JP5741815B2 - Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle - Google Patents

Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle Download PDF

Info

Publication number
JP5741815B2
JP5741815B2 JP2011051547A JP2011051547A JP5741815B2 JP 5741815 B2 JP5741815 B2 JP 5741815B2 JP 2011051547 A JP2011051547 A JP 2011051547A JP 2011051547 A JP2011051547 A JP 2011051547A JP 5741815 B2 JP5741815 B2 JP 5741815B2
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
cross
section
precursor acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011051547A
Other languages
Japanese (ja)
Other versions
JP2012188766A (en
Inventor
池田 勝彦
勝彦 池田
篤志 中嶋
篤志 中嶋
二井 健
健 二井
宏子 松村
宏子 松村
和宣 角谷
和宣 角谷
廣田 憲史
憲史 廣田
和之 小谷
和之 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011051547A priority Critical patent/JP5741815B2/en
Publication of JP2012188766A publication Critical patent/JP2012188766A/en
Application granted granted Critical
Publication of JP5741815B2 publication Critical patent/JP5741815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、単繊維本数の多い太物の単炭素繊維前駆体繊維束および炭素繊維束に関する。   The present invention relates to a thick single carbon fiber precursor fiber bundle and a carbon fiber bundle having a large number of single fibers.

炭素繊維は、他の繊維に比べて高い比強度及び比弾性率を有するため、複合材料用補強繊維として、従来から、スポーツ及び航空・宇宙用途に使用され、近年では、自動車や土木、建築、圧力容器、風車ブレードなどの一般産業用途にも幅広く利用されつつある。   Since carbon fiber has a higher specific strength and specific elastic modulus than other fibers, it has been conventionally used as a reinforcing fiber for composite materials in sports and aerospace applications. In recent years, automobiles, civil engineering, architecture, Widely used in general industrial applications such as pressure vessels and windmill blades.

炭素繊維としては、ポリアクリルニトリル系炭素繊維束が広く利用されている。該ポリアクリロニトリル系炭素繊維束の製造方法としては、アクリル繊維などからなる炭素繊維前駆体アクリル繊維束(前駆体繊維束)を200〜400℃の酸素存在雰囲気下で加熱処理することにより耐炎化繊維束に転換し(耐炎化工程)、引き続いて1000℃以上の不活性雰囲気下で焼成し、炭素化して(焼成工程)、炭素繊維束を得る方法が知られている。
このようにして得た炭素繊維束は、必要に応じて織物等に加工された後、合成樹脂が含浸され、所定の形状に成形されて繊維強化複合材料とされる。
As the carbon fiber, a polyacrylonitrile-based carbon fiber bundle is widely used. The polyacrylonitrile-based carbon fiber bundle is produced by heat-treating a carbon fiber precursor acrylic fiber bundle (precursor fiber bundle) made of acrylic fiber or the like in an oxygen-containing atmosphere at 200 to 400 ° C. A method is known in which a carbon fiber bundle is obtained by converting into a bundle (flame-proofing step), followed by firing in an inert atmosphere at 1000 ° C. or higher and carbonization (firing step).
The carbon fiber bundle thus obtained is processed into a woven fabric or the like as necessary, and then impregnated with a synthetic resin and formed into a predetermined shape to obtain a fiber-reinforced composite material.

炭素繊維束の製造においては、主に焼成工程で炭素繊維前駆体アクリル繊維束が、ばらけて、該繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラーに巻き付いたりすることがある。そのため、炭素繊維前駆体アクリル繊維束においては、高い集束性が要求される。しかしながら、集束性の高い炭素繊維前駆体アクリル繊維束から得られる炭素繊維束は、その集束性の高さのため、開繊しにくく、繊維強化複合材料を得る際に合成樹脂を含浸させにくいという問題を有していた。
そのため、工程通過性が良好となる繊維束の集束性と、合成樹脂の含浸性が良好となる開繊性とを両立できる炭素繊維前駆体アクリル繊維束が求められていた。
ところで、近年、炭素繊維複合材料の用途・需要拡大に伴い、炭素繊維強化複合材料の生産性を向上する目的で、20000本以上の単繊維の集合体である、いわゆるラージトウと称される炭素繊維束の需要が高まっている。集束性と開繊性の両立は、ラージトウに対しても求められていた。
In the production of carbon fiber bundles, the carbon fiber precursor acrylic fiber bundles are scattered mainly in the firing process, and the single fibers constituting the fiber bundle may be entangled with adjacent fiber bundles or wound around rollers. is there. For this reason, high bundleability is required in the carbon fiber precursor acrylic fiber bundle. However, a carbon fiber bundle obtained from a highly bundled carbon fiber precursor acrylic fiber bundle is difficult to open due to its high bundling property, and it is difficult to impregnate a synthetic resin when obtaining a fiber reinforced composite material. Had a problem.
Therefore, there has been a demand for a carbon fiber precursor acrylic fiber bundle that can achieve both the bundleability of the fiber bundle with good process passability and the spreadability with good synthetic resin impregnation.
By the way, in recent years, with the purpose of improving the productivity of carbon fiber reinforced composite materials as the use and demand of carbon fiber composite materials increase, carbon fibers called so-called large tows, which are aggregates of 20000 or more single fibers. The demand for bundles is increasing. A balance between convergence and spreadability is also required for large tow.

特許文献1には、総繊維数が12000本以下の炭素繊維前駆体アクリル繊維束において、単繊維断面形状及び表面皺形態を制御して、集束性と開繊性を両立させる方法が開示されている。
しかし、特許文献1に記載の方法は、総繊維数が12000本以下の炭素繊維前駆体アクリル繊維束を想定した技術であり、総繊維数が20000本以上の太物の炭素繊維前駆体アクリル繊維束に対しては適用が困難であった。
しかも、特許文献1に記載の方法では、単繊維の数が多くなると、集束性が低下するため、繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラーに巻き付いたりすることがあり、操業安定性が低下する傾向にあった。
Patent Document 1 discloses a method of controlling both the single fiber cross-sectional shape and the surface wrinkle shape in a carbon fiber precursor acrylic fiber bundle having a total number of fibers of 12,000 or less to achieve both convergence and spreadability. Yes.
However, the method described in Patent Document 1 is a technique assuming a carbon fiber precursor acrylic fiber bundle having a total number of fibers of 12,000 or less, and a thick carbon fiber precursor acrylic fiber having a total number of fibers of 20000 or more. It was difficult to apply to bundles.
In addition, in the method described in Patent Document 1, when the number of single fibers increases, the converging property decreases, so that the single fibers constituting the fiber bundle may get entangled with adjacent fiber bundles or may be wound around a roller. The operational stability tended to decrease.

また、ラージトウにおいては、総繊維数が12000本以下の炭素繊維束並みのストランド強度が求められている。その要求に対し、特許文献2では、紡糸の際のノズルからの吐出線速度を下げて、乾燥緻密化および二次延伸を行って、総繊維数が20000本以上の炭素繊維前駆体アクリル繊維束を製造し、その炭素繊維前駆体アクリル繊維束から炭素繊維束を得ることにより、ストランド強度を向上させることが提案されている。
しかしながら、特許文献2に記載の方法では、高いストランド強度は得られるものの、操業安定性が必ずしも高くなかった。
Further, in large tow, a strand strength equivalent to a carbon fiber bundle having a total number of fibers of 12,000 or less is required. In response to the request, in Patent Document 2, the discharge linear velocity from the nozzle at the time of spinning is reduced, dry densification and secondary stretching are performed, and a carbon fiber precursor acrylic fiber bundle having a total number of fibers of 20000 or more. It is proposed to improve the strand strength by producing a carbon fiber bundle from the carbon fiber precursor acrylic fiber bundle.
However, in the method described in Patent Document 2, although high strand strength can be obtained, operation stability is not necessarily high.

特開2002−20927号公報JP 2002-20927 A 特開2005−113296号公報JP 2005-113296 A

以上のように、ラージトウに対しては、繊維束の集束性が高く、焼成工程の通過が良好で、開繊性、樹脂含浸性が良好となる炭素繊維前駆体アクリル繊維束を得る方法は知られていなかった。そのため、工業的に重要な操業安定性が不充分である上に、近年の高い要求に応えうる高品質な炭素繊維束を製造可能な前駆体繊維束を得ることはできなかった。   As described above, for large tow, there is known a method for obtaining a carbon fiber precursor acrylic fiber bundle having high fiber bundle convergence, good passing through the firing step, and good fiber opening and resin impregnation properties. It was not done. Therefore, industrially important operational stability is insufficient, and a precursor fiber bundle capable of producing a high-quality carbon fiber bundle that can meet high demands in recent years has not been obtained.

本発明は、総繊維数が20000本以上の炭素繊維束の製造においても焼成工程での操業安定性を高くできる上に、得られる炭素繊維束のストランド強度を高くでき、しかも炭素繊維束から複合材料を得る際の樹脂含浸性を良好にできる炭素繊維前駆体アクリル繊維束を提供することを目的とする。また、高い操業安定性で得ることができ、ストランド強度が高く、複合材料を得る際の樹脂含浸性に優れた炭素繊維束を提供することを目的とする。   The present invention can increase the operational stability in the firing process even in the production of carbon fiber bundles having a total number of fibers of 20000 or more, and can increase the strand strength of the obtained carbon fiber bundles. An object of the present invention is to provide a carbon fiber precursor acrylic fiber bundle capable of improving the resin impregnation property when obtaining a material. Another object of the present invention is to provide a carbon fiber bundle that can be obtained with high operational stability, has high strand strength, and is excellent in resin impregnation properties when obtaining a composite material.

本発明者らは、上記課題を解決するための手段について鋭意検討した結果、単繊維の断面形状が、集束性、開繊性に影響することを見出した。さらに、複数の単繊維の断面形状を組み合わせることで、単繊維数が多い場合でも、集束性、開繊性を両立でき、操業安定性および樹脂含浸性に優れ、かつ機械的特性に優れた炭素繊維束が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies on means for solving the above problems, the present inventors have found that the cross-sectional shape of a single fiber affects the convergence and the spreadability. Furthermore, by combining the cross-sectional shapes of a plurality of single fibers, even when the number of single fibers is large, it is possible to achieve both convergence and spreadability, excellent operational stability and resin impregnation properties, and excellent mechanical properties. The present inventors have found that a fiber bundle can be obtained and have completed the present invention.

本発明の炭素繊維前駆体アクリル繊維束は、95質量%以上のアクリロニトリル単位を有するアクリロニトリル系重合体からなる多数本の単繊維で構成された炭素繊維前駆体アクリル繊維束であって、長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形で、その周面に凹部が形成された断面の空豆形断面型単繊維と、長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形で、その周面に凹部が形成されていない断面の楕円形断面型単繊維と、長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.00以上1.20未満の範囲にある略円形の断面の円形断面型単繊維とにより構成され、前記円形断面型単繊維で構成された円形断面型単繊維配置部が、前記炭素繊維前駆体アクリル繊維束の半径方向の中心に配置され、前記楕円形断面型単繊維で構成された楕円形断面型単繊維配置部が、前記円形断面型単繊維配置部の外側に配置され、前記空豆形断面型単繊維で構成された空豆形断面型単繊維配置部が、前記楕円形断面型単繊維配置部の外側に配置され、前記空豆形断面型単繊維の本数の割合は全単繊維本数の50〜90%、前記楕円形断面型単繊維の本数の割合は全単繊維本数の5〜35%、前記円形断面型単繊維の本数の割合は全単繊維本数の5〜15%である。
本発明の炭素繊維前駆体アクリル繊維束は、前記空豆形断面型単繊維と前記楕円形断面型単繊維と前記円形断面型単繊維の合計の本数が20000本以上である場合に適している
発明の炭素繊維束は、上記炭素繊維前駆体アクリル繊維束を焼成してなるものである。
The carbon fiber precursor acrylic fiber bundle of the present invention is a carbon fiber precursor acrylic fiber bundle composed of a large number of single fibers made of an acrylonitrile-based polymer having an acrylonitrile unit of 95% by mass or more, in the longitudinal direction. An approximately oval shape in which the ratio of the major axis to the minor axis (major axis / minor axis) of the cross section perpendicular to the range is 1.20 or more and 1.60 or less, and the empty bean shape of the cross section having a recess formed on the peripheral surface thereof A cross-sectional single fiber and a ratio of a major axis to a minor axis in a cross section perpendicular to the longitudinal direction (major axis / minor axis) is a substantially elliptical shape in a range of 1.20 or more and 1.60 or less. The ratio of the major axis to the minor axis (major axis / minor axis) of the elliptical cross-section type single fiber having a cross section in which no recess is formed and the cross section perpendicular to the longitudinal direction is in the range of 1.00 or more and less than 1.20. It is composed of a circular cross-section type monofilament of a substantially circular cross-section, the circular cross-section An elliptical cross-section type single fiber arrangement in which a circular cross-section type single fiber arrangement portion constituted by a single fiber is arranged at the center of the carbon fiber precursor acrylic fiber bundle in the radial direction and is constituted by the elliptical cross-section type single fiber. Is disposed outside the circular cross-section single fiber placement portion, and the bean-shaped cross-section single fiber placement portion composed of the empty bean cross-section single fiber is located outside the elliptical cross-section single fiber placement portion. is arranged, the bean-shaped cross section type ratio of the number of single fibers is 50-90% of the total monofilament number, 5-35% of the proportion the total monofilament number of number of the elliptical cross-type single fiber, the circular cross-section The ratio of the number of type single fibers is 5 to 15% of the total number of single fibers.
The carbon fiber precursor acrylic fiber bundle of the present invention is suitable for the case where the total number of the hollow bean-shaped cross-section single fibers, the elliptical cross-section single fibers, and the circular cross-section single fibers is 20000 or more .
The carbon fiber bundle of the present invention is obtained by firing the carbon fiber precursor acrylic fiber bundle.

本発明の炭素繊維前駆体アクリル繊維束は、集束性が高く、総繊維数が20000本以上の炭素繊維束の製造においても焼成工程での操業安定性を高くできる。また、得られる炭素繊維束のストランド強度を高くでき、しかも、開繊性が高く、炭素繊維束から複合材料を得る際の樹脂含浸性を良好にできる。
また、本発明の炭素繊維束は、高い操業安定性で得ることができ、ストランド強度が高く、複合材料を得る際の樹脂含浸性に優れている。
The carbon fiber precursor acrylic fiber bundle of the present invention has high converging properties, and can improve the operational stability in the firing step even in the production of a carbon fiber bundle having a total number of fibers of 20000 or more. Further, the strand strength of the obtained carbon fiber bundle can be increased, and the fiber opening property is high, and the resin impregnation property when obtaining a composite material from the carbon fiber bundle can be improved.
In addition, the carbon fiber bundle of the present invention can be obtained with high operational stability, has high strand strength, and is excellent in resin impregnation property when obtaining a composite material.

(a)〜(e)は空豆形断面型単繊維を長手方向に対して垂直に切断した際の断面の例を示す図である。(A)-(e) is a figure which shows the example of the cross section at the time of cut | disconnecting an empty bean-shaped cross-section type | mold single fiber perpendicularly | vertically with respect to a longitudinal direction. (a)〜(e)は楕円形断面型単繊維を長手方向に対して垂直に切断した際の断面の例を示す図である。(A)-(e) is a figure which shows the example of the cross section at the time of cut | disconnecting an elliptical cross-section type | mold single fiber perpendicularly | vertically with respect to a longitudinal direction. (a)〜(e)は円形断面型単繊維を長手方向に対して垂直に切断した際の断面の例を示す図である。(A)-(e) is a figure which shows the example of the cross section at the time of cut | disconnecting a circular cross-section type | mold single fiber perpendicularly | vertically with respect to a longitudinal direction. 紡糸ノズルにおける空豆形断面型孔を示す図である。It is a figure which shows the empty bean-shaped cross-section type | mold hole in a spinning nozzle. 紡糸ノズルにおける楕円形断面型孔を示す図である。It is a figure which shows the elliptical cross-section type | mold hole in a spinning nozzle. 紡糸ノズルにおける円形断面型孔を示す図である。It is a figure which shows the circular cross-section type | mold hole in a spinning nozzle. 実施例1にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 3 is a schematic diagram showing an arrangement distribution of holes in a spinning nozzle used in Example 1. 実施例2にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Example 2. 実施例3にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Example 3. 実施例4にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Example 4. 比較例1にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Comparative Example 1. 比較例2にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Comparative Example 2. FIG. 比較例3にて使用した紡糸ノズルにおける孔の配置分布を示す模式図である。FIG. 6 is a schematic diagram showing a hole distribution in a spinning nozzle used in Comparative Example 3.

<炭素繊維前駆体アクリル繊維束>
本発明の炭素繊維前駆体アクリル繊維束は、95質量%以上のアクリロニトリル単位を有するアクリロニトリル系重合体からなる多数本の単繊維で構成される。
アクリロニトリル系重合体は、アクリロニトリル単位のみを有するホモポリマーであってもよいし、アクリロニトリル単位とアクリロニトリルに共重合可能な他の単量体単位とを有するアクリロニトリル系共重合体であってもよい。
<Carbon fiber precursor acrylic fiber bundle>
The carbon fiber precursor acrylic fiber bundle of the present invention is composed of a large number of single fibers made of an acrylonitrile-based polymer having 95% by mass or more of acrylonitrile units.
The acrylonitrile-based polymer may be a homopolymer having only acrylonitrile units, or may be an acrylonitrile-based copolymer having acrylonitrile units and other monomer units copolymerizable with acrylonitrile.

アクリロニトリル系共重合体におけるアクリロニトリル単位の含有量は、96.0〜98.5質量%であることが好ましい。
アクリロニトリル単位の含有量が96質量%以上であると、炭素繊維前駆体アクリル繊維束から炭素繊維束にする際の焼成工程において繊維の熱融着を防止でき、より優れた品質および性能の炭素繊維束を得ることができる。また、共重合体自体の耐熱性が確保され、紡糸、乾燥、延伸の際の単繊維間の接着を回避できる。一方、アクリロニトリル単位の含有量が98.5質量%以下であれば、溶剤溶解性が低下せず、紡糸原液の安定性を確保できると共に共重合体の析出凝固性が高くなりすぎず、凝固糸を安定に作製できる。
The content of acrylonitrile units in the acrylonitrile-based copolymer is preferably 96.0 to 98.5% by mass.
When the content of the acrylonitrile unit is 96% by mass or more, heat fusion of the fibers can be prevented in the firing step when the carbon fiber precursor acrylic fiber bundle is made into the carbon fiber bundle, and the carbon fiber having better quality and performance. You can get a bunch. Further, the heat resistance of the copolymer itself is ensured, and adhesion between single fibers during spinning, drying and stretching can be avoided. On the other hand, when the content of the acrylonitrile unit is 98.5% by mass or less, the solvent solubility does not decrease, the stability of the spinning dope can be secured, and the precipitation solidification property of the copolymer does not become too high. Can be produced stably.

共重合体である場合のアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、耐炎化反応を促進する作用を有する点では、アクリル酸、メタクリル酸、イタコン酸等のカルボキシ基含有ビニル系単量体、またはこれらのアルカリ金属塩もしくはアンモニウム塩、アクリルアミド等が好ましい。前記アクリロニトリル以外の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
アクリロニトリル系共重合体におけるカルボキシ基含有ビニル系単量体単位の含有量は1.5〜4.0質量%が好ましい。
A monomer other than acrylonitrile in the case of a copolymer can be appropriately selected from vinyl monomers copolymerizable with acrylonitrile, and has a function of promoting a flameproofing reaction. Carboxy group-containing vinyl monomers such as methacrylic acid and itaconic acid, or alkali metal salts or ammonium salts thereof, acrylamide and the like are preferable. Monomers other than acrylonitrile may be used alone or in combination of two or more.
The content of the carboxy group-containing vinyl monomer unit in the acrylonitrile copolymer is preferably 1.5 to 4.0% by mass.

アクリロニトリル系重合体を得るための重合方法は、溶液重合、懸濁重合など、公知の重合方法のいずれであってもよい。   The polymerization method for obtaining the acrylonitrile polymer may be any of known polymerization methods such as solution polymerization and suspension polymerization.

また、本発明の炭素繊維前駆体アクリル繊維束は、空豆形断面型単繊維と楕円形断面型単繊維と空豆形断面型単繊維とにより構成される。
ここで、空豆形断面型単繊維は、図1(a)〜(e)の例に示すような、長手方向に垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形11a〜11eで、その周面に凹部Aが形成された断面形状の単繊維である。本実施形態例では凹部は1つである。凹部とは、深さ0.5μm以上の凹みのことである。
また、楕円形断面型単繊維は、図2(a)〜(e)の例に示すような、長手方向に垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形で、その周面に凹部が形成された断面形状の単繊維12a〜12eである。
また、円形断面型単繊維は、図3(a)〜(e)の例に示すような、長手方向に垂直な断面の長径と短径との比(長径/短径)が1.00以上1.20未満の範囲にある略円形の断面形状の単繊維13a〜13eである。
Moreover, the carbon fiber precursor acrylic fiber bundle of the present invention is composed of a blank bean-shaped cross-section single fiber, an elliptical cross-section single fiber, and an empty bean-shaped cross-section single fiber.
Here, as shown in the examples of FIGS. 1A to 1E, the empty bean-shaped cross-section single fiber has a ratio (major axis / minor axis) of the major axis to the minor axis of the section perpendicular to the longitudinal direction of 1. It is a single fiber having a cross-sectional shape in which a concave portion A is formed on the peripheral surface thereof in a substantially elliptical shape 11a to 11e in a range of 20 or more and 1.60 or less. In this embodiment, there is one recess. A recess is a recess having a depth of 0.5 μm or more.
Further, the elliptical cross-section type single fiber has a ratio (major axis / minor axis) of the major axis to the minor axis of the cross section perpendicular to the longitudinal direction (major axis / minor axis) as shown in the examples of FIGS. 2 (a) to (e). These are monofilaments 12a to 12e having a substantially elliptical shape in the range of 1.60 or less and having a cross-sectional shape with a recess formed on the peripheral surface thereof.
In addition, the circular cross-section type single fiber has a ratio (major axis / minor axis) of 1.00 or more of the major axis and minor axis of the cross section perpendicular to the longitudinal direction as shown in the examples of FIGS. It is the single fiber 13a-13e of the substantially circular cross-sectional shape in the range below 1.20.

前記空豆形断面型単繊維の本数の割合は全単繊維本数の50〜90%、前記楕円形断面型単繊維の本数の割合は全単繊維本数の5〜35%、前記円形断面型単繊維の本数の割合は全単繊維本数の5〜15%である。
空豆形断面型単繊維の本数の割合が、全単繊維本数の50%より少ないと、炭素繊維前駆体アクリル繊維から得られる炭素繊維束の開繊性が低くなり、90%より多いと、炭素繊維前駆体アクリル繊維の集束性が低くなる。
楕円形断面型単繊維の本数の割合が、全単繊維本数の5%より少ないと、炭素繊維前駆体アクリル繊維の集束性が低くなり、35%より多いと、炭素繊維前駆体アクリル繊維から得られる炭素繊維束の開繊性が低くなる。
円形断面型単繊維の本数の割合が、全単繊維本数の5%より少ないと、炭素繊維前駆体アクリル繊維の集束性が低くなり、15%より多いと、炭素繊維前駆体アクリル繊維から得られる炭素繊維束の開繊性が低くなる。
The ratio of the number of the hollow bean-shaped cross-section single fibers is 50 to 90% of the total number of single fibers, the ratio of the number of the elliptical cross-section single fibers is 5 to 35% of the total number of single fibers, and the circular cross-section single fibers The ratio of the number is 5 to 15% of the total number of single fibers.
If the ratio of the number of single beans in the form of cross-shaped beans is less than 50% of the total number of single fibers, the openability of the carbon fiber bundle obtained from the carbon fiber precursor acrylic fiber is low, and if it is more than 90%, carbon The convergence property of the fiber precursor acrylic fiber is lowered.
When the ratio of the number of elliptical cross-section single fibers is less than 5% of the total number of single fibers, the converging property of the carbon fiber precursor acrylic fiber is lowered, and when it is more than 35%, it is obtained from the carbon fiber precursor acrylic fiber. The openability of the obtained carbon fiber bundle is lowered.
When the ratio of the number of circular cross-section type single fibers is less than 5% of the total number of single fibers, the converging property of the carbon fiber precursor acrylic fibers becomes low, and when it exceeds 15%, the carbon fiber precursor acrylic fibers are obtained. The openability of the carbon fiber bundle is lowered.

本発明の炭素繊維前駆体アクリル繊維束においては、半径方向の中心に前記円形断面型単繊維で構成された円形断面型単繊維配置部が形成され、該円形断面型単繊維配置部の外側に前記楕円形断面型単繊維で構成された楕円形断面型単繊維配置部が形成され、該楕円形断面型単繊維配置部の外側に前記空豆形断面型単繊維で構成された空豆形断面型単繊維配置部が形成されていることが好ましい。このように各単繊維を配置すれば、操業安定性をより高くできる上に、得られる単繊維の断面形状を安定させる(単繊維の断面形状の斑を小さくする)ことができる。   In the carbon fiber precursor acrylic fiber bundle of the present invention, a circular cross-section type single fiber arrangement portion composed of the circular cross-section type single fibers is formed at the center in the radial direction, and the outer side of the circular cross-section type single fiber arrangement portion. An oval cross-section type single fiber arrangement part made of the oval cross-section type single fiber is formed, and an empty bean type cross-section type made of the empty bean shape cross-section type single fiber outside the elliptical cross-section type single fiber arrangement part It is preferable that the single fiber arrangement part is formed. If each single fiber is arranged in this manner, the operational stability can be further improved, and the cross-sectional shape of the obtained single fiber can be stabilized (the cross-sectional shape unevenness of the single fiber can be reduced).

また、本発明の炭素繊維前駆体アクリル繊維束は、空豆形断面型単繊維と楕円形断面型単繊維と円形断面型単繊維の合計の本数が20000本以上のラージトウであってもよいし、20000本未満のレギュラートウであってもよい。本発明の効果がとりわけ発揮され、しかも炭素繊維複合材料の生産性が向上する点では、単繊維の合計の本数が20000本以上のラージトウが好ましい。   Further, the carbon fiber precursor acrylic fiber bundle of the present invention may be large tow having a total number of 20000 or more of empty beans-shaped cross-section single fibers, elliptical cross-section single fibers, and circular cross-section single fibers, There may be less than 20,000 regular tow. Large tow with a total number of single fibers of 20000 or more is preferable in that the effect of the present invention is particularly exhibited and the productivity of the carbon fiber composite material is improved.

炭素繊維前駆体アクリル繊維束の含液率は40〜60質量%であることが好ましく、50〜58質量%であることが好ましい。炭素繊維前駆体アクリル繊維束の含液率が40質量%以上であれば、開繊性がより高くなり、60質量%以下であれば、集束性がより高くなって、炭素繊維束製造時の操業安定性がより高くなる。
ここで、含液量は、以下の方法により測定される。
まず、炭素繊維前駆体アクリル繊維束に付着している油剤を除去し、乾燥させて、絶乾された状態の繊維束を調製し、その繊維束の絶乾質量MA0を測定する。ついで、この繊維束を蒸留水中に無張力状態で浸漬して、繊維束に水を含ませる。この含水状態の繊維束を圧搾脱水し、脱水後の繊維束質量MATを測定する。繊維束の絶乾質量MA0と圧搾脱水した後の繊維束質量MATとから、次式を用いて炭素繊維前駆体アクリル繊維束の含液率HWを算出する。
HW(質量%)=(MAT−MA0)/MA0×100
The liquid content of the carbon fiber precursor acrylic fiber bundle is preferably 40 to 60% by mass, and preferably 50 to 58% by mass. If the liquid content of the carbon fiber precursor acrylic fiber bundle is 40% by mass or more, the spreadability is higher, and if it is 60% by mass or less, the convergence is higher, and the carbon fiber bundle is produced at the time of production. Operational stability is higher.
Here, the liquid content is measured by the following method.
First, the oil agent adhering to the carbon fiber precursor acrylic fiber bundle is removed and dried to prepare a completely dried fiber bundle, and the absolutely dry mass M A0 of the fiber bundle is measured. Next, the fiber bundle is immersed in distilled water in a tensionless state so that the fiber bundle contains water. The fiber bundle of this water-containing state compression dehydration, measuring the fiber bundle mass M AT after the dehydration. The liquid content HW of the carbon fiber precursor acrylic fiber bundle is calculated from the absolute dry mass M A0 of the fiber bundle and the fiber bundle mass M AT after the pressure dehydration using the following formula.
HW (mass%) = (M AT −M A0 ) / M A0 × 100

<炭素繊維前駆体アクリル繊維束の製造方法>
本発明の炭素繊維前駆体アクリル繊維束の製造方法は、凝固糸作製工程と、一次延伸工程と、油剤処理工程と、乾燥緻密化工程と、二次延伸工程と、収納工程とを有する。
以下、各工程について説明する。
<Method for producing carbon fiber precursor acrylic fiber bundle>
The manufacturing method of the carbon fiber precursor acrylic fiber bundle of this invention has a coagulated yarn preparation process, a primary extending process, an oil agent process process, a dry densification process, a secondary extending process, and a storage process.
Hereinafter, each step will be described.

(凝固糸作製工程)
凝固糸作製工程は、紡糸原液から凝固糸を得る工程である。ここで、紡糸原液とは、アクリロニトリル系重合体を溶剤に溶解させて得た溶液である。
(Coagulated yarn production process)
The coagulated yarn preparation step is a step of obtaining coagulated yarn from the spinning dope. Here, the spinning dope is a solution obtained by dissolving an acrylonitrile-based polymer in a solvent.

[溶剤]
溶剤としては、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤、塩化亜鉛やチオシアン酸ナトリウム等の無機化合物の水溶液などを適宜選択して使用できる。これらの中でも、凝固速度を速くでき、生産性を向上できる点から、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミドのいずれかが好ましく、ジメチルアセトアミドがより好ましい。
[solvent]
As the solvent, an organic solvent such as dimethylacetamide, dimethylsulfoxide, dimethylformamide, or an aqueous solution of an inorganic compound such as zinc chloride or sodium thiocyanate can be appropriately selected and used. Among these, dimethylacetamide, dimethylsulfoxide, and dimethylformamide are preferred, and dimethylacetamide is more preferred from the viewpoint that the coagulation rate can be increased and productivity can be improved.

[重合体濃度]
紡糸原液における重合体濃度は、緻密な凝固糸を得るためには、ある程度以上の濃度に調整されることが好ましい。具体的には、紡糸原液中の重合体濃度を17質量%以上になるように調整することが好ましく、19質量%以上にすることがより好ましい。一方、紡糸原液は、適正な粘度・流動性が要求されるため、重合体濃度を25質量%以下にすることが好ましい。
[Polymer concentration]
In order to obtain a dense coagulated yarn, the polymer concentration in the spinning dope is preferably adjusted to a certain level or more. Specifically, the polymer concentration in the spinning dope is preferably adjusted to 17% by mass or more, and more preferably 19% by mass or more. On the other hand, since the spinning dope requires proper viscosity and fluidity, the polymer concentration is preferably 25% by mass or less.

[紡糸・凝固方法]
紡糸方法は、上述した紡糸原液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できる。これらのうち、より高い性能を有する炭素繊維束を得るためには、湿式紡糸法または乾湿式紡糸法が好ましい。
[Spinning / coagulation method]
As the spinning method, known methods such as a wet spinning method in which the above-described spinning solution is directly spun into a coagulation bath, a dry spinning method in which the solution is coagulated in air, and a dry and wet spinning method in which the solution is once coagulated in the air and then coagulated in the bath. A spinning method can be appropriately employed. Among these, in order to obtain a carbon fiber bundle having higher performance, the wet spinning method or the dry wet spinning method is preferable.

紡糸原液を紡出する際に使用する紡糸ノズルとしては、空豆形断面型単繊維を形成するための空豆形断面型の孔14(図4参照)と、楕円形断面型単繊維を形成するための楕円形断面型の孔15(図5参照)と、円形断面型単繊維を形成するための円形断面型の孔16(図6参照)とが形成されたものを使用する。
炭素繊維前駆体アクリル繊維束において、上記のように、円形断面型単繊維配置部、楕円形断面型単繊維配置部および空豆形断面型単繊維配置部を形成する場合には、紡糸ノズルとして、ノズル吐出面の中央に配置され、空豆形断面型の孔が形成された空豆形断面型孔領域と、該空豆形断面型孔領域の外側に配置され、楕円形断面型の孔が形成された楕円形断面型孔領域と、該楕円形断面型孔領域の外側に配置され、円形断面型の孔が形成された円形断面型孔領域とを有するものを使用する。
Spinning nozzles used for spinning the spinning dope include empty bean-shaped cross-section type holes 14 (see FIG. 4) for forming empty bean-shaped cross-section type single fibers and elliptical cross-section type single fibers. In which a circular cross-section type hole 15 (see FIG. 6) for forming a circular cross-section type single fiber is used.
In the carbon fiber precursor acrylic fiber bundle, as described above, when forming the circular cross-section single fiber arrangement portion, the elliptical cross-section single fiber arrangement portion and the empty bean-shaped cross-section single fiber arrangement portion, as a spinning nozzle, Disposed in the center of the nozzle discharge surface, an empty bean-shaped cross-sectional hole area formed with an empty bean-shaped cross-sectional hole, and disposed outside the empty bean-shaped cross-sectional hole area, thereby forming an elliptical cross-sectional hole. A material having an elliptical cross-sectional type hole region and a circular cross-sectional type hole region arranged outside the elliptical cross-sectional type hole region and formed with a circular cross-sectional type hole is used.

湿式紡糸法または乾湿式紡糸法による紡糸賦形は、紡糸原液を所定断面形状の孔を有する紡糸ノズルから凝固浴中に紡出することで行うことができる。凝固浴としては、紡糸原液に用いられる溶剤を含む水溶液を用いることが、溶剤回収の容易さの観点から好ましい。
凝固浴として溶剤を含む水溶液を用いる場合、その水溶液中の溶剤濃度は50〜85質量%であることが好ましく、凝固浴の温度は10〜60℃が好ましい。そのような溶剤濃度および凝固浴温度であれば、ボイドが少なく緻密な構造を形成でき、また、延伸性がより向上し、生産性に優れる上に、高性能な炭素繊維束を得ることができる。
The spinning shaping by the wet spinning method or the dry and wet spinning method can be performed by spinning the spinning solution into a coagulation bath from a spinning nozzle having a hole having a predetermined cross-sectional shape. As the coagulation bath, it is preferable to use an aqueous solution containing a solvent used for the spinning dope from the viewpoint of easy solvent recovery.
When an aqueous solution containing a solvent is used as the coagulation bath, the solvent concentration in the aqueous solution is preferably 50 to 85% by mass, and the temperature of the coagulation bath is preferably 10 to 60 ° C. With such solvent concentration and coagulation bath temperature, a dense structure with few voids can be formed, stretchability is further improved, productivity is excellent, and a high-performance carbon fiber bundle can be obtained. .

(一次延伸工程)
一次延伸工程では、凝固糸作製工程にて得た凝固糸の繊維束を延伸・洗浄して延伸繊維束を得る。
延伸方法として、凝固糸を凝固浴中または延伸浴中で延伸(浴中延伸)する方法や、一部空中延伸した後に浴中延伸する方法が挙げられる。
浴中延伸は、得られる炭素繊維束の性能の点から、通常50〜98℃の水浴中で1回あるいは2回以上の多段で行い、一次延伸における全延伸倍率を5〜15倍にすることが好ましい。
洗浄は、延伸の前後あるいは延伸と同時に行う。洗浄後には、水膨潤状態の延伸繊維束を得ることができる。
洗浄は、通常50〜98℃の洗浄水で行う。洗浄効率を高める点では、2段以上の多段で繰り返し洗浄することが好ましい。
(Primary stretching process)
In the primary drawing step, the fiber bundle of the coagulated yarn obtained in the coagulated yarn production step is drawn and washed to obtain a drawn fiber bundle.
Examples of the stretching method include a method of stretching the coagulated yarn in a coagulation bath or a stretching bath (stretching in the bath), and a method of partially stretching in the air and then stretching in the bath.
Stretching in the bath is usually performed once or twice or more in a water bath at 50 to 98 ° C. from the viewpoint of the performance of the obtained carbon fiber bundle, and the total stretching ratio in the primary stretching is 5 to 15 times. Is preferred.
Washing is performed before or after stretching or simultaneously with stretching. After washing, a drawn fiber bundle in a water-swollen state can be obtained.
Washing is usually performed with washing water at 50 to 98 ° C. In terms of increasing the cleaning efficiency, it is preferable to repeatedly perform cleaning in two or more stages.

(油剤付与工程)
油剤付与工程では、一次延伸工程にて得た延伸繊維束に油剤を付与して、油剤付与繊維束を得る。
延伸繊維束に付与する油剤の種類として特に限定されないが、アミノシリコーン系界面活性剤が好ましい。油剤の付与方法は、延伸繊維束に充分に油剤を浸透させることができ、均一に付着できることから、延伸繊維束を油剤中に浸漬させた後、余分な油剤を除去するディップ付着法が好ましい。
油剤の付与は、油剤をより均一に付着させるためには、2段以上の多段で繰り返し付与することが好ましい。
油剤付着量は、炭素繊維束製造時の焼成工程の工程通過性、炭素繊維束の性能の点から、繊維束の乾燥質量に対して0.1〜2.0質量%であることが好ましい。
また、油剤付与工程においては、油剤に加えて、必要に応じて、帯電防止剤、酸化防止剤、抗菌剤を延伸繊維束に付与してもよい。
(Oil agent application process)
In the oil agent application step, an oil agent is applied to the drawn fiber bundle obtained in the primary drawing step to obtain an oil agent application fiber bundle.
Although it does not specifically limit as a kind of oil agent provided to a drawn fiber bundle, Amino silicone type surfactant is preferable. As the method of applying the oil agent, the oil agent can be sufficiently permeated into the drawn fiber bundle and can be uniformly attached. Therefore, the dip adhesion method in which the excess oil agent is removed after the drawn fiber bundle is immersed in the oil agent is preferable.
The application of the oil agent is preferably repeatedly applied in two or more stages in order to adhere the oil agent more uniformly.
The oil agent adhesion amount is preferably 0.1 to 2.0% by mass with respect to the dry mass of the fiber bundle, from the viewpoint of the process passability of the firing process during the production of the carbon fiber bundle and the performance of the carbon fiber bundle.
In the oil agent application step, in addition to the oil agent, an antistatic agent, an antioxidant, and an antibacterial agent may be applied to the drawn fiber bundle as necessary.

(乾燥緻密化工程)
乾燥緻密化工程では、油剤付与工程にて得た油剤付与繊維束を乾燥緻密化して緻密化繊維束を得る。
乾燥緻密化の温度は、含水率によって適宜設定されるが、通常は、繊維束を構成する単繊維のガラス転移温度を超える温度とする。その温度は、下流側に向かうにつれて高くしてもよい。
乾燥緻密化の具体的な方法としては、例えば表面温度が130〜190℃程度の加熱ローラー上に油剤付与繊維束を走行させて連続的に乾燥緻密化する方法などが挙げられる。その際に使用する加熱ローラーの個数は1個でもよいし、複数個でもよい。
(Drying densification process)
In the dry densification step, the oil agent-imparted fiber bundle obtained in the oil agent application step is dried and densified to obtain a densified fiber bundle.
The temperature for drying and densification is appropriately set depending on the moisture content, but is usually set to a temperature exceeding the glass transition temperature of the single fibers constituting the fiber bundle. The temperature may be increased toward the downstream side.
As a specific method of drying and densifying, for example, a method of continuously drying and densifying the oil-containing fiber bundle on a heating roller having a surface temperature of about 130 to 190 ° C. can be cited. The number of heating rollers used at that time may be one or more.

(二次延伸工程)
二次延伸工程では、乾燥緻密化工程にて得た緻密化繊維束を延伸する。
延伸方法としては、加熱ローラーによる延伸、加圧水蒸気延伸などの方法を適用することができる。中でも、延伸の安定性が高く、得られる炭素繊維前駆体アクリル繊維束の緻密性や配向度をより高めることができる点で、加熱ローラーによる延伸が好ましい。その際、延伸倍率を1.1〜4.0とすることが好ましい。延伸倍率は加熱ローラーの回転速度により調整できる。
加熱ローラーの温度としては150〜200℃であることが好ましい。加熱ローラーの温度が150℃未満であると、可塑化が不完全となり、延伸させた際に毛羽等が発生し、炭素繊維束製造の際の炭素化工程にて繊維束がローラーに巻き付いて、工程障害を招き、操業安定性が低下することがある。一方、加熱ローラーの温度が200℃を超えると、酸化反応や分解反応などが生じて、炭素繊維前駆体アクリル繊維束を焼成して得られる炭素繊維束の品質を低下させる場合がある。
なお、炭素繊維前駆体アクリル繊維の製造においては、二次延伸工程は任意の工程である。
(Secondary stretching process)
In the secondary stretching step, the densified fiber bundle obtained in the dry densification step is stretched.
As a stretching method, a method such as stretching by a heating roller or pressurized steam stretching can be applied. Among them, stretching by a heating roller is preferable in that the stretching stability is high and the denseness and orientation degree of the obtained carbon fiber precursor acrylic fiber bundle can be further increased. In that case, it is preferable that a draw ratio shall be 1.1-4.0. The draw ratio can be adjusted by the rotation speed of the heating roller.
The temperature of the heating roller is preferably 150 to 200 ° C. When the temperature of the heating roller is less than 150 ° C., plasticization becomes incomplete, fluff and the like are generated when stretched, and the fiber bundle is wound around the roller in the carbonization process at the time of carbon fiber bundle production, This may cause process failure and decrease operational stability. On the other hand, when the temperature of the heating roller exceeds 200 ° C., an oxidation reaction, a decomposition reaction, or the like occurs, which may deteriorate the quality of the carbon fiber bundle obtained by firing the carbon fiber precursor acrylic fiber bundle.
In addition, in manufacture of a carbon fiber precursor acrylic fiber, a secondary extending process is an arbitrary process.

(収納工程)
収納工程では、二次延伸工程にて得た炭素繊維前駆体アクリル繊維束をボビンまたはケンスに収容する。
具体的には、炭素繊維前駆体アクリル繊維束を、室温のロールを通して冷却した後に、ワインダーを用いてボビンに巻き取る、あるいは、ケンスに収納する方法が挙げられる。
なお、炭素繊維前駆体アクリル繊維の製造においては、収納工程は任意の工程である。
(Storage process)
In the storing step, the carbon fiber precursor acrylic fiber bundle obtained in the secondary stretching step is stored in a bobbin or can.
Specifically, a method of cooling the carbon fiber precursor acrylic fiber bundle through a roll at room temperature and then winding it on a bobbin using a winder or storing it in a can.
In addition, in manufacture of a carbon fiber precursor acrylic fiber, an accommodation process is an arbitrary process.

以上説明した、空豆形断面型単繊維と楕円形断面型単繊維と円形断面型単繊維とを備える炭素繊維前駆体アクリル繊維束は高い集束性を有するため、総繊維数が20000本以上の炭素繊維束を製造する際にも焼成工程での炭素繊維前駆体アクリル繊維束がばらけることが防止されている。そのため、該炭素繊維前駆体アクリル繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラーに巻き付いたりすることを防止でき、操業安定性および生産性に優れる。
その上、集束性が高いにもかかわらず、開繊性も高いため、得られる炭素繊維から複合材料を得る際の樹脂含浸性にも優れる。
さらに、上記炭素繊維前駆体アクリル繊維束によれば、ラージトウを得る場合でもストランド強度を高くできる。
As described above, the carbon fiber precursor acrylic fiber bundle including the empty bean-shaped cross-section single fiber, the elliptical cross-section single fiber, and the circular cross-section single fiber has high convergence, so that the total number of carbons is 20000 or more. Even when the fiber bundle is manufactured, the carbon fiber precursor acrylic fiber bundle in the firing step is prevented from being scattered. Therefore, the single fiber constituting the carbon fiber precursor acrylic fiber bundle can be prevented from being entangled with the adjacent fiber bundle or wound around the roller, and the operation stability and productivity are excellent.
In addition, since the spreadability is high despite the high bundling property, the resin impregnation property when the composite material is obtained from the obtained carbon fiber is also excellent.
Furthermore, according to the said carbon fiber precursor acrylic fiber bundle, even when obtaining a large tow, strand strength can be made high.

<炭素繊維束>
本発明の炭素繊維束は、上記炭素繊維前駆体アクリル繊維束を焼成することにより得られる。
焼成では、耐炎化処理の後に炭素化処理を行う。
耐炎化処理では、空気中、230〜260℃の熱風循環式耐炎化炉に炭素繊維前駆体アクリル繊維束を投入し、30〜60分間処理して耐炎化繊維束とする。
炭素化処理では、耐炎化繊維束を窒素雰囲気下、最高温度800℃程度で1〜2分間処理し、さらに同雰囲気下で最高温度が1000〜2000℃の高温熱処理炉にて1〜2分処理して炭素繊維束を得る。
なお、繊維強化複合材料の強度発現を目的として、必要に応じて炭素化処理の後に、炭素繊維束の表面に電解処理を施し、炭素繊維用サイズ剤を付与してもよい。
<Carbon fiber bundle>
The carbon fiber bundle of the present invention is obtained by firing the carbon fiber precursor acrylic fiber bundle.
In firing, the carbonization treatment is performed after the flameproofing treatment.
In the flameproofing treatment, the carbon fiber precursor acrylic fiber bundle is put into a hot air circulation type flameproofing furnace at 230 to 260 ° C. in the air and treated for 30 to 60 minutes to obtain a flameproofed fiber bundle.
In the carbonization treatment, the flame-resistant fiber bundle is treated in a nitrogen atmosphere at a maximum temperature of about 800 ° C. for 1 to 2 minutes, and further in the same atmosphere in a high temperature heat treatment furnace having a maximum temperature of 1000 to 2000 ° C. for 1 to 2 minutes. Thus, a carbon fiber bundle is obtained.
For the purpose of developing the strength of the fiber-reinforced composite material, the carbon fiber bundle surface may be subjected to electrolytic treatment after carbonization treatment as necessary to give a carbon fiber sizing agent.

炭素繊維束においては、樹脂含浸率が4.0〜7.0質量%であることが好ましく、4.0〜6.0質量%であることがより好ましい。樹脂含浸率が4.0質量%以上であれば、炭素繊維束に樹脂が充分に含浸し、高品質な繊維強化複合材料を容易に得ることができる。一方、樹脂含浸率が7.0%以下であれば、炭素繊維束のまとまりが良く、高品質の繊維強化複合材料を容易に得ることができる。
ここで、樹脂含浸率とは、下記方法により測定された値である。
炭素繊維束を約20cmに切断し、炭素繊維束の長さ(L)、質量(MB0)を測定する。これをグリシジルエーテル中に約3cm浸漬し15分間放置し、グリシジルエーテル中から取り出した後3分間放置し、浸漬側から3.5cmのところで切り落とし、残った炭素繊維束の長さ(L)、質量(MB1)を測定する。吸い上げたグリシジルエーテルの質量割合を下記式により算出し、これを樹脂含浸率とする。
樹脂含浸率=(MB1−(MB0×L/L))/(MB0×L/L)×100
In the carbon fiber bundle, the resin impregnation rate is preferably 4.0 to 7.0% by mass, and more preferably 4.0 to 6.0% by mass. When the resin impregnation rate is 4.0% by mass or more, the carbon fiber bundle is sufficiently impregnated with the resin, and a high-quality fiber-reinforced composite material can be easily obtained. On the other hand, if the resin impregnation rate is 7.0% or less, the bundle of carbon fiber bundles is good, and a high-quality fiber-reinforced composite material can be easily obtained.
Here, the resin impregnation rate is a value measured by the following method.
The carbon fiber bundle is cut into approximately 20 cm, and the length (L 0 ) and mass (M B0 ) of the carbon fiber bundle are measured. This was immersed in glycidyl ether for about 3 cm, left for 15 minutes, taken out from glycidyl ether, left for 3 minutes, cut off at 3.5 cm from the immersion side, and the length of the remaining carbon fiber bundle (L 1 ), The mass (M B1 ) is measured. The mass ratio of the glycidyl ether sucked up is calculated by the following formula, and this is defined as the resin impregnation rate.
Resin impregnation ratio = (M B1 - (M B0 × L 1 / L 0)) / (M B0 × L 1 / L 0) × 100

本発明の炭素繊維束は、上記炭素繊維前駆体アクリル繊維束が焼成されたものであるため、単繊維本数が多くても、高い操業安定性で得ることができ、ストランド強度が高く、複合材料を得る際の樹脂含浸性に優れている。   The carbon fiber bundle of the present invention is obtained by firing the above-mentioned carbon fiber precursor acrylic fiber bundle. Therefore, even if the number of single fibers is large, the carbon fiber bundle can be obtained with high operational stability, has high strand strength, and is a composite material. It has excellent resin impregnation properties when obtained.

なお、本発明は上記実施形態例に限定されず、空豆形断面型単繊維は周面に凹部が2つ以上形成されていても構わない。   In addition, this invention is not limited to the said embodiment example, Two or more recessed parts may be formed in the surrounding surface of the empty bean-shaped cross-section type | mold single fiber.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

以下の例により得た炭素繊維前駆体アクリル繊維束について、単繊維断面形状、単繊維同士の接着数、含液率、操業安定性を以下のように測定または評価した。また、得られた炭素繊維束について、ストランド強度およびストランド弾性率、開繊性、樹脂含浸率を以下のように測定または評価した。
<測定・評価>
[単繊維断面形状]
単繊維の断面形状の割合は、以下のようにして求めた。
内径1mmのポリ塩化ビニル樹脂製のチューブ内に測定用の単繊維を通した後、これをナイフで輪切りにして試料を準備した。ついで、該試料を断面が上を向くように走査型電子顕微鏡(SEM)の試料台に接着し、さらに金を約10nmの厚さにスパッタリングした。そして、フィリップ社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で単繊維の断面を観察し、単繊維の断面の長径および短径を測定し、長径/短径の比率を求めた。
About the carbon fiber precursor acrylic fiber bundle obtained by the following examples, single fiber cross-sectional shape, the adhesion number of single fibers, a liquid content, and operation stability were measured or evaluated as follows. The obtained carbon fiber bundle was measured or evaluated for the strand strength, strand elastic modulus, fiber opening property, and resin impregnation rate as follows.
<Measurement / Evaluation>
[Single fiber cross-sectional shape]
The ratio of the cross-sectional shape of the single fiber was determined as follows.
A single fiber for measurement was passed through a tube made of polyvinyl chloride resin having an inner diameter of 1 mm, and then a sample was prepared by cutting it with a knife. Next, the sample was bonded to a sample table of a scanning electron microscope (SEM) so that the cross section faced upward, and gold was sputtered to a thickness of about 10 nm. Then, the cross section of the single fiber was observed under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm with the XL20 scanning electron microscope manufactured by Philippe, and the major axis and minor axis of the single fiber were measured. The ratio was determined.

(単繊維同士の接着数)
炭素繊維前駆体アクリル繊維束を約5mmに切断し、100mLのアセトンの中に分散させ、100rpm(回転/分)で1分間攪拌後、黒色濾紙にて濾過した。そして、単繊維同士の接着数を測定した。
(Number of bonds between single fibers)
The carbon fiber precursor acrylic fiber bundle was cut to about 5 mm, dispersed in 100 mL of acetone, stirred at 100 rpm (rotation / min) for 1 minute, and then filtered through black filter paper. And the adhesion number of single fibers was measured.

[含液率]
炭素繊維前駆体アクリル繊維束に付着している油剤を、100℃の沸騰水中で充分に洗浄して除去し、乾燥機中で105℃、2時間乾燥させて、絶乾された状態の繊維束を得た。このときの繊維束の絶乾質量MA0を測定した。ついで、この繊維束を20℃の蒸留水中に無張力状態で1時間以上浸漬して、繊維束に水を含ませた。この含水状態の繊維束を、ニップローラ装置を用いて、200kPaの圧力をかけながら、引き取り速度10m/分で圧搾脱水した。圧搾脱水した後の繊維束質量MATを測定した。繊維束の絶乾質量MA0と圧搾脱水した後の繊維束質量MATとから、次式を用いて炭素繊維前駆体アクリル繊維束の含液率HWを算出した。
HW(質量%)=(MAT−MA0)/MA0×100
[Liquid content]
The oil agent adhering to the carbon fiber precursor acrylic fiber bundle is thoroughly washed in boiling water at 100 ° C. and removed, and dried in an oven at 105 ° C. for 2 hours, and dried in an absolutely dry state. Got. The absolutely dry mass M A0 of the fiber bundle at this time was measured. Subsequently, this fiber bundle was immersed in distilled water at 20 ° C. for 1 hour or more in a tensionless state, so that the fiber bundle was allowed to contain water. This water-containing fiber bundle was squeezed and dehydrated at a take-up speed of 10 m / min while applying a pressure of 200 kPa using a nip roller device. The fiber bundle mass M AT after compression dehydration was measured. The liquid content HW of the carbon fiber precursor acrylic fiber bundle was calculated using the following equation from the absolutely dry mass M A0 of the fiber bundle and the fiber bundle mass M AT after the pressure dehydration.
HW (mass%) = (M AT −M A0 ) / M A0 × 100

[操業安定性]
炭素繊維前駆体アクリル繊維束を焼成して炭素繊維束にする際の操業安定性を観察して評価した。
[Operational stability]
The operational stability when the carbon fiber precursor acrylic fiber bundle was baked into a carbon fiber bundle was observed and evaluated.

[ストランド強度およびストランド弾性率]
炭素繊維束のストランド強度およびストランド弾性率は、JIS R7608に規定されているエポキシ樹脂含浸ストランド法に準じて測定した。なお、測定回数は10回とし、その平均値で評価した。
[Strand strength and strand modulus]
The strand strength and strand elastic modulus of the carbon fiber bundle were measured according to the epoxy resin impregnated strand method defined in JIS R7608. The number of measurements was 10 times, and the average value was evaluated.

[トウ幅(開繊性)]
炭素繊維束を0.06g/単繊維1本の張力下、走行速度1m/分で金属ロール上を走行させた際のトウ幅を測定し、そのトウ幅を開繊性の指標とした。トウ幅が広いほど、開繊性に優れる。
[Tow width (opening property)]
The tow width when the carbon fiber bundle was run on a metal roll at a running speed of 1 m / min under a tension of 0.06 g / single fiber was measured, and the tow width was used as an index of the opening property. The wider the tow width, the better the spreadability.

[樹脂含浸率]
炭素繊維束を約20cmに切断し、炭素繊維束の長さ(L)、質量(MB0)を測定した。これをグリシジルエーテル中に約3cm浸漬し15分間放置し、グリシジルエーテル中から取り出した後、3分間放置し、浸漬側から3.5cmのところで切り落とし、残った炭素繊維束の長さ(L)、質量(MB1)を測定した。吸い上げたグリシジルエーテルの質量割合を下記式により算出し、これを樹脂含浸率とした。
樹脂含浸率=(MB1−(MB0×L/L))/(MB0×L/L)×100
[Resin impregnation rate]
The carbon fiber bundle was cut into about 20 cm, and the length (L 0 ) and mass (M B0 ) of the carbon fiber bundle were measured. This was immersed in glycidyl ether for about 3 cm and allowed to stand for 15 minutes, taken out from the glycidyl ether, then left for 3 minutes, cut off at 3.5 cm from the immersion side, and the length of the remaining carbon fiber bundle (L 1 ) The mass (M B1 ) was measured. The mass ratio of the glycidyl ether sucked up was calculated by the following formula, and this was used as the resin impregnation rate.
Resin impregnation ratio = (M B1 - (M B0 × L 1 / L 0)) / (M B0 × L 1 / L 0) × 100

<実施例1>
[アクリロニトリル系共重合体]
アクリロニトリル、アクリルアミドおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル系重合体を得た。
このアクリロニトリル系重合体のカルボキシ基含有量は1.2×10−4当量/g、数平均分子量は2.43×10、質量平均分子量は4.00×10であった。
[原液]
前記アクリロニトリル系重合体をジメチルアセトアミドに溶解し、重合体濃度が21質量%の紡糸原液を調製した。
<Example 1>
[Acrylonitrile copolymer]
Acrylonitrile, acrylamide and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and from acrylonitrile unit / acrylamide unit / methacrylic acid unit = 96/3/1 (mass ratio). An acrylonitrile-based polymer was obtained.
The acrylonitrile-based polymer had a carboxy group content of 1.2 × 10 −4 equivalent / g, a number average molecular weight of 2.43 × 10 5 , and a mass average molecular weight of 4.00 × 10 5 .
[Undiluted solution]
The acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a spinning dope having a polymer concentration of 21% by mass.

[炭素繊維前駆体アクリル繊維束の製造]
この紡糸原液を、空豆形断面型孔領域と、該空豆形断面型孔領域の外側に配置された楕円形断面型孔領域と、該楕円形断面型孔領域の外側に配置された円形断面型孔領域とを有する紡糸ノズルAを通した。この紡糸ノズルAの孔数、孔径、空豆形断面型孔の割合、楕円形断面型孔の割合、円形断面型孔の割合を表1に示す。また、各孔の配置分布を図7に示す。
紡糸ノズルAを通した紡糸原液を、濃度60質量%、温度35℃のジメチルアセトアミド水溶液が入れられ、上流側から下流側に向かって幅が徐々に狭くなった後に再び広くなる整流された紡浴槽中に吐出させて凝固糸を得た。この凝固糸を凝固浴中から吐出線速度の0.4倍の引取り速度で引き取った。
次いで、凝固糸の繊維束で水洗すると同時に、60〜98℃の範囲で温度勾配を設けた6段の洗浄槽で5.4倍の一次延伸を行って、延伸繊維束を得た。
次いで、延伸繊維束に、1.5質量%に調製したアミノシリコーン系油剤が入れられた第1油浴槽に導入して第1油剤を付与し、複数本のガイドで一旦絞りを行った。その後、1.5質量%に調製したアミノシリコーン系油剤が入れられた第2油浴槽で第2油剤を付与した。
次いで、油剤を付与した繊維束を、表面温度180℃の熱ロールに接するように走行させ、乾燥させて、乾燥緻密化させた。
次いで、乾燥緻密化させた繊維束に、0.3質量%のジメチルアセトアミド水溶液を、タッチロールを用いて付着させ、表面温度190℃のロールを用いて乾燥を行って、溶剤含有量を調整した。
次いで、破断延伸倍率の0.85倍になるように延伸ロールの速度を設定し、延伸倍率1.87倍で二次延伸した。その後、タッチロールを用いて、水分率が2質量%になるように調整して、単繊維繊度1.0dtexで総繊度60000dtexの炭素繊維前駆体アクリル繊維束を得た。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、トウ幅、含液率および操業安定性を測定または評価した。それらの結果を表2に示す。
[Production of carbon fiber precursor acrylic fiber bundle]
This spinning dope is made into an empty bean-shaped cross-sectional type hole region, an elliptical cross-sectional type hole region arranged outside the empty bean-shaped cross-sectional type hole region, and a circular cross-sectional type arranged outside the elliptical cross-sectional type hole region. A spinning nozzle A with a hole area was passed through. Table 1 shows the number of holes of the spinning nozzle A, the hole diameter, the ratio of the hollow bean-shaped cross-section holes, the ratio of the elliptical cross-section holes and the ratio of the circular cross-section holes. In addition, FIG. 7 shows an arrangement distribution of each hole.
Spinning stock solution passed through the spinning nozzle A is filled with a 60% by mass dimethylacetamide aqueous solution with a temperature of 35 ° C., and the width is gradually reduced from the upstream side to the downstream side, and then the rectified spinning tub is widened again. It was made to discharge in and the coagulated yarn was obtained. The coagulated yarn was taken out from the coagulation bath at a take-up speed 0.4 times the discharge linear speed.
Next, the fiber bundle of coagulated yarn was washed with water, and at the same time, primary drawing was performed 5.4 times in a six-stage washing tank provided with a temperature gradient in the range of 60 to 98 ° C. to obtain a drawn fiber bundle.
Next, the drawn fiber bundle was introduced into a first oil bath in which an aminosilicone-based oil prepared to 1.5% by mass was introduced to give the first oil, and was once drawn with a plurality of guides. Then, the 2nd oil agent was provided in the 2nd oil bath in which the amino silicone type oil agent prepared to 1.5 mass% was put.
Next, the fiber bundle to which the oil agent was applied was run so as to be in contact with a hot roll having a surface temperature of 180 ° C., dried, and densified.
Next, a 0.3% by mass dimethylacetamide aqueous solution was attached to the dried and densified fiber bundle using a touch roll and dried using a roll having a surface temperature of 190 ° C. to adjust the solvent content. .
Next, the speed of the stretching roll was set so that the breaking stretching ratio was 0.85 times, and the film was secondarily stretched at a stretching ratio of 1.87 times. Thereafter, using a touch roll, the moisture content was adjusted to 2% by mass to obtain a carbon fiber precursor acrylic fiber bundle having a single fiber fineness of 1.0 dtex and a total fineness of 60000 dtex.
The cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, tow width, liquid content, and operational stability were measured or evaluated. The results are shown in Table 2.

[炭素繊維束の製造方法]
得られた炭素繊維前駆体アクリル繊維束を、空気中230〜260℃の温度勾配を有する熱風循環式耐炎化炉にて50分間処理して耐炎化繊維束とした。次いで、耐炎化繊維束を窒素雰囲気中で最高温度780℃にて1.5分間処理し、さらに同様の雰囲気中で最高温度1300℃の高温処理炉にて約1.5分間処理した。その後、重炭酸水素アンモニウム水溶液中で0.4A・分/mで電解処理を施して、炭素繊維束を得た。
得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
[Method for producing carbon fiber bundle]
The obtained carbon fiber precursor acrylic fiber bundle was treated for 50 minutes in a hot-air circulating flameproof furnace having a temperature gradient of 230 to 260 ° C. in the air to obtain a flameproof fiber bundle. Next, the flame-resistant fiber bundle was treated in a nitrogen atmosphere at a maximum temperature of 780 ° C. for 1.5 minutes and further treated in a similar atmosphere in a high temperature treatment furnace having a maximum temperature of 1300 ° C. for about 1.5 minutes. Thereafter, electrolytic treatment was performed at 0.4 A · min / m in an aqueous ammonium bicarbonate solution to obtain a carbon fiber bundle.
The obtained carbon fiber bundle was measured or evaluated for strand strength, strand elastic modulus, fiber opening property, and resin impregnation rate. The results are shown in Table 2.

<実施例2〜4>
空豆形断面型孔領域と、該空豆形断面型孔領域の外側に配置された楕円形断面型孔領域と、該楕円形断面型孔領域の外側に配置された円形断面型孔領域とを有する紡糸ノズルB(実施例2)、紡糸ノズルC(実施例3)、紡糸ノズルD(実施例4)を使用した以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を得た。表1に、紡糸ノズルB〜Dの孔数、孔径、空豆形断面型孔の割合、楕円形断面型孔の割合、円形断面型孔の割合を示し、図8〜10に各孔の配置分布を示す。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、含液率、操業安定性を測定または評価し、得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
<Examples 2 to 4>
An empty bean-shaped cross-sectional hole region, an elliptical cross-sectional hole region disposed outside the empty bean-shaped cross-sectional hole region, and a circular cross-sectional hole region disposed outside the elliptical cross-sectional hole region Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle in the same manner as in Example 1 except that the spinning nozzle B (Example 2), the spinning nozzle C (Example 3), and the spinning nozzle D (Example 4) were used. Got. Table 1 shows the number of holes of the spinning nozzles B to D, the hole diameter, the ratio of the hollow bean-shaped cross-sectional type holes, the ratio of the elliptical cross-sectional type holes, and the ratio of the circular cross-sectional type holes, and FIGS. Indicates.
Measure or evaluate the cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, the liquid content, and the operational stability, and the strand strength and strand elastic modulus of the obtained carbon fiber bundle. The fiber opening property and the resin impregnation rate were measured or evaluated. The results are shown in Table 2.

<実施例5>
孔数および孔径が紡糸ノズルAと異なる表1に示す紡糸ノズルEを使用した以外は実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を得た。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、含液率、操業安定性を測定または評価し、得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
<Example 5>
A carbon fiber precursor acrylic fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the spinning nozzle E shown in Table 1 having a different hole number and hole diameter from that of the spinning nozzle A was used.
Measure or evaluate the cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, the liquid content, and the operational stability, and the strand strength and strand elastic modulus of the obtained carbon fiber bundle. The fiber opening property and the resin impregnation rate were measured or evaluated. The results are shown in Table 2.

<実施例6>
孔数および孔径が紡糸ノズルAと異なる表1に示す紡糸ノズルFを使用した以外は実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を得た。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、含液率、操業安定性を測定または評価し、得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
<Example 6>
A carbon fiber precursor acrylic fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1 except that the spinning nozzle F shown in Table 1 having a different hole number and hole diameter from that of the spinning nozzle A was used.
Measure or evaluate the cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, the liquid content, and the operational stability, and the strand strength and strand elastic modulus of the obtained carbon fiber bundle. The fiber opening property and the resin impregnation rate were measured or evaluated. The results are shown in Table 2.

<実施例7>
紡糸ノズルの孔数を78000、孔径を40μm(丸断面形状以外は、孔面積より丸断面形状換算の孔径)にした以外は実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を得た。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、含液率、操業安定性を測定または評価し、得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
<Example 7>
Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle in the same manner as in Example 1 except that the number of holes in the spinning nozzle was 78000, and the hole diameter was 40 μm (except for the circular cross-sectional shape, the hole diameter was converted to the circular cross-sectional shape from the hole area). Got.
Measure or evaluate the cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, the liquid content, and the operational stability, and the strand strength and strand elastic modulus of the obtained carbon fiber bundle. The fiber opening property and the resin impregnation rate were measured or evaluated. The results are shown in Table 2.

<比較例1〜3>
表1に示す孔の割合および図11〜図13に示す各孔の配置分布の紡糸ノズルG(比較例1)、紡糸ノズルH(比較例2)、紡糸ノズルI(比較例3)を使用した以外は、実施例1と同様にして炭素繊維前駆体アクリル繊維束および炭素繊維束を得た。
得られた炭素繊維前駆体アクリル繊維束の単繊維の断面形状、単繊維同士の接着数、含液率、操業安定性を測定または評価し、得られた炭素繊維束のストランド強度およびストランド弾性率、開繊性、樹脂含浸率を測定または評価した。それらの結果を表2に示す。
<Comparative Examples 1-3>
A spinning nozzle G (Comparative Example 1), a spinning nozzle H (Comparative Example 2), and a spinning nozzle I (Comparative Example 3) having the ratio of holes shown in Table 1 and the arrangement distribution of each hole shown in FIGS. 11 to 13 were used. Except for the above, a carbon fiber precursor acrylic fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1.
Measure or evaluate the cross-sectional shape of single fibers of the obtained carbon fiber precursor acrylic fiber bundle, the number of bonds between single fibers, the liquid content, and the operational stability, and the strand strength and strand elastic modulus of the obtained carbon fiber bundle. The fiber opening property and the resin impregnation rate were measured or evaluated. The results are shown in Table 2.

Figure 0005741815
Figure 0005741815

Figure 0005741815
Figure 0005741815

表2から明らかなように、各実施例で得られた炭素繊維前駆体アクリル繊維は、集束性が高く、操業安定性が良好であった。また、炭素繊維束はストランド強度が高く、機械的特性に優れていた。しかも、開繊性が良好で樹脂含浸率が高く、繊維強化樹脂含浸複合材料に適していた。
これに対し、単繊維の全部が円形断面型単繊維の比較例1、円形断面型単繊維および楕円形断面型単繊維の本数割合が規定値より多い比較例3では、開繊性が不充分で樹脂含浸性が低かった。
単繊維の全部が空豆形断面型単繊維の比較例2では、集束性が低いために、ローラーへの巻き付き、単繊維同士の絡みつきが発生し、操業安定性が低かった。また、単繊維同士の接着数が多く、品質が低かった。
As is clear from Table 2, the carbon fiber precursor acrylic fibers obtained in each example had high convergence and good operational stability. The carbon fiber bundle had high strand strength and excellent mechanical properties. In addition, the fiber-opening property was good and the resin impregnation rate was high, which was suitable for a fiber-reinforced resin-impregnated composite material.
On the other hand, in Comparative Example 1 in which all of the single fibers are circular cross-section single fibers, and in Comparative Example 3 in which the number ratio of the circular cross-section single fibers and the elliptic cross-section single fibers is greater than the specified value, the opening property is insufficient. The resin impregnation property was low.
In Comparative Example 2 in which all of the single fibers were empty beans cross-section type single fibers, since the convergence was low, winding around the rollers and entanglement of the single fibers occurred, and the operation stability was low. Moreover, there were many adhesion | attachment numbers of single fibers, and quality was low.

本発明により得られた炭素繊維束に樹脂を含浸させることにより、プリプレグを得ることができる。さらに、そのプリプレグを成形し、硬化させることにより、複合材料を得ることができる。その複合材料は、ゴルフシャフトや釣り竿などのスポーツ用途、さらには構造材料として自動車や航空宇宙用途、また各種ガス貯蔵タンク用途などに好適に用いることができ、有用である。   A prepreg can be obtained by impregnating the carbon fiber bundle obtained by the present invention with a resin. Furthermore, a composite material can be obtained by molding and curing the prepreg. The composite material can be suitably used for sports applications such as golf shafts and fishing rods, and as a structural material for automobiles, aerospace applications, and various gas storage tank applications.

11a,11b,11c,11d,11e 空豆形断面型単繊維
12a,12b,12c,12d,12e 楕円形断面型単繊維
13a,13b,13c,13d,13e 円形断面型単繊維
A 凹部
11a, 11b, 11c, 11d, 11e Empty beans cross-section single fiber 12a, 12b, 12c, 12d, 12e Elliptical cross-section single fiber 13a, 13b, 13c, 13d, 13e Circular cross-section single fiber A Concave

Claims (3)

95質量%以上のアクリロニトリル単位を有するアクリロニトリル系重合体からなる多数本の単繊維で構成された炭素繊維前駆体アクリル繊維束であって、
長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形で、その周面に凹部が形成された断面の空豆形断面型単繊維と、
長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.20以上1.60以下の範囲にある略楕円形で、その周面に凹部が形成されていない断面の楕円形断面型単繊維と、
長手方向に対して垂直な断面の長径と短径との比(長径/短径)が1.00以上1.20未満の範囲にある略円形の断面の円形断面型単繊維とにより構成され、
前記円形断面型単繊維で構成された円形断面型単繊維配置部が、前記炭素繊維前駆体アクリル繊維束の半径方向の中心に配置され、
前記楕円形断面型単繊維で構成された楕円形断面型単繊維配置部が、前記円形断面型単繊維配置部の外側に配置され、
前記空豆形断面型単繊維で構成された空豆形断面型単繊維配置部が、前記楕円形断面型単繊維配置部の外側に配置され、
前記空豆形断面型単繊維の本数の割合は全単繊維本数の50〜90%、前記楕円形断面型単繊維の本数の割合は全単繊維本数の5〜35%、前記円形断面型単繊維の本数の割合は全単繊維本数の5〜15%である炭素繊維前駆体アクリル繊維束。
A carbon fiber precursor acrylic fiber bundle composed of a large number of single fibers composed of an acrylonitrile-based polymer having an acrylonitrile unit of 95% by mass or more,
A cross section in which the ratio of the major axis to the minor axis (major axis / minor axis) of the section perpendicular to the longitudinal direction is in the range of 1.20 or more and 1.60 or less, and a recess is formed on the peripheral surface. Empty bean-shaped cross-section monofilament,
The ratio of the major axis to the minor axis (major axis / minor axis) of the cross section perpendicular to the longitudinal direction is approximately elliptical in the range of 1.20 or more and 1.60 or less, and no recess is formed on the peripheral surface. An oval cross-section monofilament of cross-section;
The ratio of the major axis to the minor axis (major axis / minor axis) of the cross section perpendicular to the longitudinal direction is constituted by a circular section type single fiber having a substantially circular cross section in the range of 1.00 or more and less than 1.20,
The circular cross-section type single fiber arrangement part composed of the circular cross-section type single fiber is arranged at the center in the radial direction of the carbon fiber precursor acrylic fiber bundle,
The elliptical cross-section type single fiber arrangement part composed of the elliptical cross-section type single fiber is arranged outside the circular cross-section type single fiber arrangement part,
The empty bean-shaped cross-sectional single fiber arrangement part composed of the empty bean-shaped cross-sectional single fiber is arranged outside the elliptical cross-sectional single fiber arrangement part,
The ratio of the number of the hollow bean-shaped cross-section single fibers is 50 to 90% of the total number of single fibers, the ratio of the number of the elliptical cross-section single fibers is 5 to 35% of the total number of single fibers, and the circular cross-section single fibers The ratio of the number of carbon fiber precursor acrylic fiber bundles is 5 to 15% of the total number of single fibers.
前記空豆形断面型単繊維と前記楕円形断面型単繊維と前記円形断面型単繊維の合計の本数が20000本以上である、請求項1に記載の炭素繊維前駆体アクリル繊維束。   2. The carbon fiber precursor acrylic fiber bundle according to claim 1, wherein the total number of the hollow bean-shaped cross-sectional single fibers, the elliptical cross-sectional single fibers, and the circular cross-sectional single fibers is 20000 or more. 請求項1または2に記載の炭素繊維前駆体アクリル繊維束を焼成してなる炭素繊維束。 The carbon fiber bundle formed by baking the carbon fiber precursor acrylic fiber bundle of Claim 1 or 2 .
JP2011051547A 2011-03-09 2011-03-09 Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle Active JP5741815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051547A JP5741815B2 (en) 2011-03-09 2011-03-09 Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051547A JP5741815B2 (en) 2011-03-09 2011-03-09 Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2012188766A JP2012188766A (en) 2012-10-04
JP5741815B2 true JP5741815B2 (en) 2015-07-01

Family

ID=47082230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051547A Active JP5741815B2 (en) 2011-03-09 2011-03-09 Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP5741815B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909253B2 (en) 2013-06-26 2018-03-06 Teijin Limited Random mat, shaped product of fiber reinforced composite material, and carbon fiber mat
KR102189516B1 (en) 2013-07-30 2020-12-11 도레이 카부시키가이샤 Carbon fiber bundle and flameproofed fiber bundle
JP6295874B2 (en) * 2014-07-29 2018-03-20 東レ株式会社 Carbon fiber bundle
JP6477546B2 (en) * 2016-03-09 2019-03-06 東レ株式会社 Method for producing carbon fiber precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle
PT3584358T (en) 2017-02-16 2022-01-27 Mitsubishi Chem Corp Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
JP7319955B2 (en) * 2020-11-27 2023-08-02 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994611A (en) * 1982-11-22 1984-05-31 Mitsubishi Rayon Co Ltd Polyacrylonitrile filament yarn having uniform cross-section and its manufacture
JPH0397917A (en) * 1989-09-05 1991-04-23 Toray Ind Inc Modified cross-sectional carbon fiber and production thereof
JP2892127B2 (en) * 1989-09-05 1999-05-17 東レ株式会社 Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP2002061035A (en) * 2000-08-10 2002-02-28 Toray Ind Inc Carbon fiber and method for manufacturing the same, and carbon fiber reinforced composite material
JP5473468B2 (en) * 2009-08-10 2014-04-16 三菱レイヨン株式会社 Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
WO2012050171A1 (en) * 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof

Also Published As

Publication number Publication date
JP2012188766A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5264150B2 (en) Carbon fiber strand and method for producing the same
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
US6503624B2 (en) Carbon fiber precursor fiber bundle and manufacturing method of the same
JP2015067910A (en) Carbon fiber and manufacturing method thereof
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
JP2014125701A (en) Method of manufacturing carbon fiber bundle
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
WO2024090196A1 (en) Carbon fiber bundle, and carbon fiber-reinforced composite material using same
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP2010202999A (en) Acrylic carbon fiber precursor fiber bundle package and method for producing the same
JP7087740B2 (en) Manufacturing method of carbon fiber bundle
JP2024119732A (en) Carbon fiber bundle, towpreg, carbon fiber reinforced composite material, pressure vessel, and method for producing carbon fiber bundle
JP4887164B2 (en) Carbon fiber manufacturing method
JP2023146345A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150414

R151 Written notification of patent or utility model registration

Ref document number: 5741815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250