含浸させて複合材料として成型され、様々な用途に利用されている。しかし、集束性の高い前駆体繊維から得られる炭素繊維束は、その集束性の高さのため、マトリックス樹脂が含浸しにくいという問題を有していた。マトリックス樹脂が含浸しにくいと、得られる複合材料の基本特性が十分に発揮されにくくなる。
Precursor fiber bundles used in the production of carbon fiber bundles are high so that the fiber bundles are not scattered in the firing process, and the single fibers constituting the fiber bundles are not entangled with adjacent fiber bundles or wound around rollers. Convergence is required.
The carbon fiber bundle is usually impregnated with a matrix resin and molded as a composite material and used for various applications. However, the carbon fiber bundle obtained from the precursor fiber having high sizing property has a problem that the matrix resin is difficult to be impregnated due to its high sizing property. If the matrix resin is difficult to be impregnated, the basic characteristics of the resulting composite material are not sufficiently exhibited.

また、炭素繊維束を製織して得られる炭素繊維織物は、マトリックス樹脂を含浸する際に樹脂のボイド(空隙)が発生しないように、できるだけ目開きの少ない織物とする必要がある。そのために、製織中または製織後に何らかの開繊処理が施される場合が多い。
しかし、集束性の高い前駆体繊維束から得られる炭素繊維束は、その集束性の高さのため、開繊しにくいという問題を有していた。さらに、炭素繊維織物は、目空きの少ない均一な織り目が要求されるため、嵩高い炭素繊維束が必要とされていた。
Further, the carbon fiber fabric obtained by weaving the carbon fiber bundle needs to be a fabric with as few openings as possible so that resin voids (voids) do not occur when the matrix resin is impregnated. For this reason, some opening process is often performed during or after weaving.
However, the carbon fiber bundle obtained from the precursor fiber bundle having high converging property has a problem that it is difficult to open due to its high converging property. Furthermore, since the carbon fiber woven fabric is required to have a uniform weave with little open space, a bulky carbon fiber bundle is required.

従来、複合材料の基本特性を向上させる方法として、炭素繊維束の表面形態や、マトリックス樹脂の特性を改善する方法などが検討されている。
例えば特許文献1には、繊維束の表面に、該繊維束の長手方向に連続する高さ0.5〜1.0μmの皺が存在しているアクリロニトリル系繊維束が開示されている。該アクリロニトリル系繊維束によれば、繊維束の表面に存在している皺により、集束性に優れ、開繊性が良好となる。
Conventionally, as a method for improving the basic characteristics of a composite material, a surface form of a carbon fiber bundle, a method for improving characteristics of a matrix resin, and the like have been studied.
For example, Patent Document 1 discloses an acrylonitrile-based fiber bundle in which wrinkles having a height of 0.5 to 1.0 μm that are continuous in the longitudinal direction of the fiber bundle are present on the surface of the fiber bundle. According to the acrylonitrile-based fiber bundle, the wrinkles present on the surface of the fiber bundle have excellent convergence and good spreadability.

また、特許文献2には、粗面化度が2.0〜3.0である前駆体繊維束が開示されている。該前駆体繊維束によれば、粗面化度を規定することで、焼成工程において繊維束同士の融着、膠着などの現象を呈することなく、前駆体繊維束自体が本来有する性能を十分に発揮できる炭素繊維束が得られる。
また、特許文献3には、繊維横断面形状がθ=360°/n(nは1〜10の整数)で規定される回転対称角度θを有する非円形状である前駆体繊維束が開示されている。該前駆体繊維束によれば、断面形状を特定することで複合材料の基本特性を向上できる。
Patent Document 2 discloses a precursor fiber bundle having a roughening degree of 2.0 to 3.0. According to the precursor fiber bundle, by defining the roughening degree, the precursor fiber bundle itself has sufficient performance without exhibiting phenomena such as fusion and sticking between the fiber bundles in the firing step. A carbon fiber bundle that can be exhibited is obtained.
Patent Document 3 discloses a precursor fiber bundle that is a non-circular shape having a rotational symmetry angle θ in which the fiber cross-sectional shape is defined by θ = 360 ° / n (n is an integer of 1 to 10). ing. According to the precursor fiber bundle, the basic characteristics of the composite material can be improved by specifying the cross-sectional shape.

特許第3808643号公報Japanese Patent No. 38084633 特開昭59−130320号公報JP 59-130320 A 特開平3−185121号公報JP-A-3-185121

しかしながら、特許文献1、2に記載の前駆体繊維束は、必ずしも集束性を十分に満足するものではなかった。また、焼成工程における通過性が低下することがあった。
また、特許文献3に記載の前駆体繊維束は、焼成工程における通過性と、得られる炭素繊維束の樹脂含浸性および開繊性とを同時に満足することが困難であった。
However, the precursor fiber bundles described in Patent Documents 1 and 2 do not always satisfy the convergence. Moreover, the passability in the firing step may be reduced.
Moreover, it was difficult for the precursor fiber bundle described in Patent Document 3 to simultaneously satisfy the permeability in the firing step and the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle.

本発明は上記事情に鑑みてなされたもので、樹脂含浸性および開繊性が良好で、嵩高い炭素繊維束を得ることができ、かつ集束性に優れ、焼成工程通過性が良好な炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has good resin impregnation and spreadability, can obtain a bulky carbon fiber bundle, has excellent bundling properties, and has good firing process passability. An object of the present invention is to provide an acrylonitrile-based precursor fiber bundle, a method for producing the same, and a carbon fiber bundle.

本発明者らは、鋭意検討した結果、前駆体繊維束を構成する単繊維の表面形態を制御し、特定の凹凸形状にすることで、前駆体繊維束の集束性および焼成工程通過性が向上し、かつ樹脂含浸性および開繊性が良好な炭素繊維束が得られるようになることを見出し、本発明を完成するに至った。
すなわち、本発明の炭素繊維用アクリロニトリル系前駆体繊維束は、95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体からなり、表面の平均面粗さ(Ra)が36〜55nm、最大高低差(P−V)が170〜270nm、表面積率(Sratio)が1.18〜1.25である単繊維から構成されることを特徴とする。
As a result of intensive studies, the inventors of the present invention have improved the convergence of the precursor fiber bundle and the ability to pass through the firing process by controlling the surface form of the single fiber constituting the precursor fiber bundle to have a specific uneven shape. In addition, the present inventors have found that a carbon fiber bundle having good resin impregnation properties and fiber opening properties can be obtained, and the present invention has been completed.
That is, the acrylonitrile-based precursor fiber bundle for carbon fiber of the present invention comprises an acrylonitrile-based polymer containing 95% by mass or more of acrylonitrile units and 0.5 to 4% by mass of acrylamide units, and has an average surface roughness of the surface. (Ra) is 36 to 55 nm, the maximum height difference (P-V) is 170 to 270 nm, and the surface area ratio (Sratio) is 1.18 to 1.25.

また、本発明の炭素繊維用アクリロニトリル系前駆体繊維束の製造方法は、有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第1凝固浴中に、95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を吐出して凝固糸にするとともに、この凝固糸を第1凝固浴中から紡糸原液の吐出線速度の0.8倍以下の速度で引き取る工程と、引き続き、前記凝固糸を有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第2凝固浴中にて、1.5〜2倍に延伸し、膨潤状態の一束とする工程と、延伸された膨潤状態の繊維束に3倍以上の湿熱延伸を施す工程と、湿熱延伸された繊維束に添油処理する工程と、添油処理された繊維束を乾燥した後に、この繊維束に1.5〜2.5倍のスチーム延伸を施す工程とを有することを特徴とする。
さらに、前記湿熱延伸された繊維束の膨潤度が90質量%以下であることが好ましい。
Moreover, the manufacturing method of the acrylonitrile type | system | group precursor fiber bundle for carbon fibers of this invention is 95 mass% or more in the 1st coagulation bath which consists of organic-solvent aqueous solution of 55-68 mass% of organic solvent concentration, and the temperature of 33-40 degreeC. A spinning stock solution comprising an organic solvent solution of an acrylonitrile polymer containing acrylonitrile units of 0.5 to 4% by mass is discharged into a coagulated yarn, and the coagulated yarn is spun from the first coagulation bath. A step of drawing at a rate of 0.8 times or less of the discharge line speed of the stock solution, and subsequently, the coagulated yarn is placed in a second coagulation bath comprising an organic solvent aqueous solution having an organic solvent concentration of 55 to 68% by mass and a temperature of 33 to 40 ° C. Stretching the fiber bundle 1.5 to 2 times to form a bundle in a swollen state, applying the heat-stretched fiber bundle 3 times or more to the stretched fiber bundle, Oil processing When, after drying the fiber bundle which has been hydrogenated oil processed, characterized in that a step of performing a steam drawing of 1.5 to 2.5 times the fiber bundle.
Furthermore, it is preferable that the swelling degree of the wet-heat-stretched fiber bundle is 90% by mass or less.

また、本発明の炭素繊維束は、前記炭素繊維用アクリロニトリル系前駆体繊維束を耐炎化および炭素化して得られることを特徴とする。   In addition, the carbon fiber bundle of the present invention is obtained by making the acrylonitrile-based precursor fiber bundle for carbon fiber flameproof and carbonized.

本発明によれば、樹脂含浸性および開繊性が良好で、嵩高い炭素繊維束を得ることができ、かつ集束性に優れ、焼成工程通過性が良好な炭素繊維用アクリロニトリル系前駆体繊維束およびその製造方法、ならびに炭素繊維束を提供できる。   According to the present invention, an acrylonitrile-based precursor fiber bundle for carbon fibers that has a good resin impregnation property and spreadability, can obtain a bulky carbon fiber bundle, has excellent converging properties, and has good firing process passability. And a manufacturing method thereof, and a carbon fiber bundle can be provided.

以下、本発明を詳細に説明する。
本発明の炭素繊維用アクリロニトリル系前駆体繊維束(以下、「前駆体繊維束」という。)は、アクリロニトリル系重合体の単繊維を複数束ねたトウである。
アクリロニトリル系重合体としては、95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体を用いる。アクリルアミド単位が4質量%を超えると、本発明の前駆体繊維束を焼成して得られる炭素繊維束の強度発現性が低下する。一方、アクリルアミド単位が0.5質量%未満であると、アクリロニトリル系重合体の有機溶剤溶液に対する溶解性が低下し、紡糸口金を通して凝固浴中に吐出させた際の凝固速度が速くなるとともに、紡糸安定性が低下する。その結果、単繊維の表面形態を制御しにくくなり、特定の凹凸形状を有する単繊維が得られにくくなる。
Hereinafter, the present invention will be described in detail.
The acrylonitrile-based precursor fiber bundle for carbon fibers of the present invention (hereinafter referred to as “precursor fiber bundle”) is a tow obtained by bundling a plurality of single fibers of an acrylonitrile-based polymer.
As the acrylonitrile polymer, an acrylonitrile polymer containing 95% by mass or more of acrylonitrile units and 0.5 to 4% by mass of acrylamide units is used. When the acrylamide unit exceeds 4% by mass, strength development of the carbon fiber bundle obtained by firing the precursor fiber bundle of the present invention is lowered. On the other hand, if the acrylamide unit is less than 0.5% by mass, the solubility of the acrylonitrile-based polymer in the organic solvent solution is lowered, and the coagulation speed when discharged into the coagulation bath through the spinneret is increased, and the spinning is performed. Stability is reduced. As a result, it becomes difficult to control the surface form of the single fiber, and it becomes difficult to obtain a single fiber having a specific uneven shape.

アクリロニトリル系重合体は、アクリロニトリルおよびアクリルアミドと、必要に応じてこれら単量体と共重合しうる単量体とを、水溶液中におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合などによって、重合させて得ることができる。   Acrylonitrile polymers are acrylonitrile and acrylamide, and monomers that can be copolymerized with these monomers as needed, redox polymerization in aqueous solution, suspension polymerization in heterogeneous system, emulsification using dispersant It can be obtained by polymerization, such as by polymerization.

アクリロニトリルおよびアクリルアミドと共重合しうる単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類;(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類;マレイン酸イミド、フェニルマレイミド、メタアクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル;スチレンスルホン酸ソーダアリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体;2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられる。
これらの中でも、特に(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類は、得られるアクリロニトリル系重合体を紡糸して得られる前駆体繊維束を焼成する際の耐炎化工程での焼成速度が速くなる点で好ましく用いられる。
Examples of monomers that can be copolymerized with acrylonitrile and acrylamide include (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Acid esters; vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride; acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts; maleic imide, phenylmaleimide, methacrylamide, styrene , Α-methylstyrene, vinyl acetate; polymerizable unsaturated monomer containing a sulfone group such as sodium styrenesulfonate sodium allylsulfonate, β-styrenesulfonate sodium, methallylsulfonate sodium; 2-vinylpyridine, 2 -Methyl-5-vinylpi Examples thereof include polymerizable unsaturated monomers containing a pyridine group such as lysine.
Among these, acids such as (meth) acrylic acid, itaconic acid, crotonic acid, and salts thereof are particularly flame-resistant when firing a precursor fiber bundle obtained by spinning the obtained acrylonitrile-based polymer. It is preferably used in that the firing rate of the is increased.

本発明の前駆体繊維束を構成する単繊維は、表面の平均面粗さ(Ra)が36〜55nm、最大高低差(P−V)が170〜270nm、表面積率(Sratio)が1.18〜1.25である。   The single fiber constituting the precursor fiber bundle of the present invention has an average surface roughness (Ra) of 36 to 55 nm, a maximum height difference (P-V) of 170 to 270 nm, and a surface area ratio (Sratio) of 1.18. ~ 1.25.

単繊維の平均面粗さ(Ra)が36nm未満では、前駆体繊維束を焼成して得られる炭素繊維束のバルキー性が不十分となり、樹脂含浸性、開繊性および炭素繊維織物(クロス)にした際のカバーリング性が悪くなる。一方、単繊維の平均面粗さ(Ra)が55nmを超えると、前駆体繊維束の表面積が増加して静電気が発生し易くなり、集束性が低下するとともに、焼成工程において前駆体繊維束がばらけやすくなり、焼成工程通過性が悪くなるおそれがある。また、得られる炭素繊維束のストランド強度が低下する傾向にある。   When the average surface roughness (Ra) of the single fiber is less than 36 nm, the bulkiness of the carbon fiber bundle obtained by firing the precursor fiber bundle is insufficient, and the resin impregnation property, the fiber opening property, and the carbon fiber fabric (cross) Covering performance when using the On the other hand, when the average surface roughness (Ra) of the single fiber exceeds 55 nm, the surface area of the precursor fiber bundle increases, and static electricity is likely to be generated. There is a possibility that it will be easy to disperse and the baking process passability will deteriorate. Moreover, it exists in the tendency for the strand strength of the carbon fiber bundle obtained to fall.

単繊維の最大高低差(P−V)が170nm未満では、得られる炭素繊維束のバルキー性が不十分となり、樹脂含浸性、開繊性およびクロスにした際のカバーリング性が悪くなる。一方、単繊維の最大高低差(P−V)が270nmを越えると、前駆体繊維束の強度が低下し、さらに紡糸安定性が低下する傾向にある。   When the maximum height difference (P-V) of the single fibers is less than 170 nm, the bulkiness of the obtained carbon fiber bundle is insufficient, and the resin impregnation property, the fiber opening property and the covering property when made into a cloth are deteriorated. On the other hand, when the maximum height difference (P-V) of the single fiber exceeds 270 nm, the strength of the precursor fiber bundle decreases, and the spinning stability tends to decrease.

単繊維の表面積率(Sratio)が1.18未満では、前駆体繊維束の集束性や焼成工程通過性が十分に満足するレベルに到達しにくくなる。一方、単繊維の表面積率(Sratio)が1.25を超えると、前駆体繊維束の表面積が増加して静電気が発生し易くなり、集束性が低下するとともに、焼成工程において前駆体繊維束がばらけやすくなり、焼成工程通過性が悪くなるおそれがある。また、得られる炭素繊維束のストランド強度が低下する傾向にある。   When the surface area ratio (Sratio) of the single fiber is less than 1.18, it becomes difficult to reach a level that sufficiently satisfies the converging property of the precursor fiber bundle and the passability of the firing process. On the other hand, when the surface area ratio (Sratio) of the single fiber exceeds 1.25, the surface area of the precursor fiber bundle is increased and static electricity is easily generated, the convergence is lowered, and the precursor fiber bundle is reduced in the firing step. There is a possibility that it will be easy to disperse and the baking process passability will deteriorate. Moreover, it exists in the tendency for the strand strength of the carbon fiber bundle obtained to fall.

単繊維の平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)は、走査型プローブ顕微鏡を用いて測定される値であり、以下のようにして定義した。
平均面粗さ(Ra)は、JIS B0601 で定義されている中心線平均粗さを、測定面に対して適用できるよう三次元に拡張したもので、基準面から指定面までの偏差の絶対値を平均した値である。
最大高低差(P−V)は、Z繊維軸に垂直な方向の断面プロファイルにおけるZデータの最大値Zmaxと最小値Zminの差である。なお、Zデータとは、走査型プローブ顕微鏡にて測定されるXY軸座標位置、Z軸高さデータによる高低データのことである。
表面積率(Sratio)は、指定面が理想的にフラットであると仮定したときの面積Sに対する実際の表面積Sの比率(S/S)である。
The average surface roughness (Ra), maximum height difference (PV), and surface area ratio (Sratio) of single fibers are values measured using a scanning probe microscope and are defined as follows.
The average surface roughness (Ra) is a three-dimensional extension of the centerline average roughness defined in JIS B0601 so that it can be applied to the measurement surface. The absolute value of the deviation from the reference surface to the specified surface Is an average value.
The maximum height difference (P−V) is a difference between the maximum value Zmax and the minimum value Zmin of the Z data in the cross-sectional profile in the direction perpendicular to the Z fiber axis. Note that the Z data is height data based on XY axis coordinate positions and Z axis height data measured by a scanning probe microscope.
The surface area ratio (Sratio) is the ratio (S 1 / S 0 ) of the actual surface area S 1 to the area S 0 when the designated surface is assumed to be ideally flat.

単繊維の平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)は、以下のようにして測定できる。
単繊維を数本採取し、試料台上にのせて両端を固定し測定サンプルとする。走査型プローブ顕微鏡によりカンチレバーを使用して形状測定モードにて測定を行う。単繊維の曲面の影響ができるだけ少ない範囲で、かつ繊維表面形状を反映する範囲として1〜3μmの範囲を走査して測定画像を得る。得られた測定画像をデータ処理によって単繊維の曲面を平面にフィッティング補正した画像を得る。平面補正した画像の表面粗さ解析より繊維表面の形状パラメーターを求める。
測定は1サンプルについて単糸10本を走査型プローブ顕微鏡で形状測定し、各測定画像について、前述の方法で形状パラメーターを求め、その平均値をサンプルの平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)とする。
The average surface roughness (Ra), maximum height difference (PV), and surface area ratio (Sratio) of single fibers can be measured as follows.
Collect several single fibers and place them on a sample table to fix both ends to make a measurement sample. Measurement is performed in a shape measurement mode using a cantilever with a scanning probe microscope. A measurement image is obtained by scanning a range of 1 to 3 μm as a range in which the influence of the curved surface of the single fiber is as small as possible and reflecting the fiber surface shape. The obtained measurement image is subjected to data processing to obtain an image obtained by fitting the curved surface of the single fiber to a plane. The shape parameter of the fiber surface is obtained from the surface roughness analysis of the flattened image.
The measurement is carried out by measuring the shape of 10 single yarns per sample with a scanning probe microscope, obtaining the shape parameters for each measurement image by the method described above, and calculating the average value of the average surface roughness (Ra) and the maximum height difference of the sample. (PV), surface area ratio (Sratio).

本発明の前駆体繊維束は、単繊維の表面が上述した特定の凹凸形状を有するため、集束性に優れ、焼成工程通過性が良好である。また、前駆体繊維束を焼成して得られる炭素繊維束は嵩高く、良好な樹脂含浸性および開繊性を有するようになる。   Since the precursor fiber bundle of the present invention has the above-described specific uneven shape on the surface of the single fiber, it has excellent convergence and good firing process passability. The carbon fiber bundle obtained by firing the precursor fiber bundle is bulky and has good resin impregnation and fiber opening properties.

次に、本発明の前駆体繊維束の製造方法について説明する。
上述した特定の凹凸形状を有する単繊維から構成される本発明の前駆体繊維束は、例えば、以下のようにして製造することができる。
まず、95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、紡糸口金を通して、有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第1凝固浴中に吐出して凝固糸にするとともに、この凝固糸を第1凝固浴中から紡糸原液の吐出線速度の0.8倍以下の引取り速度で引き取る。
ついで、この凝固糸を、有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第2凝固浴中にて1.5〜2倍に延伸し、膨潤状態の一束とする。
Next, the manufacturing method of the precursor fiber bundle of this invention is demonstrated.
The precursor fiber bundle of the present invention composed of single fibers having the specific uneven shape described above can be produced, for example, as follows.
First, a spinning stock solution composed of an organic solvent solution of acrylonitrile-based polymer containing 95% by mass or more of acrylonitrile units and 0.5 to 4% by mass of acrylamide units is passed through a spinneret, and the organic solvent concentration is 55 to 68% by mass. The coagulated yarn is discharged into a first coagulation bath made of an organic solvent aqueous solution at a temperature of 33 to 40 ° C. to obtain a coagulated yarn. Take over at the take-off speed.
Next, the coagulated yarn was stretched 1.5 to 2 times in a second coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 55 to 68% by mass and a temperature of 33 to 40 ° C. To do.

続いて、延伸された膨潤状態の繊維束に3倍以上の湿熱延伸を施す。
ついで、湿熱延伸された繊維束に、濃度0.4〜1.5質量%に調整したシリコーン系油剤を添加し、添油処理を行った後、添油処理された繊維束を乾燥し、さらにスチーム延伸機で1.5〜2.5倍にスチーム延伸する。
この繊維束に対して、タッチロールで水分率の調整を行い、続いて、この糸にエアーを吹き付けて交絡を施し、前駆体繊維束を得る。
Subsequently, the stretched and swollen fiber bundle is subjected to wet heat stretching three times or more.
Next, after adding the silicone oil adjusted to a concentration of 0.4 to 1.5% by mass to the fiber bundle that has been wet-heat-stretched, and performing the oil addition treatment, the fiber bundle subjected to the oil addition treatment is dried, Steam stretching is performed 1.5 to 2.5 times with a steam stretching machine.
The moisture content of the fiber bundle is adjusted with a touch roll, and then the yarn is entangled by blowing air onto the yarn to obtain a precursor fiber bundle.

紡糸原液に使用するアクリロニトリル系重合体に対する有機溶剤としては、例えばジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。これら中でも、ジメチルアセトアミドは溶剤の加水分解による性状の悪化が少なく、良好な紡糸性を与えるので、好適に用いられる。
第1凝固浴と第2凝固浴に用いる有機溶剤としては、紡糸原液に用いる有機溶剤と同じ溶剤を使用するのが好ましい。
Examples of the organic solvent for the acrylonitrile polymer used in the spinning dope include dimethylacetamide, dimethylsulfoxide, dimethylformamide, and the like. Among these, dimethylacetamide is preferably used because it hardly deteriorates in properties due to hydrolysis of the solvent and gives good spinnability.
As the organic solvent used for the first coagulation bath and the second coagulation bath, it is preferable to use the same solvent as the organic solvent used for the spinning dope.

紡糸原液中のアクリロニトリル系重合体の濃度は、18〜26質量%が好ましく、20〜22質量%がより好ましい。アクリロニトリル系重合体の濃度が18質量%以上であれば、繊維内部が緻密な前駆体繊維束が得られ、機械的強度の高い炭素繊維束が得られやすくなる。一方、アクリロニトリル系重合体の濃度が26質量%以下であれば、紡糸原液の粘度が適度になり、紡糸安定性が良好となる。   The concentration of the acrylonitrile polymer in the spinning dope is preferably 18 to 26% by mass, and more preferably 20 to 22% by mass. When the concentration of the acrylonitrile-based polymer is 18% by mass or more, a precursor fiber bundle having a dense fiber interior is obtained, and a carbon fiber bundle having high mechanical strength is easily obtained. On the other hand, when the concentration of the acrylonitrile-based polymer is 26% by mass or less, the viscosity of the spinning dope becomes appropriate and the spinning stability becomes good.

ここで、第1凝固浴と第2凝固浴の有機溶剤濃度を同じにする、第1凝固浴と第2凝固浴の温度を同じにする、さらには紡糸原液の有機溶剤と第1凝固浴に用いる有機溶剤と第2凝固浴に用いる有機溶剤とを同じものにする等の手段を採ることにより、第1凝固浴および第2凝固浴の調製が容易となり、しかも溶剤回収上でのメリットも生ずる。  Here, the organic solvent concentrations of the first coagulation bath and the second coagulation bath are made the same, the temperatures of the first coagulation bath and the second coagulation bath are made the same, and further, the organic solvent of the spinning stock solution and the first coagulation bath are used. By taking measures such as making the organic solvent used and the organic solvent used in the second coagulation bath the same, the preparation of the first coagulation bath and the second coagulation bath is facilitated, and there are also advantages in terms of solvent recovery. .

また、アクリロニトリル系重合体のジメチルアセトアミド溶液からなる紡糸原液と、ジメチルアセトアミド水溶液からなる第1凝固浴と、前記第1凝固浴と同じ温度および組成成分のジメチルアセトアミド水溶液からなる第2凝固浴とを使用すると、平均面粗さ(Ra)が36〜55nm、最大高低差(P−V)が170〜270nm、表面積率(Sratio)が1.18〜1.25の単繊維の製造を容易に行えるようになる。   And a spinning stock solution comprising a dimethylacetamide solution of an acrylonitrile-based polymer, a first coagulation bath comprising a dimethylacetamide aqueous solution, and a second coagulation bath comprising a dimethylacetamide aqueous solution having the same temperature and composition as the first coagulation bath. When used, it is possible to easily produce single fibers having an average surface roughness (Ra) of 36 to 55 nm, a maximum height difference (P-V) of 170 to 270 nm, and a surface area ratio (Sratio) of 1.18 to 1.25. It becomes like this.

また、第1凝固浴と第2凝固浴の有機溶剤濃度が上記範囲内であれば、単繊維の平均面粗さ(Ra)、最大高低差(P−V)、および表面積率(Sratio)を容易に調整できる。具体的には、第1凝固浴と第2凝固浴の有機溶剤濃度を低くすることによって、平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)の値が大きい単繊維が得られる。一方、第1凝固浴と第2凝固浴の有機溶剤濃度を高くすることによって、平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)の値が小さい単繊維が得られる。   Moreover, if the organic solvent density | concentration of a 1st coagulation bath and a 2nd coagulation bath is in the said range, the average surface roughness (Ra), the maximum height difference (PV), and the surface area ratio (Sratio) of a single fiber will be set. Easy to adjust. Specifically, the values of the average surface roughness (Ra), the maximum height difference (PV), and the surface area ratio (Sratio) are increased by lowering the organic solvent concentration in the first coagulation bath and the second coagulation bath. A single fiber is obtained. On the other hand, by increasing the concentration of the organic solvent in the first coagulation bath and the second coagulation bath, single fibers having small average surface roughness (Ra), maximum height difference (PV), and surface area ratio (Sratio) are obtained. can get.

また、第1凝固浴と第2凝固浴の温度が33℃未満では、凝固糸が凝固しにくくなり、凝固糸の引き取り速度を低下させる必要があり、生産性が低下する。一方、第1凝固浴と第2凝固浴の温度が40℃を超えると、凝固糸同士が融着しやすくなる。   In addition, when the temperature of the first coagulation bath and the second coagulation bath is less than 33 ° C., the coagulated yarn is difficult to coagulate, and it is necessary to reduce the take-up speed of the coagulated yarn, which decreases productivity. On the other hand, when the temperature of the first coagulation bath and the second coagulation bath exceeds 40 ° C., the coagulated yarns are easily fused.

さらに、凝固糸の第1凝固浴中からの引取り速度を、紡糸口金のノズル孔からの紡糸原液の吐出線速度の0.8倍以下(凝固糸の引取り速度/ノズル孔からの紡糸原液の吐出線速度≦0.8)とすることで、良好な紡糸性を維持することができる。引取り速度の下限については特に制限されないが、吐出線速度の0.4倍以上が好ましい。
なお、紡糸原液を押し出すための紡糸口金には、アクリロニトリル系重合体の単繊維の一般的な太さである、1.08デニール(1.2dTex)程度のアクリロニトリル系重合体の単繊維を製造する際の孔径、すなわち15〜100μmの孔径のノズル孔を有する紡糸口金を使用できる。
Further, the take-up speed of the coagulated yarn from the first coagulation bath is 0.8 times or less of the discharge linear speed of the stock solution from the nozzle hole of the spinneret (the take-up speed of the coagulated yarn / the stock solution from the nozzle hole). If the discharge linear velocity is less than 0.8), good spinnability can be maintained. The lower limit of the take-up speed is not particularly limited, but is preferably 0.4 times or more of the discharge linear speed.
For the spinneret for extruding the spinning dope, acrylonitrile polymer single fibers of about 1.08 denier (1.2 dTex), which is a general thickness of acrylonitrile polymer single fibers, are produced. A spinneret having a nozzle hole having a diameter of 15 to 100 μm can be used.

このような前駆体繊維束の製造方法においては、第1凝固浴から引き上げた凝固糸は、該凝固糸が含有する液体中の有機溶剤の濃度が、第1凝固浴における有機溶剤の濃度を超えているので、凝固糸の表面だけが凝固した半凝固状態にある凝固糸になり、次工程の第2凝固浴中での延伸性が良好な凝固糸になる。
また、第1凝固浴から引き出した凝固液を含んだままの膨潤状態にある凝固糸は、空気中で延伸することも可能であるが、この凝固糸を上記方法のように第2凝固浴中で延伸する手段を採ることにより、凝固糸の凝固を促進させることができ、また、延伸工程での温度制御も容易になる。
In such a precursor fiber bundle manufacturing method, the concentration of the organic solvent in the liquid contained in the coagulated yarn of the coagulated yarn pulled up from the first coagulation bath exceeds the concentration of the organic solvent in the first coagulation bath. Therefore, only the surface of the coagulated yarn becomes a coagulated yarn in a semi-solidified state, and the coagulated yarn has good stretchability in the second coagulation bath in the next step.
Further, the coagulated yarn in the swollen state containing the coagulation liquid drawn out from the first coagulation bath can be drawn in the air, but this coagulated yarn can be drawn in the second coagulation bath as in the above method. By adopting a means for stretching at, solidification of the coagulated yarn can be promoted, and temperature control in the stretching process is facilitated.

第2凝固浴中での延伸倍率は、1.5倍よりも低くすると均一に配向した繊維が得られなくなり、2.0倍よりも高くすると単繊維切れが発生し易くなり、紡糸安定性が低下し、しかもその後の湿熱延伸工程での延伸性が悪化する。   If the draw ratio in the second coagulation bath is lower than 1.5 times, uniformly oriented fibers cannot be obtained, and if it is higher than 2.0 times, single fiber breakage is likely to occur, and spinning stability is improved. In addition, the stretchability in the subsequent wet heat stretching process deteriorates.

第2凝固浴中での延伸工程後の湿熱延伸は、繊維の配向をさらに高めるためのものである。この湿熱延伸は、第2凝固浴中での延伸を終えた膨潤状態にある繊維束(膨潤繊維束)を水洗に付しながらの延伸、あるいは熱水中での延伸によって行われる。中でも、高生産性の観点から、熱水中での延伸を行うのが好ましい。なお、この湿熱延伸工程での延伸倍率を3倍よりも低くすると、繊維の配向の向上が十分でなくなる。湿熱延伸工程での延伸倍率の上限については特に制限されないが、5倍以下が好ましい。   The wet heat drawing after the drawing step in the second coagulation bath is for further enhancing the fiber orientation. This wet heat stretching is performed by stretching a fiber bundle in a swollen state (swelling fiber bundle) that has been stretched in the second coagulation bath while being washed with water, or by stretching in hot water. Among them, it is preferable to perform stretching in hot water from the viewpoint of high productivity. In addition, when the draw ratio in this wet heat drawing process is made lower than 3 times, the improvement of fiber orientation becomes insufficient. The upper limit of the draw ratio in the wet heat drawing step is not particularly limited, but is preferably 5 times or less.

湿熱延伸された繊維束(乾燥前)の膨潤度は、90質量%以下であることが好ましい。湿熱延伸された繊維束の膨潤度が90質量%以下であれば、繊維内部まで均一に配向した繊維が得られやすくなる。
湿熱延伸された繊維束の膨潤度は、第1凝固浴中からの凝固糸の引取り速度を調節することで調整できる。すなわち、「凝固糸の引取り速度/ノズル孔からの紡糸原液の吐出線速度」の値を下げることによって、第1凝固浴中での凝固糸の凝固を均一なものにでき、さらにこれを第2凝固浴中にて延伸することにより、繊維内部まで均一に配向でき、湿熱延伸された繊維束の膨潤度を90質量%以下に容易に調整できる。
一方、「凝固糸の引取り速度/ノズル孔からの紡糸原液の吐出線速度」の値を高くすると、第1凝固浴中での凝固糸の凝固と延伸とが同時に起こりやすくなる。その結果、第1凝固浴中での凝固糸の凝固が不均一になる。従って、これを第2凝固浴中で延伸しても、湿熱延伸された繊維束は膨潤度の高いものになってしまい、繊維内部まで均一に配向した繊維が得られにくくなる。
The swelling degree of the wet and heat-stretched fiber bundle (before drying) is preferably 90% by mass or less. When the degree of swelling of the wet and heat-stretched fiber bundle is 90% by mass or less, it becomes easy to obtain fibers that are uniformly oriented to the inside of the fiber.
The degree of swelling of the wet-heat-stretched fiber bundle can be adjusted by adjusting the take-up speed of the coagulated yarn from the first coagulation bath. That is, by lowering the value of “coagulated yarn take-off speed / spinning solution discharge linear velocity from nozzle hole”, coagulation of the coagulated yarn in the first coagulation bath can be made uniform. By stretching in the two coagulation bath, the fiber can be uniformly oriented to the inside of the fiber, and the swelling degree of the wet and heat-stretched fiber bundle can be easily adjusted to 90% by mass or less.
On the other hand, if the value of “coagulated yarn take-up speed / spinning solution discharge linear velocity from nozzle hole” is increased, coagulation and stretching of the coagulated yarn in the first coagulation bath are likely to occur simultaneously. As a result, coagulation of the coagulated yarn in the first coagulation bath becomes uneven. Therefore, even if this is stretched in the second coagulation bath, the wet-heat-stretched fiber bundle has a high degree of swelling, making it difficult to obtain fibers that are uniformly oriented to the inside of the fiber.

湿熱延伸された繊維束の膨潤度は、湿熱延伸された繊維束に付着した付着液を遠心分離機(3000rpm、15分)によって除去した後の湿熱延伸された繊維束の質量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の質量wを測定し、以下の式により求めることができる。
膨潤度(質量%)=(w−w)/w×100
The degree of swelling of the wet-heat-stretched fiber bundle is determined by the mass w 1 of the wet-heat-stretched fiber bundle after removing the adhering liquid adhering to the wet-heat-stretched fiber bundle by a centrifuge (3000 rpm, 15 minutes). Is measured with a hot air drier at 105 ° C. for 2 hours, and the mass w 0 is measured and can be determined by the following equation.
Swelling degree (mass%) = (w 1 −w 0 ) / w 0 × 100

湿熱延伸された繊維束に対する添油処理には、一般的なシリコーン系油剤や低シリコーン油剤を用いることができる。添油処理の方法としては特に制限されないが、例えば油浴中に湿熱延伸された繊維束を潜らす方法などが挙げられる。
添油処理に用いるシリコーン系油剤は、0.4〜1.5質量%の濃度に調製された後に使用される。濃度が0.4質量%未満では、乾燥工程およびその後の焼成工程における、繊維束の集束性が不足し、工程通過性が損なわれることがある。一方、濃度が1.5質量%を越えると、単繊維間の融着や接着が発生し、毛羽や単糸切れが誘起され、得られる炭素繊維束の品質や品位が低下しやすくなる。
A general silicone-based oil agent or a low silicone oil agent can be used for the oil addition treatment for the fiber bundle that has been subjected to wet heat drawing. The method of the oil addition treatment is not particularly limited, and examples thereof include a method of diving a fiber bundle that has been wet-heat drawn in an oil bath.
The silicone-based oil used for the oiling treatment is used after being adjusted to a concentration of 0.4 to 1.5% by mass. If the concentration is less than 0.4% by mass, the fiber bundle may not be sufficiently converged in the drying step and the subsequent firing step, and the process passability may be impaired. On the other hand, if the concentration exceeds 1.5% by mass, fusion or adhesion between single fibers occurs, fuzz and single yarn breakage are induced, and the quality and quality of the obtained carbon fiber bundle are likely to be deteriorated.

添油処理された繊維束は、乾燥することで緻密化される。乾燥の際は、前駆体繊維束のガラス転移温度を超えた温度とすることが好ましく、実質的には、100〜200℃の熱ロールに接触させて乾燥させるのが好ましい。   The fiber bundle that has been oiled is densified by drying. At the time of drying, it is preferable that the temperature be higher than the glass transition temperature of the precursor fiber bundle, and it is preferable that the temperature is substantially brought into contact with a hot roll at 100 to 200 ° C. for drying.

乾燥後のスチーム延伸は、機械的強度の高い前駆体繊維束および炭素繊維束を得るためのものである。このスチーム延伸は、公知のスチーム延伸機を用いて行われる。
スチーム延伸の延伸倍率は、1.5倍よりも低くするとスチーム延伸の効果が十分に得られず、前駆体繊維束や炭素繊維束の機械的強度が低下しやすくなり、2.5倍よりも高くすると紡糸安定性が損なわれやすくなる。そのため、スチーム延伸倍率は、乾燥緻密化前の第2凝固浴中での延伸倍率(溶剤延伸倍率)や、湿熱延伸倍率とのバランスを考慮して、1.5倍〜2.5倍の範囲内で設定することが重要である。
The steam drawing after drying is for obtaining a precursor fiber bundle and a carbon fiber bundle having high mechanical strength. This steam stretching is performed using a known steam stretching machine.
If the draw ratio of the steam drawing is lower than 1.5 times, the effect of the steam drawing cannot be sufficiently obtained, and the mechanical strength of the precursor fiber bundle or the carbon fiber bundle is likely to be lowered, and more than 2.5 times. If it is increased, the spinning stability tends to be impaired. Therefore, the steam draw ratio is in the range of 1.5 to 2.5 times in consideration of the draw ratio (solvent draw ratio) in the second coagulation bath before drying and densification and the balance with the wet heat draw ratio. It is important to set within.

このようにして得られた前駆体繊維束を、公知の方法で焼成することにより炭素繊維束を製造できる。焼成方法としては、耐炎化処理および炭素化処理をこの順で行う方法が挙げられる。
耐炎化処理では、空気中、230〜260℃の熱風循環式耐炎化炉に前駆体繊維束を投入し、30〜60分間処理して耐炎化繊維束とする。
炭素化処理では、耐炎化繊維束を窒素雰囲気下、最高温度800℃程度で1〜2分間処理し、さらに同雰囲気下で最高温度が1000〜2000℃の高温熱処理炉にて約1〜2分処理して炭素繊維束を得る。
なお、繊維強化複合材料の強度発現を目的として、必要に応じて炭素化処理の後に、炭素繊維束の表面に電解処理を施し、炭素繊維用サイズ剤を付与してもよい。
A carbon fiber bundle can be produced by firing the precursor fiber bundle thus obtained by a known method. Examples of the firing method include a method of performing flameproofing treatment and carbonization treatment in this order.
In the flameproofing treatment, the precursor fiber bundle is put into a hot air circulation type flameproofing furnace at 230 to 260 ° C. in the air and treated for 30 to 60 minutes to obtain a flameproof fiber bundle.
In the carbonization treatment, the flame-resistant fiber bundle is treated in a nitrogen atmosphere at a maximum temperature of about 800 ° C. for 1 to 2 minutes, and further in the same atmosphere in a high-temperature heat treatment furnace having a maximum temperature of 1000 to 2000 ° C. for about 1 to 2 minutes. A carbon fiber bundle is obtained by processing.
For the purpose of developing the strength of the fiber-reinforced composite material, the carbon fiber bundle surface may be subjected to electrolytic treatment after carbonization treatment as necessary to give a carbon fiber sizing agent.

このようにして得られた炭素繊維束は、本発明の前駆体繊維束を焼成してなるので、嵩高く、樹脂含浸性および開繊性に優れる。
本発明の炭素繊維束は、常法によりマトリックス樹脂を含浸させて繊維強化複合材料として成型される。マトリックス樹脂としては特に制限されないが、例えばエポキシ樹脂、フェノール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリプロピレン樹脂、ABS樹脂などが挙げられる。
The carbon fiber bundle thus obtained is obtained by firing the precursor fiber bundle of the present invention, so that it is bulky and has excellent resin impregnation and fiber opening properties.
The carbon fiber bundle of the present invention is molded as a fiber reinforced composite material by impregnating a matrix resin by a conventional method. Although it does not restrict | limit especially as a matrix resin, For example, an epoxy resin, a phenol resin, a polyester resin, a polycarbonate resin, a polyamide resin, a polypropylene resin, an ABS resin etc. are mentioned.

本発明によれば、炭素繊維束にマトリックス樹脂を十分に含浸できるので、基本特性を十分に発揮できる繊維強化複合材料が得られる。
また、本発明の炭素繊維束は嵩高いため、目空きの少ない均一な織り目の炭素繊維織物が得られる。さらに、該炭素繊維織物は、開繊性が良好な炭素繊維束より得られるので、マトリックス樹脂を含浸させても樹脂のボイドが発生しにくい。
According to the present invention, since a carbon fiber bundle can be sufficiently impregnated with a matrix resin, a fiber-reinforced composite material that can sufficiently exhibit basic characteristics can be obtained.
Moreover, since the carbon fiber bundle of the present invention is bulky, a carbon fiber woven fabric having a uniform weave with few voids can be obtained. Further, since the carbon fiber woven fabric is obtained from a carbon fiber bundle having a good opening property, resin voids are hardly generated even when impregnated with a matrix resin.

以下、本発明について実施例を挙げて詳しく説明する。ただし、本発明はこれらに限定されるものではない。
各種測定および評価方法は、以下の通りである。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these.
Various measurement and evaluation methods are as follows.

<平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)の測定>
前駆体繊維束の単繊維の両端を、走査型プローブ顕微鏡付属のSPA400用金属製試料台(20mm径)(エポリードサービス社製、「K−Y10200167」)上にカーボンペーストで固定し、以下条件で測定を行った。
<Measurement of average surface roughness (Ra), maximum height difference (PV), surface area ratio (Sratio)>
Both ends of the single fiber of the precursor fiber bundle are fixed with a carbon paste on a metal sample stage for SPA400 (20 mm diameter) attached to a scanning probe microscope (Eployd Service, “KY10200167”), and the following conditions The measurement was performed.

(走査型プローブ顕微鏡測定条件)
装置:エスアイアイ・ナノテクノロジー社製、「SPI4000プローブステーション、SPA400(ユニット)」、
走査モード:ダイナミックフォースモード(DFM)(形状像測定)、
探針:エスアイアイ・ナノテクノロジー社製、「SI−DF−20」、
走査範囲:2μm×2μm、
Rotation:90°(繊維軸方向に対して垂直方向にスキャン)、
走査速度:1.0Hz、
ピクセル数:512×512、
測定環境:室温、大気中。
(Scanning probe microscope measurement conditions)
Apparatus: manufactured by SII Nano Technology, "SPI4000 probe station, SPA400 (unit)"
Scanning mode: Dynamic force mode (DFM) (shape image measurement),
Probe: "SI-DF-20", manufactured by SII Nano Technology,
Scanning range: 2 μm × 2 μm,
Rotation: 90 ° (scan in the direction perpendicular to the fiber axis direction),
Scanning speed: 1.0 Hz
Number of pixels: 512 × 512,
Measurement environment: room temperature, in air.

単繊維1本に対して、上記条件にて1画像を得、得られた画像を走査型プローブ顕微鏡付属の画像解析ソフト(SPIWin)を用い、以下の条件にて画像解析を行った。   One image was obtained for one single fiber under the above conditions, and the obtained image was subjected to image analysis under the following conditions using image analysis software (SPIWin) attached to a scanning probe microscope.

(画像解析条件)
得られた形状像を「フラット処理」、「メディアン8処理」、「三次傾き補正」を行い、曲面を平面にフィッティング補正した画像を得た。平面補正した画像の表面粗さ解析より平均面粗さ(Ra)を、平面補正した画像の繊維軸に垂直な方向の断面プロファイルから最大高低差(P−V)を、平面補正した画像の表面粗さ解析より表面積率(Sratio)をそれぞれ求めた。
測定は1サンプルについて単糸10本を走査型プローブ顕微鏡で形状測定し、各測定画像について、平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を求め、その平均値をサンプルの平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)とした。
なお、「フラット処理」、「メディアン8処理」、「三次傾き補正」とは、それぞれ以下の通りである。
(Image analysis conditions)
The obtained shape image was subjected to “flat processing”, “median 8 processing”, and “third-order tilt correction” to obtain an image obtained by fitting the curved surface to a plane. The average surface roughness (Ra) from the surface roughness analysis of the flattened image, the maximum height difference (PV) from the cross-sectional profile in the direction perpendicular to the fiber axis of the flattened image, and the surface of the flattened image The surface area ratio (Sratio) was determined from the roughness analysis.
Measurement is carried out by measuring the shape of 10 single yarns per sample with a scanning probe microscope, and obtaining the average surface roughness (Ra), maximum height difference (PV), and surface area ratio (Sratio) for each measurement image. The average value was defined as the average surface roughness (Ra), the maximum height difference (PV), and the surface area ratio (Sratio).
The “flat processing”, “median 8 processing”, and “cubic tilt correction” are as follows.

(フラット処理)
リフト、振動、スキャナのクリープ等によってイメージデータに現れたZ軸方向の歪み・うねりを除去する処理のことである。SPM測定上の装置因によるデータのひずみを除去できる。
(メディアン8処理)
処理するデータ点Sを中心とする3×3の窓(マトリクス)においてSおよびD1〜D8の間で演算を行い、SのZデータを置き換える処理のことである。スムージングやノイズ除去といったフィルタの効果が得られる。
メディアン8処理は、SおよびD1〜D8の9点のZデータの中央値を求めて、Sを置き換えることで処理できる。
(三次傾き補正)
傾き補正とは、処理対象イメージの全データから最小二乗近似によって曲面を求めてフィッティングし、傾きを補正することである。(一次)(二次)(三次)はフィッティングする曲面の次数を示し、三次では三次曲面をフィッティングする。三次傾き補正処理によって、データの繊維の曲率をなくしフラットな像にできる。
(Flat processing)
This is a process for removing distortion and undulation in the Z-axis direction that appeared in image data due to lift, vibration, scanner creep, and the like. Data distortion due to device factors in SPM measurement can be removed.
(Median 8 processing)
In the 3 × 3 window (matrix) centered on the data point S to be processed, the calculation is performed between S and D1 to D8, and the Z data of S is replaced. Filter effects such as smoothing and noise removal can be obtained.
The median 8 processing can be performed by calculating the median value of 9 points of Z data of S and D1 to D8 and replacing S.
(Cubic tilt correction)
The tilt correction is to correct a tilt by obtaining and fitting a curved surface from all data of the processing target image by least square approximation. (Primary), (Secondary), and (Cubic) indicate the degree of the curved surface to be fitted. In the cubic, the cubic surface is fitted. The cubic tilt correction process eliminates the curvature of the data fibers and makes a flat image.

<膨潤度の測定>
湿熱延伸された繊維束に付着した付着液を、遠心分離機を用い、3000rpm、15分の条件で除去し、湿熱延伸された繊維束の質量wを測定した。ついで、この湿熱延伸された繊維束を105℃×2時間の熱風乾燥機で乾燥させた後の質量wを測定し、以下の式により膨潤度を求めた。
膨潤度(質量%)=(w−w)/w×100
<Measurement of swelling degree>
The adhering liquid adhering to the wet-heat-stretched fiber bundle was removed using a centrifuge at 3000 rpm for 15 minutes, and the mass w 1 of the wet-heat-stretched fiber bundle was measured. Next, the mass w 0 after drying the wet-heat-stretched fiber bundle with a hot air dryer at 105 ° C. for 2 hours was measured, and the degree of swelling was determined by the following equation.
Swelling degree (mass%) = (w 1 −w 0 ) / w 0 × 100

<紡糸安定性の評価>
第1凝固浴中での紡糸状態ついて目視にて観察した。
<Evaluation of spinning stability>
The spinning state in the first coagulation bath was visually observed.

<集束性の評価>
前駆体繊維束について目視にて観察し、以下の評価基準にて評価した。
○:束がばらけていない。
△:束が若干ばらけている。
×:束がばらけている。
<Evaluation of convergence>
The precursor fiber bundle was visually observed and evaluated according to the following evaluation criteria.
○: The bundle is not scattered.
Δ: The bundles are slightly scattered.
X: The bundle is scattered.

<焼成工程通過性の評価>
前駆体繊維束を焼成する際の通過性について目視にて観察し、以下の評価基準にて評価した。
○:単繊維がばらけず、繊維束同士が絡まることなく焼成できる。
△:単繊維が若干ばらけて隣接する繊維束同士が若干絡まった。
×:単繊維がばらけて隣接する繊維束同士が絡まった。
<Evaluation of baking process passability>
The permeability at the time of firing the precursor fiber bundle was visually observed and evaluated according to the following evaluation criteria.
○: The single fibers are not separated and the fiber bundles can be fired without being entangled.
(Triangle | delta): The single fiber was scattered a little and the adjacent fiber bundles were slightly entangled.
X: Single fibers were scattered and adjacent fiber bundles were entangled.

<樹脂含浸性の評価>
炭素繊維束を約20cm切り取り、グリシジルエーテル中に約3cm浸し15分間放置した。グリシジルエーテル中から取り出した後3分間放置し、下から3.5cmのところで切り落とし、残った炭素繊維束の長さ、質量を測定した。炭素繊維束の目付けから吸い上げたグリシジルエーテルの質量割合を算出して樹脂含浸性の指標とし、以下の評価基準にて評価した。
○:吸い上げたグリシジルエーテルの質量割合が3質量%以上。
×:吸い上げたグリシジルエーテルの質量割合が3質量%未満。
<Evaluation of resin impregnation>
The carbon fiber bundle was cut about 20 cm, immersed in about 3 cm in glycidyl ether, and left for 15 minutes. After taking out from glycidyl ether, it was allowed to stand for 3 minutes, cut off from the bottom at 3.5 cm, and the length and mass of the remaining carbon fiber bundle were measured. The mass ratio of glycidyl ether sucked up from the basis weight of the carbon fiber bundle was calculated and used as an index for resin impregnation, and evaluated according to the following evaluation criteria.
○: The mass ratio of the glycidyl ether sucked up is 3% by mass or more.
X: The mass ratio of the glycidyl ether sucked up is less than 3% by mass.

<開繊性の評価>
炭素繊維束を0.06g/単繊維の張力下、走行速度1m/分で金属ロール上を走行させた際のトウ幅を測定して開繊性の指標とし、以下の評価基準にて評価した。
○:トウ幅が2mm以上。
×:トウ幅が2mm未満。
<Evaluation of spreadability>
The tow width when the carbon fiber bundle was run on a metal roll at a running speed of 1 m / min under a tension of 0.06 g / single fiber was used as an index of the spreadability and evaluated according to the following evaluation criteria. .
○: Tow width is 2 mm or more.
X: Tow width is less than 2 mm.

[実施例1]
アクリロニトリル、アクリルアミドおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル系重合体を得た。
このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、21質量%の紡糸原液を調製した。
[Example 1]
Acrylonitrile, acrylamide and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / acrylamide unit / methacrylic acid unit = 96/3/1 (mass ratio) An acrylonitrile-based polymer was obtained.
This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a 21% by mass spinning solution.

この紡糸原液を孔数3000、孔径75μmの紡糸口金を通して、濃度65質量%、温度35℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.6倍の引取り速度で引き取った。
この凝固糸を引き続き、濃度65質量%、温度35℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて1.8倍に延伸した。
ついで、延伸された膨潤状態の繊維束(膨潤繊維束)に対して、水洗と同時に3.5倍に湿熱延伸した。
その後、湿熱延伸された繊維束に、濃度1.1質量%に調整したアミノシリコーン系油剤を添油した。
ついで、添油処理された繊維束を熱ロールを用いて乾燥し、スチーム延伸機にて2.1倍にスチーム延伸した。
その後、タッチロールにて繊維束の水分率を調整し、この繊維束に繊維当たり3質量%の水分を含有させた。ついで、この繊維束を、エア圧280kPaのエアによって、交絡処理し、ワインダーで巻き取ることにより、単繊維繊度1.2dtexの炭素繊維用アクリロニトリル系前駆体繊維束を得た。
This spinning dope is passed through a spinneret having a pore number of 3000 and a pore diameter of 75 μm and discharged into a first coagulation bath made of a dimethylacetamide aqueous solution having a concentration of 65% by mass and a temperature of 35 ° C. to obtain coagulated yarn. The yarn was taken up at a take-up speed of 0.6 times the discharge linear speed of the spinning dope.
The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 65% by mass and a temperature of 35 ° C., and stretched 1.8 times in the bath.
Subsequently, the stretched fiber bundle (swelling fiber bundle) was wet-heat-stretched 3.5 times simultaneously with water washing.
Thereafter, an aminosilicone-based oil adjusted to a concentration of 1.1% by mass was added to the fiber bundle that had been wet-heat drawn.
Next, the fiber bundle that had been subjected to the oil addition treatment was dried using a hot roll, and steam-stretched 2.1 times with a steam stretching machine.
Thereafter, the moisture content of the fiber bundle was adjusted with a touch roll, and the fiber bundle contained 3% by mass of water per fiber. Subsequently, the fiber bundle was entangled with air having an air pressure of 280 kPa and wound with a winder to obtain an acrylonitrile-based precursor fiber bundle for carbon fibers having a single fiber fineness of 1.2 dtex.

紡糸原液を紡糸する際は毛羽の発生もなく、紡糸安定性は非常に良好であった。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
When spinning the spinning dope, no fluff was generated and the spinning stability was very good.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

さらに、得られた前駆体繊維束を空気中、230〜260℃の熱風循環式耐炎化炉にて50分間処理し耐炎化繊維束となし、ついで耐炎繊維束を窒素雰囲気中下で最高温度780℃にて1.5分間処理し、さらに同雰囲気下で最高温度が1300℃の高温熱処理炉にて約1.5分処理した後、重炭酸水素アンモニウム水溶液中で0.4Amin/mで電解処理を施し、炭素繊維束を得た。
前駆体繊維束の焼成工程通過性、および得られた炭素繊維束の樹脂含浸性、開繊性を評価した。結果を表1に示す。
Further, the obtained precursor fiber bundle was treated in air in a hot air circulation type flameproof furnace at 230 to 260 ° C. for 50 minutes to form a flameproof fiber bundle, and then the flameproof fiber bundle was heated to a maximum temperature of 780 in a nitrogen atmosphere. Treated for 1.5 minutes at ℃, and further treated for about 1.5 minutes in a high-temperature heat treatment furnace with the maximum temperature of 1300 ℃ under the same atmosphere, and then electrolyzed in aqueous ammonium bicarbonate solution at 0.4 Amin / m To obtain a carbon fiber bundle.
The passability of the precursor fiber bundle through the firing process, and the resin impregnation property and fiber opening property of the obtained carbon fiber bundle were evaluated. The results are shown in Table 1.

[実施例2]
濃度56質量%、温度34℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.6倍の引取り速度で引き取った。
この凝固糸を引き続き、濃度56質量%、温度34℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて1.9倍に延伸した。
ついで、延伸された膨潤状態の繊維束(膨潤繊維束)に対して、水洗と同時に3.3倍に湿熱延伸を施し、スチーム延伸機にて2.1倍にスチーム延伸した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
紡糸原液を紡糸する際は毛羽の発生もなく、紡糸安定性は非常に良好であった。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Example 2]
It is discharged into a first coagulation bath made of a dimethylacetamide aqueous solution having a concentration of 56% by mass and a temperature of 34 ° C. to form a coagulated yarn, and this coagulated yarn is 0.6 times the discharge linear velocity of the spinning dope from the first coagulation bath. It was picked up at the pick-up speed.
The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 56% by mass and a temperature of 34 ° C., and stretched 1.9 times in the bath.
Next, the stretched fiber bundle (swelled fiber bundle) was subjected to wet heat stretching 3.3 times at the same time as washing with water, and steam stretched 2.1 times with a steam stretching machine. In the same manner as in Example 1, a precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained.
When spinning the spinning dope, no fluff was generated and the spinning stability was very good.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

[実施例3]
濃度67質量%、温度34℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.6倍の引取り速度で引き取った。
この凝固糸を引き続き、濃度67質量%、温度34℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて1.9倍に延伸した。
ついで、延伸された膨潤状態の繊維束(膨潤繊維束)に対して、水洗と同時に3.3倍に湿熱延伸を施し、スチーム延伸機にて2.1倍にスチーム延伸した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
紡糸原液を紡糸する際は毛羽の発生もなく、紡糸安定性は非常に良好であった。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Example 3]
It is discharged into a first coagulation bath comprising a dimethylacetamide aqueous solution having a concentration of 67% by mass and a temperature of 34 ° C. to obtain a coagulated yarn, and this coagulated yarn is 0.6 times the discharge linear velocity of the spinning dope from the first coagulation bath. It was picked up at the pick-up speed.
The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 67% by mass and a temperature of 34 ° C., and stretched 1.9 times in the bath.
Next, the stretched fiber bundle (swelled fiber bundle) was subjected to wet heat stretching 3.3 times at the same time as washing with water, and steam stretched 2.1 times with a steam stretching machine. In the same manner as in Example 1, a precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained.
When spinning the spinning dope, no fluff was generated and the spinning stability was very good.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

[実施例4]
濃度56質量%、温度38℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.6倍の引取り速度で引き取った。
この凝固糸を引き続き、濃度56質量%、温度38℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて1.7倍に延伸した。
ついで、延伸された膨潤状態の繊維束(膨潤繊維束)に対して、水洗と同時に3.3倍に湿熱延伸を施し、スチーム延伸機にて2.4倍にスチーム延伸した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
紡糸原液を紡糸する際は毛羽の発生もなく、紡糸安定性は非常に良好であった。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Example 4]
It is discharged into a first coagulation bath made of a dimethylacetamide aqueous solution having a concentration of 56% by mass and a temperature of 38 ° C. to form a coagulated yarn, and this coagulated yarn is 0.6 times the discharge linear velocity of the spinning dope from the first coagulation bath. It was picked up at the pick-up speed.
The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 56 mass% and a temperature of 38 ° C., and stretched 1.7 times in the bath.
Subsequently, the stretched fiber bundle (swelled fiber bundle) was subjected to wet heat stretching 3.3 times at the same time as washing with water and steam stretched 2.4 times with a steam stretching machine. In the same manner as in Example 1, a precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained.
When spinning the spinning dope, no fluff was generated and the spinning stability was very good.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

[実施例5]
濃度67質量%、温度38℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.6倍の引取り速度で引き取った。
この凝固糸を引き続き、濃度67質量%、温度38℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて1.7倍に延伸した。
ついで、延伸された膨潤状態の繊維束(膨潤繊維束)に対して、水洗と同時に3.3倍に湿熱延伸を施し、スチーム延伸機にて2.4倍にスチーム延伸した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
紡糸原液を紡糸する際は毛羽の発生もなく、紡糸安定性は非常に良好であった。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Example 5]
A coagulated yarn is discharged into a first coagulation bath comprising a dimethylacetamide aqueous solution having a concentration of 67% by mass and a temperature of 38 ° C., and this coagulated yarn is 0.6 times the discharge linear velocity of the spinning dope from the first coagulation bath. It was picked up at the pick-up speed.
The coagulated yarn was subsequently introduced into a second coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 67% by mass and a temperature of 38 ° C., and stretched 1.7 times in the bath.
Subsequently, the stretched fiber bundle (swelled fiber bundle) was subjected to wet heat stretching 3.3 times at the same time as washing with water and steam stretched 2.4 times with a steam stretching machine. In the same manner as in Example 1, a precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained.
When spinning the spinning dope, no fluff was generated and the spinning stability was very good.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

[比較例1]
アクリロニトリル、アクリル酸メチルおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリル酸メチル単位/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル系重合体を用いた以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
得られた前駆体繊維束は、若干のばらけがあり集束性に劣った。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定した。結果を表1に示す。
[Comparative Example 1]
Acrylonitrile, methyl acrylate and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / methyl acrylate unit / methacrylic acid unit = 96/3/1 ( A precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that an acrylonitrile-based polymer comprising (mass ratio) was used.
The obtained precursor fiber bundle was slightly scattered and inferior in convergence.
The degree of swelling of the wet-heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (PV), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured. The results are shown in Table 1.

さらに、この前駆体繊維束を実施例1と同様に焼成したが、焼成工程において、繊維束を構成する単繊維が若干ばらけて、隣接する繊維束同士が若干絡まるなど焼成時の工程通過性に劣った。
得られた炭素繊維束の樹脂含浸性、開繊性を評価した。結果を表1に示す。
Further, this precursor fiber bundle was fired in the same manner as in Example 1. However, in the firing process, the single fibers constituting the fiber bundle were slightly dispersed, and the adjacent fiber bundles were slightly entangled with each other. Inferior to
The obtained carbon fiber bundle was evaluated for resin impregnation property and fiber opening property. The results are shown in Table 1.

[比較例2]
第2凝固浴をバイパスして空中延伸(冷延伸)にて1.8倍延伸を施した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を製造したが、紡糸安定性が悪く、紡糸するのが困難であり、前駆体繊維束を得ることができなかった。
[Comparative Example 2]
A precursor fiber bundle having a single fiber fineness of 1.2 dtex was produced in the same manner as in Example 1 except that the second coagulation bath was bypassed and 1.8-fold drawing was performed by air drawing (cold drawing). The spinning stability was poor, it was difficult to spin, and a precursor fiber bundle could not be obtained.

[比較例3]
湿熱延伸の倍率を2.3倍、スチーム延伸の倍率を3.2倍に変更した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得た。
紡糸原液を紡糸する際は毛羽の発生もなく、実施例1と同程度の紡糸安定性が得られた。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Comparative Example 3]
A precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that the wet heat draw ratio was changed to 2.3 times and the steam draw ratio was changed to 3.2 times.
When spinning the spinning dope, no fluff was produced, and spinning stability comparable to that of Example 1 was obtained.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

さらに、この前駆体繊維束を実施例1と同様に焼成したが、焼成工程において、繊維束を構成する単繊維が若干ばらけて、隣接する繊維束同士が若干絡まるなど焼成時の工程通過性に劣った。
得られた炭素繊維束の樹脂含浸性、開繊性を評価した。結果を表1に示す。
Further, this precursor fiber bundle was fired in the same manner as in Example 1. However, in the firing process, the single fibers constituting the fiber bundle were slightly dispersed, and the adjacent fiber bundles were slightly entangled with each other. Inferior to
The obtained carbon fiber bundle was evaluated for resin impregnation property and fiber opening property. The results are shown in Table 1.

[比較例4]
第2凝固浴中での浴中延伸倍率を2.2倍に変更した以外は、実施例1と同様にして単繊維繊度1.2dtexの前駆体繊維束を得たが、紡糸原液を紡糸する際は若干の毛羽が発生し、紡糸安定性に劣った。
湿熱延伸された繊維束の膨潤度、および得られた前駆体繊維束について平均面粗さ(Ra)、最大高低差(P−V)、表面積率(Sratio)を測定し、集束性を評価した。結果を表1に示す。
[Comparative Example 4]
A precursor fiber bundle having a single fiber fineness of 1.2 dtex was obtained in the same manner as in Example 1 except that the draw ratio in the bath in the second coagulation bath was changed to 2.2 times, but the spinning dope was spun. In some cases, some fluff was generated and the spinning stability was poor.
The degree of swelling of the wet heat-stretched fiber bundle, and the average surface roughness (Ra), maximum height difference (P-V), and surface area ratio (Sratio) of the obtained precursor fiber bundle were measured to evaluate the convergence. . The results are shown in Table 1.

さらに、この前駆体繊維束を実施例1と同様に焼成したが、焼成工程において、毛羽が隣接する繊維に絡まるなど焼成時の工程通過性に劣った。
得られた炭素繊維束の樹脂含浸性、開繊性を評価した。結果を表1に示す。
Further, this precursor fiber bundle was fired in the same manner as in Example 1. However, in the firing process, the process passability during firing was inferior, such as fuzz entangled with adjacent fibers.
The obtained carbon fiber bundle was evaluated for resin impregnation property and fiber opening property. The results are shown in Table 1.

[比較例5]
第1凝固浴および第2凝固浴として、濃度50質量%、温度30℃のジメチルアセトアミド水溶液を用いた以外は、実施例1と同様にして前駆体繊維束を製造したが、紡糸安定性が悪く、紡糸するのが困難であり、前駆体繊維束を得ることができなかった。
[Comparative Example 5]
A precursor fiber bundle was produced in the same manner as in Example 1 except that a dimethylacetamide aqueous solution having a concentration of 50% by mass and a temperature of 30 ° C. was used as the first coagulation bath and the second coagulation bath, but the spinning stability was poor. It was difficult to spin, and a precursor fiber bundle could not be obtained.

Figure 0005313797
Figure 0005313797

表1の結果より、各実施例で得られた前駆体繊維束は、集束性に優れ、焼成工程通過性が良好であり、樹脂含浸性および開繊性が良好な炭素繊維束を製造できた。
一方、比較例1、4で得られた前駆体繊維束は、平均面粗さ(Ra)が55nm超、最大高低差(P−V)が270nm超、表面積率(Sratio)が1.25超である単繊維より構成されていた。該前駆体繊維束は、実施例1で得られた前駆体繊維束に比べて集束性および焼成工程通過性に劣っていた。
また、比較例3で得られた前駆体繊維束は、平均面粗さ(Ra)が36nm未満、最大高低差(P−V)が170nm未満、表面積率(Sratio)が1.18未満である単繊維より構成されていた。該前駆体繊維束は、実施例1で得られた前駆体繊維束に比べて焼成工程通過性に劣っていた。さらに、比較例3の前駆体繊維束を焼成して得られた炭素繊維束は、樹脂含浸性および開繊性に劣っていた。
また、比較例2、5では紡糸安定性が悪く、前駆体繊維束が得られなかったので、集束性、焼成工程通過性、および炭素繊維束の樹脂含浸性、開繊性については評価できなかった。
From the results shown in Table 1, the precursor fiber bundles obtained in the respective examples were able to produce carbon fiber bundles that were excellent in bundling property, good in firing process passability, and good in resin impregnation and spreadability. .
On the other hand, the precursor fiber bundle obtained in Comparative Examples 1 and 4 has an average surface roughness (Ra) of more than 55 nm, a maximum height difference (PV) of more than 270 nm, and a surface area ratio (Sratio) of more than 1.25. It was comprised from the single fiber which is. The precursor fiber bundle was inferior to the precursor fiber bundle obtained in Example 1 in the bundling property and the firing process passability.
The precursor fiber bundle obtained in Comparative Example 3 has an average surface roughness (Ra) of less than 36 nm, a maximum height difference (P-V) of less than 170 nm, and a surface area ratio (Sratio) of less than 1.18. It was composed of monofilament. The precursor fiber bundle was inferior in the firing process passability as compared with the precursor fiber bundle obtained in Example 1. Furthermore, the carbon fiber bundle obtained by firing the precursor fiber bundle of Comparative Example 3 was inferior in resin impregnation property and fiber opening property.
Further, in Comparative Examples 2 and 5, the spinning stability was poor and the precursor fiber bundle was not obtained, so the bundling property, the firing process passability, the resin impregnation property of the carbon fiber bundle, and the fiber opening property could not be evaluated. It was.

Claims (4)

95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体からなり、表面の平均面粗さ(Ra)が36〜55nm、最大高低差(P−V)が170〜270nm、表面積率(Sratio)が1.18〜1.25である単繊維から構成される、炭素繊維用アクリロニトリル系前駆体繊維束。 It is composed of an acrylonitrile polymer containing 95% by mass or more of acrylonitrile units and 0.5 to 4% by mass of acrylamide units, and has an average surface roughness (Ra) of 36 to 55 nm and a maximum height difference (PV). Is an acrylonitrile-based precursor fiber bundle for carbon fibers, which is composed of single fibers having a surface area ratio (Sratio) of 1.18 to 1.25. 有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第1凝固浴中に、95質量%以上のアクリロニトリル単位と0.5〜4質量%のアクリルアミド単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を吐出して凝固糸にするとともに、この凝固糸を第1凝固浴中から紡糸原液の吐出線速度の0.8倍以下の速度で引き取る工程と、
引き続き、前記凝固糸を有機溶剤濃度55〜68質量%、温度33〜40℃の有機溶剤水溶液からなる第2凝固浴中にて、1.5〜2倍に延伸し、膨潤状態の一束とする工程と、
延伸された膨潤状態の繊維束に3倍以上の湿熱延伸を施す工程と、湿熱延伸された繊維束に添油処理する工程と、添油処理された繊維束を乾燥した後に、この繊維束に1.5〜2.5倍のスチーム延伸を施す工程とを有する、炭素繊維用アクリロニトリル系前駆体繊維束の製造方法。
An acrylonitrile system containing 95% by mass or more of acrylonitrile units and 0.5 to 4% by mass of acrylamide units in a first coagulation bath comprising an organic solvent aqueous solution having an organic solvent concentration of 55 to 68% by mass and a temperature of 33 to 40 ° C. A step of discharging a spinning stock solution composed of an organic solvent solution of a polymer into a coagulated yarn, and drawing the coagulated yarn from the first coagulation bath at a rate of 0.8 times or less of the discharge linear velocity of the spinning stock solution;
Subsequently, the coagulated yarn is stretched 1.5 to 2 times in a second coagulation bath made of an organic solvent aqueous solution having an organic solvent concentration of 55 to 68% by mass and a temperature of 33 to 40 ° C. And a process of
After the stretched and swollen fiber bundle has been subjected to wet heat stretching three times or more, the wet heat stretched fiber bundle is subjected to an oil treatment, and the oil treated fiber bundle is dried, A method for producing an acrylonitrile-based precursor fiber bundle for carbon fibers, the method comprising a step of performing 1.5 to 2.5 times steam drawing.
前記湿熱延伸された繊維束の膨潤度が90質量%以下である、請求項2に記載の炭素繊維用アクリロニトリル系前駆体繊維束の製造方法。   The method for producing an acrylonitrile-based precursor fiber bundle for carbon fibers according to claim 2, wherein the swelling degree of the wet-heat-stretched fiber bundle is 90% by mass or less. 請求項1に記載の炭素繊維用アクリロニトリル系前駆体繊維束を耐炎化および炭素化して得られる、炭素繊維束。   A carbon fiber bundle obtained by flameproofing and carbonizing the acrylonitrile-based precursor fiber bundle for carbon fibers according to claim 1.
JP2009169089A 2009-07-17 2009-07-17 Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle Active JP5313797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169089A JP5313797B2 (en) 2009-07-17 2009-07-17 Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169089A JP5313797B2 (en) 2009-07-17 2009-07-17 Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2011021302A JP2011021302A (en) 2011-02-03
JP5313797B2 true JP5313797B2 (en) 2013-10-09

Family

ID=43631612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169089A Active JP5313797B2 (en) 2009-07-17 2009-07-17 Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP5313797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450429B1 (en) 2013-01-24 2014-10-14 주식회사 효성 Carbon fiber precursor fiber for large tow
KR20210017888A (en) 2019-08-09 2021-02-17 주식회사 엘지화학 Method for preparing acrylonitrile based fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP4228009B2 (en) * 1998-07-22 2009-02-25 三菱レイヨン株式会社 Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP3892212B2 (en) * 2000-07-03 2007-03-14 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle
JP2002194626A (en) * 2000-12-21 2002-07-10 Mitsubishi Rayon Co Ltd Carbon fiber, carbon fiber-reinforced composite material, and method for producing carbon fiber
JP4726102B2 (en) * 2001-04-27 2011-07-20 三菱レイヨン株式会社 Carbon fiber and method for producing the same
JP4216873B2 (en) * 2006-08-18 2009-01-28 三菱レイヨン株式会社 Method for producing carbon fiber precursor fiber bundle
JP2008280632A (en) * 2007-05-09 2008-11-20 Mitsubishi Rayon Co Ltd Method for producing precursor fiber bundle of carbon fiber

Also Published As

Publication number Publication date
JP2011021302A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
JP5264150B2 (en) Carbon fiber strand and method for producing the same
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP5765420B2 (en) Carbon fiber bundle and method for producing carbon fiber
KR100473126B1 (en) Carbon Fiber Precursor Fiber Bundle
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP2023011895A (en) Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP2013181264A (en) Carbon fiber bundle
JP7155577B2 (en) Carbon fiber precursor Acrylic fiber Carbon fiber
JP6232814B2 (en) Acrylic fiber manufacturing method
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JP2018159139A (en) Acrylic fiber bundle and production method of carbon fiber using the same
JP2004076208A (en) Method for producing carbon fiber precursor bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R151 Written notification of patent or utility model registration

Ref document number: 5313797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250