WO2019244830A1 - Carbon fiber and method for producing same - Google Patents

Carbon fiber and method for producing same Download PDF

Info

Publication number
WO2019244830A1
WO2019244830A1 PCT/JP2019/023851 JP2019023851W WO2019244830A1 WO 2019244830 A1 WO2019244830 A1 WO 2019244830A1 JP 2019023851 W JP2019023851 W JP 2019023851W WO 2019244830 A1 WO2019244830 A1 WO 2019244830A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber
elastic modulus
fiber bundle
gpa
Prior art date
Application number
PCT/JP2019/023851
Other languages
French (fr)
Japanese (ja)
Inventor
奥田治己
渡邉潤
松本直浩
田中文彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/972,068 priority Critical patent/US20210115597A1/en
Priority to KR1020207037337A priority patent/KR20210019029A/en
Priority to MX2020013140A priority patent/MX2020013140A/en
Priority to EP19822232.5A priority patent/EP3808880A4/en
Priority to CN201980039521.9A priority patent/CN112368432B/en
Priority to JP2019538462A priority patent/JP6702511B1/en
Publication of WO2019244830A1 publication Critical patent/WO2019244830A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent

Definitions

  • Patent Documents 4 to 7 propose a technique for improving the processability in a carbonization step by adding entanglement to a carbon fiber precursor fiber bundle, and Patent Documents 8 and 9 by adding twist.
  • Patent Document 10 discloses that the carbon fiber and the matrix are formed by increasing the strand elastic modulus of the obtained carbon fiber by controlling the test length dependence of the pre-carbonized fiber bundle by entanglement or twisting and carbonizing with high tension. There has been proposed a technique for suppressing a decrease in the adhesiveness with the adhesive.
  • Patent Document 12 proposes a carbon fiber in which a decrease in mechanical properties is suppressed even when the diameter of a single fiber is large.
  • the conventional technology has the following problems.
  • Patent Documents 1 and 2 the molecular weight of the polyacrylonitrile copolymer is controlled.
  • the effect of increasing the critical stretching tension in the carbonization step is small, and a large improvement in strand elastic modulus cannot be expected.
  • Patent Document 3 although the stretching ratio up to the preliminary carbonization step is set to be high, the stretching ratio in the carbonization step that easily improves the strand elastic modulus of the carbon fiber is low, and a large improvement in strand elasticity cannot be expected.
  • the stretching ratio up to the preliminary carbonization step is set to be high, the stretching ratio in the carbonization step that easily improves the strand elastic modulus of the carbon fiber is low, and a large improvement in strand elasticity cannot be expected.
  • Patent Documents 4 to 9 no attention was paid to increasing the draw ratio in the carbonization step, and there was no idea to pay attention to them.
  • Patent Document 10 shows that the strand elastic modulus, the adhesiveness to the matrix, and the strand strength can be compatible at a high level, and that the passability in the carbonization step is also good.
  • no attention has been paid to the formability at the time of obtaining a carbon fiber reinforced composite material, or fiber breakage when used as a discontinuous fiber, and there is no idea to pay attention to them.
  • Patent Documents 11 and 12 do not pay special attention to the draw ratio in the carbonization step.
  • the strand elastic modulus is increased to 343 GPa at maximum by increasing the carbonization temperature.
  • conventional approaches to increasing the carbonization temperature tend to result in poor moldability in obtaining carbon fiber reinforced composites, as with commercially available high modulus grade carbon fibers.
  • a first aspect of the carbon fiber of the present invention is a carbon fiber having a strand elastic modulus of 360 GPa or more, a strand strength of 3.5 GPa or more, and a single fiber diameter of 6.0 ⁇ m or more. And a carbon fiber satisfying the following requirements (A) or (B).
  • A) or B When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more.
  • the total fineness which is the product of the fiber fineness (g / km) and the number of filaments (lines), is 740 g / km or more.
  • the carbon fiber of the present invention is a carbon fiber that has both excellent tensile modulus and processability into a composite material, and easily maintains the fiber length even when used as a discontinuous fiber.
  • the carbon fiber of the present invention is effective for reducing the required amount of carbon fiber and improving the productivity and mechanical properties of the composite material.
  • a single fiber of carbon fibers and an aggregate thereof are simply referred to as carbon fibers.
  • the aggregate of single fibers of carbon fibers in the present invention includes various forms such as a bundle form, a web form, and a composite form thereof. The method for producing the carbon fiber of the present invention will be described later.
  • the strand elastic modulus of the carbon fiber is preferably as high as possible.
  • the strand elastic modulus can be evaluated according to the tensile test of the resin-impregnated strand described in JIS R7608: 2004. The details of the method for evaluating the strand elastic modulus will be described later.
  • the strand elastic modulus can be controlled by various known methods, in the present invention, it is preferable to control the strand elasticity by the tension in the carbonization treatment.
  • the method for evaluating the diameter of the single fiber will be described later, but it may be calculated from the specific gravity, the basis weight, and the number of filaments of the fiber bundle, or may be evaluated by observation with a scanning electron microscope. As long as the evaluation device used is correctly calibrated, an equivalent result can be obtained by any method.
  • a circle equivalent diameter refers to the diameter of a perfect circle having a cross-sectional area equal to the measured cross-sectional area of a single fiber.
  • the single fiber diameter can be controlled by the discharge amount from the die during spinning of the carbon fiber precursor fiber bundle, the draw ratio in each step, and the like.
  • a first aspect of the carbon fiber of the present invention is a carbon fiber that satisfies one or more of the following requirements in addition to the requirements regarding the above-described strand elastic modulus, strand strength, and single fiber diameter.
  • B When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more.
  • Strand elastic modulus is satisfied by satisfying either or both of these requirements (a) and (b). Is high, the decrease in molding processability can be effectively suppressed, and the industrial value is great.
  • the number of remaining twists is preferably 2 turns / m or more, more preferably 5 turns / m or more, and further preferably 10 turns / m or more. It is more preferably at least 16 turns / m, more preferably at least 20 turns / m, even more preferably at least 30 turns / m, even more preferably at least 46 turns / m.
  • the fixed end is an arbitrary portion on the fiber bundle that is fixed so as not to rotate around the longitudinal direction of the fiber bundle, and restricts the rotation of the fiber bundle using an adhesive tape or the like.
  • the free end refers to an end that appears when a continuous fiber bundle is cut in a cross section perpendicular to the longitudinal direction, is not fixed to anything, and has an axis in the longitudinal direction of the fiber bundle. It is an end that can be rotated.
  • the remaining number of twists refers to the number of twists per meter of permanent twists of a fiber bundle of carbon fibers.
  • a second aspect of the carbon fiber of the present invention is a carbon fiber in which the single fiber elastic modulus Es (GPa) and the loop breaking load A (N) satisfy the relationship of the formula (1).
  • a ⁇ ⁇ 0.0017 ⁇ Es + 1.02 Formula (1) The constant term in the formula (1) is preferably 1.04, more preferably 1.06, further preferably 1.08, and particularly preferably 1.10.
  • the loop breaking load corresponds to a load at which a break occurs when a single fiber is bent in a loop shape, and is evaluated by a method described later.
  • the single fiber elastic modulus is a tensile elastic modulus of carbon fiber as a single fiber, and has a certain correlation with the strand elastic modulus.
  • the single fiber elastic modulus is described in detail later, but a single fiber tensile test is performed with a plurality of test lengths, the slope of the stress-strain curve at each test length is calculated, and the test length dependency is considered. By doing so, it can be obtained by removing the influence of the compliance of the device system.
  • the single fiber elastic modulus is increased, the loop breaking load tends to decrease.
  • the loop breaking load is low, the carbon fiber is easily broken by the force in the bending direction during the forming process as the discontinuous fiber, and the effect of improving the rigidity of the carbon fiber reinforced composite material is reduced by shortening the fiber length.
  • the single fiber diameter increases. Even when the thickness is 6.0 ⁇ m or more, both can be compatible at a high level. Also, the larger the single fiber diameter, the more the carbon fiber reinforced composite material, the more the fuzzing due to the friction between the carbon fibers when unwinding from the bobbin and the friction with the guide member such as a roller can be further suppressed, and the forming process Can be enhanced.
  • the sizing agent may be removed by a known method, such as a method of removing the sizing agent with a solvent in which the sizing agent is soluble.
  • a known method such as a method of removing the sizing agent with a solvent in which the sizing agent is soluble.
  • the number of twists is 5 to 80 turns / m. If the number of twists is within the above range, the alignment of the fiber bundles can be controlled with less fluff, and as a result, the stress transmission between the fiber bundles becomes smooth, and the knot strength tends to increase. From the viewpoint of improving the handleability during molding, the number of twists in the third embodiment is preferably from 20 to 80 turns / m.
  • the ⁇ 0.5 power of the crystallite size Lc is an index indicating a certain strength of a material. It can be interpreted that the larger Lc- 0.5 is, the stronger the material is, and the smaller Lc- 0.5 is, the more brittle the material is. Therefore, satisfying the expression (4) means that the product of the strand elastic modulus and the toughness of the material is equal to or more than a certain value, and the strand elastic modulus and the toughness of the material are compatible at a high level. It is thought to mean that.
  • the carbon fiber satisfying the formula (4) can be obtained by increasing the drawing tension in the carbonization step.
  • the surface oxygen concentration O / C is preferably 0.05 to 0.50.
  • the surface oxygen concentration is an index indicating the amount of a functional group containing an oxygen atom introduced into the surface of the carbon fiber, and can be evaluated by photoelectron spectroscopy described later. The higher the surface oxygen concentration, the better the adhesion between the carbon fiber and the matrix, and the easier it is to improve the mechanical properties of the carbon fiber reinforced composite material.
  • the surface oxygen concentration O / C is more preferably 0.07 to 0.30. When the surface oxygen concentration O / C is 0.05 or more, the adhesion to the matrix is at a sufficient level. When the surface oxygen concentration is 0.50 or less, peeling of the carbon fiber surface due to excessive oxidation is suppressed. The mechanical properties of are improved. A method for keeping the surface oxygen concentration O / C within the above range will be described later.
  • the carbon fiber precursor fiber bundle which is the basis of the carbon fiber of the present invention can be obtained by spinning a spinning solution of a polyacrylonitrile copolymer.
  • the above-mentioned polyacrylonitrile copolymer is dissolved in a solvent in which the polyacrylonitrile copolymer is soluble, such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, nitric acid, an aqueous solution of zinc chloride, and an aqueous solution of rhoda soda, to obtain a spinning solution.
  • a solvent in which the polyacrylonitrile copolymer is soluble, such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, nitric acid, an aqueous solution of zinc chloride, and an aqueous solution of rhoda soda, to obtain a spinning solution.
  • a solvent in which the polyacrylonitrile copolymer such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, nitric acid, an aqueous solution of zinc chloride, and an aqueous solution of rhoda soda.
  • the single fiber fineness of the carbon fiber precursor fiber bundle can be controlled by a known method such as a discharge amount of a spinning solution from a die and a draw ratio.
  • the obtained carbon fiber precursor fiber bundle is usually in the form of continuous fiber. Further, the number of filaments per yarn is preferably 1,000 to 80,000. In the present invention, the carbon fiber precursor fiber bundle may be twisted as necessary to adjust the number of filaments per filament of the obtained carbon fiber.
  • the oxidizing treatment of the carbon fiber precursor fiber bundle is preferably performed in an air atmosphere at a temperature in the range of 200 to 300 ° C.
  • the carbon fiber precursor fiber bundle is subjected to a flame-resistant treatment, and becomes a flame-resistant fiber bundle.
  • the carbonization of the oxidized fiber bundle is performed subsequent to the oxidization.
  • the oxidized fiber bundle obtained by the oxidization treatment is heat-treated in an inert atmosphere at a maximum temperature of 500 to 1000 ° C. until the density becomes 1.5 to 1.8 g / cm 3. Is preferred.
  • the oxidized fiber bundle is subjected to a pre-carbonization treatment to form a pre-carbonized fiber bundle.
  • the pre-carbonized fiber bundle is carbonized.
  • the preliminary carbonized fiber bundle obtained by the preliminary carbonization treatment is subjected to a carbonization treatment in an inert atmosphere.
  • the maximum temperature of the carbonization treatment is preferably 1500 ° C. or higher, more preferably 2300 ° C. or higher.
  • the highest temperature in the carbonization step is preferably higher from the viewpoint of increasing the strand elastic modulus and single fiber elastic modulus of the obtained carbon fiber, and if it is 1500 ° C or higher, the strand elastic modulus, single fiber elastic modulus and knot strength, and the loop A carbon fiber having a high level of breaking load can be obtained.
  • the tension in the carbonization step is 5 mN / dtex or more, preferably 5 to 18 mN / dtex, more preferably 7 to 18 mN / dtex, and more preferably 9 to 18 mN / dtex. Is particularly preferred.
  • the tension in the carbonization step is the tension (mN) measured on the exit side of the carbonization furnace, and the total fineness (dtex) which is the product of the single fiber fineness (dtex) of the used carbon fiber precursor fiber bundle and the number of filaments. Shall be removed.
  • the tension is preferably higher, but if too high, the permeability of the carbonization step and the quality of the obtained carbon fiber may be reduced, It is good to set in consideration of both.
  • a method for producing a carbon fiber that further satisfies the following requirement (c) or (ii) is more preferable. It is more preferable that both (c) and (d) are satisfied.
  • C) The number of twists of the fiber bundle to be subjected to the carbonization treatment is 2 turns / m or more.
  • the number of twists of the fiber bundle during the carbonization treatment is 2 turns / m or more.
  • the number of twists is preferably 5 turns / m or more, more preferably 10 turns / m or more, further preferably 16 turns / m or more, and still more preferably 30 turns / m or more.
  • 46 turns / m or more Although the upper limit of the number of twists is not particularly limited, it is effective to reduce the number of twists to approximately 60 turns / m or less in order to increase the productivity and the stretching limit in the carbonization step.
  • the number of twists of the fiber bundle during the carbonization treatment is the number of twists of the fiber bundle that has been carbonized. If the tension in the carbonization step is increased without imparting twist, single fiber breakage occurs, and the fluff increases, thereby reducing the passability of the carbonization step or causing the entire fiber bundle to break, In some cases, the tension cannot be maintained.
  • the number of twists is such that the carbon fiber precursor fiber bundle or the oxidized fiber bundle, the pre-carbonized fiber bundle is once wound on a bobbin, and then, when the fiber bundle is unwound, the surface orthogonal to the unwinding direction of the bobbin.
  • the number of filaments of the fiber bundle during the carbonization treatment is preferably 10,000 or more, more preferably 15,000 or more, and even more preferably 20,000 or more. If the number of twists of the fiber bundle during the carbonization treatment is the same, the larger the number of filaments, the greater the distance between the center axis of the twist and the outer periphery of the fiber bundle. The single fiber elastic modulus of the obtained carbon fiber can be effectively increased.
  • the upper limit of the number of filaments is not particularly limited, and may be set according to the intended use.
  • the inert gas used in the inert atmosphere for example, nitrogen, argon, xenon and the like are preferably exemplified, and nitrogen is preferably used from an economic viewpoint.
  • the carbon fiber bundle obtained by the above manufacturing method may be subjected to additional graphitization treatment in an inert atmosphere up to 3000 ° C., and the elastic modulus of the single fiber may be appropriately adjusted according to the application.
  • the carbon fiber bundle obtained as described above is preferably subjected to a surface treatment after the carbonization treatment to introduce a functional group containing an oxygen atom in order to improve the adhesive strength between the carbon fiber and the matrix.
  • a surface treatment method gas phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used, but liquid phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment.
  • the method of liquid phase electrolytic oxidation is not particularly limited, and may be a known method.
  • the amount of current at the time of electrolytic surface treatment for performing liquid phase electrolytic oxidation is preferably 2 to 100 c / g, and more preferably 2 to 80 c / g.
  • the amount of current at the time of electrolytic surface treatment is 2 c / g or more, a sufficient oxygen-containing functional group is introduced into the carbon fiber surface, adhesion to resin is easily obtained, and a decrease in the elastic modulus of the composite material can be suppressed. If it is not more than g, the formation of defects on the carbon fiber surface due to the electrolytic surface treatment can be suppressed, and the decrease in loop breaking load can be suppressed.
  • a functional group containing an oxygen atom can be introduced into the carbon fiber bundle, and the surface oxygen concentration O / C of the carbon fiber bundle can be adjusted.
  • the current amount and the treatment time in the surface treatment may be adjusted by a known method.
  • a sizing agent can be attached to the carbon fiber bundle so as to further improve the handleability and high-order workability, or to increase the adhesive strength between the carbon fiber and the matrix.
  • the sizing agent can be appropriately selected according to the type of matrix used for the carbon fiber reinforced composite material.
  • the amount of adhesion and the like may be finely adjusted from the viewpoint of handleability and higher workability.
  • the adhesive strength between the carbon fiber and the matrix may be reduced due to the thermal decomposition product of the sizing agent, such as when using a matrix with a high molding temperature, the sizing adhesion amount should be reduced as much as possible, and the sizing treatment should be performed. Need not be performed.
  • the strand strength and the strand elastic modulus of the carbon fiber are determined according to the following procedure in accordance with the resin impregnated strand test method of JIS R7608: 2004. However, in the case where the fiber bundle of carbon fibers has a twist, it is evaluated after untwisting by giving the same number of twists in reverse rotation as the number of twists.
  • the curing conditions normal pressure, a temperature of 125 ° C. and a time of 30 minutes are used. Ten strands of the carbon fiber bundle are measured, and the average value is defined as the strand strength and the strand elastic modulus. Note that the strain range for calculating the strand elastic modulus is 0.1 to 0.6%.
  • a guide bar is installed at a height of 60 cm from the horizontal plane, and an arbitrary position of the carbon fiber bundle is fixed to the guide bar with a tape, and then the carbon fiber bundle is separated at a position 50 cm away from the fixed end. Cut to form free ends.
  • the free end is sealed so as to be sandwiched between tapes, and processed so as not to unravel into single fiber units.
  • the number of turns n (turn) is recorded.
  • the number of remaining twists is calculated by the following equation. The average of the above three measurements is taken as the number of remaining twists in the present invention.
  • Apparent single fiber elastic modulus (GPa) Slope in the range of 0.3 to 0.7% strain (MPa /%) / 10
  • E app (GPa) the average value of the apparent single fiber elastic modulus was calculated, and the reciprocal 1 / E app (GPa ⁇ 1 ) was plotted on the vertical axis (Y axis).
  • the reciprocal 1 / L 0 (mm ⁇ 1 ) of the gauge length L 0 (mm) is plotted on the horizontal axis (X axis).
  • the Y intercept in such a plot is read, and the reciprocal of the Y intercept is the single fiber elastic modulus after compliance correction, and this value is used as the single fiber elastic modulus in the present invention.
  • ⁇ Loop breaking load> Place a single fiber about 10cm long on a glass slide, drop 1-2 drops of glycerin at the center and twist both ends of the single fiber lightly in the circumferential direction to form a loop at the center of the single fiber. Put the cover glass on. This is set on the stage of a microscope, and a moving image is shot under the conditions that the total magnification is 100 times and the frame rate is 15 frames / second. While adjusting the stage each time so that the loop does not deviate from the field of view, the both ends of the looped fiber are pulled at a constant speed in the opposite direction while being pressed with a finger toward the slide glass, whereby strain is applied until the single fiber breaks.
  • ⁇ Knotting strength of carbon fiber bundle> For measurement of knot strength, a carbon fiber bundle having a weight loss rate of 0.15% or less when heated at 450 ° C. was used. When evaluating the carbon fiber bundle to which the sizing has been applied, the sizing agent is removed by washing in acetone, and the dried carbon fiber bundle is used. After drying, the weight loss rate of the carbon fiber bundle when heated at 450 ° C. is evaluated, and the carbon fiber bundle is repeatedly washed until it becomes 0.15% or less.
  • ⁇ Crystallite size Lc and degree of crystal orientation ⁇ 002 of carbon fiber bundle> A carbon fiber bundle to be subjected to measurement is aligned and solidified using a collodion-alcohol solution to prepare a square pillar measurement sample having a length of 4 cm and a side of 1 mm. The prepared measurement sample is measured using a wide-angle X-ray diffractometer under the following conditions.
  • Crystallite size (nm) K ⁇ / ⁇ 0 cos ⁇ B
  • K 1.0, ⁇ : 0.15418 nm (wavelength of X-ray)
  • ⁇ 0 ( ⁇ E 2 ⁇ 1 2 ) 1/2
  • ⁇ E apparent half width (measured value) rad
  • ⁇ 1 1.046 ⁇ 10 ⁇ 2 rad
  • B Bragg diffraction angle.
  • XRD-6100 manufactured by Shimadzu Corporation was used as the wide-angle X-ray diffractometer.
  • Single fibers are randomly extracted from the carbon fiber bundle, and wide-angle X-ray diffraction measurement is performed using an apparatus capable of using an X-ray ⁇ -beam.
  • the measurement is carried out using a microbeam having a wavelength of 0.1305 nm arranged in a shape of 3 ⁇ m in the fiber axis direction and 1 ⁇ m in the fiber diameter direction while scanning the single fiber in steps of 1 ⁇ m in the fiber diameter direction.
  • the irradiation time for each step is 2 seconds.
  • the camera length which is the distance between the detector and the sample, is set to fall within the range of 40 to 200 mm.
  • ⁇ 002 (s) (%) (180 ⁇ FWHM ⁇ ) / 180 ⁇ 100 (%).
  • the surface oxygen concentration O / C of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, the carbon fiber from which dirt attached to the surface has been removed using a solvent is cut into about 20 mm and spread on a copper sample support. Next, the sample support is set in the sample chamber, and the inside of the sample chamber is maintained at 1 ⁇ 10 ⁇ 8 Torr. Subsequently, using AlK 1, 2 as an X-ray source and measures the photoelectron escape angle as 90 °.
  • Example 10 A carbon fiber bundle was obtained in the same manner as in Example 9 except that the number of twists was changed to 5 turns / m. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
  • Example 6 A carbon fiber bundle was prepared in the same manner as in Example 2 except that a carbon fiber precursor fiber bundle having a single fiber fineness of 0.8 dtex was used, the tension during the carbonization treatment was 10.3 mN / dtex, and the maximum temperature was 1900 ° C. Got. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Since the number of remaining twists is out of the range of the present invention, the grade of the formability is B and lower than that of Example 2. Table 2 shows the results of the evaluation of the obtained carbon fiber bundle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)

Abstract

The present invention addresses the problem of providing a carbon fiber for a carbon fiber reinforced composite material which is not easily damaged during a molding process and exhibits an excellent elastic modulus. The carbon fiber has a strand elastic modulus of at least 360 GPa, a strand strength of at least 3.5 GPa, and a single fiber diameter of at least 6.0 µm, and satisfies one or more of the requirements below. (A) When one end is a fixed end and the other end is a free end that can rotate about the axis of a fiber bundle, the remaining twist number is at least 2 turns/m. (B) The total fineness, which is the product of the single fiber fineness (g/km) as a carbon fiber and the number of filaments (counts), is at least 740 g/km. In addition, the single fiber elastic modulus Es (Gpa) and the loop breaking load A (N) of the carbon fiber satisfy the relationship of expression (1). (1): A≥-0.0017×Es+1.02. Furthermore, the single fiber diameter of the carbon fiber is at least 6.0 µm, the relationship between the strand elastic modulus E (GPa) of the carbon fiber and the knot strength B (MPa) of the carbon fiber as evaluated at a heating loss rate of 0.15% or less at 450°C satisfies expression (2), and the twist number of the carbon fiber is 20-80 turns/m. (2): B≥6.7×109×E-2.85

Description

炭素繊維およびその製造方法Carbon fiber and method for producing the same
 本発明は、炭素繊維およびその製造方法に関するものである。 The present invention relates to a carbon fiber and a method for producing the same.
 炭素繊維は比強度、比弾性率に優れ、炭素繊維強化複合材料の強化繊維として用いることにより部材の大幅な軽量化が可能となることから、エネルギー利用効率の高い社会の実現に不可欠な材料の一つとして幅広い分野で利用されている。近年、自動車や電子機器筐体などを初めとしたコスト低減の要求の強い分野においても適用が進んでおり、成形コストまで含めた最終部材コストの低減が強く求められている。 Carbon fiber has excellent specific strength and specific elastic modulus, and by using it as a reinforcing fiber of carbon fiber reinforced composite material, it is possible to significantly reduce the weight of members, making it an indispensable material for realizing a society with high energy use efficiency. One of them is used in a wide range of fields. In recent years, applications have been advanced in fields where there is a strong demand for cost reduction, such as automobiles and electronic equipment housings, and there is a strong demand for reduction of final member costs including molding costs.
 最終部材コストを効果的に低減するためには、炭素繊維自身のコストダウンだけでなく、炭素繊維の性能向上による必要量低減や成形加工性の改善による成形コスト低減といった総合的なアプローチが重要である。 In order to effectively reduce the cost of final components, it is important not only to reduce the cost of the carbon fiber itself, but also to reduce the required amount by improving the performance of the carbon fiber and reduce the molding cost by improving the moldability. is there.
 しかしながら、例えば最終部材としての重要特性の一つである剛性を維持しつつ炭素繊維の使用量を減らすこと目指す場合、既存の高弾性率炭素繊維を単純に適用しただけでは、必ずしも最終部材のコストダウンにはならないことが多い。これは既存の高弾性率炭素繊維の生産性が低く、高価となりやすいことや、成形加工性が低いことにより最終部材までのトータルでの加工コストが高くなりやすいことによる。炭素繊維の成形加工性は、例えば糸束としてのハンドリング性の良さや、毛羽立ちにくさ、炭素繊維強化複合材料を連続生産する場合は炭素繊維ボビンの切り替え時に必要となる糸繋ぎのしやすさなど、最終部材になるまでの様々な工程での取扱い性や工程通過性によって決まる。 However, for example, when aiming to reduce the amount of carbon fiber used while maintaining rigidity, which is one of the important properties as a final member, simply applying an existing high-modulus carbon fiber does not necessarily require the cost of the final member. Often it does not go down. This is because the productivity of existing high-modulus carbon fibers is low and tends to be expensive, and the low processability tends to increase the total processing cost up to the final member. The formability of carbon fiber is, for example, good handling properties as a yarn bundle, difficulty in fluffing, and ease of thread connection required when switching carbon fiber bobbins when continuously producing carbon fiber reinforced composite materials. It is determined by the ease of handling in various processes until the final member and the processability.
 また近年は、特にコストを低減することを重視する用途を中心に、炭素繊維を不連続繊維として利用するケースが増えてきている。一般的に、炭素繊維を不連続繊維として利用する場合、成形加工プロセスにおけるせん断や折り曲げにより、炭素繊維の繊維長が短くなりやすい。既存の高弾性率炭素繊維は特にこの傾向が強く、炭素繊維の引張弾性率が高くても、それに応じて最終部材の剛性が効果的に向上するわけではない。 In recent years, the use of carbon fibers as discontinuous fibers has been increasing, especially for applications that emphasize cost reduction. Generally, when carbon fibers are used as discontinuous fibers, the fiber length of the carbon fibers tends to be short due to shearing or bending in the molding process. Existing high modulus carbon fibers are particularly prone to this tendency, and even if the tensile modulus of the carbon fibers is high, the rigidity of the final member is not effectively improved accordingly.
 最も広く利用されているポリアクリロニトリル系炭素繊維は、炭素繊維前駆体繊維を200~300℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、300~2000℃の不活性雰囲気下で炭素化する炭素化工程を経て工業的に製造される。また、ポリアクリロニトリル系の高弾性率炭素繊維は、さらに最高温度3000℃の不活性雰囲気下で黒鉛化する黒鉛化工程を経て工業的に製造される。かかる黒鉛化工程は、炭素繊維の引張弾性率を効果的に高めることができる反面、高温に対応した設備が必要となったり、炭素繊維中の結晶成長が促進されることによって、得られる炭素繊維の引張強度や圧縮強度などが低いものとなったりしやすい。そして、このような高弾性率炭素繊維は先述した炭素繊維としての生産性や、炭素繊維強化複合材料を得るにあたっての成形加工性が低いものとなりやすく、不連続繊維として用いた場合に繊維長が短くなりやすい。 The most widely used polyacrylonitrile-based carbon fiber is an oxidizing step in which a carbon fiber precursor fiber is converted into an oxidizing fiber under an oxidizing atmosphere at 200 to 300 ° C, and a carbon fiber under an inert atmosphere at 300 to 2000 ° C. It is industrially manufactured through a carbonization process. Polyacrylonitrile-based high modulus carbon fibers are industrially manufactured through a graphitization step of further graphitization in an inert atmosphere at a maximum temperature of 3000 ° C. Such a graphitization step can effectively increase the tensile modulus of the carbon fiber, but requires equipment corresponding to a high temperature, or promotes crystal growth in the carbon fiber, thereby obtaining the carbon fiber obtained. Tends to have low tensile strength and compressive strength. And such a high modulus carbon fiber tends to have low productivity as a carbon fiber as described above, and low moldability in obtaining a carbon fiber reinforced composite material, and when used as a discontinuous fiber, the fiber length is short. Easy to be short.
 黒鉛化以外の方法で炭素繊維の引張弾性率を高める方法もいくつか提案されている。その一つとして炭素繊維の製造工程において高い張力を付与する方法が提案されている。 い く つ か Several methods other than graphitization have been proposed to increase the tensile modulus of carbon fibers. As one of them, a method of applying high tension in a carbon fiber manufacturing process has been proposed.
 特許文献1、2には、ポリアクリロニトリル共重合体の分子量を制御することにより、炭素化工程において高い張力を付与しても、毛羽の発生を抑制できる技術が提案されている。 Patent Documents 1 and 2 propose a technique capable of controlling the generation of fluff by controlling the molecular weight of the polyacrylonitrile copolymer even when a high tension is applied in the carbonization step.
 特許文献3では、耐炎化工程、予備炭素化工程において高延伸することによって、ストランド弾性率を高める技術が提案されている。 Patent Document 3 proposes a technique for increasing the strand elastic modulus by performing high stretching in the flame-proofing step and the preliminary carbonization step.
 さらに、特許文献4~7では炭素繊維前駆体繊維束に交絡を加えることによって、特許文献8および9では撚りを加えることによって炭素化工程における工程通過性を向上させる技術が提案されている。 Further, Patent Documents 4 to 7 propose a technique for improving the processability in a carbonization step by adding entanglement to a carbon fiber precursor fiber bundle, and Patent Documents 8 and 9 by adding twist.
 特許文献10には、交絡や有撚により予備炭素化繊維束の試長依存性を制御して高張力で炭素化することによって、得られる炭素繊維のストランド弾性率を高めつつ、炭素繊維とマトリックスとの接着性の低下を抑制する技術が提案されている。 Patent Document 10 discloses that the carbon fiber and the matrix are formed by increasing the strand elastic modulus of the obtained carbon fiber by controlling the test length dependence of the pre-carbonized fiber bundle by entanglement or twisting and carbonizing with high tension. There has been proposed a technique for suppressing a decrease in the adhesiveness with the adhesive.
 特許文献11には、炭素繊維前駆体繊維束の共重合組成を制御することで、単繊維繊度が大きくても結節強度が高く、成形加工性に優れた炭素繊維が提案されている。 Patent Document 11 proposes a carbon fiber having a high knot strength even with a large single fiber fineness and excellent moldability by controlling the copolymer composition of the carbon fiber precursor fiber bundle.
 また、特許文献12には、同様にして、単繊維直径が太くても機械的特性の低下が抑制された炭素繊維が提案されている。 Similarly, Patent Document 12 proposes a carbon fiber in which a decrease in mechanical properties is suppressed even when the diameter of a single fiber is large.
国際公開第WO2008/047745号International Publication No. WO2008 / 047745 特開2009-256833号公報JP 2009-256833 A 国際公開第WO2008/063886号International Publication No. WO2008 / 063886 特開2001-49536号公報JP-A-2001-49536 特開平10-195718号公報JP-A-10-195718 特開2000-160436号公報JP-A-2000-160436 特公昭47-026964公報Japanese Patent Publication No. 47-026964 特開昭56-091015号公報JP-A-56-091015 特開2002-001725号公報JP 2002-001725 A 特開2014-141761号公報JP 2014-141761 A 国際公開第WO2013/157613号International Publication No. WO2013 / 157613 国際公開第WO2013/157612号International Publication No. WO2013 / 157612
 しかしながら、従来の技術には次のような課題がある。 従 来 However, the conventional technology has the following problems.
 特許文献1、2では、ポリアクリロニトリル共重合体の分子量を制御しているが、それによる炭素化工程における限界延伸張力の向上効果は小さく、大きなストランド弾性率の向上が見込めるものではなかった。 In Patent Documents 1 and 2, the molecular weight of the polyacrylonitrile copolymer is controlled. However, the effect of increasing the critical stretching tension in the carbonization step is small, and a large improvement in strand elastic modulus cannot be expected.
 特許文献3では、予備炭素化工程までの延伸比は高く設定しているものの、炭素繊維のストランド弾性率を向上させやすい炭素化工程における延伸比が低く、大きなストランド弾性率向上が見込めるものではなかった。 In Patent Document 3, although the stretching ratio up to the preliminary carbonization step is set to be high, the stretching ratio in the carbonization step that easily improves the strand elastic modulus of the carbon fiber is low, and a large improvement in strand elasticity cannot be expected. Was.
 特許文献4~9では、炭素化工程の延伸比を高めることには何ら着目されておらず、それらに着目する思想もなかった。 In Patent Documents 4 to 9, no attention was paid to increasing the draw ratio in the carbonization step, and there was no idea to pay attention to them.
 特許文献10では、ストランド弾性率とマトリックスとの接着性、ストランド強度を高いレベルで両立できることが示されており、炭素化工程の通過性も良好であったことが示されている。しかしながら、炭素繊維強化複合材料を得る際の成形加工性や、不連続繊維として用いた際の繊維折損に関しては何ら着目されておらず、それらに着目する思想もなかった。 Patent Document 10 shows that the strand elastic modulus, the adhesiveness to the matrix, and the strand strength can be compatible at a high level, and that the passability in the carbonization step is also good. However, no attention has been paid to the formability at the time of obtaining a carbon fiber reinforced composite material, or fiber breakage when used as a discontinuous fiber, and there is no idea to pay attention to them.
 特許文献11および12では、炭素化工程における延伸比には特段注目されておらず、実施例では炭素化温度を高めることによりストランド弾性率を最高で343GPaまで高めている。記載はされていないものの、炭素化温度を高める従来のアプローチでは、市販の高弾性率グレードの炭素繊維と同様に、炭素繊維強化複合材料を得る際の成形加工性は低いものとなりやすい。また、不連続繊維として用いた際の繊維折損に関しては何ら着目されておらず、それらに着目する思想もなかった。 Patent Documents 11 and 12 do not pay special attention to the draw ratio in the carbonization step. In Examples, the strand elastic modulus is increased to 343 GPa at maximum by increasing the carbonization temperature. Although not described, conventional approaches to increasing the carbonization temperature tend to result in poor moldability in obtaining carbon fiber reinforced composites, as with commercially available high modulus grade carbon fibers. In addition, no attention was paid to fiber breakage when used as discontinuous fibers, and there was no idea to pay attention to them.
 以上まとめると、従来の技術には、炭素繊維の引張弾性率と成形加工性、さらには不連続繊維として利用する際の繊維長維持のしやすさ、を高いレベルで両立させる方法が記載されておらず、最終部材としてのトータルでのコストダウンを実現するためには、これらを高いレベルで両立させる方法の獲得が課題であった。 In summary, the prior art describes a method for achieving a high level of compatibility between the tensile modulus of the carbon fiber and the formability, and the ease of maintaining the fiber length when used as a discontinuous fiber. In order to realize a total cost reduction as a final member, it has been an issue to obtain a method for achieving these at a high level.
 上記の目的を達成するために、本発明の炭素繊維の第1の態様は、ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、さらに以下の要件(イ)または(ロ)を満たす炭素繊維である。
(イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
(ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である。
In order to achieve the above object, a first aspect of the carbon fiber of the present invention is a carbon fiber having a strand elastic modulus of 360 GPa or more, a strand strength of 3.5 GPa or more, and a single fiber diameter of 6.0 μm or more. And a carbon fiber satisfying the following requirements (A) or (B).
(B) When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more. The total fineness, which is the product of the fiber fineness (g / km) and the number of filaments (lines), is 740 g / km or more.
 また、本発明の炭素繊維の第2の態様は、単繊維弾性率Es(GPa)とループ破断荷重A(N)が式(1)の関係を満たす炭素繊維である。
A≧-0.0017×Es+1.02 ・・・式(1)
 また、本発明の炭素繊維の第3の態様は、単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が5~80ターン/mである炭素繊維である。
B≧6.7×10×E-2.85 ・・・式(2)
 また、本発明の炭素繊維の製造方法は、炭素繊維前駆体繊維束を空気雰囲気中において、200~300℃の温度範囲で耐炎化処理を行い、得られた耐炎化繊維束を、不活性雰囲気中で最高温度500~1000℃において、密度1.5~1.8g/cmになるまで熱処理する予備炭素化を行い、さらに得られた予備炭素化繊維束を、不活性雰囲気中で熱処理する炭素化を行う炭素繊維の製造方法であって、炭素繊維前駆体繊維束の単繊維繊度が0.9dtex以上であり、炭素化処理中の張力を5mN/dtex以上に制御し、以下の(ハ)または(ニ)を満たすことを特徴とする。
(ハ)炭素化処理に供する繊維束の撚り数を2ターン/m以上とする
(ニ)得られる炭素繊維の単繊維繊度(g/km)とフィラメント数(本)の積である総繊度を740g/km以上とする
Further, a second aspect of the carbon fiber of the present invention is a carbon fiber in which the single fiber elastic modulus Es (GPa) and the loop breaking load A (N) satisfy the relationship of the formula (1).
A ≧ −0.0017 × Es + 1.02 Formula (1)
In the third aspect of the carbon fiber of the present invention, the knot strength evaluated at a single fiber diameter of 6.0 μm or more, a strand elasticity E (GPa) and a loss on heating at 450 ° C. of 0.15% or less. A carbon fiber whose relationship with B (MPa) satisfies the expression (2) and has a twist number of 5 to 80 turns / m.
B ≧ 6.7 × 10 9 × E -2.85 Formula (2)
Further, in the method for producing carbon fibers according to the present invention, the carbon fiber precursor fiber bundle is subjected to an oxidizing treatment in an air atmosphere at a temperature range of 200 to 300 ° C., and the obtained oxidized fiber bundle is subjected to an inert atmosphere. Pre-carbonization at a maximum temperature of 500 to 1000 ° C. until the density becomes 1.5 to 1.8 g / cm 3 , and the obtained pre-carbonized fiber bundle is heat-treated in an inert atmosphere. A method for producing carbon fiber for carbonization, wherein the single fiber fineness of a carbon fiber precursor fiber bundle is 0.9 dtex or more, and the tension during the carbonization treatment is controlled to 5 mN / dtex or more, and the following (c) ) Or (d).
(C) The number of twists of the fiber bundle to be subjected to the carbonization treatment is 2 turns / m or more. (D) The total fineness which is the product of the single fiber fineness (g / km) of the obtained carbon fiber and the number of filaments (number) is 740 g / km or more
 本発明の炭素繊維は、優れた引張弾性率と複合材料への成形加工性を両立し、不連続繊維として用いた場合でも繊維長を維持しやすい炭素繊維である。本発明の炭素繊維は、炭素繊維の必要量低減、複合材料の生産性および力学特性の向上に有効である。 炭素 The carbon fiber of the present invention is a carbon fiber that has both excellent tensile modulus and processability into a composite material, and easily maintains the fiber length even when used as a discontinuous fiber. The carbon fiber of the present invention is effective for reducing the required amount of carbon fiber and improving the productivity and mechanical properties of the composite material.
 本発明において、炭素繊維の単繊維およびその集合体のことを、単に炭素繊維と呼称する。本発明における炭素繊維の単繊維の集合体としては、束状、ウェブ状、あるいはそれらが複合化されたものなど、種々の形態が含まれる。本発明の炭素繊維の製造方法は後述する。 に お い て In the present invention, a single fiber of carbon fibers and an aggregate thereof are simply referred to as carbon fibers. The aggregate of single fibers of carbon fibers in the present invention includes various forms such as a bundle form, a web form, and a composite form thereof. The method for producing the carbon fiber of the present invention will be described later.
 本発明において、引張弾性率とは、炭素繊維の単繊維引張試験により評価した単繊維弾性率、ならびに後述する方法で評価したストランド弾性率を指す総称である。単繊維弾性率とストランド弾性率の関係は後述する。 引 張 In the present invention, the tensile modulus is a generic term indicating a single fiber modulus evaluated by a single fiber tensile test of carbon fibers and a strand modulus evaluated by a method described later. The relationship between the single fiber elastic modulus and the strand elastic modulus will be described later.
 本発明の炭素繊維の第1の態様は、ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、さらに以下の要件(イ)または(ロ)を満たす炭素繊維である。なお、(イ)および(ロ)の両方を満たせばより好ましい。
(イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
(ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である。
以下、それぞれの要件について説明する。
A first aspect of the carbon fiber of the present invention is a carbon fiber having a strand elastic modulus of 360 GPa or more, a strand strength of 3.5 GPa or more, and a single fiber diameter of 6.0 μm or more. ) Or (b). It is more preferable that both (a) and (b) are satisfied.
(B) When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more. The total fineness, which is the product of the fiber fineness (g / km) and the number of filaments (lines), is 740 g / km or more.
Hereinafter, each requirement will be described.
 本発明の炭素繊維の第1の態様において、ストランド弾性率は360GPa以上である。ストランド弾性率は370GPa以上であることが好ましく、380GPa以上であることがより好ましく、400GPa以上であることがさらに好ましく、440GPa以上であることがさらに好ましい。ストランド弾性率が高いほど、炭素繊維強化複合材料とした際に炭素繊維による剛性の向上効果が大きく、高剛性な炭素繊維強化複合材料を得やすい。ストランド弾性率が360GPa以上であれば、炭素繊維強化複合材料の剛性を大幅に高めることができるため、工業的な価値が大きい。炭素繊維強化複合材料の剛性を高める観点では、炭素繊維のストランド弾性率は高いほど好ましいが、従来はストランド弾性率があまり高すぎると、炭素繊維複合材料を得る際の成形加工性の低下につながったり、不連続繊維として用いる場合は繊維長の低下につながったりしやすかった。ストランド弾性率はJIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。ストランド弾性率の評価法の詳細は後述する。ストランド弾性率は種々の公知の方法で制御することができるが、本発明においては、炭素化処理における張力により制御することが好ましい。 に お い て In the first aspect of the carbon fiber of the present invention, the strand elastic modulus is 360 GPa or more. The strand elastic modulus is preferably 370 GPa or more, more preferably 380 GPa or more, even more preferably 400 GPa or more, and even more preferably 440 GPa or more. The higher the strand elastic modulus, the greater the effect of improving the rigidity of the carbon fiber reinforced composite material, and the easier it is to obtain a highly rigid carbon fiber reinforced composite material. If the strand elastic modulus is 360 GPa or more, the rigidity of the carbon fiber reinforced composite material can be greatly increased, and thus the industrial value is large. From the viewpoint of increasing the rigidity of the carbon fiber reinforced composite material, the strand elastic modulus of the carbon fiber is preferably as high as possible. However, conventionally, if the strand elastic modulus is too high, the molding processability when obtaining the carbon fiber composite material is reduced. When used as discontinuous fibers, the fiber length was easily reduced. The strand elastic modulus can be evaluated according to the tensile test of the resin-impregnated strand described in JIS R7608: 2004. The details of the method for evaluating the strand elastic modulus will be described later. Although the strand elastic modulus can be controlled by various known methods, in the present invention, it is preferable to control the strand elasticity by the tension in the carbonization treatment.
 本発明の炭素繊維の第1の態様において、ストランド強度は3.5GPa以上である。ストランド強度は3.7GPa以上であることが好ましく、3.9GPa以上であることがより好ましく、4.3GPa以上であることがさらに好ましい。ストランド強度が高いほど、通常は炭素繊維強化複合材料の引張強度も高くなりやすいため、高性能な炭素繊維強化複合材料を得ることができる。ストランド強度が極端に低い炭素繊維は、炭素繊維強化複合材料とする際の成形加工性の低下につながる場合があるが、3.5GPa以上であれば大きな問題とはならないことが多い。ストランド強度はJIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。ストランド強度の評価法の詳細は後述する。ストランド強度は種々の公知の方法で制御することができるが、通常の炭素化温度を高める手法においては、ストランド弾性率を高めるにつれてストランド強度は低下傾向を示すことが多い。ストランド弾性率が高くても、ストランド強度が3.5GPa以上となる炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。 に お い て In the first aspect of the carbon fiber of the present invention, the strand strength is 3.5 GPa or more. The strand strength is preferably at least 3.7 GPa, more preferably at least 3.9 GPa, even more preferably at least 4.3 GPa. Generally, the higher the strand strength, the higher the tensile strength of the carbon fiber reinforced composite material, and thus a higher performance carbon fiber reinforced composite material can be obtained. A carbon fiber having an extremely low strand strength may lead to a reduction in the formability of a carbon fiber-reinforced composite material, but if it is 3.5 GPa or more, it often does not pose a major problem. The strand strength can be evaluated according to the tensile test of a resin-impregnated strand described in JIS R7608: 2004. Details of the method for evaluating the strand strength will be described later. The strand strength can be controlled by various known methods. However, in the usual method of increasing the carbonization temperature, the strand strength tends to decrease as the strand elastic modulus increases. Even if the strand elastic modulus is high, a carbon fiber having a strand strength of 3.5 GPa or more can be obtained by the carbon fiber manufacturing method of the present invention described later.
 本発明の炭素繊維の第1の態様において、単繊維直径は6.0μm以上である。単繊維直径は6.5μm以上であることが好ましく、6.9μm以上であることがより好ましい。単繊維直径が大きいほど、通常はストランド弾性率とストランド強度をどちらも高いレベルで両立することが困難となる場合が多いが、本発明の炭素繊維の第1の態様によると、単繊維直径が6.0μm以上であっても両者を先述の高いレベルで両立することができる。また、単繊維直径が大きいほど、炭素繊維強化複合材料とする際に、ボビンから巻き出す際の炭素繊維同士の摩擦やローラーなどガイド部材との摩擦による毛羽立ちや、ガイド部材への毛羽の堆積が抑制されやすく、成形加工性を高めやすい。本発明の炭素繊維の第1の態様において、単繊維直径の上限に特に制限はないが、大きすぎるとストランド強度やストランド弾性率が低下しやすいため、15μm程度が一応の上限と考えればよい。また、ストランド弾性率とストランド強度を高いレベルで両立しやすい観点で、単繊維直径は7.4μm以下であることも好ましい。単繊維直径の評価方法は後述するが、繊維束の比重・目付・フィラメント数から計算してもよいし、走査電子顕微鏡観察により評価してもよい。用いる評価装置が正しく校正されていれば、いずれの方法で評価しても同等の結果が得られる。走査電子顕微鏡観察により評価する際に、単繊維の断面形状が真円でない場合、円相当直径で代用する。円相当直径は単繊維の実測の断面積と等しい断面積を有する真円の直径のことを指す。単繊維直径は炭素繊維前駆体繊維束の紡糸時の口金からの吐出量や各工程における延伸比などにより制御できる。 に お い て In the first aspect of the carbon fiber of the present invention, the single fiber diameter is 6.0 μm or more. The single fiber diameter is preferably at least 6.5 μm, more preferably at least 6.9 μm. As the diameter of the single fiber is larger, it is often difficult to achieve both the strand elastic modulus and the strand strength at a high level in many cases. However, according to the first aspect of the carbon fiber of the present invention, the single fiber diameter is Even when the thickness is 6.0 μm or more, both can be achieved at the above-mentioned high level. In addition, as the diameter of the single fiber is larger, when forming a carbon fiber reinforced composite material, fuzzing due to friction between carbon fibers when unwinding from a bobbin, friction with a guide member such as a roller, and accumulation of fluff on the guide member. It is easy to be suppressed, and it is easy to enhance moldability. In the first aspect of the carbon fiber of the present invention, the upper limit of the single fiber diameter is not particularly limited, but if it is too large, the strand strength and the strand elastic modulus are likely to be reduced. Further, the single fiber diameter is preferably 7.4 μm or less from the viewpoint that the strand elastic modulus and the strand strength are easily compatible at a high level. The method for evaluating the diameter of the single fiber will be described later, but it may be calculated from the specific gravity, the basis weight, and the number of filaments of the fiber bundle, or may be evaluated by observation with a scanning electron microscope. As long as the evaluation device used is correctly calibrated, an equivalent result can be obtained by any method. When the cross-sectional shape of the single fiber is not a perfect circle when evaluated by observation with a scanning electron microscope, a circle equivalent diameter is used instead. The equivalent circle diameter refers to the diameter of a perfect circle having a cross-sectional area equal to the measured cross-sectional area of a single fiber. The single fiber diameter can be controlled by the discharge amount from the die during spinning of the carbon fiber precursor fiber bundle, the draw ratio in each step, and the like.
 本発明の炭素繊維の第1の態様は、前記したストランド弾性率およびストランド強度、単繊維直径に関する要件に加えて、以下の要件のうち一つ以上を満たす炭素繊維である。
(イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
(ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である
 これらの要件(イ)または(ロ)のいずれか、または両方を満たすことで、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制でき、工業的な価値が大きい。
A first aspect of the carbon fiber of the present invention is a carbon fiber that satisfies one or more of the following requirements in addition to the requirements regarding the above-described strand elastic modulus, strand strength, and single fiber diameter.
(B) When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more. The total fineness, which is the product of the fiber fineness (g / km) and the number of filaments (number), is 740 g / km or more. Strand elastic modulus is satisfied by satisfying either or both of these requirements (a) and (b). Is high, the decrease in molding processability can be effectively suppressed, and the industrial value is great.
 本発明の炭素繊維の第1の態様において、残存する撚り数は2ターン/m以上であることが好ましく、5ターン/m以上であることがより好ましく、10ターン/m以上であることがさらに好ましく、16ターン/m以上であることがさらに好ましく、20ターン/m以上であることがさらに好ましく、30ターン/m以上であることがさらに好ましく、46ターン/m以上であることがさらに好ましい。 In the first aspect of the carbon fiber of the present invention, the number of remaining twists is preferably 2 turns / m or more, more preferably 5 turns / m or more, and further preferably 10 turns / m or more. It is more preferably at least 16 turns / m, more preferably at least 20 turns / m, even more preferably at least 30 turns / m, even more preferably at least 46 turns / m.
 本発明において固定端とは、繊維束の長手方向を軸とした回転ができないように固定された繊維束上の任意の部分であり、粘着テープなどを用いて繊維束の回転を拘束することなどによって実現できる。本発明において自由端とは、連続した繊維束をその長手方向に垂直な断面で切断したときに出現する端部のことを指し、何にも固定されておらず、繊維束の長手方向を軸とした回転が可能な端部のことである。本発明において、片端を固定端、もう一方を自由端としたとき、残存する撚り数とは、炭素繊維の繊維束が有する永久的な撚りの、1m当たりの撚り数のことを指す。半永久的な撚りとは、外力の作用なしには勝手に解けることのない撚りのことを指す。本発明においては、片端を固定端、もう一方を自由端として、実施例に記載する特定の配置で5分間静置したのちに解けずに残存している撚りのことを、半永久的な撚り、すなわち残存する撚りと定義する。残存する撚り数が2ターン/m以上であれば、ストランド弾性率が高くても成形加工性を高く維持しやすい。この理由については、定量的に明らかにできたわけではないが、定性的には次のように理解される。すなわち、残存する撚り数が2ターン/m以上である炭素繊維は、撚りのために繊維束内の単繊維の相対位置が固定されやすいため、繊維束の内部の単繊維が、繊維束同士やガイド部材などとの摩擦によるダメージを受けることなく温存されやすいと考えられる。また、残存する撚り数が5ターン/m以上であれば、毛羽が抑制されるため、炭素化工程において高い張力を付与可能となり、ストランド弾性率を効果的に高めやすい。また、残存する撚り数が20ターン/m以上であれば、毛羽が少なく繊維束のアライメントが制御されるため、結果として繊維束間の応力伝達がスムーズとなり、後述する結節強度が高まりやすい。かかる片端を固定端、もう一方を自由端としたとき、残存する撚り数は、公知の方法で制御することができる。具体的には、残存する撚り数は、炭素化処理の工程における繊維束の撚り数を調整することにより制御することができる。 In the present invention, the fixed end is an arbitrary portion on the fiber bundle that is fixed so as not to rotate around the longitudinal direction of the fiber bundle, and restricts the rotation of the fiber bundle using an adhesive tape or the like. Can be realized by In the present invention, the free end refers to an end that appears when a continuous fiber bundle is cut in a cross section perpendicular to the longitudinal direction, is not fixed to anything, and has an axis in the longitudinal direction of the fiber bundle. It is an end that can be rotated. In the present invention, when one end is a fixed end and the other is a free end, the remaining number of twists refers to the number of twists per meter of permanent twists of a fiber bundle of carbon fibers. A semi-permanent twist refers to a twist that cannot be unwound without the action of an external force. In the present invention, one end is a fixed end, the other is a free end, the twist that remains without unraveling after being left undisturbed in the specific arrangement described in the examples for 5 minutes, semi-permanent twist, That is, it is defined as a remaining twist. If the number of twists remaining is 2 turns / m or more, it is easy to maintain high moldability even if the strand elastic modulus is high. The reason for this has not been clarified quantitatively, but is qualitatively understood as follows. That is, since the relative position of the single fiber in the fiber bundle is easily fixed due to the twisting of the carbon fiber having the remaining number of twists of 2 turns / m or more, the single fiber inside the fiber bundle is It is considered that the material is easily preserved without being damaged by friction with a guide member or the like. Further, if the number of remaining twists is 5 turns / m or more, fluff is suppressed, so that a high tension can be applied in the carbonization step, and the strand elastic modulus is easily increased effectively. If the number of remaining twists is 20 turns / m or more, the alignment of the fiber bundles is controlled with less fluff, and as a result, the stress transmission between the fiber bundles becomes smooth, and the knot strength described later tends to increase. When one end is a fixed end and the other is a free end, the number of twists remaining can be controlled by a known method. Specifically, the number of twists remaining can be controlled by adjusting the number of twists of the fiber bundle in the carbonization process.
 前述の通り、本発明の炭素繊維の第1の態様において、総繊度は740g/km以上であることが好ましく、850g/km以上であることがより好ましく、1300g/km以上であることがより好ましく、1600g/km以上であることがさらに好ましく、2000g/km以上であることがさらに好ましい。総繊度が740g/km以上であれば、ストランド弾性率が高くても成形加工性を高く維持しやすい。この理由については、定量的に明らかにできたわけではないが、定性的には次のように理解される。すなわち、総繊度が740g/km以上である炭素繊維は、前記した摩擦によるダメージを受けやすい繊維束の最表層に存在する単繊維の、繊維束を構成する単繊維の総数に対する存在割合が小さくなるため、繊維束全体として、前記した摩擦によるダメージが軽減されやすいと考えられる。かかる総繊度は、単繊維繊度(g/km)とフィラメント数(本)の積であり、単繊維繊度およびフィラメント数を変更することにより制御できる。 As described above, in the first aspect of the carbon fiber of the present invention, the total fineness is preferably 740 g / km or more, more preferably 850 g / km or more, and still more preferably 1300 g / km or more. 1600 g / km or more, more preferably 2,000 g / km or more. If the total fineness is 740 g / km or more, it is easy to maintain high moldability even if the strand elastic modulus is high. The reason for this has not been clarified quantitatively, but is qualitatively understood as follows. That is, in the carbon fibers having a total fineness of 740 g / km or more, the proportion of the single fibers present in the outermost layer of the fiber bundle easily damaged by the friction with respect to the total number of the single fibers constituting the fiber bundle is reduced. Therefore, it is considered that the above-described damage due to friction is easily reduced in the entire fiber bundle. The total fineness is a product of the single fiber fineness (g / km) and the number of filaments (number), and can be controlled by changing the single fiber fineness and the number of filaments.
 本発明の炭素繊維の第2の態様は、単繊維弾性率Es(GPa)とループ破断荷重A(N)が式(1)の関係を満たす炭素繊維である。
A≧-0.0017×Es+1.02 ・・・式(1)
 式(1)における定数項は1.04であることが好ましく、1.06であることがより好ましく、1.08であることがさらに好ましく、1.10であることが特に好ましい。ループ破断荷重とは、単繊維をループ状に曲げていったとき破断が生じる際の荷重に相当し、後述の方法で評価する。また、単繊維弾性率とは、炭素繊維の単繊維としての引張弾性率のことであり、前記のストランド弾性率と一定の相関がある。本発明において、単繊維弾性率は、詳しい評価方法は後述するが、複数の試長で単繊維引張試験を行い、各試長における応力-歪み曲線の傾きを算出し、試長依存性を考慮することにより装置系のコンプライアンスの影響を除去することにより得ることができる。通常、単繊維弾性率を高めると、ループ破断荷重は低下傾向を示すことが多い。ループ破断荷重が低いと、不連続繊維としての成形加工時に、曲げ方向の力により炭素繊維が折れやすく、繊維長が短くなることにより炭素繊維強化複合材料の剛性向上効果が小さくなる。ループ破断荷重が高いほど、単繊維に曲げ方向の力がかかった際でも破損しにくいため、大きな曲げ方向の力がかかる不連続繊維としての成形加工時などに繊維長が維持されやすいため、炭素繊維強化複合材料の剛性を高めやすい。ループ破断荷重Aと単繊維弾性率Esが、式(1)の関係を満たすと、単繊維弾性率が高い割に曲げ方向の力に対して折れにくい炭素繊維となり、不連続繊維として用いた場合、炭素繊維強化複合材料の剛性を効率的に高められる。式(1)の関係を満たす炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。また、本発明の第1の態様である炭素繊維は、同時に第2の態様も満たすことが好ましい。かかる炭素繊維は、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制できるだけでなく、不連続繊維として利用する場合に繊維長を維持しやすいため、高性能な炭素繊維強化複合材料を得やすい。
A second aspect of the carbon fiber of the present invention is a carbon fiber in which the single fiber elastic modulus Es (GPa) and the loop breaking load A (N) satisfy the relationship of the formula (1).
A ≧ −0.0017 × Es + 1.02 Formula (1)
The constant term in the formula (1) is preferably 1.04, more preferably 1.06, further preferably 1.08, and particularly preferably 1.10. The loop breaking load corresponds to a load at which a break occurs when a single fiber is bent in a loop shape, and is evaluated by a method described later. The single fiber elastic modulus is a tensile elastic modulus of carbon fiber as a single fiber, and has a certain correlation with the strand elastic modulus. In the present invention, the single fiber elastic modulus is described in detail later, but a single fiber tensile test is performed with a plurality of test lengths, the slope of the stress-strain curve at each test length is calculated, and the test length dependency is considered. By doing so, it can be obtained by removing the influence of the compliance of the device system. Generally, when the single fiber elastic modulus is increased, the loop breaking load tends to decrease. When the loop breaking load is low, the carbon fiber is easily broken by the force in the bending direction during the forming process as the discontinuous fiber, and the effect of improving the rigidity of the carbon fiber reinforced composite material is reduced by shortening the fiber length. The higher the loop breaking load, the more difficult it is to break even when a force in the bending direction is applied to the single fiber.Since the fiber length tends to be maintained during processing such as a discontinuous fiber in which a large bending direction force is applied, carbon It is easy to increase the rigidity of the fiber reinforced composite material. When the loop breaking load A and the single fiber elastic modulus Es satisfy the relationship of the formula (1), the carbon fiber becomes a carbon fiber which is hard to be broken by a force in a bending direction in spite of a high single fiber elastic modulus, and is used as a discontinuous fiber. In addition, the rigidity of the carbon fiber reinforced composite material can be efficiently increased. The carbon fiber satisfying the relationship of the formula (1) can be obtained by the method for producing a carbon fiber of the present invention described later. It is preferable that the carbon fiber according to the first aspect of the present invention also satisfies the second aspect at the same time. Even if the carbon fiber has a high strand elasticity, it can not only effectively suppress the reduction in the formability, but also easily maintain the fiber length when used as a discontinuous fiber. Easy to get material.
 本発明の炭素繊維の第2の態様において、単繊維弾性率が360GPa以上であることが好ましく、370GPa以上であることがより好ましく、380GPa以上であることがさらに好ましく、400GPa以上であることがさらに好ましく、440GPa以上であることがさらに好ましい。従来は単繊維弾性率が高いほど、ループ破断荷重が低下し、不連続繊維としての成形加工時に繊維長が短くなりやすかったが、本発明の炭素繊維の第2の態様においては、単繊維弾性率に対してループ破断荷重が高めであるため、単繊維弾性率を高めても炭素繊維強化複合材料の剛性を効果的に高めることができる。単繊維弾性率の向上方法は、ストランド弾性率と同様である。 In the second aspect of the carbon fiber of the present invention, the single fiber elastic modulus is preferably 360 GPa or more, more preferably 370 GPa or more, still more preferably 380 GPa or more, and further preferably 400 GPa or more. It is more preferably 440 GPa or more. Conventionally, the higher the single fiber elastic modulus, the lower the loop breaking load, and the shorter the fiber length during molding as a discontinuous fiber, the shorter the fiber length. However, in the second aspect of the carbon fiber of the present invention, the single fiber elastic Since the loop breaking load is higher than the modulus, the rigidity of the carbon fiber reinforced composite material can be effectively increased even when the single fiber elastic modulus is increased. The method of improving the single fiber elastic modulus is the same as that of the strand elastic modulus.
 本発明の炭素繊維の第3の態様は、単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)とが式(2)の関係を満たし、撚り数が5~80ターン/mである、炭素繊維である。
B≧6.7×10×E-2.85 ・・・式(2)
 本発明の炭素繊維の第3の態様において、単繊維直径は6.0μm以上である。単繊維直径は6.5μm以上であることが好ましく、6.9μm以上であることがより好ましい。単繊維直径が大きいほど、通常はストランド弾性率と結節強度をどちらも高いレベルで両立することが困難となる場合が多いが、本発明の炭素繊維の第3の態様によると、単繊維直径が6.0μm以上であっても両者を高いレベルで両立することができる。また、単繊維直径が大きいほど、炭素繊維強化複合材料とする際に、ボビンから巻き出す際の炭素繊維同士の摩擦やローラーなどガイド部材との摩擦による毛羽立ちをより抑制することができ、成形加工性を高めることができる。本発明の炭素繊維の第3の態様において、単繊維直径の上限に特に限定されないが、大きすぎると結節強度やストランド弾性率が低下しやすいため、15μm程度が一応の上限と考えればよい。また、ストランド弾性率と結節を高いレベルで両立しやすい観点で、単繊維直径は7.4μm以下であることも好ましい。
In a third aspect of the carbon fiber of the present invention, the knot strength B (evaluated at a single fiber diameter of 6.0 μm or more, a strand elasticity E (GPa) and a loss on heating at 450 ° C. of 0.15% or less) is used. MPa) satisfies the relationship of the formula (2), and the number of twists is 5 to 80 turns / m.
B ≧ 6.7 × 10 9 × E -2.85 Formula (2)
In the third aspect of the carbon fiber of the present invention, the single fiber diameter is 6.0 μm or more. The single fiber diameter is preferably at least 6.5 μm, more preferably at least 6.9 μm. As the diameter of the single fiber increases, it is often difficult to achieve both the strand elastic modulus and the knot strength at a high level in many cases. However, according to the third aspect of the carbon fiber of the present invention, the single fiber diameter increases. Even when the thickness is 6.0 μm or more, both can be compatible at a high level. Also, the larger the single fiber diameter, the more the carbon fiber reinforced composite material, the more the fuzzing due to the friction between the carbon fibers when unwinding from the bobbin and the friction with the guide member such as a roller can be further suppressed, and the forming process Can be enhanced. In the third aspect of the carbon fiber of the present invention, the upper limit of the diameter of the single fiber is not particularly limited, but if it is too large, the knot strength and the strand elastic modulus are likely to be reduced. Further, from the viewpoint that the elastic modulus of the strand and the knot are easily compatible at a high level, it is also preferable that the single fiber diameter is 7.4 μm or less.
 本発明の炭素繊維の第3の態様において、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)とが式(2)の関係を満たす。
B≧6.7×10×E-2.85 ・・・式(2)
 本発明において、450℃における加熱減量率とは、詳しくは後述するが、炭素繊維を温度450℃の窒素雰囲気のオーブン中で15分間加熱したときの加熱前後での質量変化から算出する。結節強度とは、繊維軸方向以外の繊維束の力学的性質を反映する指標となるものである。複合材料を製造する際、炭素繊維束へ繊維軸方向以外の曲げ応力が負荷されており、結節強度は複合材料の製造過程で発生する繊維破断である毛羽の生成に影響する。複合材料を効率良く製造しようと、複合材料の製造時の繊維束の走行速度を高めると毛羽が発生するが、結節強度を高くすることで繊維束の走行速度が高い条件でも品位良く複合材料を得ることができる。かかる結節強度は炭素繊維束にサイジング剤が付与されると向上する傾向にある。一方、成形温度の高いマトリックスを用いる場合など、サイジング剤の熱分解物による炭素繊維とマトリックスとの接着強度低下が懸念される場合、サイジング剤を付与しないことが接着強度向上の観点から好ましい場合がある。そこで、本発明では、サイジングが付与されていない状態での炭素繊維束の結節強度を評価指標として用いる。すなわち、450℃における加熱減量率が0.15%以下で評価したとは、サイジング材が付与されていない、または、サイジング材が付与されていて450℃における加熱減量率が0.15%を超える場合にはサイジング材を除去した上で評価することを示している。サイジング剤の除去は、公知の方法で行えばよく、例えばサイジング剤が可溶な溶媒で除去する方法などが挙げられる。かかる結節強度が低いと、炭素繊維強化複合材料への成形加工時に毛羽が発生しやすく、成形加工性が低下傾向を示す。通常、ストランド弾性率を高めるほど、結節強度は低下傾向を示す。ストランド弾性率と結節強度が式(2)の関係を満たす場合には、ストランド弾性率と結節強度を高いバランスで両立することができる。式(2)における比例定数は6.9×10であることが好ましく、7.2×10であることがより好ましい。ストランド弾性率と結節強度が式(2)の関係を満たす炭素繊維は、後述する本発明の炭素繊維の製造方法により得ることができる。
In the third aspect of the carbon fiber of the present invention, the strand elastic modulus E (GPa) and the knot strength B (MPa) evaluated at a rate of loss on heating at 450 ° C. of 0.15% or less have a relationship represented by the formula (2). Fulfill.
B ≧ 6.7 × 10 9 × E -2.85 Formula (2)
In the present invention, the heating loss rate at 450 ° C. is calculated from a change in mass before and after heating when the carbon fiber is heated in an oven in a nitrogen atmosphere at a temperature of 450 ° C. for 15 minutes, which will be described in detail later. The knot strength is an index that reflects the mechanical properties of the fiber bundle other than the fiber axis direction. When manufacturing a composite material, a bending stress other than the fiber axis direction is applied to the carbon fiber bundle, and the knot strength affects the generation of fluff, which is a fiber break generated in the process of manufacturing the composite material. In order to efficiently produce a composite material, fluffing occurs when the traveling speed of the fiber bundle during production of the composite material is increased.However, by increasing the knot strength, the composite material can be produced with good quality even under conditions where the traveling speed of the fiber bundle is high. Obtainable. Such a knot strength tends to increase when a sizing agent is applied to the carbon fiber bundle. On the other hand, such as when using a matrix having a high molding temperature, when there is a concern about a decrease in the adhesive strength between the carbon fiber and the matrix due to the thermally decomposed product of the sizing agent, it is preferable not to add a sizing agent from the viewpoint of improving the adhesive strength is there. Therefore, in the present invention, the knot strength of the carbon fiber bundle in a state where sizing is not provided is used as an evaluation index. That is, the evaluation that the loss on heating at 450 ° C. is 0.15% or less means that the sizing material is not provided, or the sizing material is provided and the loss on heating at 450 ° C. exceeds 0.15%. In this case, the evaluation is performed after removing the sizing material. The sizing agent may be removed by a known method, such as a method of removing the sizing agent with a solvent in which the sizing agent is soluble. When the knot strength is low, fluff is likely to be generated during the forming process into the carbon fiber reinforced composite material, and the forming processability tends to decrease. In general, the higher the strand modulus, the lower the knot strength. When the strand elastic modulus and the knot strength satisfy the relationship of the formula (2), the strand elastic modulus and the knot strength can be compatible with a high balance. The proportional constant in the equation (2) is preferably 6.9 × 10 9 , more preferably 7.2 × 10 9 . The carbon fiber in which the strand elastic modulus and the knot strength satisfy the relationship of the formula (2) can be obtained by the carbon fiber manufacturing method of the present invention described later.
 また、本発明の第1の態様である炭素繊維は、同時に第3の態様および/または第2の態様も満たすことが好ましい。かかる炭素繊維は、ストランド弾性率が高くても、成形加工性の低下を効果的に抑制できる。特に、成形加工時に糸繋ぎが必要になる場合、糸繋ぎ部分が破断しにくくなるため、連続生産に有利となる。 It is preferable that the carbon fiber according to the first aspect of the present invention also satisfies the third aspect and / or the second aspect at the same time. Such a carbon fiber can effectively suppress a decrease in moldability even if the strand elastic modulus is high. In particular, when yarn joining is required at the time of forming, the yarn joining portion is less likely to break, which is advantageous for continuous production.
 本発明の炭素繊維の第3の態様において、撚り数は5~80ターン/mである。撚り数が上記範囲であれば、毛羽が少なく繊維束のアライメントが制御できるため結果として繊維束間の応力伝達がスムーズとなり結節強度が高まりやすい。成形加工時の取り扱い性を高める観点で、第3の態様における撚り数は20~80ターン/mであることが好ましい。 に お い て In the third aspect of the carbon fiber of the present invention, the number of twists is 5 to 80 turns / m. If the number of twists is within the above range, the alignment of the fiber bundles can be controlled with less fluff, and as a result, the stress transmission between the fiber bundles becomes smooth, and the knot strength tends to increase. From the viewpoint of improving the handleability during molding, the number of twists in the third embodiment is preferably from 20 to 80 turns / m.
 本発明の炭素繊維は、炭素繊維束の形態を採る場合において、炭素繊維束表層の撚り角が2.0~30.5°であることが好ましい。炭素繊維束表層の撚り角とは、炭素繊維束の最表層に存在する単繊維の繊維軸方向が、炭素繊維束の束としての長軸方向に対して成す角のことであり、直接観察してもよいが、より高精度には、撚り数とフィラメント数、単繊維直径から後述のように算出することができる。かかる撚り角を上記範囲内に制御すれば、毛羽が抑制されるため、炭素化工程において高い張力を付与可能となり、ストランド弾性率を効果的に高めやすい。本発明における炭素繊維束表層の撚り角は4.8~30.5°であることが好ましく、4.8~24.0°であることがより好ましく、4.8~12.5°であることがさらに好ましく、4.8~10.0°であることがさらに好ましい。撚り角が上記範囲を満たす炭素繊維束は、後述する本発明の炭素繊維の製造方法に従って作製することができる。具体的には、炭素繊維束表層の撚り角は、繊維束の撚り数を調整することに加えて、炭素化工程におけるフィラメント数と単繊維直径を調整することにより制御することができる。炭素繊維束のフィラメント数と単繊維直径が大きいほど同じ撚り数の繊維束に対して撚り角を大きく保つことができるため、撚りの効果を更に高めることができる。 炭素 When the carbon fiber of the present invention takes the form of a carbon fiber bundle, the twist angle of the surface layer of the carbon fiber bundle is preferably 2.0 to 30.5 °. The twist angle of the surface layer of the carbon fiber bundle is the angle that the fiber axis direction of the single fiber present in the outermost layer of the carbon fiber bundle forms with the long axis direction of the bundle of carbon fiber bundles. However, it can be calculated with higher accuracy from the number of twists, the number of filaments, and the diameter of a single fiber as described later. If the twist angle is controlled within the above range, fluff is suppressed, so that a high tension can be applied in the carbonization step, and the strand elastic modulus is easily increased effectively. The twist angle of the carbon fiber bundle surface layer in the present invention is preferably from 4.8 to 30.5 °, more preferably from 4.8 to 24.0 °, and from 4.8 to 12.5 °. More preferably, the angle is 4.8 to 10.0 °. The carbon fiber bundle having a twist angle satisfying the above range can be produced according to the method for producing carbon fiber of the present invention described later. Specifically, the twist angle of the carbon fiber bundle surface layer can be controlled by adjusting the number of filaments and the diameter of a single fiber in the carbonization step in addition to adjusting the number of twists of the fiber bundle. The larger the number of filaments of the carbon fiber bundle and the diameter of the single fiber, the larger the twist angle can be maintained for the same number of twisted fiber bundles, so that the effect of twisting can be further enhanced.
 本発明の炭素繊維において、結晶子サイズLc(nm)と結晶配向度π002(%)は式(3)の関係を満たすことが好ましい。
π002≧4.0×Lc+73.2 ・・・式(3)
結晶子サイズLcとは、炭素繊維中に存在する結晶子のc軸方向の厚みを表す指標である。通常、繊維束の広角X線回折により評価されることが多いが、マイクロビーム広角X線回折により単繊維1本に対して評価し、3本の単繊維に対する測定値の平均をとり、平均結晶子サイズLc(s)としてもよい。マイクロビームの大きさが単繊維直径以下である場合、平均結晶子サイズLc(s)は、単繊維の直径方向に対して複数点評価した値を平均化した値を単繊維の評価値とし、3本の単繊維について同様にして得た評価値の平均値を採用する。詳しい評価手法は後述する。なお、単繊維の広角X線回折データと一般に知られる繊維束の広角X線回折データは同等であり、平均結晶子サイズLc(s)と結晶子サイズLcとは、ほぼ同等の値をとる。発明者らが検討したところ、結晶子サイズLcが高まるほど結晶配向度π002が高まっていく傾向があり、式(3)は既知の炭素繊維のデータからその関係の上限を経験的に示している。通常、結晶子サイズLcが大きいほど、ストランド弾性率は向上する一方で、ストランド強度や結節強度、ループ破断荷重、炭素繊維強化複合材料への成形加工性は低下傾向となることが多い。また、結晶配向度π002はストランド弾性率に強く影響し、結晶配向度が高いほどストランド弾性率も高くなる。結晶配向度π002が式(3)の関係を満たすことは、結晶子サイズLcの割には結晶配向度π002が大きいことを意味しており、ストランド弾性率が高くても、ストランド強度や結節強度、ループ破断荷重、成形加工性の低下を効果的に抑制でき、工業的な価値が大きい。本発明において、式(3)における定数項は73.5であることがより好ましく、74.0であることがさらに好ましい。式(3)の関係を満たす炭素繊維は、炭素化工程における延伸張力を高めることにより得ることができる。
In the carbon fiber of the present invention, it is preferable that the crystallite size Lc (nm) and the degree of crystal orientation π 002 (%) satisfy the relationship of the expression (3).
π 002 ≧ 4.0 × Lc + 73.2 Equation (3)
The crystallite size Lc is an index representing the thickness of the crystallite existing in the carbon fiber in the c-axis direction. Usually, evaluation is often made by wide-angle X-ray diffraction of a fiber bundle. However, evaluation is performed on one single fiber by micro-beam wide-angle X-ray diffraction, and an average of measured values for three single fibers is taken. The child size Lc (s) may be used. When the size of the microbeam is equal to or less than the diameter of the single fiber, the average crystallite size Lc (s) is a value obtained by averaging values evaluated at a plurality of points in the diameter direction of the single fiber as an evaluation value of the single fiber, The average value of the evaluation values similarly obtained for the three single fibers is adopted. A detailed evaluation method will be described later. Note that the wide-angle X-ray diffraction data of a single fiber and the generally known wide-angle X-ray diffraction data of a fiber bundle are equivalent, and the average crystallite size Lc (s) and the crystallite size Lc take substantially the same value. The inventors have studied and found that as the crystallite size Lc increases, the degree of crystal orientation π 002 tends to increase. Equation (3) empirically shows the upper limit of the relationship from known carbon fiber data. I have. Usually, as the crystallite size Lc increases, the strand elastic modulus increases, but the strand strength, the knot strength, the loop breaking load, and the moldability of the carbon fiber reinforced composite material tend to decrease. The degree of crystal orientation π 002 strongly affects the strand elastic modulus, and the higher the degree of crystal orientation, the higher the strand elastic modulus. The fact that the degree of crystal orientation π 002 satisfies the relationship of the expression (3) means that the degree of crystal orientation π 002 is large for the crystallite size Lc. The knot strength, loop rupture load, and reduction in moldability can be effectively suppressed, and the industrial value is great. In the present invention, the constant term in Expression (3) is more preferably 73.5, and further preferably 74.0. The carbon fiber satisfying the relationship of the formula (3) can be obtained by increasing the drawing tension in the carbonization step.
 本発明の炭素繊維において、結晶子サイズLcは2.2~3.5nmであることが好ましく、2.4~3.3nm以上であることがより好ましく、2.6~3.1nm以上であることがさらに好ましく、2.8~3.1nmであることが特に好ましい。結晶子サイズLcが2.2nm以上であれば炭素繊維内部の応力負担が効果的に行われるため、単繊維弾性率を高めやすく、結晶子サイズLcが3.5nm以下であれば、応力集中原因となりにくいため、ストランド強度や結節強度、ループ破断荷重、成形加工性が高いレベルとなりやすい。結晶子サイズLcは、主に炭素化工程の処理時間や最高温度によって制御することができる。 In the carbon fiber of the present invention, the crystallite size Lc is preferably 2.2 to 3.5 nm, more preferably 2.4 to 3.3 nm or more, and more preferably 2.6 to 3.1 nm. More preferably, it is particularly preferably 2.8 to 3.1 nm. When the crystallite size Lc is 2.2 nm or more, the stress inside the carbon fiber is effectively applied, so that the single fiber elastic modulus is easily increased, and when the crystallite size Lc is 3.5 nm or less, the cause of stress concentration is Therefore, strand strength, knot strength, loop breaking load, and formability are likely to be high. The crystallite size Lc can be controlled mainly by the processing time of the carbonization step and the maximum temperature.
 本発明の炭素繊維において、結晶配向度π002は80.0~95.0%であることが好ましく、80.0~90.0%であることがより好ましく、82.0~90.0%であることがさらに好ましい。結晶配向度π002とは、炭素繊維中に存在する結晶子の繊維軸を基準とした配向角を表す指標である。結晶子サイズ同様、マイクロビーム広角X線回折により単繊維1本に対して評価し、3本の単繊維に対する測定値の平均をとり平均結晶配向度π002(s)としてもよい。マイクロビームの大きさが単繊維直径以下である場合、平均結晶配向度π002(s)は、単繊維の直径方向に対して複数点評価した値を平均化した値を単繊維の評価値とし、3本の単繊維について同様にして得た評価値の平均値を採用する。詳しい評価手法は後述する。なお、単繊維の広角X線回折データと一般に知られる繊維束の広角X線回折データは同等であり、平均結晶配向度π002(s)と結晶配向度π002とは、ほぼ同等の値をとる。結晶配向度が80.0%以上であれば、ストランド弾性率が高いものとなりやすい。結晶配向度π002(s)は、炭素化工程における温度や時間に加えて、延伸張力によって制御することができる。 In the carbon fiber of the present invention, the degree of crystal orientation π 002 is preferably 80.0 to 95.0%, more preferably 80.0 to 90.0%, and 82.0 to 90.0%. Is more preferable. The degree of crystal orientation π 002 is an index indicating the orientation angle of the crystallites present in the carbon fiber with respect to the fiber axis. Similarly to the crystallite size, one single fiber may be evaluated by microbeam wide-angle X-ray diffraction, and the average of the measured values for three single fibers may be taken as the average degree of crystal orientation π 002 (s). When the size of the microbeam is equal to or smaller than the diameter of the single fiber, the average degree of crystal orientation π 002 (s) is obtained by averaging the values evaluated at a plurality of points in the diameter direction of the single fiber as the evaluation value of the single fiber. The average value of the evaluation values obtained in the same manner for the three single fibers is adopted. A detailed evaluation method will be described later. The wide-angle X-ray diffraction data of a single fiber and the generally known wide-angle X-ray diffraction data of a fiber bundle are equivalent, and the average degree of crystal orientation π 002 (s) and the degree of crystal orientation π 002 are almost the same. Take. If the degree of crystal orientation is 80.0% or more, the strand elastic modulus tends to be high. The degree of crystal orientation π 002 (s) can be controlled by the stretching tension in addition to the temperature and time in the carbonization step.
 本発明の炭素繊維において、ストランド弾性率E(GPa)と結晶子サイズLc(nm)が式(4)の関係を満たすことが好ましい。
E×Lc-0.5≧200(GPa/nm0.5) ・・・式(4)
本発明者らが検討した結果、炭素繊維がかかる式(4)を満たすときに、ストランド弾性率と成形加工性が特に高いレベルで両立されやすいことを見いだした。かかる式(4)を満たすことでストランド弾性率と成形加工性を高いレベルで両立しやすい理由は完全に明確になったわけではないが、次のように考えられる。すなわち、多結晶材料の分野で広く用いられているホール-ペッチの式にみられるように、結晶子サイズLcの-0.5乗が、材料のある種の強さを意味する指標であると捉えると、Lc-0.5が大きいほど材料が強靱であり、小さいほどもろいことを表すものと解釈できる。したがって、式(4)を満たすことは、ストランド弾性率と、材料の強靱さの積が、一定値以上であることを意味し、ストランド弾性率と材料の強靱さが高いレベルで両立されていることを意味するものと考えられる。かかる式(4)を満たす炭素繊維は、炭素化工程における延伸張力を高めることにより得ることができる。
In the carbon fiber of the present invention, it is preferable that the strand elastic modulus E (GPa) and the crystallite size Lc (nm) satisfy the relationship of the expression (4).
E × Lc −0.5 ≧ 200 (GPa / nm 0.5 ) Equation (4)
As a result of the study by the present inventors, it has been found that when the carbon fiber satisfies the expression (4), the strand elastic modulus and the formability are easily compatible at a particularly high level. Although it is not completely clear why the strand elastic modulus and the formability are easily compatible at a high level by satisfying the expression (4), it is considered as follows. That is, as can be seen from the Hall-Petch equation widely used in the field of polycrystalline materials, the −0.5 power of the crystallite size Lc is an index indicating a certain strength of a material. It can be interpreted that the larger Lc- 0.5 is, the stronger the material is, and the smaller Lc- 0.5 is, the more brittle the material is. Therefore, satisfying the expression (4) means that the product of the strand elastic modulus and the toughness of the material is equal to or more than a certain value, and the strand elastic modulus and the toughness of the material are compatible at a high level. It is thought to mean that. The carbon fiber satisfying the formula (4) can be obtained by increasing the drawing tension in the carbonization step.
 本発明の炭素繊維において、表面酸素濃度O/Cは0.05~0.50であることが好ましい。表面酸素濃度とは、炭素繊維の表面への酸素原子を含む官能基の導入量を表す指標であり、後述する光電子分光法により評価することができる。表面酸素濃度が高いほど炭素繊維とマトリックスとの接着性が向上し、炭素繊維強化複合材料の力学特性を向上しやすい。表面酸素濃度O/Cは0.07~0.30であることがより好ましい。表面酸素濃度O/Cが0.05以上であれば、マトリックスとの接着性が十分なレベルとなり、0.50以下であれば過剰な酸化による炭素繊維表面の剥離が抑制され、炭素繊維複合材料の力学特性が向上する。表面酸素濃度O/Cを前記の範囲にするための方法は後述する。 に お い て In the carbon fiber of the present invention, the surface oxygen concentration O / C is preferably 0.05 to 0.50. The surface oxygen concentration is an index indicating the amount of a functional group containing an oxygen atom introduced into the surface of the carbon fiber, and can be evaluated by photoelectron spectroscopy described later. The higher the surface oxygen concentration, the better the adhesion between the carbon fiber and the matrix, and the easier it is to improve the mechanical properties of the carbon fiber reinforced composite material. The surface oxygen concentration O / C is more preferably 0.07 to 0.30. When the surface oxygen concentration O / C is 0.05 or more, the adhesion to the matrix is at a sufficient level. When the surface oxygen concentration is 0.50 or less, peeling of the carbon fiber surface due to excessive oxidation is suppressed. The mechanical properties of are improved. A method for keeping the surface oxygen concentration O / C within the above range will be described later.
 本発明の炭素繊維は、炭素繊維束の形態を採る場合において、フィラメント数が10,000本以上であることが好ましい。フィラメント数は15,000本以上であることがより好ましく、20,000本以上であることがさらに好ましい。撚り数が同じであれば、フィラメント数が大きいほど撚りの中心軸と繊維束の外周との距離が大きくなるため、撚りが安定しやすく、炭素化工程において高い張力をかけても毛羽発生や破断を抑制しやすく、ストランド弾性率を効果的に高めることができるほか、成形加工性を高いものとすることができる。 (4) When the carbon fiber of the present invention takes the form of a carbon fiber bundle, the number of filaments is preferably 10,000 or more. The number of filaments is more preferably 15,000 or more, and even more preferably 20,000 or more. If the number of twists is the same, the larger the number of filaments, the greater the distance between the center axis of the twist and the outer circumference of the fiber bundle, so that the twist is easy to stabilize, and fuzzing or breakage occurs even when high tension is applied in the carbonization process. Can be easily suppressed, the strand elastic modulus can be effectively increased, and the moldability can be improved.
 以下、本発明の炭素繊維の製造方法を説明する。 Hereinafter, the method for producing carbon fiber of the present invention will be described.
 本発明の炭素繊維のもととなる炭素繊維前駆体繊維束は、ポリアクリロニトリル共重合体の紡糸溶液を紡糸して得ることができる。 炭素 The carbon fiber precursor fiber bundle which is the basis of the carbon fiber of the present invention can be obtained by spinning a spinning solution of a polyacrylonitrile copolymer.
 ポリアクリロニトリル共重合体としては、アクリロニトリルのみから得られる単独重合体だけではなく、主成分であるアクリロニトリルに加えて他の単量体を用いてもよい。具体的に、ポリアクリロニトリル共重合体は、アクリロニトリルを90~100質量%、共重合可能な単量体を10質量%未満含有することが好ましい。 As the polyacrylonitrile copolymer, not only a homopolymer obtained from acrylonitrile alone, but also other monomers in addition to acrylonitrile as a main component may be used. Specifically, the polyacrylonitrile copolymer preferably contains 90 to 100% by mass of acrylonitrile and less than 10% by mass of a copolymerizable monomer.
 アクリロニトリルと共重合可能な単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸およびそれらアルカリ金属塩、アンモニウム塩および低級アルキルエステル類、アクリルアミドおよびその誘導体、アリルスルホン酸、メタリルスルホン酸およびそれらの塩類またはアルキルエステル類などを用いることができる。 Examples of monomers copolymerizable with acrylonitrile include, for example, acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and lower alkyl esters, acrylamide and its derivatives, allylsulfonic acid, methallylsulfonic acid and Their salts or alkyl esters can be used.
 前記したポリアクリロニトリル共重合体を、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、硝酸、塩化亜鉛水溶液、ロダンソーダ水溶液などポリアクリロニトリル共重合体が可溶な溶媒に溶解し、紡糸溶液とする。ポリアクリロニトリル共重合体の製造に溶液重合を用いる場合、重合に用いられる溶媒と紡糸溶媒を同じものにしておくと、得られたポリアクリロニトリル共重合体を分離し、紡糸溶媒に再溶解する工程が不要となり、好ましい。 ポ リ The above-mentioned polyacrylonitrile copolymer is dissolved in a solvent in which the polyacrylonitrile copolymer is soluble, such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, nitric acid, an aqueous solution of zinc chloride, and an aqueous solution of rhoda soda, to obtain a spinning solution. When using solution polymerization for the production of polyacrylonitrile copolymer, if the solvent used for the polymerization and the spinning solvent are the same, the step of separating the obtained polyacrylonitrile copolymer and re-dissolving it in the spinning solvent is performed. It is unnecessary and preferable.
 先述のようにして得た紡糸溶液を湿式、または乾湿式紡糸法により紡糸することにより、炭素繊維前駆体繊維束を製造することができる。 炭素 By spinning the spinning solution obtained as described above by a wet or dry-wet spinning method, a carbon fiber precursor fiber bundle can be produced.
 紡糸溶液を凝固浴中に導入して凝固させ、得られた凝固繊維束を、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を通過させることにより、炭素繊維前駆体繊維束が得られる。凝固繊維束は、水洗工程を省略して直接浴中延伸を行ってもよいし、溶媒を水洗工程により除去した後に浴中延伸を行ってもよい。浴中延伸は、通常、30~98℃の温度に温調された単一または複数の延伸浴中で行うことが好ましい。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。 The spinning solution is introduced into a coagulation bath for coagulation, and the obtained coagulated fiber bundle is passed through a washing step, a drawing step in a bath, an oil agent applying step, and a drying step, whereby a carbon fiber precursor fiber bundle is obtained. . The coagulated fiber bundle may be stretched directly in the bath without the washing step, or may be stretched in the bath after the solvent is removed in the washing step. The in-bath stretching is usually preferably performed in a single or a plurality of stretching baths whose temperature is controlled at a temperature of 30 to 98 ° C. Further, a dry heat stretching step or a steam stretching step may be added to the above steps.
 炭素繊維前駆繊維束の単繊維繊度は、0.9dtex以上であることが好ましく、1.0dtex以上であることがより好ましく、1.1dtex以上であることがさらに好ましい。炭素繊維前駆体繊維束の単繊維繊度が高いほど、ローラーやガイドとの接触による繊維束の破断の発生を抑え、製糸工程および炭素繊維の耐炎化ならびに予備炭素化、炭素化工程のプロセス安定性を維持しやすい。炭素繊維前駆体繊維束の単繊維繊度が0.9dtex以上であれば、プロセス安定性を維持しやすい。炭素繊維前駆体繊維束の単繊維繊度が高すぎると、耐炎化工程において均一に処理することが難しくなる場合があり、製造プロセスが不安定となったり、得られる炭素繊維束および炭素繊維の力学的特性が低下したりすることがある。炭素繊維前駆体繊維束の単繊維繊度は、口金からの紡糸溶液の吐出量や延伸比など、公知の方法により制御できる。 単 The single fiber fineness of the carbon fiber precursor fiber bundle is preferably 0.9 dtex or more, more preferably 1.0 dtex or more, and still more preferably 1.1 dtex or more. The higher the single fiber fineness of the carbon fiber precursor fiber bundle, the more the fiber bundle breakage caused by contact with rollers and guides is suppressed, and the process stability of the spinning process and the flame resistance of the carbon fiber as well as the preliminary carbonization and carbonization processes Easy to maintain. When the single fiber fineness of the carbon fiber precursor fiber bundle is 0.9 dtex or more, process stability is easily maintained. If the single fiber fineness of the carbon fiber precursor fiber bundle is too high, it may be difficult to uniformly treat the fiber in the flame-proofing step, and the manufacturing process may become unstable or the resulting carbon fiber bundle and carbon fiber dynamics Or the characteristic may be deteriorated. The single fiber fineness of the carbon fiber precursor fiber bundle can be controlled by a known method such as a discharge amount of a spinning solution from a die and a draw ratio.
 得られる炭素繊維前駆体繊維束は、通常、連続繊維の形態である。また、その1糸条あたりのフィラメント数は、1,000~80,000本であることが好ましい。本発明において炭素繊維前駆体繊維束は、必要に応じて合糸して、得られる炭素繊維の1糸条あたりのフィラメント数を調整してもよい。 炭素 The obtained carbon fiber precursor fiber bundle is usually in the form of continuous fiber. Further, the number of filaments per yarn is preferably 1,000 to 80,000. In the present invention, the carbon fiber precursor fiber bundle may be twisted as necessary to adjust the number of filaments per filament of the obtained carbon fiber.
 本発明の炭素繊維は、前記した炭素繊維前駆体繊維束を耐炎化処理した後、予備炭素化処理、炭素化処理を順に行うことにより得ることができる。 炭素 The carbon fiber of the present invention can be obtained by sequentially performing a preliminary carbonization treatment and a carbonization treatment after the carbon fiber precursor fiber bundle described above is subjected to a flame-proof treatment.
 炭素繊維前駆体繊維束の耐炎化処理は、空気雰囲気中において、200~300℃の温度範囲で行うことが好ましい。炭素繊維前駆体繊維束は耐炎化処理され、耐炎化繊維束となる。 炎 The oxidizing treatment of the carbon fiber precursor fiber bundle is preferably performed in an air atmosphere at a temperature in the range of 200 to 300 ° C. The carbon fiber precursor fiber bundle is subjected to a flame-resistant treatment, and becomes a flame-resistant fiber bundle.
 本発明では、前記耐炎化に引き続いて、耐炎化繊維束の予備炭素化を行う。予備炭素化工程においては、耐炎化処理により得られた耐炎化繊維束を、不活性雰囲気中、最高温度500~1000℃において、密度1.5~1.8g/cmになるまで熱処理することが好ましい。耐炎化繊維束は予備炭素化処理され、予備炭素化繊維束となる。 In the present invention, the carbonization of the oxidized fiber bundle is performed subsequent to the oxidization. In the preliminary carbonization step, the oxidized fiber bundle obtained by the oxidization treatment is heat-treated in an inert atmosphere at a maximum temperature of 500 to 1000 ° C. until the density becomes 1.5 to 1.8 g / cm 3. Is preferred. The oxidized fiber bundle is subjected to a pre-carbonization treatment to form a pre-carbonized fiber bundle.
 さらに、前記予備炭素化に引き続いて、予備炭素化繊維束の炭素化を行う。炭素化工程においては、予備炭素化処理により得られた予備炭素化繊維束を、不活性雰囲気中において炭素化処理を行う。炭素化処理の最高温度は1500℃以上とすることが好ましく、2300℃以上とすることがより好ましい。炭素化工程における最高温度は、得られる炭素繊維のストランド弾性率ならびに単繊維弾性率を高める観点からは高い方が好ましく、1500℃以上であればストランド弾性率ならびに単繊維弾性率と結節強度ならびにループ破断荷重を高いレベルで両立した炭素繊維が得られる。一方、炭化温度が高すぎると結節強度やループ破断荷重が低下する傾向にあるため、炭素化工程における最高温度は、必要とするストランド弾性率ならびに単繊維弾性率と、結節強度ならびにループ破断荷重のバランスを勘案して決定するのがよい。本発明の炭素繊維は、炭素化工程における最高温度を2300℃としても、これらの物性バランスを維持しやすい。 Further, following the pre-carbonization, the pre-carbonized fiber bundle is carbonized. In the carbonization step, the preliminary carbonized fiber bundle obtained by the preliminary carbonization treatment is subjected to a carbonization treatment in an inert atmosphere. The maximum temperature of the carbonization treatment is preferably 1500 ° C. or higher, more preferably 2300 ° C. or higher. The highest temperature in the carbonization step is preferably higher from the viewpoint of increasing the strand elastic modulus and single fiber elastic modulus of the obtained carbon fiber, and if it is 1500 ° C or higher, the strand elastic modulus, single fiber elastic modulus and knot strength, and the loop A carbon fiber having a high level of breaking load can be obtained. On the other hand, if the carbonization temperature is too high, the knot strength and loop breaking load tend to decrease, so the maximum temperature in the carbonization process is the required strand elastic modulus and single fiber elastic modulus, and the knot strength and loop breaking load. It is better to decide in consideration of balance. The carbon fiber of the present invention can easily maintain the balance of these properties even when the maximum temperature in the carbonization step is 2300 ° C.
 また、本発明において、炭素化工程における張力は5mN/dtex以上であり、5~18mN/dtexとすることが好ましく、7~18mN/dtexとすることがより好ましく、9~18mN/dtexとすることが特に好ましい。炭素化工程における張力は、炭素化炉出側で測定した張力(mN)を、用いた炭素繊維前駆体繊維束の単繊維繊度(dtex)とフィラメント数との積である総繊度(dtex)で除したものとする。該張力を上記の数値範囲に制御することで、得られる炭素繊維の結晶子サイズLcに大きな影響を与えることなく、結晶配向度π002を制御することができ、先述の式(1)または/および式(2)の関係を満たす炭素繊維が得られる。炭素繊維のストランド弾性率および単繊維弾性率を高める観点からは、該張力は高い方が好ましいが、高すぎると炭素化工程の通過性や、得られる炭素繊維の品位が低下する場合があり、両者を勘案して設定するのがよい。 In the present invention, the tension in the carbonization step is 5 mN / dtex or more, preferably 5 to 18 mN / dtex, more preferably 7 to 18 mN / dtex, and more preferably 9 to 18 mN / dtex. Is particularly preferred. The tension in the carbonization step is the tension (mN) measured on the exit side of the carbonization furnace, and the total fineness (dtex) which is the product of the single fiber fineness (dtex) of the used carbon fiber precursor fiber bundle and the number of filaments. Shall be removed. By controlling the tension within the above numerical range, the degree of crystal orientation π 002 can be controlled without significantly affecting the crystallite size Lc of the obtained carbon fiber, and the aforementioned equation (1) or / And a carbon fiber satisfying the relationship of equation (2) is obtained. From the viewpoint of increasing the strand elastic modulus and single fiber elastic modulus of the carbon fiber, the tension is preferably higher, but if too high, the permeability of the carbonization step and the quality of the obtained carbon fiber may be reduced, It is good to set in consideration of both.
 本発明の炭素繊維の製造方法において、さらに以下の要件以下の(ハ)または(二)を満たす炭素繊維の製造方法であればより好ましい。なお、(ハ)および(ニ)の両方を満たせばさらに好ましい。
(ハ)炭素化処理に供する繊維束の撚り数を2ターン/m以上とする
(ニ)得られる炭素繊維の単繊維繊度(g/km)とフィラメント数(本)の積である総繊度を740g/km以上とする
これらの(ハ)または(二)を満たすことで、ストランド弾性率が高くても、成形加工性に優れた炭素繊維となる。
In the method for producing a carbon fiber of the present invention, a method for producing a carbon fiber that further satisfies the following requirement (c) or (ii) is more preferable. It is more preferable that both (c) and (d) are satisfied.
(C) The number of twists of the fiber bundle to be subjected to the carbonization treatment is 2 turns / m or more. (D) The total fineness which is the product of the single fiber fineness (g / km) of the obtained carbon fiber and the number of filaments (number) is By satisfying (c) or (ii) above 740 g / km or more, even if the strand elastic modulus is high, a carbon fiber having excellent moldability can be obtained.
 本発明の炭素繊維は、炭素化処理中の繊維束の撚り数が2ターン/m以上である。かかる撚り数は5ターン/m以上であることが好ましく、10ターン/m以上であることがより好ましく、16ターン/m以上であることがさらに好ましく、30ターン/m以上であることがさらに好ましく、46ターン/m以上であることがさらに好ましい。撚り数の上限は特に制限はないが、概ね60ターン/m以下とすることが生産性や炭素化工程における延伸限界を高めるためには有効である。かかる撚り数を上記範囲に制御することで、炭素繊維の製造プロセスにおいては毛羽の発生が抑制されるため、高い張力を付与することが可能となりストランド弾性率および単繊維弾性率の高い炭素繊維を得やすい。炭素化処理中の繊維束の撚り数とは、炭素化処理されている繊維束が有する撚り数のことである。撚りを付与せずに炭素化工程における張力を高めると、単繊維破断が生じ、毛羽が増加することにより、炭素化工程の通過性が低下したり、繊維束全体が破断することにより、必要な張力を維持できなかったりする場合がある。かかる撚り数は、炭素繊維前駆体繊維束または耐炎化繊維束、予備炭素化繊維束を一旦ボビンに巻き取った後、該繊維束を巻き出す際にボビンを巻き出し方向に対して直交する面に旋回させる方法や、ボビンに巻き取らず走行中の繊維束に対して回転するローラーやベルトを接触させて撚りを付与する方法などにより制御することができる。 炭素 In the carbon fiber of the present invention, the number of twists of the fiber bundle during the carbonization treatment is 2 turns / m or more. The number of twists is preferably 5 turns / m or more, more preferably 10 turns / m or more, further preferably 16 turns / m or more, and still more preferably 30 turns / m or more. , 46 turns / m or more. Although the upper limit of the number of twists is not particularly limited, it is effective to reduce the number of twists to approximately 60 turns / m or less in order to increase the productivity and the stretching limit in the carbonization step. By controlling the number of twists in the above range, the generation of fluff is suppressed in the carbon fiber production process, so that it is possible to apply a high tension, and a carbon fiber having a high strand elastic modulus and a high single fiber elastic modulus can be obtained. Easy to get. The number of twists of the fiber bundle during the carbonization treatment is the number of twists of the fiber bundle that has been carbonized. If the tension in the carbonization step is increased without imparting twist, single fiber breakage occurs, and the fluff increases, thereby reducing the passability of the carbonization step or causing the entire fiber bundle to break, In some cases, the tension cannot be maintained. The number of twists is such that the carbon fiber precursor fiber bundle or the oxidized fiber bundle, the pre-carbonized fiber bundle is once wound on a bobbin, and then, when the fiber bundle is unwound, the surface orthogonal to the unwinding direction of the bobbin. Can be controlled by, for example, a method of turning the roller bundle or a method of applying a twist by bringing a rotating roller or belt into contact with a running fiber bundle without winding it on a bobbin.
 本発明において、炭素化処理中の繊維束のフィラメント数は10,000本以上であることが好ましく、15,000本以上であることがより好ましく、20,000本以上であることがさらに好ましい。炭素化処理中の繊維束の撚り数が同じであれば、フィラメント数が大きいほど撚りの中心軸と繊維束の外周との距離が大きくなるため、前記した撚りによる毛羽抑制効果が発現しやすく、得られる炭素繊維の単繊維弾性率を効果的に高めることができる。フィラメント数の上限に特に制限はなく、目的の用途に応じて設定すればよい。 に お い て In the present invention, the number of filaments of the fiber bundle during the carbonization treatment is preferably 10,000 or more, more preferably 15,000 or more, and even more preferably 20,000 or more. If the number of twists of the fiber bundle during the carbonization treatment is the same, the larger the number of filaments, the greater the distance between the center axis of the twist and the outer periphery of the fiber bundle. The single fiber elastic modulus of the obtained carbon fiber can be effectively increased. The upper limit of the number of filaments is not particularly limited, and may be set according to the intended use.
 本発明において、不活性雰囲気に用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンなどが好ましく例示され、経済的な観点からは窒素が好ましく用いられる。 に お い て In the present invention, as the inert gas used in the inert atmosphere, for example, nitrogen, argon, xenon and the like are preferably exemplified, and nitrogen is preferably used from an economic viewpoint.
 前記製造方法で得られた炭素繊維束は、さらに最高3000℃までの不活性雰囲気において追加の黒鉛化処理を行い、用途に応じて単繊維弾性率を適宜調整してもよい。 炭素 The carbon fiber bundle obtained by the above manufacturing method may be subjected to additional graphitization treatment in an inert atmosphere up to 3000 ° C., and the elastic modulus of the single fiber may be appropriately adjusted according to the application.
 以上のようにして得られた炭素繊維束は、炭素繊維とマトリックスとの接着強度を向上させるために、炭素化処理後に表面処理を施し、酸素原子を含む官能基を導入することが好ましい。表面処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。本発明において、液相電解酸化の方法については特に制約はなく、公知の方法で行えばよい。液相電解酸化を行う電解表面処理時の電流量としては、2~100c/gが好ましく、2~80c/gがより好ましい。電解表面処理時の電流量が2c/g以上であれば、炭素繊維表面に十分な酸素含有官能基が導入され樹脂との接着性が得られやすく複合材料の弾性率低下が抑制でき、100c/g以下であれば電解表面処理による炭素繊維表面の欠陥形成が抑制でき、ループ破断荷重の低下が抑制できる。 The carbon fiber bundle obtained as described above is preferably subjected to a surface treatment after the carbonization treatment to introduce a functional group containing an oxygen atom in order to improve the adhesive strength between the carbon fiber and the matrix. As the surface treatment method, gas phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used, but liquid phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment. In the present invention, the method of liquid phase electrolytic oxidation is not particularly limited, and may be a known method. The amount of current at the time of electrolytic surface treatment for performing liquid phase electrolytic oxidation is preferably 2 to 100 c / g, and more preferably 2 to 80 c / g. When the amount of current at the time of electrolytic surface treatment is 2 c / g or more, a sufficient oxygen-containing functional group is introduced into the carbon fiber surface, adhesion to resin is easily obtained, and a decrease in the elastic modulus of the composite material can be suppressed. If it is not more than g, the formation of defects on the carbon fiber surface due to the electrolytic surface treatment can be suppressed, and the decrease in loop breaking load can be suppressed.
 かかる電解表面処理などの表面処理を施すことで、炭素繊維束に酸素原子を含む官能基を導入することができ、炭素繊維束の表面酸素濃度O/Cを調整することができる。表面酸素濃度O/Cを本発明の好ましい範囲に制御するためには、表面処理における電流量や処理時間を公知の方法で調節すればよい。 表面 By performing such surface treatment such as electrolytic surface treatment, a functional group containing an oxygen atom can be introduced into the carbon fiber bundle, and the surface oxygen concentration O / C of the carbon fiber bundle can be adjusted. In order to control the surface oxygen concentration O / C within a preferable range of the present invention, the current amount and the treatment time in the surface treatment may be adjusted by a known method.
 かかる電解処理の後、得られた炭素繊維束の取り扱い性や高次加工性をさらに高めるため、あるいは炭素繊維とマトリックスとの接着強度を高めるため、サイジング剤を付着させることもできる。サイジング剤は、炭素繊維強化複合材料に使用されるマトリックスの種類に応じて適宜選択することができる。また、取り扱い性や高次加工性の観点から、付着量などを微調整してもよい。さらに、成形温度の高いマトリックスを用いる場合など、サイジング剤の熱分解物による炭素繊維とマトリックスとの接着強度低下が懸念される場合については、サイジング付着量を可能な限り低減することや、サイジング処理を行わなくてもよい。 After the electrolytic treatment, a sizing agent can be attached to the carbon fiber bundle so as to further improve the handleability and high-order workability, or to increase the adhesive strength between the carbon fiber and the matrix. The sizing agent can be appropriately selected according to the type of matrix used for the carbon fiber reinforced composite material. In addition, the amount of adhesion and the like may be finely adjusted from the viewpoint of handleability and higher workability. Furthermore, when there is a concern that the adhesive strength between the carbon fiber and the matrix may be reduced due to the thermal decomposition product of the sizing agent, such as when using a matrix with a high molding temperature, the sizing adhesion amount should be reduced as much as possible, and the sizing treatment should be performed. Need not be performed.
 本明細書に記載の各種物性値の測定方法は以下の通りである。なお、特に記載のないものは測定n数1で評価を行った。 測定 The methods for measuring various physical properties described in this specification are as follows. In addition, what was not described in particular was evaluated by measurement n number 1.
 <炭素繊維のストランド強度およびストランド弾性率>
 炭素繊維のストランド強度およびストランド弾性率は、JIS R7608:2004の樹脂含浸ストランド試験法に従い、次の手順に従い求める。ただし、炭素繊維の繊維束が撚りを有する場合、撚り数と同数の逆回転の撚りを付与することにより解撚してから評価する。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いる。炭素繊維束のストランド10本を測定し、その平均値をストランド強度およびストランド弾性率とする。なお、ストランド弾性率を算出する際の歪み範囲は0.1~0.6%とする。
<Strand strength and strand elastic modulus of carbon fiber>
The strand strength and the strand elastic modulus of the carbon fiber are determined according to the following procedure in accordance with the resin impregnated strand test method of JIS R7608: 2004. However, in the case where the fiber bundle of carbon fibers has a twist, it is evaluated after untwisting by giving the same number of twists in reverse rotation as the number of twists. As the resin formulation, “CELLOXIDE (registered trademark)” 2021P (manufactured by Daicel Chemical Industries, Ltd.) / Boron trifluoride monoethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) / Acetone = 100/3/4 (parts by mass) is used. As the curing conditions, normal pressure, a temperature of 125 ° C. and a time of 30 minutes are used. Ten strands of the carbon fiber bundle are measured, and the average value is defined as the strand strength and the strand elastic modulus. Note that the strain range for calculating the strand elastic modulus is 0.1 to 0.6%.
 <炭素繊維の平均単繊維直径>
 評価したい炭素繊維の単繊維断面を走査電子顕微鏡観察し、断面積を評価する。かかる断面積と同じ断面積を有する真円の直径を算出し、単繊維直径とする。単繊維直径の算出のN数は50とし、その平均値を採用する。なお、加速電圧は5keVとする。
<Average single fiber diameter of carbon fiber>
A cross section of a single fiber of the carbon fiber to be evaluated is observed with a scanning electron microscope to evaluate a cross sectional area. The diameter of a perfect circle having the same cross-sectional area as this cross-sectional area is calculated and defined as a single fiber diameter. The N number for calculating the single fiber diameter is set to 50, and the average value is adopted. The acceleration voltage is 5 keV.
 なお、本実施例では、走査電子顕微鏡として日立ハイテクノロジーズ社製の走査電子顕微鏡(SEM)“S-4800”を用いた。 In this example, a scanning electron microscope (SEM) “S-4800” manufactured by Hitachi High-Technologies Corporation was used as the scanning electron microscope.
 <片端を固定端、もう一方を自由端としたときに残存する撚り数>
 水平面から60cmの高さの位置にガイドバーを設置し、炭素繊維束の任意の位置をガイドバーにテープで貼り付けることによって固定端とした後、固定端から50cm離れた箇所で炭素繊維束を切断し、自由端を形成する。自由端はテープに挟み込むように封入して、単繊維単位にほどけないように処理する。半永久的な撚り以外の一時的、あるいは時間と共に戻っていく撚りを排除するため、この状態で5分間静置したのち、回数を数えながら自由端を回転させてゆき、完全に解撚されるまでに回転させた回数n(ターン)を記録する。以下の式により、残存する撚り数を算出する。上記測定を3回実施した平均を、本発明における残存する撚り数とする。
<Number of twists remaining when one end is fixed end and the other is free end>
A guide bar is installed at a height of 60 cm from the horizontal plane, and an arbitrary position of the carbon fiber bundle is fixed to the guide bar with a tape, and then the carbon fiber bundle is separated at a position 50 cm away from the fixed end. Cut to form free ends. The free end is sealed so as to be sandwiched between tapes, and processed so as not to unravel into single fiber units. In order to eliminate the twists that return temporarily or over time other than the semi-permanent twists, leave them in this state for 5 minutes, and then rotate the free end while counting the number of turns until they are completely untwisted. The number of turns n (turn) is recorded. The number of remaining twists is calculated by the following equation. The average of the above three measurements is taken as the number of remaining twists in the present invention.
 残存する撚り数(ターン/m)=n(ターン)/0.5(m)。 数 Number of remaining twists (turns / m) = n (turns) /0.5 (m).
 <炭素繊維の単繊維弾性率>
 炭素繊維の単繊維弾性率は、JIS R7606:2000を参考とし、以下の通りにして求める。まず、20cm程度の炭素繊維の束をほぼ4等分し、4つの束から順番に単繊維をサンプリングして束全体からできるだけまんべんなくサンプリングする。サンプリングした単繊維を、10、25、50mmの穴あき台紙に固定する。固定にはニチバン株式会社製のエポキシ系接着剤“アラルダイト(登録商標)”速硬化タイプを用い、塗布後、室温で24時間静置して硬化させる。単繊維を固定した台紙を 引張試験装置に取り付け、10、25、50mmの各ゲージ長にて、歪速度40%/分、試料数15で引張試験をおこなう。各単繊維の応力(MPa)-歪み(%)曲線において、歪み0.3-0.7%の範囲の傾き(MPa/%)から、次の式により、見かけの単繊維弾性率を算出する。
<Elastic modulus of single fiber of carbon fiber>
The single fiber elastic modulus of the carbon fiber is determined as follows with reference to JIS R7606: 2000. First, a bundle of carbon fibers of about 20 cm is divided into approximately four equal parts, and single fibers are sampled sequentially from the four bundles, and the whole bundle is sampled as evenly as possible. The sampled single fiber is fixed on a perforated backing of 10, 25, 50 mm. For fixing, an epoxy adhesive “Araldite (registered trademark)” manufactured by Nichiban Co., Ltd. is used, which is fast-curing type. The backing on which the single fibers were fixed was attached to a tensile tester, and a tensile test was performed at a strain rate of 40% / min and 15 samples at each of the gauge lengths of 10, 25, and 50 mm. From the stress (MPa) -strain (%) curve of each single fiber, the apparent single fiber elastic modulus is calculated from the slope (MPa /%) in the range of strain 0.3-0.7% by the following equation. .
 見かけの単繊維弾性率(GPa)=歪み0.3~0.7%の範囲の傾き(MPa/%)/10
 次いで、ゲージ長10、25、50mmのそれぞれについて、見かけの単繊維弾性率の平均値Eapp(GPa)を計算し、その逆数1/Eapp(GPa-1)を縦軸(Y軸)、ゲージ長L(mm)の逆数1/L(mm-1)を横軸(X軸)としてプロットする。かかるプロットにおけるY切片を読み取り、その逆数をとったものがコンプライアンス補正後の単繊維弾性率であり、本発明における単繊維弾性率は、この値を採用する。
Apparent single fiber elastic modulus (GPa) = Slope in the range of 0.3 to 0.7% strain (MPa /%) / 10
Next, for each of the gauge lengths of 10, 25, and 50 mm, the average value E app (GPa) of the apparent single fiber elastic modulus was calculated, and the reciprocal 1 / E app (GPa −1 ) was plotted on the vertical axis (Y axis). The reciprocal 1 / L 0 (mm −1 ) of the gauge length L 0 (mm) is plotted on the horizontal axis (X axis). The Y intercept in such a plot is read, and the reciprocal of the Y intercept is the single fiber elastic modulus after compliance correction, and this value is used as the single fiber elastic modulus in the present invention.
 なお、本実施例では、引張試験装置として株式会社エー・アンド・デイ製の引張試験機“テンシロンRTF-1210”を用いた。 In this example, a tensile tester "Tensilon RTF-1210" manufactured by A & D Corporation was used as a tensile tester.
 <ループ破断荷重>
 長さ約10cmの単繊維をスライドガラス上に置き、中央部にグリセリンを1~2滴たらして単繊維両端部を繊維周方向に軽くねじることで単繊維中央部にループを作り、その上にカバーガラスを置く。これを顕微鏡のステージに設置し、トータル倍率が100倍、フレームレートが15フレーム/秒の条件で動画撮影を行う。ループが視野から外れないようにステージを都度調節しながら、ループさせた繊維の両端を指でスライドガラス方向に押しつけつつ逆方向に一定速度で引っ張ることで、単繊維が破断するまで歪をかける。コマ送りにより破断直前のフレームを特定し、画像解析により破断直前のループの横幅Wを測定する。単繊維直径dをWで除してd/Wを算出する。試験のn数は20とし、d/Wの平均値に単繊維弾性率Esをかけ算することによりループ強度Es×d/Wを求める。さらに、単繊維直径から求まる断面積πd/4を乗じ、πEs×d/4Wをループ破断荷重とする。
<Loop breaking load>
Place a single fiber about 10cm long on a glass slide, drop 1-2 drops of glycerin at the center and twist both ends of the single fiber lightly in the circumferential direction to form a loop at the center of the single fiber. Put the cover glass on. This is set on the stage of a microscope, and a moving image is shot under the conditions that the total magnification is 100 times and the frame rate is 15 frames / second. While adjusting the stage each time so that the loop does not deviate from the field of view, the both ends of the looped fiber are pulled at a constant speed in the opposite direction while being pressed with a finger toward the slide glass, whereby strain is applied until the single fiber breaks. The frame immediately before the break is specified by frame feed, and the width W of the loop immediately before the break is measured by image analysis. The diameter d of the single fiber is divided by W to calculate d / W. The number of n in the test is 20, and the loop strength Es × d / W is obtained by multiplying the average value of d / W by the single fiber elastic modulus Es. Furthermore, multiplied by the cross-sectional area [pi] d 2/4 obtained from a single fiber diameter, and a loop breaking load of πEs × d 3 / 4W.
 <炭素繊維束の450℃における加熱減量率>
 評価対象となる炭素繊維束を質量2.5gとなるよう切断したものを直径3cm程度のカセ巻きにし、熱処理前の質量w(g)を秤量する。次いで、温度450℃の窒素雰囲気のオーブン中で15分間加熱し、デシケーター中で室温になるまで放冷した後に加熱後質量w(g)を秤量する。以下の式により、450℃における加熱減量率を計算する。なお、評価は3回行い、その平均値を採用する。
450℃における加熱減量率(%)=(w-w)/w×100(%)。
<Loss on heating of carbon fiber bundle at 450 ° C.>
Those of carbon fiber bundle to be evaluated was cut to be a mass 2.5g to hank wound having a diameter of about 3 cm, is weighed mass w 0 before heat treatment (g). Next, the mixture is heated in an oven in a nitrogen atmosphere at a temperature of 450 ° C. for 15 minutes, allowed to cool to room temperature in a desiccator, and then weighed after heating, w 1 (g). The heating loss rate at 450 ° C. is calculated by the following equation. Evaluation is performed three times, and the average value is adopted.
Loss on heating at 450 ° C. (%) = (w 0 −w 1 ) / w 0 × 100 (%).
 <炭素繊維束の結節強度>
 結節強度の測定は450℃における加熱時の減量率が0.15%以下の炭素繊維束を用いた。サイジングが付与された炭素繊維束を評価する場合は、アセトン中で洗浄することでサイジング剤を除去し、乾燥後の炭素繊維束を用いる。乾燥後に炭素繊維束の450℃における加熱時の減量率を評価し、0.15%以下となるまで繰り返し洗浄を行う。
<Knotting strength of carbon fiber bundle>
For measurement of knot strength, a carbon fiber bundle having a weight loss rate of 0.15% or less when heated at 450 ° C. was used. When evaluating the carbon fiber bundle to which the sizing has been applied, the sizing agent is removed by washing in acetone, and the dried carbon fiber bundle is used. After drying, the weight loss rate of the carbon fiber bundle when heated at 450 ° C. is evaluated, and the carbon fiber bundle is repeatedly washed until it becomes 0.15% or less.
 炭素繊維束が撚りを有する場合、撚り数と同数の逆回転の撚りを付与することにより解撚してから評価する。長さ150mmの上記炭素繊維束を炭素繊維束の総繊度が7000~8500dtexとなるように分割または合糸して測定に供する炭素繊維束とする。なお、炭素繊維束の総繊度は炭素繊維束の単繊維の平均繊度(dtex)とフィラメント数との積とする。かかる炭素繊維束の両端に長さ25mmの把持部を取り付け試験体とし、試験体作製の際、0.1×10-3N/デニールの荷重をかけて炭素繊維束の引き揃えを行う。試験体の中点部分に結び目を1カ所作製し、引張時のクロスヘッド速度を100mm/分として束引張試験を行う。測定は計12本の繊維束に対して行い、最大値、最小値の2つの値を除した10本の平均値を測定値として用い、10本の標準偏差を結節強度の標準偏差として用いる。結節強度には、引張試験で得られた最大荷重値を、炭素繊維束の平均断面積値で除した値を用いる。 When the carbon fiber bundle has a twist, it is evaluated after untwisting by imparting the same number of twists in reverse rotation as the number of twists. The carbon fiber bundle having a length of 150 mm is divided or combined so that the total fineness of the carbon fiber bundle is 7000 to 8500 dtex, to obtain a carbon fiber bundle to be used for measurement. The total fineness of the carbon fiber bundle is a product of the average fineness (dtex) of the single fiber of the carbon fiber bundle and the number of filaments. A grip having a length of 25 mm is attached to both ends of the carbon fiber bundle as a test specimen, and when preparing the test specimen, the carbon fiber bundle is aligned by applying a load of 0.1 × 10 −3 N / denier. One knot is formed at the midpoint of the test body, and a bundle tension test is performed with the crosshead speed during tension at 100 mm / min. The measurement is performed on a total of 12 fiber bundles, and an average value of ten fibers obtained by dividing two values of the maximum value and the minimum value is used as a measured value, and the standard deviation of ten fibers is used as a standard deviation of knot strength. As the knot strength, a value obtained by dividing the maximum load value obtained in the tensile test by the average sectional area value of the carbon fiber bundle is used.
 <炭素繊維束表層の撚り角>
 前記単繊維直径(μm)およびフィラメント数から以下の式により炭素繊維束全体の直径(μm)を算出した後、撚り数(ターン/m)を用いて以下の式により、炭素繊維束表層の撚り角(°)を算出する。
<Twist angle of carbon fiber bundle surface layer>
After calculating the diameter (μm) of the entire carbon fiber bundle from the single fiber diameter (μm) and the number of filaments by the following formula, the twist of the surface layer of the carbon fiber bundle is calculated by the following formula using the number of twists (turns / m). Calculate the angle (°).
 炭素繊維束全体の直径(μm)={(単繊維直径)×フィラメント数}0.5
 炭素繊維束表層の撚り角(°)=atan(繊維束全体の直径×10-6×π×撚り数)。
<炭素繊維束の結晶子サイズLcおよび結晶配向度π002
 測定に供する炭素繊維束を引き揃え、コロジオン・アルコール溶液を用いて固めることにより、長さ4cm、1辺の長さが1mmの四角柱の測定試料を用意する。用意された測定試料について、広角X線回折装置を用いて、次の条件により測定を行う。
Diameter (μm) of entire carbon fiber bundle = {(diameter of single fiber) 2 × number of filaments} 0.5
Twist angle (°) of surface layer of carbon fiber bundle = atan (diameter of entire fiber bundle × 10 −6 × π × number of twists).
<Crystallite size Lc and degree of crystal orientation π 002 of carbon fiber bundle>
A carbon fiber bundle to be subjected to measurement is aligned and solidified using a collodion-alcohol solution to prepare a square pillar measurement sample having a length of 4 cm and a side of 1 mm. The prepared measurement sample is measured using a wide-angle X-ray diffractometer under the following conditions.
 1.結晶子サイズLcの測定
・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=10~40°
・走査モード:ステップスキャン、ステップ単位0.02°、計数時間2秒。
1. Measurement of crystallite size Lc ・ X-ray source: CuKα ray (tube voltage 40 kV, tube current 30 mA)
・ Detector: Goniometer + Monochromator + Scintillation counter ・ Scanning range: 2θ = 10-40 °
Scan mode: step scan, step unit 0.02 °, counting time 2 seconds.
 得られた回折パターンにおいて、2θ=25~26°付近に現れるピークについて、半値幅を求め、この値から、次のシェラー(Scherrer)の式により結晶子サイズを算出する。 (5) In the obtained diffraction pattern, a half-value width is obtained for a peak appearing near 2θ = 25 to 26 °, and a crystallite size is calculated from this value by the following Scherrer equation.
 結晶子サイズ(nm)=Kλ/βcosθ
 但し、
 K:1.0、λ:0.15418nm(X線の波長)
 β:(β -β 1/2
 β:見かけの半値幅(測定値)rad、β:1.046×10-2rad
 θ:Braggの回析角。
Crystallite size (nm) = Kλ / β 0 cos θ B
However,
K: 1.0, λ: 0.15418 nm (wavelength of X-ray)
β 0 : (β E 2 −β 1 2 ) 1/2
β E : apparent half width (measured value) rad, β 1 : 1.046 × 10 −2 rad
θ B : Bragg diffraction angle.
 2.結晶配向度π002の測定
 上述した結晶ピークを円周方向にスキャンして得られる強度分布の半値幅から次式を用いて計算して求める。
π002=(180-H)/180
但し、
H:見かけの半値幅(deg)
 上記測定を3回行い、その算術平均を、その炭素繊維束の結晶子サイズおよび結晶配向度とする。
2. Measurement of crystal orientation degree π 002 The crystal orientation degree π 002 is calculated from the half width of the intensity distribution obtained by scanning the above-mentioned crystal peak in the circumferential direction using the following equation.
π 002 = (180−H) / 180
However,
H: Apparent half width (deg)
The above measurement is performed three times, and the arithmetic average is defined as the crystallite size and the degree of crystal orientation of the carbon fiber bundle.
 なお、後述の実施例および比較例においては、上記広角X線回折装置として、島津製作所製XRD-6100を用いた。 In the examples and comparative examples described below, XRD-6100 manufactured by Shimadzu Corporation was used as the wide-angle X-ray diffractometer.
 <炭素繊維単繊維の平均結晶子サイズLc(s)および平均結晶配向度π002(s)>
 炭素繊維束から単繊維を無作為に抜き取り、X線μビームが利用可能な装置を用いて、広角X線回折測定を行う。測定は繊維軸方向に3μm、繊維直径方向に1μmの形状に整えられた波長0.1305nmのマイクロビームを用い、単繊維を繊維直径方向に1μmステップで走査しながら行う。各ステップあたりの照射時間は2秒とする。検出器と試料との間の距離であるカメラ長は40~200mmの範囲内に収まるように設定する。カメラ長とビームセンターの座標は、酸化セリウムを標準試料として測定することにより求める。検出された2次元回折パターンから、試料を取り外して測定した2次元回折パターンを差し引きすることで、検出器起因のダークノイズと空気由来の散乱ノイズをキャンセルし、補正後の2次元回折パターンを得る。単繊維の繊維直径方向各位置における補正後の2次元回折パターンを足し合わせることで、単繊維の繊維直径方向の平均2次元回折パターンを得る。かかる平均2次元回折パターンにおいて、繊維軸直交方向を中心として±5°の角度で扇形積分を行い、2θ方向の回折強度プロファイルを取得する。2θ方向の回折強度プロファイルを2つのガウス関数を用いて最小自乗フィッティングし、回折強度が最大となる2θの角度2θ(°)と、2つのガウス関数の合成関数の半値全幅FWHM(°)を算出する。さらに、2θ方向の回折強度プロファイルが最大となるときの角度2θ(°)を中心として±5°の幅で円周積分を行い、円周方向の回折強度プロファイルを取得する。円周方向の回折強度プロファイルを1つのガウス関数を用いて最小自乗フィッティングすることにより、半値全幅FWHMβ(°)を算出する。単繊維の結晶子サイズLc(s)および結晶配向度π002(s)を以下の式により求め、各3本の単繊維に対する結果を平均して、平均結晶子サイズLc(s)および平均結晶配向度π002(s)を算出する。
<Average crystallite size Lc (s) and average crystal orientation degree π 002 (s) of carbon fiber single fiber>
Single fibers are randomly extracted from the carbon fiber bundle, and wide-angle X-ray diffraction measurement is performed using an apparatus capable of using an X-ray μ-beam. The measurement is carried out using a microbeam having a wavelength of 0.1305 nm arranged in a shape of 3 μm in the fiber axis direction and 1 μm in the fiber diameter direction while scanning the single fiber in steps of 1 μm in the fiber diameter direction. The irradiation time for each step is 2 seconds. The camera length, which is the distance between the detector and the sample, is set to fall within the range of 40 to 200 mm. The camera length and the coordinates of the beam center are determined by measuring cerium oxide as a standard sample. By subtracting the two-dimensional diffraction pattern measured by removing the sample from the detected two-dimensional diffraction pattern, dark noise due to the detector and scattering noise due to air are canceled, and a corrected two-dimensional diffraction pattern is obtained. . By adding the corrected two-dimensional diffraction patterns at each position in the fiber diameter direction of the single fiber, an average two-dimensional diffraction pattern in the fiber diameter direction of the single fiber is obtained. In such an average two-dimensional diffraction pattern, a sector integral is performed at an angle of ± 5 ° around the direction orthogonal to the fiber axis to obtain a diffraction intensity profile in the 2θ direction. The least square fitting of the diffraction intensity profile in the 2θ direction using two Gaussian functions is performed, and the angle 2θ m (°) of 2θ at which the diffraction intensity is maximum and the full width at half maximum FWHM (°) of the combined function of the two Gaussian functions are obtained. calculate. Further, the circumference integral is performed at a width of ± 5 ° around the angle 2θ m (°) at which the diffraction intensity profile in the 2θ direction becomes the maximum, and the diffraction intensity profile in the circumferential direction is obtained. The full width at half maximum FWHM β (°) is calculated by performing least-squares fitting of the diffraction intensity profile in the circumferential direction using one Gaussian function. The crystallite size Lc (s) and the degree of crystal orientation π 002 (s) of the single fiber are obtained by the following formulas, and the results for each of the three single fibers are averaged to obtain the average crystallite size Lc (s) and the average crystal size. The degree of orientation π 002 (s) is calculated.
 Lc(s)(nm)=Kλ/FWHMcos(2θ/2)
ここで、Scherrer係数Kは1.0、X線波長λは0.1305nmであり、半値全幅FWHMと2θは単位を角度(°)からラジアン(rad)に変換して用いる。
Lc (s) (nm) = Kλ / FWHMcos (2θ m / 2)
Here, Scherrer coefficient K is 1.0, the X-ray wavelength λ is 0.1305Nm, full width half maximum FWHM and 2 [Theta] m is used to convert the units from the angle (°) in radian (rad).
 π002(s)(%)=(180-FWHMβ)/180×100(%)。 π 002 (s) (%) = (180−FWHM β ) / 180 × 100 (%).
 なお、本実施例では、X線μビームが利用可能な装置としてSPring-8のビームラインBL03XU(FSBL)第2ハッチを、検出器として浜松ホトニクス株式会社製のフラットパネルディテクター“C9827DK-10”(ピクセルサイズ50μm×50μm)を用いた。 In this embodiment, the SPring-8 beam line BL03XU (FSBL) second hatch is used as an apparatus capable of using the X-ray μ-beam, and the flat panel detector “C9827DK-10” (manufactured by Hamamatsu Photonics KK) is used as a detector. A pixel size of 50 μm × 50 μm) was used.
 <炭素繊維の表面酸素濃度O/C>
 炭素繊維の表面酸素濃度O/Cは、次の手順に従いX線光電子分光法により求める。まず、溶媒を用いて表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げる。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10-8Torrに保つ。続いて、X線源としてAlKα1,2 を用い、光電子脱出角度を90°として測定を行う。なお、測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を286.1eVに合わせ、C1sピーク面積は282~296eVの範囲で直線のベースラインを引くことにより求める。また、O1sピーク面積は528~540eVの範囲で直線のベースラインを引くことにより求める。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出されるものである。なお、本実施例では、X線光電子分光法装置として、アルバック・ファイ(株)製ESCA-1600を用い、上記装置固有の感度補正値は2.33であった。
<Surface oxygen concentration of carbon fiber O / C>
The surface oxygen concentration O / C of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, the carbon fiber from which dirt attached to the surface has been removed using a solvent is cut into about 20 mm and spread on a copper sample support. Next, the sample support is set in the sample chamber, and the inside of the sample chamber is maintained at 1 × 10 −8 Torr. Subsequently, using AlK 1, 2 as an X-ray source and measures the photoelectron escape angle as 90 °. Note that combined the binding energy value of the main peak (peak top) of the C 1s as a correction value of the peak due to the measurement time of the charged 286.1EV, C 1s peak area drawing a linear base line in a range of 282 ~ 296eV We ask by doing. Further, the O 1s peak area is determined by drawing a straight base line in the range of 528 to 540 eV. Here, the surface oxygen concentration is calculated as the atomic number ratio from the above ratio of the O 1s peak area to the C 1s peak area using a sensitivity correction value unique to the apparatus. In this example, ESCA-1600 manufactured by ULVAC-PHI was used as the X-ray photoelectron spectroscopy apparatus, and the sensitivity correction value unique to the apparatus was 2.33.
 <走行安定性>
 成形加工性のモデル評価として、走行安定性を次のように評価する。直径50mm、溝幅10mm、溝深さ10mmのV溝ローラー5個を、300mm間隔で直線上に固定した走行安定性評価ユニットを準備する。評価する炭素繊維束を、サイジング剤が付与されていない状態で、走行安定性評価ユニットの各V溝ローラーに対し上面、下面、上面、下面、上面と接触するようにジグザグ状に通し、ダンサーウェイトで1kgの張力を作用させながら、線速度10m/分で30分間走行させる。その後、炭素繊維束を取り除いたあとのV溝ローラー5つを目視点検した際のローラーの状態に応じて、以下のように等級をつける。
A:ローラーへの炭素繊維の付着がみられない。なお、Aのうち、150分間走行させてもローラーへの炭素繊維の付着がみられなかったものを、特にAAとする。
B:ローラーへの炭素繊維のわずかな巻き付きがみられる(5つ中1つまたは2つのローラーに巻き付きがみられる)。
C:ローラーへの炭素繊維の巻き付きがみられる。(5つ中3つまたは4つのローラーに巻き付きが見られる)
D:ローラーへの炭素繊維の巻き付きが顕著である。(5つのローラー全てに巻き付きが見られる)
<Driving stability>
As a model evaluation of the formability, the running stability is evaluated as follows. A running stability evaluation unit is prepared in which five V-groove rollers having a diameter of 50 mm, a groove width of 10 mm, and a groove depth of 10 mm are linearly fixed at 300 mm intervals. The carbon fiber bundle to be evaluated is passed through each V-groove roller of the running stability evaluation unit in a zigzag manner so as to contact the upper surface, lower surface, upper surface, lower surface, and upper surface in a state where the sizing agent is not applied, and the dancer weight is The vehicle is run at a linear velocity of 10 m / min for 30 minutes while applying a tension of 1 kg with. Thereafter, the five V-groove rollers after removing the carbon fiber bundles are graded as follows according to the state of the rollers at the time of visual inspection.
A: No adhesion of carbon fiber to the roller is observed. In addition, among A, those in which the carbon fibers did not adhere to the roller even after running for 150 minutes are particularly designated as AA.
B: Slight wrapping of the carbon fiber around the rollers is observed (winding is observed on one or two of the five rollers).
C: Winding of the carbon fiber around the roller is observed. (Three or four out of five rollers can be wrapped)
D: The winding of the carbon fiber around the roller is remarkable. (Winding is seen on all five rollers)
 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
 以下に記載する実施例1~11および比較例1~16は、次の包括的実施例に記載の実施方法において、表1または表2に記載の各条件を用いて行ったものである。 実 施 Examples 1 to 11 and Comparative Examples 1 to 16 described below were carried out in the manner described in the following comprehensive examples using the conditions described in Table 1 or Table 2.
 [包括的実施例]
 アクリロニトリルおよびイタコン酸からなるモノマー組成物を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル共重合体を含む紡糸溶液を得た。得られた紡糸溶液を濾過したのち、紡糸口金から一旦空気中に吐出し、ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。また、その凝固糸条を水洗した後、90℃の温水中で3倍の浴中延伸倍率で延伸し、さらにシリコーン油剤を付与し、160℃の温度に加熱したローラーを用いて乾燥を行い、4倍の延伸倍率で加圧水蒸気延伸を行い、単繊維繊度1.1dtexの炭素繊維前駆体繊維束を得た。次に、得られた炭素繊維前駆体繊維束を4本合糸し、単繊維本数12,000本とし、空気雰囲気240~280℃のオーブン中で延伸比を1として熱処理し、耐炎化繊維束に転換した。
[Comprehensive embodiment]
A monomer composition comprising acrylonitrile and itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning solution containing a polyacrylonitrile copolymer. After filtering the obtained spinning solution, the spinning solution was once discharged into the air from a spinneret and introduced into a coagulation bath comprising an aqueous solution of dimethyl sulfoxide to obtain a coagulated yarn by a dry-wet spinning method. After the coagulated yarn was washed with water, it was stretched at a draw ratio of 3 times in hot water of 90 ° C. in a bath, further applied with a silicone oil agent, and dried using a roller heated to a temperature of 160 ° C., Pressurized steam drawing was performed at a draw ratio of 4 times to obtain a carbon fiber precursor fiber bundle having a single fiber fineness of 1.1 dtex. Next, the obtained carbon fiber precursor fiber bundles are combined into four filaments to make the number of single fibers 12,000, and heat treatment is performed in an oven at 240 to 280 ° C. in an air atmosphere with a draw ratio of 1, and heat treatment is performed. Turned into
 [実施例1]
 包括的実施例記載の方法で耐炎化繊維束を得たのち、得られた耐炎化繊維束に加撚処理を行い、75ターン/mの撚りを付与し、温度300~800℃の窒素雰囲気中において、延伸比0.97として予備炭素化処理を行い、予備炭素化繊維束を得た。次いで、かかる予備炭素化繊維束に、表1に示す条件で炭素化処理を施したのち、硫酸水溶液を電解液として、電気量を炭素繊維1g当たり30クーロンで電解表面処理して、表面酸素濃度(O/C)が0.09の炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 1]
After obtaining the oxidized fiber bundle by the method described in the comprehensive example, the obtained oxidized fiber bundle is twisted to give a twist of 75 turns / m, in a nitrogen atmosphere at a temperature of 300 to 800 ° C. , A preliminary carbonization treatment was performed at a draw ratio of 0.97 to obtain a preliminary carbonized fiber bundle. Next, the carbonized fiber bundle is subjected to a carbonization treatment under the conditions shown in Table 1, and then subjected to an electrolytic surface treatment using an aqueous sulfuric acid solution as an electrolytic solution at an electric quantity of 30 coulombs per gram of carbon fiber to obtain a surface oxygen concentration. A carbon fiber bundle with (O / C) of 0.09 was obtained. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例2]
 撚り数を50ターン/m、炭素化処理時の張力を5.2mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 2]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the number of twists was set to 50 turns / m and the tension during the carbonization treatment was set to 5.2 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例3]
 炭素化処理時の張力を10.2mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 3]
A carbon fiber bundle was obtained in the same manner as in Example 2, except that the tension during the carbonization treatment was set to 10.2 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例4]
 撚り数を20ターン/m、炭素化処理時の張力を10.3mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 4]
A carbon fiber bundle was obtained in the same manner as in Example 1, except that the number of twists was 20 turns / m and the tension during the carbonization treatment was 10.3 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例5]
 包括的実施例において前駆体繊維束の合糸本数を8本とし、単繊維本数を24,000本とした以外は実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 5]
A carbon fiber bundle was obtained in the same manner as in Example 3 except that the number of twines of the precursor fiber bundle was set to 8 and the number of single fibers was set to 24,000 in the comprehensive example. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例6]
 炭素化処理の最高温度を2350℃、炭素化処理時の張力を6.5mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 6]
A carbon fiber bundle was obtained in the same manner as in Example 2, except that the maximum temperature of the carbonization treatment was 2350 ° C and the tension during the carbonization treatment was 6.5 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was A, a high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例7]
 炭素化処理時の張力を9.1mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 7]
A carbon fiber bundle was obtained in the same manner as in Example 6, except that the tension during the carbonization treatment was set to 9.1 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was A, a high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例8]
 炭素化処理時の張力を11.6mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
Example 8
A carbon fiber bundle was obtained in the same manner as in Example 6, except that the tension during the carbonization treatment was set to 11.6 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was A, a high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例9]
 撚り数を20ターン/m、炭素化処理時の張力を11.0mN/dtexとした以外は実施例5と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 9]
A carbon fiber bundle was obtained in the same manner as in Example 5, except that the number of twists was 20 turns / m and the tension during the carbonization treatment was 11.0 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例10]
 撚り数を5ターン/mとした以外は実施例9と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAAと、非常に高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 10]
A carbon fiber bundle was obtained in the same manner as in Example 9 except that the number of twists was changed to 5 turns / m. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was AA, a very high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [実施例11]
 包括的実施例において前駆体繊維束の合糸本数を2本とし、単繊維本数を6,000本とした以外は実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はAと、高いレベルにあった。得られた炭素繊維の評価結果を表1に記載する。
[Example 11]
In the comprehensive example, a carbon fiber bundle was obtained in the same manner as in Example 3, except that the number of twined yarns of the precursor fiber bundle was changed to 2, and the number of single fibers was changed to 6,000. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The formability grade was A, a high level. Table 1 shows the evaluation results of the obtained carbon fibers.
 [比較例1]
 撚り数を0ターン/m、炭素化処理時の張力を5.3mN/dtexとした以外は、実施例1と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
[Comparative Example 1]
A carbon fiber bundle was obtained in the same manner as in Example 1, except that the number of twists was set to 0 turn / m and the tension during the carbonization treatment was set to 5.3 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Since the number of remaining twists was out of the range of the present invention, the grade of the formability was B and was lower than that of Example 1. Table 2 shows the evaluation results of the obtained carbon fibers.
 [比較例2]
 撚り数を0ターン/m、炭素化処理時の張力を5.4mN/dtex、最高温度を1400℃とした以外は、実施例3と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
[Comparative Example 2]
A carbon fiber bundle was obtained in the same manner as in Example 3, except that the number of twists was 0 turn / m, the tension during the carbonization treatment was 5.4 mN / dtex, and the maximum temperature was 1400 ° C. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Since the number of remaining twists was out of the range of the present invention, the grade of the formability was B and was lower than that of Example 1. Table 2 shows the evaluation results of the obtained carbon fibers.
 [比較例3]
 炭素化処理時の張力を1.0mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。また、成形加工性の等級はAと、高いレベルにあったが、炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例1と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
[Comparative Example 3]
A carbon fiber bundle was obtained in the same manner as in Example 2, except that the tension during the carbonization treatment was set to 1.0 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Further, although the grade of the formability was A, which was a high level, the elastic modulus of the obtained carbon fiber was lower than that of Example 1 because the tension at the time of carbonization was out of the range of the present invention. did. Table 2 shows the evaluation results of the obtained carbon fibers.
 [比較例4]
 単繊維繊度0.8dtexの炭素繊維前駆体繊維束を用いて、炭素化処理時の張力を10.3mN/dtex、最高温度を1400℃とした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたため、成形加工性の等級はBと、実施例2と比較して低下した。得られた炭素繊維の評価結果を表2に記載する。
[Comparative Example 4]
A carbon fiber bundle was prepared in the same manner as in Example 2 except that a carbon fiber precursor fiber bundle having a single fiber fineness of 0.8 dtex was used, the tension during the carbonization treatment was 10.3 mN / dtex, and the maximum temperature was 1400 ° C. Got. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Since the carbon fiber precursor fiber bundle having a small single fiber fineness was used, the grade of the moldability was B, which was lower than that of Example 2. Table 2 shows the evaluation results of the obtained carbon fibers.
 [比較例5]
 炭素化処理時の張力を1.0mN/dtexとし、無撚りとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はBと、やや低めであった。得られた炭素繊維束の評価結果を表2に記載する。
[Comparative Example 5]
A carbon fiber bundle was obtained in the same manner as in Example 2, except that the tension during the carbonization treatment was set to 1.0 mN / dtex, and no twist was applied. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The grade of moldability was B, which was slightly lower. Table 2 shows the results of the evaluation of the obtained carbon fiber bundle.
 [比較例6]
 単繊維繊度0.8dtexの炭素繊維前駆体繊維束を用いて、炭素化処理時の張力を10.3mN/dtex、最高温度を1900℃とした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。得られた炭素繊維束の評価結果を表2に記載する。
[Comparative Example 6]
A carbon fiber bundle was prepared in the same manner as in Example 2 except that a carbon fiber precursor fiber bundle having a single fiber fineness of 0.8 dtex was used, the tension during the carbonization treatment was 10.3 mN / dtex, and the maximum temperature was 1900 ° C. Got. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. Since the number of remaining twists is out of the range of the present invention, the grade of the formability is B and lower than that of Example 2. Table 2 shows the results of the evaluation of the obtained carbon fiber bundle.
 [比較例7]
 炭素化処理時の張力を1.6mN/dtexとした以外は、実施例6と同様にして炭素繊維束を得た。炭素化工程通過性は良好であり、得られた炭素繊維束の品位も良好であった。成形加工性の等級はBと、やや低めであった。得られた炭素繊維の評価結果を表2に記載する。
[Comparative Example 7]
A carbon fiber bundle was obtained in the same manner as in Example 6, except that the tension during the carbonization treatment was set to 1.6 mN / dtex. The carbonization process passability was good, and the quality of the obtained carbon fiber bundle was also good. The grade of moldability was B, which was slightly lower. Table 2 shows the evaluation results of the obtained carbon fibers.
 [比較例8]
 撚り数を0ターン/mとした以外は、実施例3と同様にして炭素繊維化を行った。炭素化工程において処理中の糸条が破断する現象が繰り返し起こり、炭素繊維束を採取することが困難であった。
[Comparative Example 8]
Except that the number of twists was set to 0 turns / m, carbon fibers were formed in the same manner as in Example 3. In the carbonization step, a phenomenon in which the yarn being processed was broken repeatedly occurred, and it was difficult to collect a carbon fiber bundle.
 [比較例9]
 撚り数を0ターン/mとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程において毛羽が若干みられたが、炭素繊維束を採取することができた。得られた炭素繊維束には毛羽が存在し、品位は低めであった。残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 9]
A carbon fiber bundle was obtained in the same manner as in Example 2, except that the number of twists was set to 0 turns / m. Although some fluff was observed in the carbonization step, a carbon fiber bundle could be collected. The obtained carbon fiber bundle had fluff, and the quality was low. Since the number of remaining twists is out of the range of the present invention, the grade of the formability is B and lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例10]
 炭素化処理時の張力を3.4mN/dtexとした以外は、比較例9と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。また、残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 10]
A carbon fiber bundle was obtained in the same manner as in Comparative Example 9, except that the tension during the carbonization treatment was set to 3.4 mN / dtex. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. In addition, since the number of remaining twists was out of the range of the present invention, the grade of the formability was B and was lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例11]
 包括的実施例において前駆体繊維束の合糸本数を2本として単繊維本数を6,000本とすると共に、撚り数を0ターン/mとし、炭素化処理時の張力を3.4mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。残存する撚り数と総繊度が本発明の範囲を外れるため、成形加工性の等級はCと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 11]
In the comprehensive example, the number of plied yarns of the precursor fiber bundle was 2, the number of single fibers was 6,000, the number of twists was 0 turns / m, and the tension during the carbonization treatment was 3.4 mN / dtex. A carbon fiber bundle was obtained in the same manner as in Example 2 except that the above conditions were satisfied. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the number of remaining twists and the total fineness were out of the range of the present invention, the grade of the formability was C, which was lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例12]
 撚り数を50ターン/mとした以外は、比較例11と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して、低下した。総繊度が本発明の範囲を外れるため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 12]
A carbon fiber bundle was obtained in the same manner as in Comparative Example 11, except that the number of twists was changed to 50 turns / m. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the total fineness was out of the range of the present invention, the grade of the formability was B and was lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例13]
 包括的実施例において前駆体繊維束の単繊維繊度を0.8dtexとすると共に、炭素化処理時の張力を3.4mN/dtexとした以外は、実施例2と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたため、成形加工性の等級はBと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 13]
In the comprehensive example, a carbon fiber bundle was obtained in the same manner as in Example 2, except that the single fiber fineness of the precursor fiber bundle was set to 0.8 dtex and the tension during the carbonization treatment was set to 3.4 mN / dtex. Was. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the carbon fiber precursor fiber bundle having a small single fiber fineness was used, the grade of the moldability was B, which was lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例14]
 撚り数を0ターン/mとした以外は、比較例13と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、残存する撚り数が本発明の範囲を外れるため、成形加工性の等級はDとなり、実施例2と比較して、安定性がさらに低下した。評価結果を表2に記載する。
[Comparative Example 14]
A carbon fiber bundle was obtained in the same manner as in Comparative Example 13 except that the number of twists was set to 0 turns / m. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the carbon fiber precursor fiber bundle having a small single fiber fineness was used and the number of remaining twists was out of the range of the present invention, the grade of the moldability was D, and the stability was lower than that of Example 2. Further decline. Table 2 shows the evaluation results.
 [比較例15]
 包括的実施例において前駆体繊維束の合糸本数を2本として単繊維本数を6,000本とした以外は、比較例13と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、総繊度が本発明の範囲を外れるため、成形加工性の等級はCと、実施例2と比較して低下した。評価結果を表2に記載する。
[Comparative Example 15]
In the comprehensive example, a carbon fiber bundle was obtained in the same manner as in Comparative Example 13 except that the number of yarns of the precursor fiber bundle was two and the number of single fibers was 6,000. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the carbon fiber precursor fiber bundle having a small single fiber fineness was used and the total fineness was out of the range of the present invention, the grade of the formability was C, which was lower than that of Example 2. Table 2 shows the evaluation results.
 [比較例16]
 撚り数を0ターン/mとした以外は、比較例15と同様にして炭素繊維束を得た。炭素化工程の通過性は良好であり、得られた炭素繊維束の品位も良好であった。炭素化処理時の張力が本発明の範囲を外れるため、得られた炭素繊維の弾性率は実施例2と比較して低下した。単繊維繊度が小さい炭素繊維前駆体繊維束を用いたことと、残存する撚り数と総繊度が本発明の範囲を外れるため、成形加工性の等級はDと、実施例2と比較して安定性がさらに低下した。評価結果を表2に記載する。
[Comparative Example 16]
A carbon fiber bundle was obtained in the same manner as in Comparative Example 15 except that the number of twists was set to 0 turns / m. The passability of the carbonization step was good, and the quality of the obtained carbon fiber bundle was also good. Since the tension during the carbonization treatment was out of the range of the present invention, the elastic modulus of the obtained carbon fiber was lower than that of Example 2. Since the carbon fiber precursor fiber bundle having a small single fiber fineness was used, and the number of twists remaining and the total fineness were out of the range of the present invention, the formability was D, which was more stable than that of Example 2. Sex was further reduced. Table 2 shows the evaluation results.
 [参考例1]
 東レ株式会社製“トレカ(登録商標)”T700Sの評価結果を表2に記載する。また、サイジングが付与された状態での結節強度は826MPaであった。成形加工性の等級はBと、やや低めであった。
[Reference Example 1]
Table 2 shows the evaluation results of "Trayca (registered trademark)" T700S manufactured by Toray Industries, Inc. In addition, the knot strength in a state where the sizing was given was 826 MPa. The grade of moldability was B, which was slightly lower.
 [参考例2]
 東レ株式会社製“トレカ(登録商標)”M35Jの評価結果を表2に記載する。
[Reference Example 2]
Table 2 shows the results of the evaluation of "Torayca (registered trademark)" M35J manufactured by Toray Industries, Inc.
 [参考例3]
 東レ株式会社製“トレカ(登録商標)”M40Jの評価結果を表2に記載する。
[Reference Example 3]
Table 2 shows the evaluation results of Torayca M40J manufactured by Toray Industries, Inc.
 [参考例4]
 東レ株式会社製“トレカ(登録商標)”M46Jの評価結果を表2に記載する。
[Reference Example 4]
Table 2 shows the evaluation results of "Torayca (registered trademark)" M46J manufactured by Toray Industries, Inc.
 [参考例5]
 東レ株式会社製“トレカ(登録商標)”M40の評価結果を表2に記載する。
[Reference Example 5]
Table 2 shows the evaluation results of "Torayca (registered trademark)" M40 manufactured by Toray Industries, Inc.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、優れた引張弾性率と複合材料への成形加工性を両立し、不連続繊維として用いた場合でも繊維長を維持しやすい炭素繊維およびその製造方法に関するものである。本発明で得られる炭素繊維束は、かかる特徴を活かし、航空機・自動車・船舶部材や、ゴルフシャフトや釣竿等のスポーツ用途などの一般産業用途に好適に用いられる。 (4) The present invention relates to a carbon fiber which has both excellent tensile modulus and processability into a composite material, and can easily maintain a fiber length even when used as a discontinuous fiber, and a method for producing the same. The carbon fiber bundle obtained in the present invention is suitably used for general industrial applications such as aircraft, automobiles and marine members, and sports applications such as golf shafts and fishing rods, utilizing such features.

Claims (22)

  1. ストランド弾性率が360GPa以上の炭素繊維であって、ストランド強度が3.5GPa以上かつ単繊維直径が6.0μm以上であり、さらに以下の要件(イ)または(ロ)を満たす炭素繊維。
    (イ)片方の端を固定端、もう一方の端を繊維束の軸に対する回転が可能な自由端としたとき、残存する撚り数が2ターン/m以上である
    (ロ)炭素繊維としての単繊維繊度(g/km)とフィラメント数(本)の積である総繊度が740g/km以上である。
    A carbon fiber having a strand elastic modulus of 360 GPa or more, a strand strength of 3.5 GPa or more, a single fiber diameter of 6.0 μm or more, and further satisfying the following requirements (a) or (b).
    (B) When one end is a fixed end and the other end is a free end rotatable with respect to the axis of the fiber bundle, the number of twists remaining is 2 turns / m or more. The total fineness, which is the product of the fiber fineness (g / km) and the number of filaments (lines), is 740 g / km or more.
  2. 単繊維弾性率Es(GPa)とループ破断荷重A(N)が式(1)の関係を満たす、請求項1に記載の炭素繊維。
    A≧-0.0017×Es+1.02 ・・・式(1)
    2. The carbon fiber according to claim 1, wherein the single fiber elastic modulus Es (GPa) and the loop breaking load A (N) satisfy the relationship of Expression (1). 3.
    A ≧ −0.0017 × Es + 1.02 Formula (1)
  3. 単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が20~80ターン/mである、請求項1または2に記載の炭素繊維。
    B≧6.7×10×E-2.85 ・・・式(2)
    The relationship between the single fiber diameter is 6.0 μm or more, the strand elastic modulus E (GPa) and the knot strength B (MPa) evaluated at a loss rate of heating at 450 ° C. of 0.15% or less satisfies the formula (2). The carbon fiber according to claim 1, wherein the number of twists is 20 to 80 turns / m.
    B ≧ 6.7 × 10 9 × E -2.85 Formula (2)
  4. 総繊度が850g/km以上である、請求項1~3のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 3, wherein the total fineness is 850 g / km or more.
  5. ストランド弾性率が440GPa以上である、請求項1~4のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 4, wherein a strand elastic modulus is 440 GPa or more.
  6. 炭素繊維束表層の撚り角が2.0~30.5°である、請求項1~5のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 5, wherein the twist angle of the surface layer of the carbon fiber bundle is 2.0 to 30.5 °.
  7. 炭素繊維束表層の撚り角が4.8~10.0°である、請求項6に記載の炭素繊維。 The carbon fiber according to claim 6, wherein the twist angle of the surface layer of the carbon fiber bundle is 4.8 to 10.0 °.
  8. 単繊維直径が6.5μm以上である、請求項1~7のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 7, wherein a single fiber diameter is 6.5 μm or more.
  9. 単繊維直径が7.4μm以下である、請求項1~8のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 8, wherein a single fiber diameter is 7.4 μm or less.
  10. 結晶子サイズLc(nm)と結晶配向度π002(%)が式(3)の関係を満たす、請求項1~9のいずれかに記載の炭素繊維。
    π002≧4.0×Lc+73.2 ・・・式(3)
    The carbon fiber according to any one of claims 1 to 9, wherein the crystallite size Lc (nm) and the degree of crystal orientation π 002 (%) satisfy the relationship of Expression (3).
    π 002 ≧ 4.0 × Lc + 73.2 Equation (3)
  11. 結晶子サイズLcが2.2~3.5nmである、請求項1~10のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 10, wherein the crystallite size Lc is 2.2 to 3.5 nm.
  12. ストランド弾性率E(GPa)と結晶子サイズLc(nm)が式(4)の関係を満たす、請求項1~11のいずれかに記載の炭素繊維。
    E×Lc-0.5≧200(GPa/nm0.5) ・・・式(4)
    The carbon fiber according to any one of claims 1 to 11, wherein the strand elastic modulus E (GPa) and the crystallite size Lc (nm) satisfy the relationship of Expression (4).
    E × Lc −0.5 ≧ 200 (GPa / nm 0.5 ) Equation (4)
  13. 表面酸素濃度O/Cが0.05~0.50である、請求項1~12のいずれかに記載の炭素繊維。 The carbon fiber according to any one of claims 1 to 12, wherein the surface oxygen concentration O / C is 0.05 to 0.50.
  14. フィラメント数が10,000本以上である請求項1~13のいずれかに記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 13, wherein the number of filaments is 10,000 or more.
  15. 単繊維弾性率Es(GPa)とループ破断荷重A(N)が式(1)の関係を満たす炭素繊維。
    A≧-0.0017×Es+1.02 ・・・式(1)
    A carbon fiber in which the single fiber elastic modulus Es (GPa) and the loop breaking load A (N) satisfy the relationship of Expression (1).
    A ≧ −0.0017 × Es + 1.02 Formula (1)
  16. 単繊維直径が6.0μm以上であり、ストランド弾性率E(GPa)と450℃における加熱減量率が0.15%以下で評価した結節強度B(MPa)との関係が式(2)を満たし、撚り数が5~80ターン/mである炭素繊維。
    B≧6.7×10×E-2.85 ・・・式(2)
    The relationship between the single fiber diameter is 6.0 μm or more, the strand elastic modulus E (GPa) and the knot strength B (MPa) evaluated at a loss rate of heating at 450 ° C. of 0.15% or less satisfies the formula (2). And carbon fibers having a twist number of 5 to 80 turns / m.
    B ≧ 6.7 × 10 9 × E -2.85 Formula (2)
  17. 単繊維弾性率またはストランド弾性率が360GPa以上である、請求項15または16に記載の炭素繊維。 The carbon fiber according to claim 15 or 16, wherein a single fiber elastic modulus or a strand elastic modulus is 360 GPa or more.
  18. 炭素繊維前駆体繊維束を空気雰囲気中において、200~300℃の温度範囲で耐炎化処理を行い、得られた耐炎化繊維束を、不活性雰囲気中で最高温度500~1000℃において、密度1.5~1.8g/cmになるまで熱処理する予備炭素化を行い、さらに得られた予備炭素化繊維束を、不活性雰囲気中で熱処理する炭素化を行う炭素繊維の製造方法であって、炭素繊維前駆体繊維束の単繊維繊度が0.9dtex以上であり、炭素化処理中の張力を5mN/dtex以上に制御し、以下の(ハ)または(ニ)を満たす、ストランド弾性率が360GPa以上である炭素繊維の製造方法。
    (ハ)炭素化処理に供する繊維束の撚り数を2ターン/m以上とする
    (ニ)得られる炭素繊維の単繊維繊度(g/km)とフィラメント数(本)の積である総繊度を740g/km以上とする
    The carbon fiber precursor fiber bundle is subjected to an oxidizing treatment in an air atmosphere at a temperature range of 200 to 300 ° C., and the obtained oxidized fiber bundle is densified at a maximum temperature of 500 to 1000 ° C. in an inert atmosphere. A method for producing carbon fibers, comprising performing preliminary carbonization by heat-treating to 1.5 to 1.8 g / cm 3 and heat-treating the obtained preliminarily carbonized fiber bundle in an inert atmosphere. The single fiber fineness of the carbon fiber precursor fiber bundle is 0.9 dtex or more, the tension during the carbonization treatment is controlled to 5 mN / dtex or more, and the following (c) or (d) is satisfied. A method for producing a carbon fiber having 360 GPa or more.
    (C) The number of twists of the fiber bundle to be subjected to the carbonization treatment is 2 turns / m or more. (D) The total fineness which is the product of the single fiber fineness (g / km) of the obtained carbon fiber and the number of filaments (number) is 740 g / km or more
  19. 炭素化処理に供する繊維束の撚り数を16ターン/m以上とする、請求項18に記載の炭素繊維の製造方法。 The method for producing carbon fibers according to claim 18, wherein the number of twists of the fiber bundle to be subjected to the carbonization treatment is 16 turns / m or more.
  20. 炭素化処理の最高温度が1500℃以上である請求項18または19に記載の炭素繊維の製造方法。 The method for producing carbon fibers according to claim 18, wherein the maximum temperature of the carbonization treatment is 1500 ° C. or higher.
  21. 炭素化処理の最高温度が2300℃以上である請求項20に記載の炭素繊維の製造方法。 The method for producing carbon fibers according to claim 20, wherein the maximum temperature of the carbonization treatment is 2300 ° C or higher.
  22. 炭素化処理後に電流量2~100c/gで電解表面処理を行う、請求項18~21のいずれかに記載の炭素繊維の製造方法。 The method for producing carbon fibers according to any one of claims 18 to 21, wherein an electrolytic surface treatment is performed at a current amount of 2 to 100 c / g after the carbonization treatment.
PCT/JP2019/023851 2018-06-18 2019-06-17 Carbon fiber and method for producing same WO2019244830A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/972,068 US20210115597A1 (en) 2018-06-18 2019-06-17 Carbon fiber and method of producing same
KR1020207037337A KR20210019029A (en) 2018-06-18 2019-06-17 Carbon fiber and its manufacturing method
MX2020013140A MX2020013140A (en) 2018-06-18 2019-06-17 Carbon fiber and method for producing same.
EP19822232.5A EP3808880A4 (en) 2018-06-18 2019-06-17 Carbon fiber and method for producing same
CN201980039521.9A CN112368432B (en) 2018-06-18 2019-06-17 Carbon fiber and method for producing same
JP2019538462A JP6702511B1 (en) 2018-06-18 2019-06-17 Carbon fiber and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-115112 2018-06-18
JP2018115112 2018-06-18
JP2018-115113 2018-06-18
JP2018115113 2018-06-18
JP2018161056 2018-08-30
JP2018-161056 2018-08-30

Publications (1)

Publication Number Publication Date
WO2019244830A1 true WO2019244830A1 (en) 2019-12-26

Family

ID=68983391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023851 WO2019244830A1 (en) 2018-06-18 2019-06-17 Carbon fiber and method for producing same

Country Status (8)

Country Link
US (1) US20210115597A1 (en)
EP (1) EP3808880A4 (en)
JP (1) JP6702511B1 (en)
KR (1) KR20210019029A (en)
CN (1) CN112368432B (en)
MX (1) MX2020013140A (en)
TW (1) TW202006201A (en)
WO (1) WO2019244830A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218677A (en) * 2018-06-18 2019-12-26 東レ株式会社 Method for producing carbon fiber bundle
WO2021044935A1 (en) * 2019-09-04 2021-03-11 東レ株式会社 Resin composition and molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767796B (en) * 2021-07-22 2022-06-11 臺灣塑膠工業股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle
CN113737316A (en) * 2021-10-14 2021-12-03 西安康本材料有限公司 Production process of single-groove multi-filament carbon fiber

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105419A (en) * 1975-02-17 1976-09-18 Morganite Modmor Ltd
JPS5691015A (en) 1979-12-25 1981-07-23 Toho Rayon Co Ltd Method for calcining treatment of acrylonitrile fiber bundle
JPH10195718A (en) 1996-12-27 1998-07-28 Toray Ind Inc Carbon yarn and its production
JPH11269727A (en) * 1998-03-18 1999-10-05 Toray Ind Inc Polyacrylonitrile-based graphitized fiber bundle and its production
JP2000160436A (en) 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2001049536A (en) 1999-08-03 2001-02-20 Toray Ind Inc Production of carbon fiber
JP2002001725A (en) 2000-06-23 2002-01-08 Mitsubishi Rayon Co Ltd Fiber rolled material for fiber-reinforced plastic, fiber- reinforced plastic, and its manufacturing method
JP2002327374A (en) * 2001-02-28 2002-11-15 Toray Ind Inc Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
WO2008047745A1 (en) 2006-10-18 2008-04-24 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
WO2008063886A2 (en) 2006-11-22 2008-05-29 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP2009256833A (en) 2008-04-18 2009-11-05 Toray Ind Inc Carbon fiber and reinforcing fabric
WO2010084856A1 (en) * 2009-01-20 2010-07-29 帝人株式会社 Pitch-based carbon fiber web, pitch-based carbon staple fiber, and processes for production of same
WO2013157612A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fibers
WO2013157613A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle
JP2014141761A (en) 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726964Y1 (en) 1968-06-07 1972-08-18
KR102189516B1 (en) * 2013-07-30 2020-12-11 도레이 카부시키가이샤 Carbon fiber bundle and flameproofed fiber bundle
JP2015067910A (en) * 2013-09-27 2015-04-13 東レ株式会社 Carbon fiber and manufacturing method thereof
US10023979B2 (en) * 2014-10-29 2018-07-17 Toray Industries, Inc. Bundle of carbon fibers and method of manufacturing the same
US11313054B2 (en) * 2016-05-24 2022-04-26 Toray Industries, Inc. Carbon fiber bundle

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105419A (en) * 1975-02-17 1976-09-18 Morganite Modmor Ltd
JPS5691015A (en) 1979-12-25 1981-07-23 Toho Rayon Co Ltd Method for calcining treatment of acrylonitrile fiber bundle
JPH10195718A (en) 1996-12-27 1998-07-28 Toray Ind Inc Carbon yarn and its production
JPH11269727A (en) * 1998-03-18 1999-10-05 Toray Ind Inc Polyacrylonitrile-based graphitized fiber bundle and its production
JP2000160436A (en) 1998-11-30 2000-06-13 Toray Ind Inc Carbon fiber, and production of precursor for carbon fiber
JP2001049536A (en) 1999-08-03 2001-02-20 Toray Ind Inc Production of carbon fiber
JP2002001725A (en) 2000-06-23 2002-01-08 Mitsubishi Rayon Co Ltd Fiber rolled material for fiber-reinforced plastic, fiber- reinforced plastic, and its manufacturing method
JP2002327374A (en) * 2001-02-28 2002-11-15 Toray Ind Inc Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
WO2008047745A1 (en) 2006-10-18 2008-04-24 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
WO2008063886A2 (en) 2006-11-22 2008-05-29 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP2009256833A (en) 2008-04-18 2009-11-05 Toray Ind Inc Carbon fiber and reinforcing fabric
WO2010084856A1 (en) * 2009-01-20 2010-07-29 帝人株式会社 Pitch-based carbon fiber web, pitch-based carbon staple fiber, and processes for production of same
WO2013157612A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fibers
WO2013157613A1 (en) 2012-04-18 2013-10-24 三菱レイヨン株式会社 Carbon fiber bundle and method of producing carbon fiber bundle
JP2014141761A (en) 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808880A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218677A (en) * 2018-06-18 2019-12-26 東レ株式会社 Method for producing carbon fiber bundle
JP7358793B2 (en) 2018-06-18 2023-10-11 東レ株式会社 Method for manufacturing carbon fiber bundles
WO2021044935A1 (en) * 2019-09-04 2021-03-11 東レ株式会社 Resin composition and molded article

Also Published As

Publication number Publication date
KR20210019029A (en) 2021-02-19
US20210115597A1 (en) 2021-04-22
EP3808880A1 (en) 2021-04-21
JPWO2019244830A1 (en) 2020-06-25
CN112368432A (en) 2021-02-12
JP6702511B1 (en) 2020-06-03
EP3808880A4 (en) 2022-11-02
MX2020013140A (en) 2021-01-29
CN112368432B (en) 2023-07-28
TW202006201A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP6702511B1 (en) Carbon fiber and method for producing the same
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
JP2015067910A (en) Carbon fiber and manufacturing method thereof
KR102669949B1 (en) Carbon fiber bundle and method of manufacturing the same
JP6610835B1 (en) Carbon fiber and method for producing the same
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
JP2014159665A (en) Method for producing carbon fiber bundle, and carbon fiber bundle
JP2019151956A (en) Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
WO2021090641A1 (en) Method for manufacturing carbon fiber bundle
JP7358793B2 (en) Method for manufacturing carbon fiber bundles
WO2023042597A1 (en) Carbon fiber bundle and production method therefor
WO2023090310A1 (en) Carbon fiber bundle and production method therefor
JP7286988B2 (en) Carbon fiber bundle and its manufacturing method
KR20240097812A (en) Carbon fiber bundle and its manufacturing method
EP4379100A1 (en) Carbon fiber bundle and production method for same
WO2024090012A1 (en) Carbon fiber bundle, tow-preg, carbon fiber-reinforced composite material and pressure vessel, and method for producing carbon fiber bundle
JP2005344254A (en) Carbon fiber and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207037337

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019822232

Country of ref document: EP

Effective date: 20210118