JPH10195718A - Carbon yarn and its production - Google Patents

Carbon yarn and its production

Info

Publication number
JPH10195718A
JPH10195718A JP35667196A JP35667196A JPH10195718A JP H10195718 A JPH10195718 A JP H10195718A JP 35667196 A JP35667196 A JP 35667196A JP 35667196 A JP35667196 A JP 35667196A JP H10195718 A JPH10195718 A JP H10195718A
Authority
JP
Japan
Prior art keywords
fiber
yarn
value
carbon fiber
denier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35667196A
Other languages
Japanese (ja)
Inventor
Makoto Endo
真 遠藤
Haruki Morikawa
春樹 森川
Jun Yamazaki
潤 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP35667196A priority Critical patent/JPH10195718A/en
Publication of JPH10195718A publication Critical patent/JPH10195718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon yarn capable of being condensed into a yarn bundle of high denier, securing excellent resin impregnation properties, providing an improved FRP, by making the bundle of a polyacrylonitrile-based yarn fire- resistance in an oxidizing atmosphere and carbonizing in an inert atmosphere at a high temperature. SOLUTION: A yarn obtained by spinning an acrylonitrile-based polymer from a spinneret having >=10mm diameter (a), a fiber width (b) of a yarn on a guide and a distance (c) between the spinneret and the guide in correlation of the equation 0.02>=tanθ=(a-b)/2c>=0.006 to give a yarn, which is condensed to give a handle of a polyacrylonitrile-based yarn having 10-40 (1/m) fiber interlaced value CF value by fook drop method, which is made fire-resistance in an oxidizing atmosphere at 200-300 deg.C. Then, the yarn is carbonized in an inert atmosphere at 500-1,500 deg.C to give the objective carbon yarn having >=25,000 denier and 10-100 (1/m) fiber interlacement value CF value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太デニールの繊維
束に集束された炭素繊維およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber bundled into a thick denier fiber bundle and a method for producing the same.

【0002】[0002]

【従来の技術】炭素繊維の需要は年々増えており、航空
機、スポーツ等のプレミアム用途から建築、土木、エネ
ルギー関係の一般産業用途へ需要が発展している。一般
産業用途、特に大型の構造材料を成形する場合には、例
えば織物、フィラメントワインディング法において必要
とするトータルデニールは100,000デニール程度
と大きい。現状では10,000〜20,000デニー
ル程度の糸条を何本か引き揃えて、成形を行っている。
2. Description of the Related Art The demand for carbon fiber is increasing year by year, and the demand is expanding from premium applications such as aircraft and sports to general industrial applications related to construction, civil engineering and energy. In general industrial applications, especially when molding large-sized structural materials, the total denier required in, for example, woven fabric and filament winding methods is as large as about 100,000 denier. At present, several yarns of about 10,000 to 20,000 denier are drawn and formed.

【0003】ところがフィラメント糸を引き揃える場
合、フィラメント糸の単位毎に繊維が割れやすく、筋状
の糸割れが発生したり、含浸する樹脂量のむらが発生し
やすく、成形時に欠陥を作りやすい。また、一旦含浸さ
せた樹脂がローラー上でしみ出して目標の繊維含有率の
成形品を得られないという問題がある。
[0003] However, when the filament yarns are aligned, the fibers are liable to be broken for each unit of the filament yarns, streak-like yarn cracks are generated, and the amount of impregnated resin tends to be uneven, and defects are apt to be formed during molding. Further, there is a problem that the resin once impregnated oozes out on the roller and a molded article having a target fiber content cannot be obtained.

【0004】このような現状に対し、フィラメント数が
多く且つ、樹脂の含浸性に優れた炭素繊維が存在すれ
ば、高次加工設備への仕掛け回数の減少、クリール設備
のコンパクト化などの利点が生じるので、炭素繊維使用
上大きな効果が期待できる。
[0004] In contrast to this situation, if carbon fibers having a large number of filaments and excellent in resin impregnating properties are present, advantages such as a reduction in the number of installations to higher-order processing equipment and a compact creel equipment are obtained. As a result, a great effect can be expected in using carbon fibers.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明の課題
は、上述の如き要望を満たすために、とくに太デニール
の繊維束に集束され、かつ、樹脂含浸性に優れた炭素繊
維を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide carbon fibers which are bundled, particularly, in a thick denier fiber bundle, and which are excellent in resin impregnation in order to satisfy the above-mentioned demands. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の炭素繊維は、繊度25,000デニール以
上の実質的に撚りのない繊維束に集束された炭素繊維で
あって、フックドロップ法における繊維交絡値CF値が
10〜100(1/m)の範囲にあることを特徴とするもの
からなる。
In order to solve the above-mentioned problems, a carbon fiber according to the present invention is a carbon fiber bundled into a substantially non-twisted fiber bundle having a fineness of 25,000 denier or more. The fiber entanglement CF value in the drop method is in the range of 10 to 100 (1 / m).

【0007】また、本発明に係る炭素繊維の製造方法
は、アクリロニトリル系重合体を口金より紡出して得た
繊維をガイドにより集束して得られる、フックドロップ
法による繊維交絡値CF値が10〜40(1/m)の範囲に
あるポリアクリロニトリル系繊維の束を、酸化性雰囲気
中200 〜300 ℃で耐炎化した後、不活性雰囲気中500 〜
1500℃で炭化し、繊度25,000デニール以上の炭素
繊維とすることを特徴とする方法からなる。
Further, in the method for producing carbon fiber according to the present invention, the fiber entanglement value CF of the hook drop method obtained by bundling a fiber obtained by spinning an acrylonitrile polymer from a die with a guide is 10 to 10. A bundle of polyacrylonitrile fibers in the range of 40 (1 / m) is made flame-resistant at 200 to 300 ° C. in an oxidizing atmosphere, and then 500 to 500 ° C. in an inert atmosphere.
It is a method characterized by carbonizing at 1500 ° C. to obtain carbon fibers having a fineness of 25,000 denier or more.

【0008】上記製造方法においては、口金の口径aが
100mm 以上であり、かつ、口金の口径a、ガイド上での
繊維の糸幅bおよび口金とガイドとの距離cが次式の関
係にあることが好ましい。 0.02≧tanθ=(a−b)/2c≧0.006
In the above manufacturing method, the diameter a of the base is
It is preferable that the diameter is not less than 100 mm, and the diameter a of the die, the yarn width b of the fiber on the guide, and the distance c between the die and the guide have the following relationship. 0.02 ≧ tan θ = (ab) /2c≧0.006

【0009】上記a、b、cは、図1に示す関係にあ
る。図1において、1は口金、2は引き取りガイド、3
は凝固浴、4はアクリロニトリル系重合体繊維束をそれ
ぞれ示している。
The above a, b, and c have the relationship shown in FIG. In FIG. 1, 1 is a base, 2 is a take-off guide, 3
Denotes a coagulation bath, and 4 denotes an acrylonitrile-based polymer fiber bundle.

【0010】また、上記製造方法においては、ポリアク
リロニトリル系繊維に対して、その巻取前に、糸条に対
し直角方向から0.2 〜2kgf/cm2 の高速流体を吹き付け
るようにすることが好ましい。
In the above-mentioned production method, it is preferable that a high-speed fluid of 0.2 to 2 kgf / cm 2 be sprayed from a direction perpendicular to the yarn before winding the polyacrylonitrile-based fiber.

【0011】[0011]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態について説明する。本発明に係る炭素繊維は、スト
ランド強度250 〜700kgf/mm2、弾性率15〜60tf/mm2の範
囲にあるものであればいずれを問わない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. Any carbon fiber may be used as long as it has a strand strength of 250 to 700 kgf / mm 2 and an elastic modulus of 15 to 60 tf / mm 2 .

【0012】本発明においては、繊維束に集束される炭
素繊維の集束性をフックドロップ法における交絡値で規
定しているが、この炭素繊維のフックドロップ法による
交絡値は以下の方法で測定する。炭素繊維を上下方向に
並べて200gのおもりをつける。炭素繊維糸条におも
り(10g)のついた鍵針を刺し、落下する距離を50
回測定後、最大のものから大きい順に10個、最小のも
のから小さい順に10個を除いたものの平均値x(cm) を
用い、下記式よりCF値を求める。 CF=100/x(1/m) また、交絡のむらを表す単位として、上記平均値に用い
た数値の標準偏差をその平均値で割ったものをCV値と
した。
In the present invention, the convergence of the carbon fibers to be bundled in the fiber bundle is defined by the entanglement value by the hook drop method. The entanglement value of the carbon fiber by the hook drop method is measured by the following method. . The carbon fibers are lined up and down to give a weight of 200 g. Insert a key needle with a weight (10 g) into the carbon fiber thread and drop
After the first measurement, the CF value is calculated from the following equation using the average value x (cm) of the values obtained by removing 10 pieces from the largest one and 10 pieces from the smallest one in ascending order. CF = 100 / x (1 / m) Further, as a unit representing the confounding unevenness, a value obtained by dividing the standard deviation of the numerical value used for the above average value by the average value was defined as a CV value.

【0013】このようにして測定した炭素繊維のCF値
は、10より小さいと高次加工時に単糸間の隙間への樹
脂の進入が妨げられ、含浸不良が発生する。一方100
より大きいと、単糸間の干渉が大きくなりフィラメント
ワインディング等拡がり性が要求される高次加工用途に
おいて、不利となる。このように高次加工性に優れる炭
素繊維を得るためのCF値は10〜100(1/m)の範囲
である。さらに望ましくは20〜50(1/m)の範囲であ
る。また、本発明に係る炭素繊維は、繊維束に集束され
てなるため、そのCF値のCV値は通常5〜40%であ
る。
When the CF value of the carbon fiber measured in this way is smaller than 10, the resin is prevented from entering the gap between the single yarns during the high-order processing, and impregnation failure occurs. 100
If it is larger, the interference between the single yarns becomes large, which is disadvantageous in high-order processing applications requiring spreadability such as filament winding. The CF value for obtaining carbon fibers excellent in high order workability is in the range of 10 to 100 (1 / m). More preferably, it is in the range of 20 to 50 (1 / m). Moreover, since the carbon fibers according to the present invention are bundled in a fiber bundle, the CV value of the CF value is usually 5 to 40%.

【0014】上記炭素繊維を得る方法としては、フック
ドロップ法による繊維交絡値CF値が10〜40(1/m)
の範囲にあるポリアクリロニトリル系繊維を前駆体とし
て用い、実質的に無撚状態で酸化性雰囲気中200 〜300
℃で耐炎化し、不活性雰囲気中500 〜1500℃で炭化す
る。
As a method for obtaining the carbon fiber, a fiber entanglement value CF by a hook drop method is 10 to 40 (1 / m).
Using a polyacrylonitrile fiber in the range of 200 to 300 in an oxidizing atmosphere in a substantially untwisted state.
Flame resistant at 500C and carbonized at 500-1500C in an inert atmosphere.

【0015】ここでアクリル系繊維の交絡値は前記方法
と同じ方法で測定するが、捲縮を持っている繊維につい
ては、その捲縮を除去してから測定する。その方法とし
ては、アイロンを120℃に加熱しておき、糸に手で張
力を与えておき、糸の上から15秒程度押さえつける。炭
素繊維と同様にCF値は10(1/m)より小さいと高次加
工時に単糸間の隙間への樹脂の進入が妨げられ、含浸不
良が発生し、40(1/m)より大きいと単糸間の干渉が大
きくなり、フィラメントワインディング等拡がり性が要
求される高次加工用途において、不利となる。高次加工
性に優れる炭素繊維を得るための上記CF値は10〜4
0(1/m)の範囲であればいずれでもよいが、さらに望ま
しくは20〜35(1/m)である。
Here, the entanglement value of the acrylic fiber is measured by the same method as described above, but for a fiber having a crimp, it is measured after removing the crimp. As a method, the iron is heated to 120 ° C., the tension is applied to the thread by hand, and the thread is pressed from above the thread for about 15 seconds. If the CF value is smaller than 10 (1 / m), as in the case of the carbon fiber, penetration of the resin into the gap between the single yarns during high-order processing is prevented, impregnation failure occurs, and if the CF value is larger than 40 (1 / m), Interference between single yarns increases, which is disadvantageous in high-order processing applications requiring spreadability such as filament winding. The above-mentioned CF value for obtaining a carbon fiber excellent in high order workability is 10 to 4
Any value may be used as long as it is in the range of 0 (1 / m), but more preferably 20 to 35 (1 / m).

【0016】本発明において、実質的に無撚状態とは、
1m当たりの撚数が1以下であることを言う。また、酸
化性雰囲気とは酸素、塩酸などの雰囲気のいずれを問わ
ないが、安価にかつ簡便に得られる気体としては空気が
望ましい。
In the present invention, the substantially untwisted state means
It means that the number of twists per meter is 1 or less. The oxidizing atmosphere may be any of oxygen, hydrochloric acid, and the like, but air is preferably used as a gas which can be obtained inexpensively and easily.

【0017】また、炭化するための不活性雰囲気として
は、窒素、アルゴン、ネオンなどのいずれを問わない
が、比較的安価に得ることができる窒素が望ましい。
The inert atmosphere for carbonizing is not limited to nitrogen, argon, neon, etc., but nitrogen which can be obtained at relatively low cost is desirable.

【0018】上記の交絡をアクリル繊維に付与する方法
としては、アクリル系繊維の紡出部分で交絡を付与する
方法、高圧流体を吹き付ける方法がある。前者は図1に
示すように紡出部、すなわち凝固するに際し、口金の口
径が100mm 以上でかつ、紡糸する口金の口径a、紡出し
たポリマーを引き取るローラー上での糸幅b、口金と引
き取りガイドとの距離cの間に次の関係があることを特
徴とする。 0.02≧tanθ=(a−b)/2c≧0.006 すなわち、tanθが上式の範囲にあると、大きい口金
から小さいガイドへ集められる際に単糸同志が交錯し、
斜行糸となるために交絡が発生するのである。tanθ
が0.006より小さいと単糸それぞれが直進しようと
するため、単糸同志の交絡が少なくなり、逆にtanθ
が0.02よりも大きくなると口金面特に外周部から集
束ガイドへの角度が急になり、糸をいためる。tanθ
としては、0.008〜0.018の範囲がより好まし
く、さらに好ましくは0.010〜0.015の範囲で
ある。
As a method for imparting the entanglement to the acrylic fiber, there are a method of imparting an entanglement at a spun portion of the acrylic fiber and a method of spraying a high-pressure fluid. As shown in FIG. 1, the former is a spinning part, that is, the diameter of the spinneret is 100 mm or more when coagulating, the diameter a of the spinneret to be spun, the yarn width b on a roller for picking up the spun polymer, and the spinneret. The following relationship exists between the distance c to the guide. 0.02 ≧ tan θ = (ab) /2c≧0.006 That is, when tan θ is in the range of the above expression, single yarns cross each other when collected from a large die to a small guide,
The entanglement occurs due to the skewed yarn. tanθ
Is smaller than 0.006, each of the single yarns tries to go straight, and confounding of the single yarns decreases, and conversely, tan θ
Is larger than 0.02, the angle from the base surface, especially from the outer peripheral portion to the focusing guide becomes steep, and the yarn is damaged. tanθ
Is more preferably in the range of 0.008 to 0.018, and still more preferably in the range of 0.010 to 0.015.

【0019】紡出された糸は水洗、浴延伸、油剤付与、
乾燥等の工程を経てボビンに巻き取ったり、捲縮を付与
した後、キャンに収納され、焼成工程に供される。
The spun yarn is washed with water, drawn in a bath, applied with an oil agent,
After being wound around a bobbin or crimped through a process such as drying, it is stored in a can and subjected to a firing process.

【0020】ここでポリアクリロニトリル系繊維は、ア
クリロニトリル90重量部以上を成分として共重合した
ポリアクリロニトリル系重合体を口金から紡出すること
により得られる。
Here, the polyacrylonitrile fiber is obtained by spinning out from a die a polyacrylonitrile polymer copolymerized with 90 parts by weight or more of acrylonitrile as a component.

【0021】アクリル系繊維のフィラメント数、すなわ
ち繊維を紡出する口金ホール数は、いずれを問わない
が、口金の中心と端部で凝固速度のむらが生じ、安定な
紡糸ができなくなるおそれがあるので、300,000
以下が望ましく、多糸条の利点を得るためには30,0
00以上が望ましい。
The number of filaments of the acrylic fiber, that is, the number of holes for spinning the fiber is not limited, but the solidification speed may be uneven at the center and at the end of the spinneret, and stable spinning may not be possible. , 300,000
The following is desirable, and in order to obtain the advantage of multiple yarns,
00 or more is desirable.

【0022】交絡を付与するもう一つの方法は、耐炎化
工程に供する前、例えばボビン巻取直前や捲縮付与直前
の糸に、糸条に対し直角方向に高圧流体を吹き付けさ
せ、繊維に強制的に交絡を付与する方法である。
Another method of imparting entanglement is to blow a high-pressure fluid in a direction perpendicular to the yarn, for example, onto the yarn immediately before bobbin winding or crimping before subjecting it to a flame-proofing step, and forcibly apply the fiber. This is a method of imparting confounding in a localized manner.

【0023】吹き付ける高圧流体としては液体、気体を
問わないが、液体は吹き付け時に油剤の脱落を伴いやす
いので気体が望ましい。さらに気体については、空気、
窒素、酸素、二酸化炭素等など取り扱いやすいものであ
ればいずれを問わないが、安価な空気が望ましい。
The high-pressure fluid to be sprayed may be a liquid or a gas, but the liquid is preferably a gas because the oil tends to fall off during spraying. For gas, air,
Any material can be used as long as it is easy to handle, such as nitrogen, oxygen, carbon dioxide, etc., but inexpensive air is desirable.

【0024】吹き付ける流体の圧力は大きいほど糸に与
える交絡は大きくなるが、交絡値10〜40(1/m)を
得、かつ糸への機械的ダメージを与えないためには0.2
〜2kgf/cm2 の範囲の圧力が望ましい。
The greater the pressure of the fluid to be blown, the greater the entanglement applied to the yarn. However, in order to obtain an entanglement value of 10 to 40 (1 / m) and to prevent mechanical damage to the yarn, 0.2
A pressure in the range of 22 kgf / cm 2 is desirable.

【0025】また吹き付ける交絡ノズルの形状、吹き付
け方向はいずれを問わないが、糸に均一な交絡を与える
ために360 度方向より(つまり、全方位から均等に)吹
き付けることが望ましい。
The shape of the entangled nozzle to be sprayed and the spraying direction are not limited, but it is desirable to spray the yarn from the 360-degree direction (that is, evenly from all directions) in order to impart uniform entanglement to the yarn.

【0026】このように製造される網目状炭素繊維は、
糸条内部に空隙が存在するので樹脂含浸時にその空隙に
樹脂が浸透しやすい。そのため、FRP成形時にボイド
が発生しにくく、繊維の体積含有率を高くすることがで
き、高強度のFRPを得ることができる。ここで言う繊
維の体積含有率とは次式で表される。 繊維の体積含有率=[繊維基材の重量(g)÷繊維密度(g
/cm3)]÷[FRPの体積(cm3)]
The reticulated carbon fiber thus produced is
Since the voids exist inside the yarn, the resin easily penetrates into the voids when the resin is impregnated. Therefore, voids are less likely to occur during FRP molding, the volume content of the fiber can be increased, and a high-strength FRP can be obtained. The volume content of the fiber referred to here is represented by the following equation. Fiber volume content = [weight of fiber base (g) ÷ fiber density (g
/ cm 3 )] ÷ [FRP volume (cm 3 )]

【0027】上記の炭素繊維は、繊度25,000デニ
ール以上の太デニールの集束された繊維束として形成さ
れる。10,000〜20,000デニールの炭素繊維
を引き揃えたものは成形加工時にその引き揃え単位毎に
糸が割れ、樹脂の含浸性にムラが生じるが、本発明に係
る炭素繊維は糸が割れることもなく、またその製造方法
から交絡度が一定であるので、樹脂の含浸むらを起こし
にくい。さらに、単糸同志に拘束力を持っているため、
糸のさばけが起こりにくく、高次加工時のローラーへの
単糸巻きつき等が少なくてすみ、安定な操業が可能とな
るという利点もある。
The carbon fiber is formed as a bundle of thick denier fibers having a fineness of 25,000 denier or more. In the case where carbon fibers of 10,000 to 20,000 denier are aligned, the yarn breaks in each alignment unit at the time of molding to cause unevenness in the impregnation of the resin, but the carbon fiber according to the present invention breaks the yarn. In addition, since the degree of entanglement is constant due to the production method, unevenness in impregnation of the resin is unlikely to occur. In addition, since the single yarn has binding power,
There is also an advantage that the yarn is less likely to be judged, a single yarn is not wound around a roller at the time of high-order processing, and a stable operation can be performed.

【0028】[0028]

【実施例】【Example】

実施例1 アクリロニトリル95重量部、アクリル酸メチル4重量
部、イタコン酸1重量部を共重合したポリアクリロニト
リル系重合体のジメチルスルホキシド(DMSO)溶液
を30℃、60%のDMSO水溶液中にフィラメント数8
4,000の口金より、湿式で紡出した。その際の口金
口径を130mm 、集束ガイド上での糸幅を10mm、口金と集
束ガイドの距離を4,500mm とし、tanθ=0.013
とした。
Example 1 A polyacrylonitrile-based dimethyl sulfoxide (DMSO) solution obtained by copolymerizing 95 parts by weight of acrylonitrile, 4 parts by weight of methyl acrylate, and 1 part by weight of itaconic acid was dissolved in a 60% DMSO aqueous solution at 30 ° C. with 8 filaments.
Wet spinning was performed from a 4,000 die. At this time, the die diameter is 130 mm, the thread width on the focusing guide is 10 mm, the distance between the die and the focusing guide is 4,500 mm, and tan θ = 0.0013
And

【0029】集束した繊維を延伸、水洗、油剤付与工程
等を経て、捲縮付与を実施した。この繊維を前記の捲縮
除去を施した後、フックドロップ法により交絡値を測定
したところ15(1/m)であり、CV値は20%であっ
た。この繊維を熱風循環オーブン中240 ℃で80分耐炎化
処理したのち、1,400 ℃にて炭化処理を行い、目付6.4g
/m(57,600デニール)の炭素繊維を得た。この炭
素繊維におけるフックドロップ法による交絡値を測定し
たところ、30(1/m)であり、ばらつきを示すCV値は
15%であった。エポキシ樹脂ストランド法によるこの
炭素繊維の引張強度は400kgf/mm2、引張弾性率は23tf/m
m2であった。
The bundled fibers were subjected to crimping through stretching, washing with water, applying an oil agent and the like. After removing the crimp from the fiber, the entanglement value was measured by the hook drop method and found to be 15 (1 / m), and the CV value was 20%. This fiber was subjected to a flame-resistant treatment in a hot-air circulation oven at 240 ° C for 80 minutes, and then carbonized at 1,400 ° C.
/ m (57,600 denier) carbon fiber was obtained. The entanglement value of this carbon fiber measured by the hook drop method was 30 (1 / m), and the CV value showing variation was 15%. The tensile strength of this carbon fiber by the epoxy resin strand method is 400 kgf / mm 2 , and the tensile modulus is 23 tf / m
It was m 2.

【0030】この炭素繊維を縦糸に、横糸にガラス繊維
糸(日東紡績(株)製ECE225−1/2)を補助糸
として用い、平織組織からなる目付300g/m2 の一方向織
物を作成した。織物作成時の操業性は良好で巻きつき等
による糸切れの発生はなく、収率95%で目的の織物を
得ることができた。ハンドレイアップ法でビニルエステ
ル樹脂を含浸させ、オートクレーブで硬化させた硬化板
を作成したところ、55%という高い繊維体積含有率を
示し、かつ完全に樹脂が含浸され、ボイドのないもので
あった。このようにして得られた硬化板を、JIS−K
7073のCFRP(炭素繊維強化プラスチック)の引
張試験法に準拠して評価したところ、炭素繊維配向方向
の引張破断強度は170kgf/mm2、弾性率は10,100kgf/mm2
であった。
Using the carbon fiber as the warp and the glass fiber as the weft (ECE225-1 / 2, manufactured by Nitto Boseki Co., Ltd.) as an auxiliary yarn, a unidirectional woven fabric having a basis weight of 300 g / m 2 was prepared. . The operability at the time of fabric preparation was good, there was no occurrence of thread breakage due to winding or the like, and the target fabric could be obtained with a yield of 95%. When a cured plate which was impregnated with a vinyl ester resin by a hand lay-up method and cured by an autoclave was prepared, it showed a high fiber volume content of 55%, was completely impregnated with the resin, and had no voids. . The hardened plate obtained in this manner was subjected to JIS-K
When evaluated in accordance with the tensile test method of CFRP (carbon fiber reinforced plastic) of 7073, the tensile breaking strength in the carbon fiber orientation direction was 170 kgf / mm 2 , and the elastic modulus was 10,100 kgf / mm 2.
Met.

【0031】比較例1 実施例1と同じポリアクリロニトリル系重合体DMSO
溶液をホール数84,000の口金より、湿式で紡出した。そ
の際の口金口径を130mm 、集束ガイド上での糸幅を90m
m、口金と集束ガイドの距離を4,500mm とし、tanθ
=0.004とし、実施例1と同じ方法で延伸、水洗、
油剤付与工程等を経て、捲縮付与を実施し、キャンに梱
包した。
Comparative Example 1 The same polyacrylonitrile polymer DMSO as in Example 1
The solution was wet-spun from a base having 84,000 holes. The die diameter at that time is 130mm, and the thread width on the focusing guide is 90m
m, the distance between the base and the focusing guide is 4,500 mm, and tan θ
= 0.004, stretching, washing with water in the same manner as in Example 1,
After the oil agent applying step and the like, crimping was performed and packed in a can.

【0032】この繊維に前記の捲縮除去を施した後、フ
ックドロップ法により交絡値を測定したところ5(1/m)
で、CV値は25%であった。この繊維を熱風循環オー
ブン中240 ℃で80分耐炎化処理したのち、1,400 ℃にて
炭化処理を行い、目付6.4g/m(57,600デニール)
の炭素繊維を得た。この炭素繊維におけるフックドロッ
プ法による交絡値を測定したところ、8(1/m)であり、
CV値は35%であった。エポキシ樹脂ストランド法に
よるこの炭素繊維の引張強度は400kgf/mm2、引張弾性率
は23tf/mm2であった。
After the above crimp was removed from this fiber, the entanglement value was measured by the hook drop method to find 5 (1 / m).
And the CV value was 25%. This fiber was subjected to a flameproofing treatment at 240 ° C for 80 minutes in a hot air circulating oven, and then carbonized at 1,400 ° C to give a basis weight of 6.4 g / m (57,600 denier).
Was obtained. The confounding value of this carbon fiber measured by the hook drop method was 8 (1 / m),
The CV value was 35%. The tensile strength of this carbon fiber by the epoxy resin strand method was 400 kgf / mm 2 , and the tensile modulus was 23 tf / mm 2 .

【0033】この炭素繊維を縦糸として用いた以外は、
実施例1と同様にして、平織組織からなる目付300g/m2
の一方向織物を作成した。織物作成時の操業性は良好で
巻きつき等による糸切れの発生はなく、収率95%で目
的の織物を得ることができたが、ハンドレイアップ法で
ビニルエステル樹脂を含浸させ、オートクレーブで硬化
させた硬化板を作成したところ、糸をローラー上で拡げ
る際に、バーコード状の隙間が開き、繊維の含浸むらが
見受けられた。繊維体積含有率は45%と実施例1に比
べ大きくは低下しなかったものの、ボイドがあちこちに
見られた。このようにして得られた硬化板を、実施例1
と同様に評価したところ、引張破断強度は104kgf/mm2
弾性率は8,700kgf/mm2であった。
Except that this carbon fiber was used as a warp,
In the same manner as in Example 1, a basis weight of a plain weave structure of 300 g / m 2
Was made. The operability at the time of fabric production was good, and there was no yarn breakage due to winding or the like, and the target fabric could be obtained at a yield of 95%. However, the vinyl ester resin was impregnated by a hand lay-up method, and the autoclave was used. When a cured board was prepared, when the yarn was spread on a roller, a bar-code-shaped gap was opened, and uneven impregnation of fibers was observed. Although the fiber volume content was 45%, which was not much lower than that of Example 1, voids were found everywhere. The cured plate obtained in this manner was used in Example 1
When evaluated in the same manner as above, the tensile strength at break was 104 kgf / mm 2 ,
The elastic modulus was 8,700 kgf / mm 2 .

【0034】比較例2 実施例1と同じポリアクリロニトリル系重合体DMSO
溶液をホール数84,000の口金より、湿式で紡出し
た。その際の口金口径を200mm 、集束ガイド上での糸幅
を10mm、口金と集束ガイドの距離を2,500mm とし、ta
nθ=0.038としたところ、口金面での糸切れによ
り正常な紡糸ができなかった。
Comparative Example 2 The same polyacrylonitrile polymer DMSO as in Example 1
The solution was wet-spun from a die having 84,000 holes. In this case, the die diameter was 200 mm, the thread width on the focusing guide was 10 mm, and the distance between the die and the focusing guide was 2,500 mm.
When nθ = 0.038, normal spinning could not be performed due to yarn breakage on the die surface.

【0035】比較例3 実施例1と同じポリアクリロニトリル系重合体DMSO
溶液をホール数12,000の口金より、湿式で紡出し
た。その際の口金口径を130mm 、集束ガイド上での糸幅
を10mm、口金と集束ガイドの距離を4,500mm とし、ta
nθ=0.013とした。
Comparative Example 3 The same polyacrylonitrile polymer DMSO as in Example 1
The solution was wet-spun from a die having 12,000 holes. In this case, the die diameter is 130 mm, the thread width on the focusing guide is 10 mm, and the distance between the die and the focusing guide is 4,500 mm.
nθ was set to 0.013.

【0036】集束した繊維を延伸、水洗、油剤付与工程
等を経て、捲縮付与を実施した。この繊維を前記の捲縮
除去を施した後、フックドロップ法により交絡値を測定
したところ、20(1/m)でありCV値は14%であっ
た。この繊維を熱風循環オーブン中240 ℃で80分耐炎化
処理したのち、1,400 ℃にて炭化処理を行い、目付0.8g
/m(7,200デニール)の炭素繊維を得た。この炭素
繊維におけるフックドロップ法による交絡値を測定した
ところ30(1/m)であり、CV値は12%であったが、
実施例1と同じ目付になるように8本引き揃え、再び交
絡度を測定したところ、CF値は10(1/m)、またCV
値は70%と大きくなった。エポキシ樹脂ストランド法
によるこの炭素繊維の引張強度は390kgf/mm2、引張弾性
率は23tf/mm2であった。
The bundled fibers were subjected to crimping through stretching, rinsing, oiling step and the like. After removing the crimp from the fiber, the entanglement value was measured by the hook drop method. The entanglement value was 20 (1 / m) and the CV value was 14%. This fiber was subjected to a flameproofing treatment at 240 ° C for 80 minutes in a hot-air circulation oven, and then carbonized at 1,400 ° C to give a basis weight of 0.8 g.
/ m (7,200 denier) carbon fiber was obtained. The entanglement value of this carbon fiber measured by the hook drop method was 30 (1 / m), and the CV value was 12%.
Eight lines were aligned to obtain the same basis weight as in Example 1, and the degree of confounding was measured again. The CF value was 10 (1 / m) and the CV
The value increased to 70%. The tensile strength of this carbon fiber by the epoxy resin strand method was 390 kgf / mm 2 , and the tensile modulus was 23 tf / mm 2 .

【0037】この炭素繊維を8本引き揃え、縦糸として
用いた以外は、実施例1と同様にして、平織組織からな
る目付300g/m2 の一方向織物を作成した。織物作成時の
操業性は良好で巻きつき等による糸切れの発生はなく、
収率95%で目的の織物を得ることができたが、ハンド
レイアップ法でビニルエステル樹脂を含浸させ、オート
クレーブで硬化させた硬化板を作成したところ、引き揃
え単位(7,200デニール)にできた隙間より樹脂が
流れ、繊維体積含有率は35%と実施例1に比べ低下
し、ボイドが見られた。このようにして得られた硬化板
を、実施例1と同様に評価したところ、引張破断強度は
90kgf/mm2 、弾性率は7,300kgf/mm2であった。
A unidirectional woven fabric having a basis weight of 300 g / m 2 was prepared in the same manner as in Example 1 except that eight carbon fibers were drawn and used as warp yarns. The operability at the time of fabric production is good, there is no yarn breakage due to winding etc.,
Although the desired woven fabric could be obtained with a yield of 95%, a cured plate was impregnated with a vinyl ester resin by a hand lay-up method and cured by an autoclave. The resin flowed from the formed gap, the fiber volume content was 35%, which was lower than that of Example 1, and voids were observed. When the cured plate thus obtained was evaluated in the same manner as in Example 1, the tensile breaking strength was
90 kgf / mm 2, an elastic modulus of 7,300kgf / mm 2.

【0038】実施例2 比較例2の条件の糸に対し、紡糸工程において油剤付与
し、乾燥したのち、高圧空気を吹き出すことができるエ
アーノズルを糸の進行方向と垂直に取り付けた。高圧空
気を吹き付けるための穴径は2mmで、360 度方向に60度
刻みに6ヶ配置した。吹き付ける圧力1kgf/mm2としたと
ころ、得られたアクリル繊維のCF値を測定したとこ
ろ、30(1/m)で、CV値は10%となった。
Example 2 An oil nozzle capable of spraying high-pressure air after applying an oil agent in the spinning process to the yarn under the conditions of Comparative Example 2 was attached in a direction perpendicular to the yarn traveling direction. The hole diameter for blowing high-pressure air was 2 mm, and six holes were arranged in 360-degree directions at 60-degree intervals. When the blowing pressure was 1 kgf / mm 2 , the CF value of the obtained acrylic fiber was measured. The CF value was 30 (1 / m), and the CV value was 10%.

【0039】この繊維を熱風循環オーブン中240 ℃で80
分耐炎化処理したのち、1,400 ℃にて炭化処理を行い、
目付6.4g/m(57,600デニール)の炭素繊維を得
た。この炭素繊維におけるフックドロップ法による交絡
値を測定したところ、40(1/m)であり、ばらつきを示
すCV値(標準偏差を平均値で割ったもの)は15%で
あった。エポキシ樹脂ストランド法によるこの炭素繊維
の引張強度は370kgf/mm2、引張弾性率は23tf/mm2であっ
た。
The fibers were placed in a hot air circulating oven at 240 ° C. for 80 hours.
After the flame treatment, the carbonization treatment is performed at 1,400 ° C.
A carbon fiber with a basis weight of 6.4 g / m (57,600 denier) was obtained. The entanglement value of this carbon fiber measured by the hook drop method was 40 (1 / m), and the CV value (standard deviation divided by the average value) indicating variation was 15%. The tensile strength of this carbon fiber by the epoxy resin strand method was 370 kgf / mm 2 , and the tensile modulus was 23 tf / mm 2 .

【0040】この炭素繊維を縦糸として用いた以外は、
実施例1と同様にして、平織組織からなる目付300g/m2
の一方向織物を作成した。織物作成時の操業性は良好で
巻きつき等による糸切れの発生はなく、収率95%で目
的の織物を得ることができた。ハンドレイアップ法でビ
ニルエステル樹脂を含浸させ、オートクレーブで硬化さ
せた硬化板を作成したところ、繊維体積含有率は60%
を示し、かつ完全に樹脂が含浸され、ボイドのないもの
であった。このようにして得られた硬化板を、実施例1
と同様にして評価したところ、引張破断強度は160kgf/m
m2、弾性率は9,700kgf/mm2であった。
Except that this carbon fiber was used as the warp,
In the same manner as in Example 1, a basis weight of a plain weave structure of 300 g / m 2
Was made. The operability at the time of fabric preparation was good, there was no occurrence of thread breakage due to winding or the like, and the target fabric could be obtained with a yield of 95%. When a cured plate was impregnated with a vinyl ester resin by the hand lay-up method and cured in an autoclave, the fiber volume content was 60%.
And the resin was completely impregnated and free from voids. The cured plate obtained in this manner was used in Example 1
When evaluated in the same manner as above, the tensile breaking strength was 160 kgf / m
m 2 and the elastic modulus were 9,700 kgf / mm 2 .

【0041】比較例4 実施例2と同様にして、吹き付ける圧力0.1kgf/mm2とし
たところ、得られたアクリル繊維のCF値を測定したと
ころ、7(1/m)で、CV値は20%となった。
Comparative Example 4 When the blowing pressure was set to 0.1 kgf / mm 2 in the same manner as in Example 2, the CF value of the obtained acrylic fiber was measured. The CF value was 7 (1 / m) and the CV value was 20. %.

【0042】この繊維を熱風循環オーブン中240 ℃で80
分耐炎化処理したのち、1,400 ℃にて炭化処理を行い、
目付6.4g/m(57,600デニール)の炭素繊維を得
た。この炭素繊維におけるフックドロップ法による交絡
値を測定したところ、9(1/m)であり、ばらつきを示す
CV値(標準偏差を平均値で割ったもの)は15%であ
った。エポキシ樹脂ストランド法によるこの炭素繊維の
引張強度は380kgf/mm2、引張弾性率は23tf/mm2であっ
た。
The fibers were placed in a hot air circulating oven at 240 ° C. for 80 hours.
After the flame treatment, the carbonization treatment is performed at 1,400 ° C.
A carbon fiber with a basis weight of 6.4 g / m (57,600 denier) was obtained. The entanglement value of this carbon fiber measured by the hook drop method was 9 (1 / m), and the CV value (standard deviation divided by the average value) indicating the variation was 15%. The tensile strength of this carbon fiber by the epoxy resin strand method was 380 kgf / mm 2 , and the tensile modulus was 23 tf / mm 2 .

【0043】この炭素繊維を縦糸として用いた以外は、
実施例1と同様にして、平織組織からなる目付300g/m2
の一方向織物を作成した。織物作成時の操業性は良好で
巻きつき等による糸切れの発生はなく、収率95%で目
的の織物を得ることができ、上記と同様の方法で成形体
を得た。繊維体積含有率は45%を示し、所々にボイド
を確認した。硬化板の引張破断強度は87kgf/mm2 、弾性
率は7,200kgf/mm2であった。
Except that this carbon fiber was used as a warp,
In the same manner as in Example 1, a basis weight of a plain weave structure of 300 g / m 2
Was made. The operability during the production of the woven fabric was good, there was no yarn breakage due to winding, etc., and the desired woven fabric could be obtained with a yield of 95%. A molded article was obtained in the same manner as described above. The fiber volume content was 45%, and voids were confirmed in some places. The cured plate had a tensile strength at break of 87 kgf / mm 2 and an elastic modulus of 7,200 kgf / mm 2 .

【0044】比較例5 実施例2と同様にして、吹き付ける圧力2.5kgf/mm2とし
たところ、得られたアクリル繊維のCF値を測定したと
ころ、50(1/m)で、CV値は20%となった。
Comparative Example 5 When the blowing pressure was set at 2.5 kgf / mm 2 in the same manner as in Example 2, the CF value of the obtained acrylic fiber was measured. The CF value was 50 (1 / m) and the CV value was 20. %.

【0045】この繊維を熱風循環オーブン中240 ℃で80
分耐炎化処理したのち、1,400 ℃にて炭化処理を行い、
目付6.4g/m(57,600デニール)の炭素繊維を得た
が、特に耐炎化工程糸切れ、ローラーへの単糸の巻付き
が多発し、工程通過率は60%であった。この炭素繊維
におけるフックドロップ法による交絡値を測定したとこ
ろ、110(1/m)であり、ばらつきを示すCV値(標準
偏差を平均値で割ったもの)は45%であった。エポキ
シ樹脂ストランド法によるこの炭素繊維の引張強度は30
5kgf/mm2、引張弾性率は23tf/mm2であった。
The fibers were placed in a hot air circulating oven at 240 ° C. for 80 hours.
After the flame treatment, the carbonization treatment is performed at 1,400 ° C.
A carbon fiber having a basis weight of 6.4 g / m (57,600 deniers) was obtained. In particular, yarn breakage in the oxidization process and winding of a single yarn around a roller frequently occurred, and the process passage rate was 60%. The entanglement value of this carbon fiber measured by the hook drop method was 110 (1 / m), and the CV value (standard deviation divided by the average value) indicating the variation was 45%. The tensile strength of this carbon fiber by epoxy resin strand method is 30
The tensile modulus was 5 kgf / mm 2 and the tensile modulus was 23 tf / mm 2 .

【0046】この炭素繊維を縦糸として用いた以外は、
実施例1と同様にして、平織組織からなる目付300g/m2
の一方向織物を作成した。織物作成時の操業性は炭素繊
維製造工程と同様、巻きつき等による糸切れの発生が多
発し工程通過率は50%であった。工程を通過した糸に
ついて、上記と同様の方法で成形体を得た。繊維体積含
有率は50%で、成形した硬化板の引張破断強度は65kg
f/mm2 、弾性は6,000kgf/mm2であった。
Except that this carbon fiber was used as a warp,
In the same manner as in Example 1, a basis weight of a plain weave structure of 300 g / m 2
Was made. The operability at the time of fabric production was similar to that of the carbon fiber production process, in which thread breakage occurred frequently due to winding and the like, and the process passage rate was 50%. About the thread which passed through the process, the molded object was obtained by the same method as the above. The fiber volume content is 50%, and the tensile strength at break of the cured plate is 65kg.
f / mm 2 and elasticity were 6,000 kgf / mm 2 .

【0047】以上の実施例1、2および比較例1〜5の
結果を表1にまとめた。
The results of Examples 1 and 2 and Comparative Examples 1 to 5 are summarized in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】以上説明したように、本発明の炭素繊維
およびその製造方法によれば、25,000デニール以
上の繊度でかつフックドロップ法における繊維交絡度C
F値が10〜100(1/m)の範囲にある太デニールの炭
素繊維としたので、優れた樹脂含浸性を確保しつつ太物
の繊維束形態となすことができ、高次加工における作業
性向上、設備のコンパクト化を実現でき、さらには優れ
た性能のFRPを得ることができる。
As described above, according to the carbon fiber of the present invention and the method for producing the same, the fineness of the fiber is 25,000 denier or more and the fiber entanglement C in the hook drop method.
Since the F value is in the range of 10 to 100 (1 / m), it is made of thick denier carbon fiber, so that it can be formed into a thick fiber bundle form while ensuring excellent resin impregnation, and work in high-order processing Thus, it is possible to improve the performance and make the equipment compact, and to obtain an FRP with excellent performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アクリロニトリル系重合体繊維束紡出部の平面
図である。
FIG. 1 is a plan view of an acrylonitrile-based polymer fiber bundle spinning unit.

【符号の説明】[Explanation of symbols]

1 口金 2 引き取りガイド 3 凝固浴 4 アクリロニトリル系重合体繊維束 DESCRIPTION OF SYMBOLS 1 Cap 2 Pickup guide 3 Coagulation bath 4 Acrylonitrile polymer fiber bundle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊度25,000デニール以上の実質的
に撚りのない繊維束に集束された炭素繊維であって、フ
ックドロップ法における繊維交絡値CF値が10〜10
0(1/m)の範囲にあることを特徴とする炭素繊維。
1. A carbon fiber bundled into a substantially twistless fiber bundle having a fineness of 25,000 denier or more, and having a fiber entanglement value CF of 10 to 10 in a hook drop method.
Carbon fiber characterized by being in the range of 0 (1 / m).
【請求項2】 アクリロニトリル系重合体を口金より紡
出して得た繊維をガイドにより集束して得られる、フッ
クドロップ法による繊維交絡値CF値が10〜40(1/
m)の範囲にあるポリアクリロニトリル系繊維の束を、
酸化性雰囲気中200 〜300 ℃で耐炎化した後、不活性雰
囲気中500 〜1500℃で炭化し、繊度25,000デニー
ル以上の炭素繊維とすることを特徴とする、炭素繊維の
製造方法。
2. A fiber entanglement CF value by a hook drop method obtained by bundling a fiber obtained by spinning an acrylonitrile-based polymer from a die with a guide is 10 to 40 (1/1).
m) a bundle of polyacrylonitrile fibers in the range of
A method for producing carbon fibers, comprising: after oxidizing at 200 to 300 ° C in an oxidizing atmosphere, carbonizing at 500 to 1500 ° C in an inert atmosphere to obtain carbon fibers having a fineness of 25,000 denier or more.
【請求項3】 口金の口径aが100mm 以上であり、か
つ、口金の口径a、ガイド上での繊維の糸幅bおよび口
金とガイドとの距離cが次式の関係にあることを特徴と
する、請求項2に記載の炭素繊維の製造方法。 0.02≧tanθ=(a−b)/2c≧0.006
3. The method according to claim 1, wherein the diameter a of the mouthpiece is 100 mm or more, and the diameter a of the mouthpiece, the thread width b of the fiber on the guide, and the distance c between the mouthpiece and the guide have the following relationship. The method for producing a carbon fiber according to claim 2, wherein 0.02 ≧ tan θ = (ab) /2c≧0.006
【請求項4】 ポリアクリロニトリル系繊維に対して、
糸条に対し直角方向から0.2 〜2kgf/cm2 の高速流体を
吹き付けることを特徴とする、請求項2または3に記載
の炭素繊維の製造方法。
4. A polyacrylonitrile-based fiber,
The method for producing carbon fibers according to claim 2 or 3, wherein a high-speed fluid of 0.2 to 2 kgf / cm2 is sprayed from a direction perpendicular to the yarn.
JP35667196A 1996-12-27 1996-12-27 Carbon yarn and its production Pending JPH10195718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35667196A JPH10195718A (en) 1996-12-27 1996-12-27 Carbon yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35667196A JPH10195718A (en) 1996-12-27 1996-12-27 Carbon yarn and its production

Publications (1)

Publication Number Publication Date
JPH10195718A true JPH10195718A (en) 1998-07-28

Family

ID=18450207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35667196A Pending JPH10195718A (en) 1996-12-27 1996-12-27 Carbon yarn and its production

Country Status (1)

Country Link
JP (1) JPH10195718A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003773A1 (en) * 1999-07-13 2001-01-18 Shenxu He High power ultrasound transmitter
JP2015067910A (en) * 2013-09-27 2015-04-13 東レ株式会社 Carbon fiber and manufacturing method thereof
JP2015117442A (en) * 2013-12-18 2015-06-25 三菱レイヨン株式会社 Reinforcing fiber woven fabric and method for producing the same
JP2016506460A (en) * 2013-04-18 2016-03-03 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Carbon fiber manufacturing method
WO2019244830A1 (en) 2018-06-18 2019-12-26 東レ株式会社 Carbon fiber and method for producing same
CN113584875A (en) * 2021-07-30 2021-11-02 北京化工大学常州先进材料研究院 Modification method of large-tow polyacrylonitrile fibers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003773A1 (en) * 1999-07-13 2001-01-18 Shenxu He High power ultrasound transmitter
JP2016506460A (en) * 2013-04-18 2016-03-03 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Carbon fiber manufacturing method
JP2015067910A (en) * 2013-09-27 2015-04-13 東レ株式会社 Carbon fiber and manufacturing method thereof
JP2015117442A (en) * 2013-12-18 2015-06-25 三菱レイヨン株式会社 Reinforcing fiber woven fabric and method for producing the same
WO2019244830A1 (en) 2018-06-18 2019-12-26 東レ株式会社 Carbon fiber and method for producing same
KR20210019029A (en) 2018-06-18 2021-02-19 도레이 카부시키가이샤 Carbon fiber and its manufacturing method
CN113584875A (en) * 2021-07-30 2021-11-02 北京化工大学常州先进材料研究院 Modification method of large-tow polyacrylonitrile fibers

Similar Documents

Publication Publication Date Title
JP5264150B2 (en) Carbon fiber strand and method for producing the same
JP5100758B2 (en) Carbon fiber strand and method for producing the same
KR100473126B1 (en) Carbon Fiber Precursor Fiber Bundle
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
JP2015067910A (en) Carbon fiber and manufacturing method thereof
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
KR102669949B1 (en) Carbon fiber bundle and method of manufacturing the same
JP6575696B1 (en) Carbon fiber bundle and method for producing the same
JPH10195718A (en) Carbon yarn and its production
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
KR102212026B1 (en) Carbon fiber manufacturing method and carbon fiber using the same
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2001049536A (en) Production of carbon fiber
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP4887164B2 (en) Carbon fiber manufacturing method
JPH08158163A (en) Carbon fiber bundle and its production
JP2023146345A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle
JP2024081112A (en) Unidirectional composite, spar cap and wind turbine blade

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A02