JP4624571B2 - Method for producing carbon fiber precursor yarn - Google Patents

Method for producing carbon fiber precursor yarn Download PDF

Info

Publication number
JP4624571B2
JP4624571B2 JP2001015847A JP2001015847A JP4624571B2 JP 4624571 B2 JP4624571 B2 JP 4624571B2 JP 2001015847 A JP2001015847 A JP 2001015847A JP 2001015847 A JP2001015847 A JP 2001015847A JP 4624571 B2 JP4624571 B2 JP 4624571B2
Authority
JP
Japan
Prior art keywords
carbon fiber
yarn
container
fiber
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001015847A
Other languages
Japanese (ja)
Other versions
JP2002220726A (en
Inventor
勝彦 池田
正司 岡本
誉富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001015847A priority Critical patent/JP4624571B2/en
Publication of JP2002220726A publication Critical patent/JP2002220726A/en
Application granted granted Critical
Publication of JP4624571B2 publication Critical patent/JP4624571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、総繊度7万デニール以上の炭素繊維前駆体糸条の製造方法に関し、詳しくは、炭素繊維製造工程において扱いやすい形態で供給できる炭素繊維前駆体糸条の製造方法に関する。
【0002】
【従来の技術】
繊維強化複合材料には、炭素繊維、ガラス繊維、アラミド繊維等が使用されている。中でも、炭素繊維は、比強度、比弾性率、耐熱性、耐薬品性等に優れ、航空機用途、ゴルフシャフト、釣り竿等のスポーツ用途、一般産業用途の繊維強化複合材料の強化材として使用されている。高強度、高弾性率の炭素繊維を得るためには、炭素繊維前駆体糸条束として糸切れ、毛羽の発生が少なく品質に優れたものが必要である。前駆体糸条束のフィラメント構成として、フィラメント数が3000本以上から24000本以下が主に用いられていた。
【0003】
最近、炭素繊維の利用は建築、土木、自動車、エネルギー、コンパウンド等の一般産業用途に使用されるようになり、その為、高強度・高弾性率でより安価な生産性に優れたラージトウが強く求められている。
【0004】
近年、ラージトウの開発においては、紡糸機台あたりの生産性を向上させる技術(特開2000−144521号公報)やトウ幅制御による多錘化技術(特願平11−168587号:未公開)等が提案されており、これらの技術を実施することで、高品質で安価なラージトウを提供することが可能となった。しかし、ラージトウのような太物糸条をボビン等に巻き上げ炭素繊維製造工程に供給することは非常に困難である。例えば、ワインダートラバースガイドでの擦過や損傷、またガイドからの単糸の溝飛びによる毛羽、糸切れ等の問題が生じ、更には炭素繊維製造工程でのトウの厚みムラ、トウエッジ部での損傷、折れ曲がり等の問題が発生する。このような問題を解決するために、例えば特開平11−189913号公報では、捲縮を施した炭素繊維前駆体を箱容器に収納し、耐炎化工程で小トウに分割し焼成を行う技術が提案されているが、炭素繊維前駆体糸条に捲縮を施すことで糸条が挫屈、損傷するために、炭素繊維前駆体糸条として強度発現性の点からあまり好ましくない。更に、捲縮により得られる糸条は嵩高であるので、多数本束ねて箱容器に収納しようとした場合に箱容器が大きくなり、ハンドリングが困難で収納効率が低下する。また、糸長を確保することも困難である。
【0005】
【発明が解決しようとする課題】
本発明は、炭素繊維製造工程(焼成工程)における糸条束の総繊度、太さ、糸長を考慮して、炭素繊維製造工程において使いやすい形態の炭素繊維前駆体糸条を製造する方法を提供することを目的とする。
【0006】
即ち、総繊度7万デニール以上の、糸切れ、毛羽の発生の少ない高品質、高性能な炭素繊維前駆体糸条を、低コストにて生産性よく、容器に収納する方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、フックドロップ法で測定した交絡度5ヶ/m〜20ヶ/m、水分率5%〜30%に調製した炭素繊維前駆体繊維束を1本以上引き揃えた総繊度7万デニール以上の炭素繊維前駆体繊維束集合体を、ギヤロールによって集束させた後、容器に収納することを特徴とする炭素繊維前駆体糸条の製造方法に関する。
【0008】
このとき、総繊度7万デニール以上の炭素繊維前駆体繊維束集合体を容器に収納する際、該炭素繊維前駆体繊維束集合体を少なくとも2ヶ以上に分割し、各々独立して1つの容器内に収納する

【0009】
このように、必要により炭素繊維前駆体繊維束集合体を分割することにより、炭素繊維を製造する際に最も扱いやすい形態のトウボリュウム(太さ、トータル繊度)にすることができる。
【0010】
さらに、本発明では、容器に収納した炭素繊維前駆体繊維束集合体の嵩密度を0.5以上とすることが好ましく、これにより設備投資が少なくまた省スペースで小糸条束の糸長を長くすることが可能になる。
【0011】
【発明の実施の形態】
炭素繊維前駆体繊維束は、アクリロニトリル系重合体を含む紡糸原液を紡糸口金から紡出して凝固糸とした後、洗浄、延伸、添油、乾燥等の通常の各工程を経て製造される。アクリロニトリル系重合体としては、通常の炭素繊維前駆体アクリロニトリル繊維に用いられるものであれば特に制限はなく、アクリロニトリル系重合体としては、アクリロニトリルの単独重合体もしくは共重合体、またはこれらの重合体の混合重合体を使用することができる。
【0012】
本発明では、このような製造工程から送られる炭素繊維前駆体繊維束を、以下に説明するようにして、容器に収納された炭素繊維前駆体糸条を得るものである。
【0013】
本発明では、まず炭素繊維前駆体繊維束の交絡度が、5ヶ/mから20ヶ/mの範囲、好ましくは10ヶ/m〜14ヶ/mの範囲になるように集束性を付与する。ここで、炭素繊維前駆体繊維束の交絡度とは、繊維束中の1本の単繊維が隣接する他の単繊維と1mの間に何回交絡しているかを示すパラメータである。交絡度は、フックドロップ法により測定される。そして交絡度が小さすぎると、容器に収納する際糸条束がばらけ、毛羽や糸切れ等の問題が発生し、又、分割して容器内に収納することが困難となる。糸条束の交絡度が大きすぎると、その後の水分付与が難しくなり、また得られる炭素繊維束の樹脂含浸性および開繊性が悪くなる。
【0014】
ここで用いられる交絡装置は、特に制限はなく、一般的なラビリンス装置、インターレース装置等を用いることができる。
【0015】
次に、炭素繊維前駆体繊維の水分率が5%〜30%の範囲、好ましくは10%〜20%の範囲になるように調整する。ここで、水分率は、ウエット状態にある繊維束の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量w0とにより、水分率(重量%)=(w−w0 )×100/w0によって求めた数値である。水分率が低すぎると、糸条束の集束性が低下し容器内に収納する際、糸条束が静電気でばらけやすくなり収納が困難になり、又、炭素繊維製造工程において糸条束を解舒する際にばらけて焼成工程通過性が悪くなる。一方、水分率が高すぎても、糸条束に過剰付着した水分が悪影響を及ぼし、炭素繊維としての強度発現性に劣る。
【0016】
上記の水分率に調製するためには、特に限定されないが、ディップ−ニップ槽、噴霧装置、タッチロール等により炭素繊維前駆体繊維に水分付与を行うことができる。
【0017】
本発明ではさらに、生産効率を高め、低コスト化を狙うことから、繊度2万〜10万デニールの多フィラメントで構成される繊維束を、総繊度7万デニール以上となるように1本以上、必要により複数本の繊維束を引き揃え、ギヤロールにより集束させる。この時、総繊度7万デニール以下の場合に適用しても構わないが、高生産性、低コストの面からあまり好ましくない。また、本発明の製造方法を適用する必要性は乏しい。
【0018】
尚、これら、多フィラメントの各1本の単糸繊度は、生産性と得られる炭素繊維物性を考慮して、1.0dtexから1.65dtexの範囲が好ましい。
【0019】
図1に、ギヤロールを用いて集束させる例を示す。断面形状が歯車状の凹凸を有するギヤロール1aと1b(図面では模式的に示した。)を有するギヤロール1に、複数の繊維束を引き揃えた繊維束F2を通過させると、集束性の向上した繊維束集合体F3が得られる。
【0020】
ギヤロールの素材は特に限定されないが、ステンレス、炭素鋼、アルミ等が用いられるが、通常は設備費用やトウへ与えるダメージを考慮してステンレスにハードクロムメッキの表面処理を施したものが好ましい。このようなギヤロールを用いることで、繊維に挫屈などの損傷を与えることなく、また巻き付き等のトラブルもなく安定に複数本の繊維束を引き揃えることが可能となる。
【0021】
このように、1本または多数本の繊維束をギヤロールで集束した繊維束集合体(糸条束)を、容器に収納する直前に、好ましくは少なくとも2本以上に分割して、1つの容器に収納する。繊維束集合体を分割する方法としては、例えばピンガイドや分繊バーを用いて容易に分割することができる。また、エアーを吹き付けて分割することも可能である。
【0022】
ここで用いられる容器としては、丸容器若しくは角容器のどちらを用いても構わない。容器の材質については、ダンボール、アルミ容器、ステンレス容器、プラスチック容器、またはフレキシブルコンテナバック等に収納することを用いることができる。収納するトウ水分率を維持することを考慮すると、耐水、耐油加工を施したもの、更には、密閉できる容器が好ましい。又、ハンドリングや輸送コストの点では、容器は軽い方が好ましい。
【0023】
容器の大きさは特に制限は無いが、むやみに容器サイズを大きくした場合、ハンドリングの問題や輸送コスト、更には容器の耐強度の問題があるので、容器サイズは炭素繊維製造工程に必要な糸長を考慮し、決定する必要がある。
【0024】
繊維束集合体(分割されたものを含む)を容器へ収納するときの振り込み方法は、一般的な振り込み方法を用いて行うことができる。例えば、角容器を用いる場合には、トウを振り込むトラバースガイドを往復運動(X−Y振り込み)させることにより収納する方法や、またトラバースガイドを固定し、角容器を往復運動させることにより収納する方法が挙げられる。
【0025】
また、丸容器の場合も同様に、丸容器を回転運動させることにより収納する方法やトラバースガイドを回転させることにより振り込む方法が挙げられる。設置場所や設備コスト等を考えると、振り込みトラバースガイドを可動させて収納する方法が有利である。
【0026】
また、容器に収納した際の炭素繊維前駆体糸条の嵩密度は、0.5以上が好ましい。嵩密度が低すぎると、必要以上に容器サイズが大きくなり上記の問題が生じる。トウ水分率を5%〜30%の範囲内にすることで、嵩密度を容易に0.5以上にすることができる。また物理的な方法として、タンピング作業を連続または随時実施することで解決される。
【0027】
本発明において、容器に収納された炭素繊維前駆体繊維束の単繊強度は、好ましくは5.0cN/dtex以上であり、より好ましくは6.5cN/dtex以上であり、さらに好ましくは7.0cN/dtex以上である。単繊強度が低すぎると、焼成工程での単糸切れによる毛羽の発生が多くなって焼成工程通過性が悪くなる。
【0028】
ここで、炭素繊維前駆体糸条の単繊強度は、単繊維自動引張強伸度測定機(オリエンテック UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度を測定することによって求められる。
【0029】
本発明により容器に収納された炭素繊維前駆体糸条は、耐炎化処理、炭素化処理等の焼成工程に供給したときに、ばらけることもなく、単糸切れによる羽毛発生もなく、工程通過性に優れるため高品位の炭素繊維に転換することができる。
【0030】
本発明で製造された炭素繊維前駆体糸条を焼成して得られた炭素繊維のストランド強度は、好ましくは450Kg/mm2以上であり、より好ましくは480Kg/mm2以上であり、さらに好ましくは500Kg/mm2以上である。ストランド強度が450Kg/mm2未満では、市場から要求される産業資材用途への適用が難しくなり、本発明を適用する必要性は乏しくなる。
【0031】
本発明を適用することにより、高強度で開繊性にも優れる炭素繊維を容易に得ることができる。
【0032】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。本実施例における各測定は、以下の方法によって行った。
【0033】
(単繊維強度)
単繊維自動引張強伸度測定機(オリエンテック UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度を測定した。
【0034】
(交絡度)
乾燥状態にある炭素繊維前駆体の繊維束を用意し、垂下装置の上部に該繊維束を取り付け、上部つかみ部から下方1mにおもりを取り付けつり下げた。ここで用いるおもり荷重は、デニール数の1/5のグラム数とした。該繊維束の上部つかみから1cm下部の点に該繊維束を2分割するようにフックを挿入し、2cm/Sの速度でフックを下降させた。フックが該繊維束の絡みによって停止した点までのフックの下降距離L(mm)を求め、次式によって交絡度を算出した。尚、試験回数はN=50とし、その平均値の小数点1桁まで求めた。
【0035】
交絡度=1000/L
ここで用いたフックは、直径が0.5mm〜1.0mmの針状で、表面が滑らかに仕上げ処理をしたものである。
【0036】
(ストランド強度)
JIS R 7601に記載された試験法に準拠し測定した。
【0037】
(水分率)
ウエット状態にある炭素繊維前駆体の繊維束の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量w0 とにより、水分率(重量%)=(w−w0)×100/w0によって測定した。
【0038】
(嵩密度)
1m3の角容器にトウを振り込み、その時振り込んだトウのウエット重量をw、体積をVとし、w/Vで嵩密度を算出した。
【0039】
[実施例1]
アクリロニトリル、アクリル酸メチルおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリル酸メチル単位/メタクリル酸単位=95/4/1(重量比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、21重量%の紡糸原液を調製した。
【0040】
この紡糸原液を用いた炭素繊維前駆体糸条の製造を、図1を参照しながら説明する。
【0041】
まず、この紡糸原液を孔数30000、孔径55μmの紡糸口金を通して、濃度60重量%、温度25℃のジメチルアセトアミド水溶液からなる凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.8倍の引取り速度で引き取った。ついで、この糸条束に対して水洗と同時に4倍の延伸を行い、これに1.5重量%に調製したアミノシリコン系油剤を添油した。この糸条束を熱ロールを用いて乾燥、熱セットを施し、スチーム延伸機にて4.0倍に延伸した。図1に示すように、この段階で、フィラメント数30,000、単繊維繊度1.1dtexの糸条束F1が、数本工程を走行している。
【0042】
ついで、ロール7により交絡装置4に導糸し、この糸条束をエアーによって交絡処理を施し、フックドロップ法による交絡度が15ヶ/mとなるようにして、紡糸機最終ロール5に送った。紡糸機最終ロール5には、タッチロール6が備えてあり、これにて糸条束の水分率を調整し、この糸条束に繊維当たり25重量%の水分を含有させた。
【0043】
ついで、総繊度12万トータルデニールとなるように、フィラメント数30,000、単繊維繊度1.1dtexの糸条束を4本引き揃えた糸条束F2を、ギヤロール1に導糸し集束性が向上した糸状束F3を得た。その後、分繊バー2によって4つの小糸条束F4に分割し、それぞれ角形状の小区画に区画された容器3にそれぞれが独立して収納されるようにx−y振り込みを行い、炭素繊維前駆体糸条を得た。
【0044】
この時の、嵩密度は0.65(g/ml)であった。またこの炭素繊維前駆体繊維の単繊維繊度は1.1dtex、単繊維強度は7.2cN/dtexであった。
【0045】
次に、このように一旦容器に収納した炭素繊維前駆体糸条を、炭素繊維に転換するために、小区画に区画された容器から小トウを引き出し、空気中230〜280℃の熱風循環式耐炎化炉に送り、60分間処理し耐炎化繊維束となし、ついで耐炎繊維束を窒素雰囲気中下で最高温度780℃にて1.5分間処理し、さらに同雰囲気下で最高温度が1300℃の高温熱処理炉にて約1.5分処理した後、重炭酸水素アンモニウム水溶液中で0.4Amin/mで電解処理を施し、炭素繊維束を得た。得られた炭素繊維のストランド強度は490kg/mm2であった。また焼成工程における工程通過性は良好であった。
【0046】
表1に、前駆体繊維の単繊維強度、容器に収納した後の嵩密度、焼成して得られた炭素繊維のストランド強度、焼成工程における工程通過性の評価の各結果をまとめて示す(以下の実施例、比較例についても同じ。)。
【0047】
[実施例2]
総繊度24万トータルデニールとなるように糸条束を8本引き揃え、ギヤロールに導糸した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0048】
[実施例3]
ノズル孔数70000、孔径55μmの紡糸口金により紡糸し、総繊度42万トータルデニールとなるように糸条束を6本引き揃え、ギヤロールに導糸した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0049】
[比較例1]
交絡度が3ヶ/mになるように交絡処理を変更した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0050】
[比較例2]
交絡度が25ヶ/mになるように交絡処理を変更した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0051】
[比較例3]
タッチロールにて調整される糸条束の水分率を3重量%に変更した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0052】
[比較例4]
タッチロールにて調整される糸条束の水分率を40重量%に変更した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0053】
[比較例5]
複数本の糸条束を引き揃える際、ギヤロールの替わりにニップロールを使用した以外は、実施例1と同様にして容器に収納された炭素繊維前駆体糸条を得た。単繊維繊度は1.1dtexであった。結果を表1に示す。
【0054】
【表1】

Figure 0004624571
【0055】
【発明の効果】
本発明によれば、炭素繊維製造工程(焼成工程)における糸条束の総繊度、太さ、糸長を考慮して、炭素繊維製造工程において使いやすい形態の炭素繊維前駆体糸条を製造する方法を提供することができる。
【0056】
即ち、総繊度7万デニール以上の、糸切れ、毛羽の発生の少ない高品質、高性能な炭素繊維前駆体糸条を、低コストにて生産性よく、容器に収納する方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の炭素繊維前駆体糸条の製造方法の1例を説明するための図である。
【符号の説明】
1 ギヤロール
2 分繊バー
3 容器
4 交絡装置
5 紡糸機最終ロール
6 タッチロール
7 ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a carbon fiber precursor yarn having a total fineness of 70,000 denier or more, and more particularly to a method for producing a carbon fiber precursor yarn that can be supplied in a form that is easy to handle in the carbon fiber production process.
[0002]
[Prior art]
Carbon fiber, glass fiber, aramid fiber, etc. are used for the fiber reinforced composite material. Among them, carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, etc., and is used as a reinforcing material for fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications. Yes. In order to obtain a carbon fiber having a high strength and a high elastic modulus, a carbon fiber precursor yarn bundle that has few yarn breakage and fluff generation and excellent quality is required. As the filament configuration of the precursor yarn bundle, the number of filaments of 3000 to 24000 was mainly used.
[0003]
Recently, the use of carbon fiber has been used in general industrial applications such as construction, civil engineering, automobiles, energy, and compounds. Therefore, large tow with high strength, high elastic modulus, and low cost productivity is strong. It has been demanded.
[0004]
In recent years, in the development of large tows, a technique for improving productivity per spinning machine base (Japanese Patent Application Laid-Open No. 2000-144521), a technique for increasing the number of spindles based on tow width control (Japanese Patent Application No. 11-168589: unpublished), etc. By implementing these technologies, it has become possible to provide high-quality and inexpensive large tow. However, it is very difficult to wind a thick yarn such as large tow onto a bobbin or the like and supply it to the carbon fiber manufacturing process. For example, problems such as rubbing and damage with a winder traverse guide, fluff due to fluttering of single yarn from the guide, thread breakage, etc., furthermore, tow thickness unevenness in the carbon fiber manufacturing process, damage at the toe edge part, Problems such as bending occur. In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 11-189913 discloses a technique in which a crimped carbon fiber precursor is stored in a box container and divided into small tows in a flameproofing process and fired. Although proposed, the carbon fiber precursor yarn is crimped and damaged, so that the carbon fiber precursor yarn is not preferable in terms of strength development. Furthermore, since the yarn obtained by crimping is bulky, when a large number of bundles are bundled and stored in the box container, the box container becomes large, handling becomes difficult, and storage efficiency decreases. It is also difficult to secure the yarn length.
[0005]
[Problems to be solved by the invention]
The present invention provides a method for producing a carbon fiber precursor yarn in a form that is easy to use in a carbon fiber production process in consideration of the total fineness, thickness, and yarn length of the yarn bundle in the carbon fiber production process (firing process). The purpose is to provide.
[0006]
That is, it provides a method for storing a high-quality, high-performance carbon fiber precursor yarn having a total fineness of 70,000 denier or more with less yarn breakage and fluff generation in a container with low cost and high productivity. is there.
[0007]
[Means for Solving the Problems]
The present invention has a total fineness of 70,000 denier obtained by arranging one or more carbon fiber precursor fiber bundles prepared to have an entanglement degree of 5/20 to 20 / m and a moisture content of 5% to 30% as measured by the hook drop method. It is related with the manufacturing method of the carbon fiber precursor yarn characterized by the above-mentioned carbon fiber precursor fiber bundle aggregate being bundled by a gear roll, and storing in a container.
[0008]
At this time, when a carbon fiber precursor fiber bundle aggregate having a total fineness of 70,000 denier or more is stored in a container, the carbon fiber precursor fiber bundle aggregate is divided into at least two pieces, and each container is independently provided with one container. housed within.

[0009]
Thus, by dividing the carbon fiber precursor fiber bundle aggregate as necessary, it is possible to obtain a tow volume (thickness, total fineness) in a form that is most easily handled when producing carbon fibers.
[0010]
Furthermore, in the present invention, it is preferable that the bulk density of the carbon fiber precursor fiber bundle aggregate stored in the container is 0.5 or more, thereby reducing the capital investment and saving the space and increasing the yarn length of the small yarn bundle. It becomes possible to do.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The carbon fiber precursor fiber bundle is produced by spinning a spinning solution containing an acrylonitrile polymer from a spinneret to obtain a coagulated yarn, and then performing normal steps such as washing, drawing, oiling, and drying. The acrylonitrile-based polymer is not particularly limited as long as it is used for a normal carbon fiber precursor acrylonitrile fiber. The acrylonitrile-based polymer may be a homopolymer or copolymer of acrylonitrile, or a polymer of these polymers. Mixed polymers can be used.
[0012]
In the present invention, a carbon fiber precursor yarn bundle accommodated in a container is obtained as described below for a carbon fiber precursor fiber bundle sent from such a manufacturing process.
[0013]
In the present invention, the converging property is first imparted so that the entanglement degree of the carbon fiber precursor fiber bundle is in the range of 5 / m to 20 / m, preferably in the range of 10 / m to 14 / m. . Here, the degree of entanglement of the carbon fiber precursor fiber bundle is a parameter indicating how many times one single fiber in the fiber bundle is entangled with 1 m from other adjacent single fibers. The degree of entanglement is measured by the hook drop method. If the degree of entanglement is too small, the yarn bundles are scattered when stored in the container, causing problems such as fluff and yarn breakage, and it becomes difficult to divide and store the container in the container. When the entanglement degree of the yarn bundle is too large, it becomes difficult to give water thereafter, and the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated.
[0014]
The confounding device used here is not particularly limited, and a general labyrinth device, an interlace device, or the like can be used.
[0015]
Next, the carbon fiber precursor fiber is adjusted so that the moisture content is in the range of 5% to 30%, preferably in the range of 10% to 20%. Here, the water content is determined by the water content (% by weight) = (w−) based on the weight w of the fiber bundle in a wet state and the weight w 0 after drying this with a hot air dryer at 105 ° C. for 2 hours. w 0 ) × 100 / w 0 If the moisture content is too low, the convergence of the yarn bundle is reduced, and the yarn bundle is likely to be scattered by static electricity when stored in a container, making it difficult to store the yarn bundle. When unraveling, it disperses and the baking process passability deteriorates. On the other hand, even if the moisture content is too high, the moisture excessively attached to the yarn bundle has an adverse effect and is inferior in strength development as a carbon fiber.
[0016]
Although it does not specifically limit in order to adjust to said moisture content, A water | moisture content can be given to a carbon fiber precursor fiber with a dip-nip tank, a spray device, a touch roll, etc.
[0017]
In the present invention, in order to further increase production efficiency and cost reduction, one or more fiber bundles composed of multifilaments having a fineness of 20,000 to 100,000 deniers so that the total fineness is 70,000 deniers or more, If necessary, a plurality of fiber bundles are aligned and converged by a gear roll. At this time, it may be applied to the case where the total fineness is 70,000 denier or less, but it is not so preferable from the viewpoint of high productivity and low cost. Moreover, the necessity to apply the manufacturing method of this invention is scarce.
[0018]
The single filament fineness of each of these multifilaments is preferably in the range of 1.0 dtex to 1.65 dtex in consideration of productivity and obtained carbon fiber properties.
[0019]
FIG. 1 shows an example of focusing using a gear roll. When the fiber bundle F2 in which a plurality of fiber bundles are aligned is passed through the gear roll 1 having gear rolls 1a and 1b (schematically shown in the drawing) having a gear-shaped unevenness in cross-sectional shape, the convergence is improved. A fiber bundle aggregate F3 is obtained.
[0020]
The material of the gear roll is not particularly limited, but stainless steel, carbon steel, aluminum, or the like is used, but it is usually preferable that the surface of the stainless steel is subjected to hard chrome plating in consideration of equipment costs and damage to the tow. By using such a gear roll, it is possible to stably align a plurality of fiber bundles without causing damage such as buckling to the fibers and without troubles such as winding.
[0021]
In this manner, a fiber bundle assembly (yarn bundle) obtained by converging one or many fiber bundles with a gear roll is preferably divided into at least two pieces immediately before being housed in a container, and is formed into one container. Store. As a method of dividing the fiber bundle aggregate, for example, it can be easily divided using a pin guide or a separating bar. It is also possible to divide by blowing air.
[0022]
As the container used here, either a round container or a square container may be used. The material of the container can be stored in a cardboard, aluminum container, stainless steel container, plastic container, flexible container bag, or the like. In consideration of maintaining the tow moisture content to be stored, a water-resistant and oil-proof processed one, and a container that can be sealed is preferable. In view of handling and transportation costs, the container is preferably light.
[0023]
The size of the container is not particularly limited, but if the container size is increased unnecessarily, there are handling problems, transportation costs, and problems with the strength of the container, so the container size is the yarn required for the carbon fiber manufacturing process. It is necessary to decide in consideration of the length.
[0024]
The transfer method when the fiber bundle aggregate (including the divided one) is stored in the container can be performed using a general transfer method. For example, when a rectangular container is used, a method for storing the traverse guide into which the tow is transferred by reciprocating motion (XY transfer), or a method for storing the traverse guide by fixing the traverse guide and by reciprocating the rectangular container. Is mentioned.
[0025]
Similarly, in the case of a round container, a method of storing by rotating the round container and a method of transferring by rotating the traverse guide can be mentioned. Considering the installation location, equipment cost, etc., a method of moving and storing the transfer traverse guide is advantageous.
[0026]
Further, the bulk density of the carbon fiber precursor yarn when housed in the container is preferably 0.5 or more. When the bulk density is too low, the container size becomes larger than necessary, and the above-described problem occurs. By setting the tow moisture content within the range of 5% to 30%, the bulk density can be easily increased to 0.5 or more. In addition, as a physical method, the problem can be solved by performing tamping work continuously or at any time.
[0027]
In the present invention, the single fiber strength of the carbon fiber precursor fiber bundle accommodated in the container is preferably 5.0 cN / dtex or more, more preferably 6.5 cN / dtex or more, and even more preferably 7.0 cN. / Dtex or more. If the single fiber strength is too low, the generation of fluff due to single yarn breakage in the firing process increases, and the firing processability deteriorates.
[0028]
Here, the single fiber strength of the carbon fiber precursor yarn is measured by using a single fiber automatic tensile strength / elongation measuring machine (Orientec UTM II-20) and attaching the single fiber stuck on the mount to the load cell chuck. The tensile strength is measured by performing a tensile test at a speed of 20.0 mm / min.
[0029]
When the carbon fiber precursor yarn stored in the container according to the present invention is supplied to a firing process such as flameproofing treatment, carbonization treatment, etc., it does not come apart, does not generate feathers due to single yarn breakage, and passes through the process. Because of its excellent properties, it can be converted into high-grade carbon fiber.
[0030]
Strand strength of the carbon fiber obtained by firing the carbon fiber thread precursor prepared in the present invention is preferably 450 kg / mm 2 or more, more preferably 480 kg / mm 2 or more, more preferably 500 kg / mm 2 or more. When the strand strength is less than 450 Kg / mm 2 , it becomes difficult to apply to industrial materials required from the market, and the necessity to apply the present invention becomes scarce.
[0031]
By applying the present invention, a carbon fiber having high strength and excellent spreadability can be easily obtained.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Each measurement in this example was performed by the following method.
[0033]
(Single fiber strength)
Using a single fiber automatic tensile strength / elongation measuring machine (Orientec UTM II-20), the single fiber attached to the mount is attached to the load cell chuck, and a tensile test is performed at a speed of 20.0 mm / min. The degree was measured.
[0034]
(Entanglement)
A carbon fiber precursor fiber bundle in a dry state was prepared, the fiber bundle was attached to the upper part of the drooping device, and a weight was attached and suspended 1 m below from the upper gripping part. The weight load used here was 1/5 of the denier number. A hook was inserted so as to divide the fiber bundle into two at a point 1 cm below the upper grip of the fiber bundle, and the hook was lowered at a speed of 2 cm / S. The lowering distance L (mm) of the hook to the point where the hook stopped due to the entanglement of the fiber bundle was obtained, and the degree of entanglement was calculated by the following equation. The number of tests was N = 50, and the average value was obtained up to one decimal place.
[0035]
Entanglement degree = 1000 / L
The hook used here has a needle shape with a diameter of 0.5 mm to 1.0 mm and has a smooth finish on the surface.
[0036]
(Strand strength)
Measurement was performed in accordance with the test method described in JIS R7601.
[0037]
(Moisture percentage)
The water content (wt%) = (w−w 0 ), based on the weight w of the fiber bundle of the carbon fiber precursor in the wet state and the weight w 0 after drying this with a hot air dryer at 105 ° C. × 2 hours. ) × 100 / w 0 .
[0038]
(The bulk density)
The tow was shaken into a 1 m 3 square container, the wet weight of the tow that was shaken at that time was set as w, the volume was set as V, and the bulk density was calculated as w / V.
[0039]
[Example 1]
Acrylonitrile, methyl acrylate and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / methyl acrylate unit / methacrylic acid unit = 95/4/1 ( An acrylonitrile-based polymer having a weight ratio) was obtained. This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a 21% by weight spinning dope.
[0040]
The production of the carbon fiber precursor yarn using this spinning dope will be described with reference to FIG.
[0041]
First, the spinning solution is passed through a spinneret having a hole number of 30000 and a hole diameter of 55 μm, and discharged into a coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 60% by weight and a temperature of 25 ° C. to obtain coagulated yarn. The yarn was taken up at a take-up speed of 0.8 times the discharge linear speed of the spinning dope. Next, the yarn bundle was stretched 4 times simultaneously with water washing, and an aminosilicone-based oil prepared to 1.5% by weight was added thereto. This yarn bundle was dried using a hot roll, heat set, and stretched 4.0 times with a steam stretching machine. As shown in FIG. 1, at this stage, the yarn bundle F1 having a filament number of 30,000 and a single fiber fineness of 1.1 dtex is running through several steps.
[0042]
Subsequently, the yarn 7 was introduced into the entanglement device 4 by the roll 7, and this yarn bundle was subjected to the entanglement treatment with air, and sent to the final roll 5 of the spinning machine so that the entanglement degree by the hook drop method was 15 / m. . The final roll 5 of the spinning machine is provided with a touch roll 6 which adjusts the moisture content of the yarn bundle and contains 25% by weight of water per fiber in the yarn bundle.
[0043]
Subsequently, the yarn bundle F2 in which four yarn bundles having a filament number of 30,000 and a single fiber fineness of 1.1 dtex are aligned so as to have a total fineness of 120,000 total denier is guided to the gear roll 1 to achieve convergence. An improved filamentous bundle F3 was obtained. Thereafter, the fiber bundle is divided into four yarn bundles F4 by the splitting bar 2, and xy transfer is performed so that each is independently accommodated in the container 3 partitioned into square-shaped small sections, and the carbon fiber precursor A body yarn was obtained.
[0044]
At this time, the bulk density was 0.65 (g / ml). The carbon fiber precursor fiber had a single fiber fineness of 1.1 dtex and a single fiber strength of 7.2 cN / dtex.
[0045]
Next, in order to convert the carbon fiber precursor yarn once stored in the container into carbon fibers in this manner, a small tow is drawn out from the container partitioned into small sections, and the hot air circulation type at 230 to 280 ° C. in the air It is sent to a flameproofing furnace and treated for 60 minutes to form a flameproofed fiber bundle, and then the flameproof fiber bundle is treated in a nitrogen atmosphere at a maximum temperature of 780 ° C. for 1.5 minutes, and the maximum temperature is 1300 ° C. in the same atmosphere. After being treated in a high temperature heat treatment furnace for about 1.5 minutes, electrolytic treatment was performed at 0.4 Amin / m in an aqueous ammonium bicarbonate solution to obtain a carbon fiber bundle. The obtained carbon fiber had a strand strength of 490 kg / mm 2 . Moreover, the process passage property in the baking process was favorable.
[0046]
Table 1 summarizes the results of the evaluation of the single fiber strength of the precursor fiber, the bulk density after being housed in the container, the strand strength of the carbon fiber obtained by firing, and the process passability evaluation in the firing step (hereinafter referred to as the following). This also applies to the examples and comparative examples.
[0047]
[Example 2]
A carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that eight yarn bundles were aligned so as to have a total fineness of 240,000 total denier and guided to a gear roll. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0048]
[Example 3]
Spinning with a spinneret having a nozzle hole number of 70,000 and a hole diameter of 55 μm, aligning six yarn bundles so that the total fineness becomes 420,000 total denier, and introducing the yarn into a gear roll, the same as in Example 1 A stored carbon fiber precursor yarn was obtained. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0049]
[Comparative Example 1]
A carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that the entanglement process was changed so that the degree of entanglement was 3 / m. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0050]
[Comparative Example 2]
A carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that the entanglement process was changed so that the entanglement degree was 25 / m. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0051]
[Comparative Example 3]
A carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that the moisture content of the yarn bundle adjusted by the touch roll was changed to 3% by weight. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0052]
[Comparative Example 4]
A carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that the moisture content of the yarn bundle adjusted by the touch roll was changed to 40% by weight. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0053]
[Comparative Example 5]
When aligning a plurality of yarn bundles, a carbon fiber precursor yarn housed in a container was obtained in the same manner as in Example 1 except that a nip roll was used instead of the gear roll. The single fiber fineness was 1.1 dtex. The results are shown in Table 1.
[0054]
[Table 1]
Figure 0004624571
[0055]
【The invention's effect】
According to the present invention, in consideration of the total fineness, thickness, and yarn length of the yarn bundle in the carbon fiber production process (firing process), a carbon fiber precursor yarn in a form that is easy to use in the carbon fiber production process is produced. A method can be provided.
[0056]
That is, it is possible to provide a method for storing a high-quality, high-performance carbon fiber precursor yarn having a total fineness of 70,000 denier or more with less yarn breakage and fluff generation in a container with low cost and high productivity. it can.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an example of a method for producing a carbon fiber precursor yarn of the present invention.
[Explanation of symbols]
1 Gear roll 2 Separation bar 3 Container 4 Entangling device 5 Spinner final roll 6 Touch roll 7 Roll

Claims (3)

フックドロップ法で測定した交絡度5ヶ/m〜20ヶ/m、水分率5%〜30%に調整した炭素繊維前駆体繊維束を1本以上引き揃えた総繊度7万デニール以上の炭素繊維前駆体繊維束集合体を、ギヤロールによって集束させた後、少なくとも2ヶ以上に分割し、各々独立して1つの容器に収納することを特徴とする炭素繊維前駆体糸条の製造方法。  Carbon fiber with a total fineness of 70,000 denier or more, with one or more carbon fiber precursor fiber bundles adjusted to a degree of entanglement of 5/20 to 20 / m and a moisture content of 5% to 30% measured by the hook drop method A method for producing a carbon fiber precursor yarn, characterized in that a bundle of precursor fiber bundles is bundled by a gear roll, then divided into at least two pieces, and each is independently housed in one container. 容器に収納した炭素繊維前駆体繊維束集合体の嵩密度を0.5以上とすることを特徴とする請求項1記載の炭素繊維前駆体糸条の製造方法。  The method for producing a carbon fiber precursor yarn according to claim 1, wherein the bulk density of the carbon fiber precursor fiber bundle aggregate stored in the container is 0.5 or more. 容器に収納した炭素繊維前駆体繊維束集合体の単繊維強度が5.0cN/dtex以上であることを特徴とする請求項1または2記載の炭素繊維前駆体糸条の製造方法。  The method for producing a carbon fiber precursor yarn according to claim 1 or 2, wherein the single fiber strength of the carbon fiber precursor fiber bundle aggregate stored in the container is 5.0 cN / dtex or more.
JP2001015847A 2001-01-24 2001-01-24 Method for producing carbon fiber precursor yarn Expired - Fee Related JP4624571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015847A JP4624571B2 (en) 2001-01-24 2001-01-24 Method for producing carbon fiber precursor yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015847A JP4624571B2 (en) 2001-01-24 2001-01-24 Method for producing carbon fiber precursor yarn

Publications (2)

Publication Number Publication Date
JP2002220726A JP2002220726A (en) 2002-08-09
JP4624571B2 true JP4624571B2 (en) 2011-02-02

Family

ID=18882325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015847A Expired - Fee Related JP4624571B2 (en) 2001-01-24 2001-01-24 Method for producing carbon fiber precursor yarn

Country Status (1)

Country Link
JP (1) JP4624571B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775928B2 (en) * 2003-10-06 2011-09-21 三菱レイヨン株式会社 Method for producing carbon fiber and acrylonitrile-based precursor fiber
WO2005078173A1 (en) 2004-02-13 2005-08-25 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
JP5049372B2 (en) * 2010-07-20 2012-10-17 三菱レイヨン株式会社 Carbon fiber precursor tow and method for packing flame resistant fiber precursor tow
JP7087740B2 (en) * 2018-07-05 2022-06-21 三菱ケミカル株式会社 Manufacturing method of carbon fiber bundle
JP7341648B2 (en) * 2018-10-05 2023-09-11 帝人株式会社 Precursor fiber bundle manufacturing method, carbon fiber bundle manufacturing method, and carbon fiber bundle
WO2020158529A1 (en) * 2019-02-01 2020-08-06 東レ株式会社 Continuous carbon fiber bundle package
KR102684624B1 (en) * 2019-08-09 2024-07-15 주식회사 엘지화학 Method for preparing acrylonitrile based fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296222A (en) * 1976-02-10 1977-08-12 Toray Ind Inc Production of cylindrical fiber packages
JPS5781254U (en) * 1980-11-06 1982-05-19
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
WO2000005440A1 (en) * 1998-07-22 2000-02-03 Mitsubishi Rayon Co., Ltd. Acrylonitril-based precursor fiber for carbon fiber and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296222A (en) * 1976-02-10 1977-08-12 Toray Ind Inc Production of cylindrical fiber packages
JPS5781254U (en) * 1980-11-06 1982-05-19
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
WO2000005440A1 (en) * 1998-07-22 2000-02-03 Mitsubishi Rayon Co., Ltd. Acrylonitril-based precursor fiber for carbon fiber and method for production thereof

Also Published As

Publication number Publication date
JP2002220726A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP5362627B2 (en) Carbon fiber precursor fiber bundle, carbon fiber and method for producing the same
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
EP0835953B1 (en) A precursor fibre bundle for production of a carbon fibre bundle, a carbon fibre bundle, and a process for producing thereof
US6503624B2 (en) Carbon fiber precursor fiber bundle and manufacturing method of the same
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP4775928B2 (en) Method for producing carbon fiber and acrylonitrile-based precursor fiber
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JPH10195718A (en) Carbon yarn and its production
JPH09255227A (en) Carbon fiber precursor acrylic fiber package and winding method for carbon fiber precursor acrylic fiber
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP2001049536A (en) Production of carbon fiber
JP4459398B2 (en) Method for producing wound body of carbon fiber precursor fiber bundle
JPH09273032A (en) Carbon fiber precursor filament yarn and its production and production of carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R151 Written notification of patent or utility model registration

Ref document number: 4624571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees