WO2023090310A1 - Carbon fiber bundle and production method therefor - Google Patents

Carbon fiber bundle and production method therefor Download PDF

Info

Publication number
WO2023090310A1
WO2023090310A1 PCT/JP2022/042352 JP2022042352W WO2023090310A1 WO 2023090310 A1 WO2023090310 A1 WO 2023090310A1 JP 2022042352 W JP2022042352 W JP 2022042352W WO 2023090310 A1 WO2023090310 A1 WO 2023090310A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
heat treatment
polyacrylonitrile
carbonization step
Prior art date
Application number
PCT/JP2022/042352
Other languages
French (fr)
Japanese (ja)
Inventor
石川透
沖嶋勇紀
末永和真
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280063686.1A priority Critical patent/CN117999385A/en
Publication of WO2023090310A1 publication Critical patent/WO2023090310A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • the present invention relates to a carbon fiber bundle that has a high total fineness, yet has excellent strength, elastic modulus, and workability when subjected to high-order processing, and a method for producing the same.
  • carbon fiber bundles have high specific strength and specific modulus, they are used in a wide range of applications, including aerospace applications, as reinforcing fibers for composite materials. Recently, it is also being used in industrial applications such as automobile parts and wind power generation. Especially in wind power generation, light weight and rigidity are required, so carbon fiber bundles with excellent specific elastic modulus are often used, and the demand for carbon fiber bundles for wind power generation is increasing in recent years.
  • carbon fiber bundles are produced by oxidizing polyacrylonitrile-based precursor fibers obtained by fiberizing polyacrylonitrile-based copolymers in the air at 200-300°C. It is produced through a preliminary carbonization step of heating in an atmosphere and a carbonization step of heating in an inert atmosphere at a maximum temperature of 1,200 to 3,000°C.
  • Patent Documents 1 to 4 describe techniques for producing carbon fibers with high strength, high modulus, and excellent high-order workability for industrial use.
  • Patent Document 1 when a polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more is flameproofed, the precursor fiber bundle runs in a flameproofing furnace by defining the shape and arrangement of folding rolls.
  • a technology that suppresses the twisting of the fiber bundle when doing so, stably maintains the shape of the fiber bundle, suppresses yarn breakage and fluffing during the flameproofing process, and enables the stable production of high-quality carbon fiber bundles. is disclosed.
  • Patent Literature 2 discloses a technique for improving resin impregnability and spreadability during composite material molding by controlling the diameter and surface state of carbon fibers within a specific range.
  • Patent Document 3 discloses a carbon fiber bundle having a semi-permanent twist and an elastic modulus of 200 GPa or more, which is excellent in handleability and high-order workability as a fiber bundle, and has a high reinforcing effect for fiber-reinforced composite materials.
  • a carbon fiber bundle is disclosed.
  • Patent Document 4 a carbon fiber bundle capable of obtaining a high-performance carbon fiber reinforced composite material having excellent tensile strength by controlling the nonlinearity of the stress ⁇ -strain ⁇ curve in a resin-impregnated strand tensile test to a specific range. is disclosed.
  • Patent Document 1 it is shown that by setting the yarn density in the flameproofing process to a specific range, the effect of suppressing the occurrence of twisting and "groove skipping" (dropping of the yarn from the roller) in the flameproofing process.
  • the effect of improving the quality of the resulting carbon fiber bundle has not been demonstrated, and the operability cannot be improved when subjected to the process of higher processing.
  • Patent Document 2 although the strength expression rate of the obtained molding material is improved by improving the resin impregnating property when molding the pressure vessel, the operability when the obtained carbon fiber bundle is subjected to the process of high-order processing did not improve
  • Patent Document 3 although the handleability can be improved by leaving a semi-permanent twist in the carbon fiber bundle, there is no specific effect on the workability when the obtained carbon fiber bundle is subjected to a process of high-order processing. There is no disclosure or suggestion, but there is a problem that the presence of twist disturbs the orientation of the fibers in the resulting carbon fiber reinforced composite material, making it difficult to develop mechanical properties.
  • Patent Document 4 by controlling the heat treatment method in the flameproofing process, the nonlinearity of the stress ⁇ -strain ⁇ curve in the resin-impregnated strand tensile test is controlled to a specific range, thereby improving the fracture toughness value, which is effective for improving strength.
  • the initial elastic modulus in the resin-impregnated strand tensile test is as high as 315 GPa, and when subjected to a high-order processing process
  • An object of the present invention is to provide a carbon fiber bundle and a method for manufacturing the same.
  • the present invention mainly has the following configuration.
  • the present invention provides the coefficient A obtained from the nonlinear approximation formula (1) in the stress ⁇ -strain ⁇ curve in the resin-impregnated strand tensile test in the range of 0 to 3 GPa, and the degree of crystal orientation in wide-angle X-ray diffraction measurement.
  • A ⁇ 2 +B ⁇ +C (1) ⁇ 410 ⁇ (0.0000832 ⁇ 2 ⁇ 0.0184 ⁇ +1.00)/A ⁇ 310 (2)
  • A, B, and C are the coefficients of the quadratic function of stress ⁇ and strain ⁇ , and ⁇ is the degree of crystal orientation.
  • the present invention also provides a method for producing the above carbon fiber bundle, A flameproofing step of heat-treating a substantially untwisted polyacrylonitrile-based precursor fiber bundle having a filament number of 24,000 to 72,000 in an oxidizing atmosphere at a temperature of 220 to 280°C, and a flameproofing step obtained by the flameproofing step.
  • the draw ratio in the preliminary carbonization step is 1.05 to 1.20
  • the draw ratio in the carbonization step is 0.960 to 0.990
  • stretching in the preliminary carbonization step and the carbonization step The product of magnification is 1.020 to 1.180
  • the polyacrylonitrile-based precursor fiber bundles are stepwise processed in a plurality of heat treatment furnaces set to mutually different temperatures, or in a plurality of heat treatment sections provided in the heat treatment furnace and set to mutually different temperatures.
  • the temperature of the heat treatment furnace or heat treatment section with the lowest temperature in the flameproofing step is set to less than 230 ° C., and the temperature of the heat treatment furnace or heat treatment section with the highest temperature is set to 280 ° C. or less.
  • a carbon fiber bundle that is excellent in strength, elastic modulus, and workability when subjected to high-order processing while having a high total fineness, and that easily exhibits mechanical properties when made into a carbon fiber reinforced composite material. can get.
  • the present invention has the following configuration.
  • the carbon fiber bundle of the present invention is a coefficient obtained by introducing the stress ⁇ -strain ⁇ curve obtained by measuring the carbon fiber bundle by a resin-impregnated strand tensile test into the following nonlinear approximation formula (1):
  • the value of A satisfies the following equation (2).
  • A ⁇ 2 +B ⁇ +C (1) ⁇ 410 ⁇ (0.0000832 ⁇ 2 ⁇ 0.0184 ⁇ +1.00)/A ⁇ 310 (2)
  • indicates the degree of crystal orientation (%) obtained by measuring the carbon fiber bundle by wide-angle X-ray diffraction measurement.
  • the degree of crystal orientation is obtained by a method for measuring the degree of crystal orientation ⁇ of carbon fibers, which will be described later.
  • the value of the middle term in the formula (2) is -410 to -310, preferably -406 to -343, more preferably -386 to -352.
  • the coefficient A indicates the nonlinearity of the stress ⁇ -strain ⁇ curve.
  • the coefficient A is obtained by fitting a stress ⁇ -strain ⁇ curve obtained by measuring a carbon fiber bundle by a resin-impregnated strand tensile test to the approximate expression (1) within a stress range of 0 to 3 GPa.
  • the stress ⁇ -strain ⁇ curve of a carbon fiber bundle generally shows a downwardly convex curve when the stress ⁇ (GPa) is on the vertical axis and the strain ⁇ ( ⁇ ) is on the horizontal axis.
  • the coefficient A obtained from the approximate expression (1) takes a negative value. That is, the closer the coefficient A is to 0, the smaller the nonlinearity.
  • the present inventors have found that from a practical point of view, the degree of crystal orientation ⁇ , which is relatively easy to measure, and the above formula derived from the coefficient A of the approximate formula (1) It was found that the value (0.0000832 ⁇ 2 -0.0184 ⁇ + 1.00)/A in the middle term of (2) has an extremely high correlation with the shear modulus of carbon fiber. More specifically, the shear modulus decreases as the value of the middle term in formula (2) increases, and the shear modulus increases as the value in the middle term of formula (2) decreases.
  • the shear modulus is an index of how easily a single fiber deforms when stress is applied in the bending or compressive directions, and is important for improving workability in advanced processing processes.
  • the value of the middle term in the above formula (2) is -410 to -310, the fiber is moderately deformed when subjected to bending or compressive stress in the high-order processing step, resulting in single fiber breakage and Wrapping around subsequent rollers and guides can be suppressed.
  • the coefficient A in the formula (1) can be controlled by the draw ratio in the flameproofing step, the draw ratio in the preliminary carbonization step, and the draw ratio in the carbonization step. Further, the degree of crystal orientation ⁇ can be controlled by the draw ratio in the preliminary carbonization step, the draw ratio in the carbonization step, and the temperature in the carbonization step.
  • the carbon fiber bundle of the present invention has an initial elastic modulus of 240 to 279 GPa, preferably 245 to 269 GPa, more preferably 245 to 260 GPa.
  • the initial modulus of elasticity is an index of the ease of initial deformation when stress is applied to a single fiber in the tensile direction, and is important for improving workability in advanced processing steps. If the initial elastic modulus is 240 to 279 GPa, the fibers will deform appropriately when subjected to stress in the tensile direction in the advanced processing step, and breakage of single fibers and subsequent winding around rollers and guides can be suppressed.
  • the initial elastic modulus is calculated as the reciprocal 1/B of the coefficient B obtained by fitting the stress ⁇ -strain ⁇ curve measured by the resin-impregnated strand tensile test described later with the approximation formula (1).
  • Such an initial elastic modulus can be controlled by the draw ratio in the flameproofing step, the draw ratio in the preliminary carbonization step, the draw ratio in the carbonization step, and the temperature in the carbonization step.
  • the carbon fiber bundle of the present invention has a filament number of 24,000 to 72,000, preferably 36,000 to 60,000, more preferably 48,000 to 50,000.
  • the number of filaments is the number of single fibers that make up the carbon fiber bundle, and the more the number, the better the productivity of the carbon fiber reinforced composite material.
  • the mechanical properties of carbon fiber reinforced composite materials may deteriorate. If the number of filaments is 24,000 to 72,000, the productivity in molding the composite material is excellent, and it can be suitably used for industrial applications.
  • the number of filaments can be controlled by adjusting the number of holes in the spinneret, the splitting of the yarn, and the doubling of the yarn in the spinning process of the polyacrylonitrile-based precursor fiber bundle.
  • the carbon fiber bundle of the present invention is substantially untwisted.
  • substantially untwisted means that the twist of the carbon fiber bundle is 0.5 turns or less per meter. If the carbon fiber bundle is substantially untwisted, it is possible to suppress disordered orientation of the fibers in the carbon fiber reinforced composite material, thereby improving the reinforcing effect of the carbon fiber reinforced composite material.
  • the carbon fiber bundle of the present invention preferably has a crystallite size Lc of 1.80 to 2.20 nm.
  • the crystallite size Lc is the size of graphite crystals in the carbon fiber in the [002] direction. If the crystallite size Lc is from 1.80 to 2.20 nm, carbon fibers with better balance between strength and elastic modulus can be obtained.
  • Such a crystallite size Lc can be evaluated by a method for measuring the crystallite size Lc, which will be described later, by wide-angle X-ray diffraction measurement.
  • Such crystallite size Lc can be controlled by the temperature of the carbonization step.
  • the carbon fiber bundle of the present invention preferably has a single fiber fineness of 0.63 to 1.35 dtex, more preferably 0.67 to 1.35 dtex, still more preferably 0.74 to 1.20 dtex.
  • Single fiber fineness is the mass per unit length of single fiber. If the single fiber fineness is 0.63 to 1.35 dtex, both productivity and mechanical properties can be achieved.
  • the single fiber fineness can be evaluated by measuring the mass per unit length by the method described later. Such single fiber fineness can be controlled by the discharge amount and draw ratio of the polyacrylonitrile-based polymer in the spinning process of the polyacrylonitrile-based precursor fiber bundle.
  • the carbon fiber bundle of the present invention preferably has a single fiber cross-sectional circularity of 0.86 to 0.98, more preferably 0.87 to 0.96, still more preferably 0.87 to 0.96. 93.
  • roundness of the single fiber cross section is 0.86 to 0.98, both bundling property and abrasion resistance during high-order processing can be achieved more reliably, and workability during high-order processing is superior.
  • the roundness of the cross section of the single fiber can be evaluated from the image of the cross section obtained by cutting the single fiber vertically by the method described later.
  • the roundness of the single fiber cross section can be controlled by the shape of the ejection hole of the spinneret in the spinning process and the conditions of the coagulation process.
  • the polyacrylonitrile-based precursor fiber bundle is spun.
  • a polyacrylonitrile-based polymer is preferably used as the raw material for the production of the polyacrylonitrile-based precursor fiber bundle.
  • the polyacrylonitrile-based polymer refers to a polymer in which at least acrylonitrile is the main component of the polymer skeleton, and the main component usually accounts for 90 to 100% by mass of the polymer skeleton. Refers to constituents.
  • the polyacrylonitrile-based polymer preferably contains a copolymer component such as itaconic acid, acrylamide, and methacrylic acid from the viewpoint of improving the spinning property and efficiently performing the flame-resistant treatment.
  • a method for producing a polyacrylonitrile-based polymer can be selected from known polymerization methods.
  • the spinning dope is prepared by adding the above-mentioned polyacrylonitrile-based polymer to a solvent in which polyacrylonitrile is soluble, such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, or an aqueous solution of nitric acid, zinc chloride, and rhodan soda. It is dissolved.
  • the method for producing the polyacrylonitrile-based precursor fiber bundle used in the present invention is not particularly limited, but wet spinning is preferably used, followed by drawing, washing with water, application of oil, drying and densification, and post-drawing if necessary. It can be obtained through processes such as
  • the number of holes in the spinneret in the production process of the polyacrylonitrile-based precursor fiber bundle is preferably 3,000 to 200,000 holes in order to achieve the above-mentioned number of filaments in the carbon fiber bundle.
  • a polyacrylonitrile-based precursor fiber bundle having a predetermined number of filaments can be obtained.
  • the coagulation bath preferably contains a solvent such as dimethylsulfoxide, dimethylformamide, and dimethylacetamide used as the solvent for the spinning dope, and a so-called coagulation accelerating component.
  • a solvent such as dimethylsulfoxide, dimethylformamide, and dimethylacetamide used as the solvent for the spinning dope
  • a so-called coagulation accelerating component a component that does not dissolve the polyacrylonitrile-based polymer and is compatible with the solvent used for the spinning dope can be used.
  • Water is preferably used as the clot-promoting ingredient.
  • the water washing step uses a water washing bath consisting of multiple stages at a temperature of 30 to 98°C. Further, in the water washing step, it is also preferable to set the draw ratio to 2 to 6 times.
  • an oil such as silicone is preferably applied to the threads in order to prevent the single fibers from sticking to each other.
  • a silicone oil agent is preferably a modified silicone, and preferably contains an amino-modified silicone having high heat resistance.
  • a known method can be used for the dry heat treatment step (the above-described dry densification step).
  • the drying temperature is 100-200°C.
  • the single fiber fineness of the polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention is preferably 1.20 to 2.40 dtex, more preferably 1.20 to 2.20 dtex, and even more preferably 1.40 to 1.80 dtex.
  • Single fiber fineness is the mass per unit length of single fiber. If the single fiber fineness is 1.20 dtex or more, a carbon fiber bundle can be obtained with sufficiently high productivity. A carbon fiber bundle with high mechanical properties is obtained. Such single fiber fineness can be controlled by the discharge amount and draw ratio in the spinning process.
  • the polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention preferably has a single fiber cross-sectional circularity of 0.86 to 0.98, more preferably 0.87 to 0.96. and more preferably 0.87 to 0.93.
  • the roundness of the single fiber cross section is 0.86 to 0.98, the bundling property and abrasion resistance of the obtained carbon fiber can be more reliably achieved, and the obtained carbon fiber bundle can be processed in a higher order.
  • the roundness of the single fiber cross section of such a polyacrylonitrile-based precursor fiber bundle can be evaluated from the image of the cut surface obtained by vertically cutting the single fiber by the method described later.
  • the roundness of the single fiber cross section of such a polyacrylonitrile-based precursor fiber bundle can be controlled by the shape of the ejection hole of the spinneret in the spinning process and the conditions of the coagulation process.
  • the number of filaments of the polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention is preferably 24,000 to 72,000, more preferably 36,000 to 60,000, and still more preferably 48,000 to 50,000.
  • the number of filaments is the number of single fibers that make up the polyacrylonitrile-based precursor fiber bundle. , If it is too large, the unevenness of the treatment in the flameproofing process, the preliminary carbonization process, and the carbonization process will increase, and the dynamics of the carbon fiber reinforced composite material obtained from the viewpoint of the spreadability of the obtained carbon fiber bundle and the resin impregnation property. characteristics may deteriorate.
  • the productivity of the carbon fiber bundle and the carbon fiber reinforced composite material is excellent, and the carbon fiber bundle can be suitably used for industrial applications. can get.
  • the number of filaments in such a polyacrylonitrile-based precursor fiber bundle can be evaluated by counting the number of single fibers constituting the polyacrylonitrile-based precursor fiber bundle.
  • the number of filaments can be controlled by the number of holes in the spinneret in the spinning process, the number of divisions of the fiber bundle extruded from the spinneret, and the number of doubling of the fiber bundle.
  • the substantially untwisted polyacrylonitrile-based precursor fiber bundle as described above is heat-treated at a temperature of 220 to 280°C in an oxidizing atmosphere (flameproofing step).
  • the temperature in the flameproofing step is preferably 220-280°C. If the temperature of the flameproofing treatment is 220° C. or higher, a flameproofed fiber bundle having sufficient flame resistance can be produced, so the occurrence of fluff due to lack of flame resistance can be suppressed, and the resulting carbon fiber bundle can be improved. Excellent workability during advanced processing.
  • the flameproofing temperature is 280° C.
  • the temperature of such flameproofing treatment can be determined by inserting a thermometer such as a thermocouple into the flameproofing furnace and measuring the furnace temperature. calculates the simple average temperature.
  • the temperature of such flameproofing treatment can be controlled by heating output in a heating method used in a known flameproofing furnace. For example, in the case of a hot air circulation type flameproof furnace, the output of the heater used for heating the oxidizing atmosphere may be changed.
  • a plurality of heat treatment furnaces set to different temperatures from each other, or a plurality of heat treatment sections provided in the heat treatment furnace and set to different temperatures are used to stepwise polyacrylonitrile-based precursor fibers.
  • subjecting the bundle to a heat treatment hereinafter such heat treatment furnaces and heat treatment sections may be referred to as "heat treatment furnaces/heat treatment sections").
  • the temperature may be different between at least two heat treatment furnaces/heat treatment sections among the plurality of heat treatment furnaces/heat treatment sections, for example, two heat treatment furnaces/ The heat treatment sections may be at the same temperature.
  • the temperature of the heat treatment furnace or heat treatment section which is the lowest in the flameproofing process, is less than 230°C, preferably 225°C or less, more preferably 223°C or less.
  • the temperature of the lowest heat treatment furnace or heat treatment section is less than 230° C.
  • heat treatment unevenness that tends to occur in polyacrylonitrile-based precursor fiber bundles with a high total fineness can be reduced, and stretching in the preliminary carbonization step and carbonization step described later.
  • High quality can be maintained in If the temperature of the lowest heat treatment furnace or heat treatment section is 230° C. or higher, heat treatment unevenness increases in the flameproofing step, and the grade deteriorates due to stretching in the preliminary carbonization step and the carbonization step.
  • the temperature of the heat treatment furnace or heat treatment section which is the highest in the flameproofing process, is 280°C or lower, preferably 275°C or lower, and more preferably 270°C or lower.
  • the temperature of the highest heat treatment furnace or heat treatment section is 280° C. or less, it is possible to reduce the heat treatment unevenness that tends to occur in the polyacrylonitrile-based precursor fiber bundle with a high total fineness, and the stretching of the preliminary carbonization step and the carbonization step described later. High quality can be maintained in If the temperature of the heat treatment furnace or heat treatment section exceeds 280° C., heat treatment unevenness increases in the flameproofing step, and the quality is lowered by stretching in the preliminary carbonization step and the carbonization step.
  • pre-carbonization is performed.
  • the flameproof fiber bundle obtained as described above is heated in an inert atmosphere at a maximum temperature of 300 to 1,000° C., preferably to a density of 1.5 to 1.8 g/cm 3 . heat-treated until
  • Carbonization is performed following the preliminary carbonization.
  • the pre-carbonized fiber bundle is heat-treated at a maximum temperature of 1,000 to 1,600° C. in an inert atmosphere.
  • a plurality of heat treatment furnaces or heat treatment sections may be used in the preliminary carbonization step and the carbonization step and set to temperatures different from each other. Therefore, the temperature of the heat treatment furnace or heat treatment section with the highest temperature in each step is referred to as the "maximum temperature”.
  • the draw ratio in the preliminary carbonization step is 1.05 to 1.20
  • the draw ratio in the carbonization step is 0.960 to 0.990
  • the preliminary The product of the carbonization step and the draw ratio in the carbonization step is 1.020 to 1.180.
  • the draw ratio in the preliminary carbonization step is preferably 1.10 to 1.20, more preferably 1.10 to 1.15.
  • the draw ratio in the carbonization step is preferably 0.975-0.990, more preferably 0.975-0.985.
  • the product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is preferably 1.040 to 1.130, more preferably 1.070 to 1.130.
  • the draw ratio in the preliminary carbonization step is 1.05 or more, the draw ratio in the carbonization step is 0.960 or more, and the product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is 1.020 or more.
  • the value of the middle term of the above formula (2) and the initial elastic modulus of the obtained carbon fiber bundle can be controlled within an appropriate range.
  • the draw ratio in the preliminary carbonization step is 1.20 or less, the draw ratio in the carbonization step is 0.990 or less, and the product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is 1.180 or less.
  • the carbon fiber bundles obtained as described above are preferably subjected to oxidation treatment to introduce oxygen-containing functional groups in order to improve adhesion with the matrix resin.
  • Gas-phase oxidation, liquid-phase oxidation, and liquid-phase electrolytic oxidation are used as the oxidation treatment method.
  • Liquid-phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment.
  • the liquid-phase electrolytic oxidation method is not particularly specified, and a known method may be used.
  • a sizing treatment can be applied to impart bundling properties to the obtained carbon fiber bundles.
  • a sizing agent having good compatibility with the matrix resin used in the composite material can be appropriately selected according to the type of the matrix resin.
  • ⁇ Resin Impregnated Strand Tensile Test of Carbon Fiber Bundle The tensile elastic modulus of the resin-impregnated strand of the carbon fiber bundle (strand elastic modulus E (GPa)), the tensile strength of the resin-impregnated strand (strand strength (GPa)), and the stress ⁇ -strain ⁇ curve are calculated according to JISR7608 (2008) "Resin impregnation Strand test method”. The strand elastic modulus E is measured over a strain range of 0.1-0.6%.
  • a test piece is prepared by impregnating a carbon fiber bundle with the following resin composition and subjecting it to curing conditions of heat treatment at a temperature of 130° C. for 35 minutes.
  • ⁇ Initial elastic modulus (GPa)> The initial elastic modulus of the carbon fiber bundle is calculated as follows using the coefficient B obtained by fitting according to the equation (1) by analyzing the stress ⁇ -strain ⁇ curve described above.
  • Initial modulus (GPa) 1/B.
  • ⁇ Degree of crystal orientation ⁇ (%) of carbon fiber bundle Carbon fiber bundles to be measured are aligned and solidified using a collodion/alcohol solution to prepare a square pole measuring sample having a length of 4 cm and a side length of 1 mm. A prepared measurement sample is measured using a wide-angle X-ray diffraction device under the following conditions.
  • ⁇ X-ray source CuK ⁇ ray (tube voltage 40 kV, tube current 30 mA)
  • XRD-6100 manufactured by Shimadzu Corporation was used as the wide-angle X-ray diffraction device.
  • Crystallite size (nm) K ⁇ / ⁇ 0 cos ⁇ B however, K: 1.0, ⁇ : 0.15418 nm (X-ray wavelength) ⁇ 0 : ( ⁇ E 2 - ⁇ 1 2 ) 1/2 ⁇ E : Apparent half width (measured value) rad ⁇ 1 : 1.046 ⁇ 10 ⁇ 2 rad ⁇ B : Bragg's diffraction angle.
  • ⁇ Roundness measurement (-)> The polyacrylonitrile-based precursor fiber bundle or carbon fiber bundle is cut perpendicular to the fiber axis direction with a single-edged razor, and the obtained cross section is scanned with a scanning electron microscope (SEM) "S-4800" manufactured by Hitachi High Technologies. , observed from the direction perpendicular to the fiber cross-section.
  • SEM scanning electron microscope
  • the acquired image is analyzed using the image analysis software "ImageJ”, and the roundness of the single fiber included in the fiber cross section is calculated from the perimeter and area of the cross section of the single fiber according to the following definition. This measurement is randomly repeated for 25 single fibers in one cross section, and the average roundness is taken as the roundness of the cross section of the single fiber.
  • a carbon fiber bundle bobbin is placed on a creel and pulled out with a tension of 1.6 mN / dtex. take up. At this time, the generated fluff is counted for 10 minutes just before the drive roller and evaluated according to the following indices.
  • Example 1 A polyacrylonitrile-based copolymer composed of acrylonitrile and itaconic acid was polymerized by a solution polymerization method using dimethylsulfoxide as a solvent to produce a polyacrylonitrile-based copolymer to obtain a spinning dope.
  • the obtained spinning dope was coagulated by a wet spinning method in which it was introduced into a coagulation bath comprising an aqueous solution of dimethyl sulfoxide through a spinneret with 50,000 holes to form a fiber bundle. This fiber bundle was washed with water at 30 to 98° C. in a conventional manner, and drawn at that time.
  • an amino-modified silicone oil agent was applied to the fiber bundle after washing and stretching, and a drying and densification treatment was performed using a heating roller at 130° C., resulting in a single fiber count of 50,000 and a single fiber fineness of 1.5.
  • a 50 dtex polyacrylonitrile precursor fiber bundle was obtained.
  • the polyacrylonitrile-based precursor fiber bundle was not twisted.
  • the obtained polyacrylonitrile-based precursor fiber bundle was treated with a flameproofing step, a preliminary carbonization step, and a carbonization step under the conditions shown in Table 1 to obtain a carbon fiber bundle.
  • heat treatment was performed by increasing the temperature stepwise using a plurality of heat treatment furnaces having different temperatures. No twisting treatment was performed in the flameproofing process, the preliminary carbonization process, or the carbonization process.
  • Table 2 shows the properties of the obtained carbon fiber bundles.
  • Example 5 A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.65 dtex was obtained by changing the discharge amount of the spinning stock solution, and the conditions of the subsequent preliminary carbonization step and carbonization step were changed as shown in Table 1. It was carried out analogously to Example 1.
  • Example 6 A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 2.40 dtex was obtained by changing the discharge amount of the spinning stock solution, and the conditions of the subsequent preliminary carbonization step and carbonization step were changed as shown in Table 1. It was carried out analogously to Example 1.
  • Example 7 The procedure was carried out in the same manner as in Example 1, except that the conditions shown in Table 1 were changed for the flameproofing temperature, the stretching ratio in the preliminary carbonization step, and the stretching ratio in the carbonization step.
  • Example 1 A carbon fiber bundle was produced in the same manner as in Example 1 except that the draw ratio in the preliminary carbonization step was changed to 1.00, the draw ratio in the carbonization step was changed to 0.960, and the product of the draw ratios was changed to 0.960. Obtained.
  • the obtained carbon fiber bundle had a value of -307 in the middle term of the formula (2) and an initial elastic modulus of 213 GPa, indicating poor workability during high-order processing.
  • Example 2 A carbon fiber bundle was produced in the same manner as in Example 1, except that the draw ratio in the preliminary carbonization step was changed to 1.01, the draw ratio in the carbonization step was changed to 0.955, and the product of the draw ratios was changed to 0.965. Obtained.
  • the obtained carbon fiber bundle had a value of -286 in the middle term of the formula (2) and an initial elastic modulus of 215 GPa, indicating poor workability during high-order processing.
  • Example 3 A carbon fiber bundle was produced in the same manner as in Example 1, except that the draw ratio in the preliminary carbonization step was changed to 1.02, the draw ratio in the carbonization step was changed to 0.950, and the product of the draw ratios was changed to 0.969. Obtained.
  • the obtained carbon fiber bundle had a value of ⁇ 287 in the middle term of the formula (2) and an initial elastic modulus of 220 GPa, indicating poor workability during high-order processing.
  • Example 4 A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 0.80 dtex was obtained by changing the discharge amount of the spinning stock solution, and the draw ratio in the preliminary carbonization step was 1.05, and the draw ratio in the carbonization step was 0.950. , a carbon fiber bundle was obtained in the same manner as in Example 1, except that the product of the draw ratios was changed to 0.998. The obtained carbon fiber bundle had a value of -290 in the middle term of the formula (2) and an initial elastic modulus of 218 GPa, indicating poor workability during high-order processing.
  • Example 5 A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 3.00 dtex was obtained by changing the discharge amount of the spinning stock solution, and the draw ratio in the preliminary carbonization step was 1.00, and the draw ratio in the carbonization step was 0.955. , a carbon fiber bundle was obtained in the same manner as in Example 1, except that the product of the draw ratios was changed to 0.955. The obtained carbon fiber bundle had a value of -277 in the middle term of the formula (2), an initial elastic modulus of 225 GPa, and was inferior in workability during high-order processing.
  • Example 6 The polyacrylonitrile-based precursor fiber bundle was carried out in the same manner as in Example 1, except that the stock solution for spinning was once expelled into the air from a spinneret and then introduced into a coagulation bath consisting of an aqueous solution of dimethyl sulfoxide for coagulation by a dry-wet spinning method. Carbon was obtained in the same manner as in Example 1 except that the draw ratio in the preliminary carbonization step was changed to 1.01, the draw ratio in the carbonization step was changed to 0.965, and the product of the draw ratios was changed to 0.975. A fiber bundle was obtained. The obtained carbon fiber bundle had a value of -290 in the middle term of the formula (2) and an initial elastic modulus of 223 GPa, indicating poor workability during high-order processing.
  • Example 7 Example 1 was repeated except that the draw ratio in the preliminary carbonization step was changed to 1.23.
  • Example 8 In the same manner as in Example 1, except that the draw ratio in the preliminary monocarbonization step was controlled to 1.05, the draw ratio in the carbonization step to 1.000, and the product of the draw ratios to 1.050, carbon The fiber bundle was broken in the curing step, and no carbon fiber bundle was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

Provided are: a carbon fiber bundle that has a high total fineness and excellent strength, elastic modulus, and handleability during high-level processing; and a method for producing the carbon fiber bundle. The carbon fiber bundle is substantially not twisted, includes filaments in a quantity of 24,000-72,000, has an initial elastic modulus of 240-279 GPa, and satisfies formula (2) regarding a relationship between a coefficient A determined from approximation formula (1) that is nonlinear in a range in which stress is 0-3 GPa in a stress σ-strain ε curve in a resin-impregnated strand tensile test, and the degree of crystal alignment Π (%) in wide-angle X-ray diffraction measurement. (1): ε = Aσ2 + Bσ + C (2): -410 ≤ (0.0000832Π2 - 0.0184Π + 1.00)/A ≤ -310, where A, B, and C each represent a coefficient of a second-order function of the stress σ and the strain ε, and Π represents the degree of crystal alignment.

Description

炭素繊維束およびその製造方法Carbon fiber bundle and its manufacturing method
 本発明は、高い総繊度でありながら強度、弾性率および高次加工に供した際の操業性に優れる炭素繊維束およびその製造方法に関する。 The present invention relates to a carbon fiber bundle that has a high total fineness, yet has excellent strength, elastic modulus, and workability when subjected to high-order processing, and a method for producing the same.
 炭素繊維束は高い比強度および比弾性率を有するため、複合材料用の強化繊維として航空・宇宙用途をはじめとした幅広い用途に展開されている。最近では自動車用部材や風力発電などの産業用途にも展開が進んでいる。特に風力発電においては軽量性と剛性が求められることから、比弾性率に優れる炭素繊維束が使用されることが多く,近年では風力発電向けの炭素繊維束の需要が拡大している。 Because carbon fiber bundles have high specific strength and specific modulus, they are used in a wide range of applications, including aerospace applications, as reinforcing fibers for composite materials. Recently, it is also being used in industrial applications such as automobile parts and wind power generation. Especially in wind power generation, light weight and rigidity are required, so carbon fiber bundles with excellent specific elastic modulus are often used, and the demand for carbon fiber bundles for wind power generation is increasing in recent years.
 産業用途においては、コスト低減の要求が強く、生産性に優れる、フィラメント数が24,000本以上の炭素繊維束が多く使用される。また、炭素繊維束から、プリプレグやトウプレグ、織物やシートモールディングコンパウンド(SMC)などの中間基材、引き抜き材などの炭素繊維複合材料を製造する際の、高次加工性が重要視される。高次加工性を高めるためには、炭素繊維束の毛羽が少ないことや開繊性に優れるほか、ボビンから巻き出し、製造工程中を走行させた際の炭素繊維束全体または炭素繊維単繊維の破断がなく、操業性が良好であることが特に重要となる。 In industrial applications, there is a strong demand for cost reduction, and carbon fiber bundles with 24,000 or more filaments are often used due to their excellent productivity. Further, when carbon fiber bundles are used to produce prepregs, towpregs, intermediate base materials such as woven fabrics and sheet molding compounds (SMC), and carbon fiber composite materials such as pultruded materials, high-order workability is considered important. In order to improve high-order processability, the carbon fiber bundle should have less fluff and excellent opening properties, and the entire carbon fiber bundle or single carbon fiber when unwound from the bobbin and run through the manufacturing process. No breakage and good runnability are particularly important.
 一般に炭素繊維束は、ポリアクリロニトリル系共重合体を繊維化して得たポリアクリロニトリル系前駆体繊維を200~300℃の空気中で酸化する耐炎化工程、最高温度500~1,200℃の不活性雰囲気中で加熱する予備炭素化工程、最高温度1,200~3,000℃の不活性雰囲気中で加熱する炭素化工程を経ることで製造される。 In general, carbon fiber bundles are produced by oxidizing polyacrylonitrile-based precursor fibers obtained by fiberizing polyacrylonitrile-based copolymers in the air at 200-300°C. It is produced through a preliminary carbonization step of heating in an atmosphere and a carbonization step of heating in an inert atmosphere at a maximum temperature of 1,200 to 3,000°C.
 これまで産業用途の高強度、高弾性率で高次加工性に優れる炭素繊維を製造する技術が提案されている(特許文献1~4)。特許文献1では、総繊度が40,000dtex以上のポリアクリロニトリル系前駆体繊維束の耐炎化処理に際し、折り返しロールの形状や配置を規定することにより、該前駆体繊維束が耐炎化炉内を走行する時の、繊維束の撚りが抑制され、繊維束の形態を安定に維持でき、耐炎化工程中の糸切れや毛羽立ちの抑制、さらに高品位な炭素繊維束の安定な製造が可能となる技術が開示されている。特許文献2では、炭素繊維の直径や表面状態を特定の範囲に制御することにより、複合材料成形時の樹脂含浸性や拡がり性を高める技術が開示されている。特許文献3では、半永久的な撚りを有する弾性率が200GPa以上の炭素繊維束が開示されており、繊維束としての取り扱い性や高次加工性に優れ、かつ繊維強化複合材料の補強効果の高い炭素繊維束が開示されている。特許文献4では、樹脂含浸ストランド引張試験における応力σ-歪みε曲線の非線形性を特定の範囲に制御することにより優れた引張強度を有する高性能炭素繊維強化複合材料を得ることができる炭素繊維束が開示されている。 Until now, techniques have been proposed for producing carbon fibers with high strength, high modulus, and excellent high-order workability for industrial use (Patent Documents 1 to 4). In Patent Document 1, when a polyacrylonitrile-based precursor fiber bundle having a total fineness of 40,000 dtex or more is flameproofed, the precursor fiber bundle runs in a flameproofing furnace by defining the shape and arrangement of folding rolls. A technology that suppresses the twisting of the fiber bundle when doing so, stably maintains the shape of the fiber bundle, suppresses yarn breakage and fluffing during the flameproofing process, and enables the stable production of high-quality carbon fiber bundles. is disclosed. Patent Literature 2 discloses a technique for improving resin impregnability and spreadability during composite material molding by controlling the diameter and surface state of carbon fibers within a specific range. Patent Document 3 discloses a carbon fiber bundle having a semi-permanent twist and an elastic modulus of 200 GPa or more, which is excellent in handleability and high-order workability as a fiber bundle, and has a high reinforcing effect for fiber-reinforced composite materials. A carbon fiber bundle is disclosed. In Patent Document 4, a carbon fiber bundle capable of obtaining a high-performance carbon fiber reinforced composite material having excellent tensile strength by controlling the nonlinearity of the stress σ-strain ε curve in a resin-impregnated strand tensile test to a specific range. is disclosed.
特開2014-214386号公報JP 2014-214386 A 特開2002-69754号公報JP-A-2002-69754 特開2019-151956号公報JP 2019-151956 A 国際公開第2016/068034号WO2016/068034
 しかし、背景技術には次のような課題がある。 However, the background technology has the following issues.
 特許文献1では、耐炎化工程における糸条密度を特定の範囲とすることにより耐炎化工程における撚りや「溝飛び」(ローラーからの糸条の脱落)の発生を抑制する効果が示されているものの、得られる炭素繊維束の品位向上効果も示されておらず、高次加工のプロセスに供した際の操業性を改善できるものではなかった。 In Patent Document 1, it is shown that by setting the yarn density in the flameproofing process to a specific range, the effect of suppressing the occurrence of twisting and "groove skipping" (dropping of the yarn from the roller) in the flameproofing process. However, the effect of improving the quality of the resulting carbon fiber bundle has not been demonstrated, and the operability cannot be improved when subjected to the process of higher processing.
 特許文献2では、圧力容器を成形する際の樹脂含浸性が向上し得られた成形材料の強度発現率が向上するものの、得られる炭素繊維束の高次加工のプロセスに供した際の操業性を改善するものではなかった。 In Patent Document 2, although the strength expression rate of the obtained molding material is improved by improving the resin impregnating property when molding the pressure vessel, the operability when the obtained carbon fiber bundle is subjected to the process of high-order processing did not improve
 特許文献3では、炭素繊維束に半永久的な撚りを残存させることにより取り扱い性を向上できるものの、得られる炭素繊維束の高次加工のプロセスに供した際の操業性についての具体的な効果の開示や示唆はなく、撚りが存在することで、得られる炭素繊維強化複合材料中における繊維の配向が乱れ、力学物性が発現しにくいという問題があった。 In Patent Document 3, although the handleability can be improved by leaving a semi-permanent twist in the carbon fiber bundle, there is no specific effect on the workability when the obtained carbon fiber bundle is subjected to a process of high-order processing. There is no disclosure or suggestion, but there is a problem that the presence of twist disturbs the orientation of the fibers in the resulting carbon fiber reinforced composite material, making it difficult to develop mechanical properties.
 特許文献4では、耐炎化工程における熱処理方法の制御により樹脂含浸ストランド引張試験における応力σ-歪みε曲線の非線形性を特定の範囲に制御することで強度向上に有効な破壊靱性値が向上するものの、高い総繊度の炭素繊維束の高次加工のプロセスに供した際の操業性についての示唆は無く、樹脂含浸ストランド引張試験における初期弾性率も315GPaと高く、高次加工のプロセスに供した際の操業性の向上が期待できるものではなかった。さらに、生産性に優れる炭素繊維束を得るためにはポリアクリロニトリル系前駆体繊維束の総繊度を高めて処理することが有効であるが、熱暴走などの理由により耐炎化工程の熱処理方法には制約があり、該特許文献記載の方法では、応力σ-歪みε曲線の非線形性を安定して制御することは困難であるという問題があった。 In Patent Document 4, by controlling the heat treatment method in the flameproofing process, the nonlinearity of the stress σ-strain ε curve in the resin-impregnated strand tensile test is controlled to a specific range, thereby improving the fracture toughness value, which is effective for improving strength. , There is no suggestion about the workability when subjected to a high-order processing process of carbon fiber bundles with a high total fineness, and the initial elastic modulus in the resin-impregnated strand tensile test is as high as 315 GPa, and when subjected to a high-order processing process However, it was not possible to expect an improvement in the operability of the plant. Furthermore, in order to obtain a carbon fiber bundle with excellent productivity, it is effective to increase the total fineness of the polyacrylonitrile-based precursor fiber bundle. There are limitations, and the method described in the patent document has the problem that it is difficult to stably control the nonlinearity of the stress σ-strain ε curve.
 以上のように、先行技術では、炭素繊維束の力学特性を高める技術や、炭素繊維束製造時の操業性を高める技術が提案されているが、総繊度の大きい炭素繊維束において高次加工時のローラーやガイドとの擦過による毛羽や炭素繊維束の一部または全体にわたって発生する破断などのトラブルを抑制できる技術は開示されていない。本発明では、高い総繊度でありながら強度、弾性率、および高次加工に供した際の操業性に優れ、実質的に無撚で炭素繊維強化複合材料にした場合に力学物性が発現しやすい炭素繊維束およびその製造方法を提供することを目的とする。 As described above, in the prior art, techniques for improving the mechanical properties of carbon fiber bundles and techniques for improving operability during the production of carbon fiber bundles have been proposed. There is no disclosure of a technology capable of suppressing troubles such as fuzz caused by rubbing against rollers or guides and breakage occurring in part or all of the carbon fiber bundle. In the present invention, although it has a high total fineness, it is excellent in strength, elastic modulus, and workability when subjected to high-order processing, and when it is made into a carbon fiber reinforced composite material in a substantially untwisted manner, mechanical properties are likely to appear. An object of the present invention is to provide a carbon fiber bundle and a method for manufacturing the same.
 かかる本発明の目的を達成するために、本発明は主に次の構成を有する。 In order to achieve this object of the present invention, the present invention mainly has the following configuration.
 すなわち、本発明は、樹脂含浸ストランド引張試験における応力σ-歪みε曲線において応力が0~3GPaの範囲で非線形性の近似式(1)から求まる係数Aと、広角X線回折測定における結晶配向度Π(%)と、の関係が、式(2)を満足し、初期弾性率が240~279GPaであり、フィラメント数が24,000~72,000であり、実質的に無撚の炭素繊維束である。
ε=Aσ+Bσ+C  ・・・(1)
-410≦(0.0000832Π-0.0184Π+1.00)/A≦-310 ・・・(2)
 ここで、A、B、Cは応力σとひずみεの2次関数の係数であり、Πは結晶配向度である。
That is, the present invention provides the coefficient A obtained from the nonlinear approximation formula (1) in the stress σ-strain ε curve in the resin-impregnated strand tensile test in the range of 0 to 3 GPa, and the degree of crystal orientation in wide-angle X-ray diffraction measurement. The relationship between Π (%) satisfies the formula (2), the initial elastic modulus is 240 to 279 GPa, the number of filaments is 24,000 to 72,000, and the substantially untwisted carbon fiber bundle is.
ε=Aσ 2 +Bσ+C (1)
−410≦(0.0000832Π 2 −0.0184Π+1.00)/A≦−310 (2)
Here, A, B, and C are the coefficients of the quadratic function of stress σ and strain ε, and Π is the degree of crystal orientation.
 また、本発明は、上記の炭素繊維束を製造する方法であって、
フィラメント数が24,000~72,000で実質的に無撚のポリアクリロニトリル系前駆体繊維束を酸化性雰囲気中220~280℃の温度で熱処理する耐炎化工程と、該耐炎化工程で得られた耐炎化繊維束を不活性雰囲気中、最高温度が300~1,000℃で熱処理する予備炭素化工程と、該予備炭素化繊維束で得られた予備炭素化繊維束を不活性雰囲気中、最高温度が1,000~1,600℃で熱処理する炭素化工程とを含み、
該予備炭素化工程における延伸倍率が1.05~1.20であり、該炭素化工程における延伸倍率が0.960~0.990であり、かつ該予備炭素化工程と該炭素化工程の延伸倍率の積が1.020~1.180であり、
該耐炎化工程においては、互いに異なる温度に設定された複数の熱処理炉、または、熱処理炉内に設けられ互いに異なる温度に設定された複数の熱処理セクションで、ポリアクリロニトリル系前駆体繊維束に段階的に熱処理を施し、該耐炎化工程において最も温度が低い熱処理炉または熱処理セクションの温度を230℃未満、かつ、最も温度が高い熱処理炉または熱処理セクションの温度を280℃以下とする、
炭素繊維束の製造方法である。
The present invention also provides a method for producing the above carbon fiber bundle,
A flameproofing step of heat-treating a substantially untwisted polyacrylonitrile-based precursor fiber bundle having a filament number of 24,000 to 72,000 in an oxidizing atmosphere at a temperature of 220 to 280°C, and a flameproofing step obtained by the flameproofing step. a preliminary carbonization step of heat-treating the flameproofed fiber bundle in an inert atmosphere at a maximum temperature of 300 to 1,000 ° C.; A carbonization step of heat treatment at a maximum temperature of 1,000 to 1,600 ° C.,
The draw ratio in the preliminary carbonization step is 1.05 to 1.20, the draw ratio in the carbonization step is 0.960 to 0.990, and stretching in the preliminary carbonization step and the carbonization step The product of magnification is 1.020 to 1.180,
In the flameproofing step, the polyacrylonitrile-based precursor fiber bundles are stepwise processed in a plurality of heat treatment furnaces set to mutually different temperatures, or in a plurality of heat treatment sections provided in the heat treatment furnace and set to mutually different temperatures. and the temperature of the heat treatment furnace or heat treatment section with the lowest temperature in the flameproofing step is set to less than 230 ° C., and the temperature of the heat treatment furnace or heat treatment section with the highest temperature is set to 280 ° C. or less.
A method for producing a carbon fiber bundle.
 本発明によれば、高い総繊度でありながら強度、弾性率、および高次加工に供した際の操業性に優れ、炭素繊維強化複合材料にした場合に力学物性が発現しやすい炭素繊維束が得られる。 According to the present invention, a carbon fiber bundle that is excellent in strength, elastic modulus, and workability when subjected to high-order processing while having a high total fineness, and that easily exhibits mechanical properties when made into a carbon fiber reinforced composite material. can get.
 かかる目的を達成するために、本発明は次の構成を有する。 In order to achieve this purpose, the present invention has the following configuration.
 本発明の炭素繊維束は、炭素繊維束を樹脂含浸ストランド引張試験により測定することにより求められる応力σ-歪みε曲線を、下記の非線形性の近似式(1)に導入することにより求められる係数Aの値が次式(2)を満足する。
ε=Aσ+Bσ+C  ・・・(1)
-410≦(0.0000832Π-0.0184Π+1.00)/A≦-310  ・・・(2)
 ここで、Πは、炭素繊維束を広角X線回折測定により測定することにより求められる結晶配向度(%)を示す。結晶配向度は後述する炭素繊維の結晶配向度Πの測定法により得られる。
The carbon fiber bundle of the present invention is a coefficient obtained by introducing the stress σ-strain ε curve obtained by measuring the carbon fiber bundle by a resin-impregnated strand tensile test into the following nonlinear approximation formula (1): The value of A satisfies the following equation (2).
ε=Aσ 2 +Bσ+C (1)
−410≦(0.0000832Π 2 −0.0184Π+1.00)/A≦−310 (2)
Here, Π indicates the degree of crystal orientation (%) obtained by measuring the carbon fiber bundle by wide-angle X-ray diffraction measurement. The degree of crystal orientation is obtained by a method for measuring the degree of crystal orientation Π of carbon fibers, which will be described later.
 前記式(2)の中央の項の値は-410~-310であり、好ましくは-406~-343であり、より好ましくは-386~-352である。 The value of the middle term in the formula (2) is -410 to -310, preferably -406 to -343, more preferably -386 to -352.
 式(1)において、係数Aは応力σ-歪みε曲線の非線形性を示す。係数Aは、炭素繊維束を樹脂含浸ストランド引張試験により測定することにより求められる応力σ-歪みε曲線を、応力0~3GPaの範囲で近似式(1)にフィッティングすることにより求められる。上記のように、炭素繊維束の応力σ-歪みε曲線は、応力σ(GPa)を縦軸、歪みε(-)を横軸にした場合、一般的に下に凸の曲線を示すため、前記近似式(1)から求められる係数Aは、マイナスの値をとる。すなわち、係数Aが0に近いほど、非線形性が小さいことを意味する。 In formula (1), the coefficient A indicates the nonlinearity of the stress σ-strain ε curve. The coefficient A is obtained by fitting a stress σ-strain ε curve obtained by measuring a carbon fiber bundle by a resin-impregnated strand tensile test to the approximate expression (1) within a stress range of 0 to 3 GPa. As described above, the stress σ-strain ε curve of a carbon fiber bundle generally shows a downwardly convex curve when the stress σ (GPa) is on the vertical axis and the strain ε (−) is on the horizontal axis. The coefficient A obtained from the approximate expression (1) takes a negative value. That is, the closer the coefficient A is to 0, the smaller the nonlinearity.
 また、本発明者らは、単に応力σ-歪みε曲線の非線形性のみでは、炭素繊維の剪断弾性率との相関性が、必ずしも充分ではないことを見出した。炭素繊維における応力と変形に関係する理論については、例えば、“カーボン(Carbon)”(オランダ), エルゼビア(Elsevier), 1991年, 第29巻, 第8号, p.1267-1279等に解説されている。しかしながら、これは学術的な検討であり、炭素繊維のせん断弾性率を制御するための実用的な検討に用いるためには用い難いものであった。本発明者らは、これらの理論に基づいて検討を重ねた結果、実用的な観点から測定が比較的容易な結晶配向度Πと、上記近似式(1)の係数Aから導出される上記式(2)の中央の項の値(0.0000832Π-0.0184Π+1.00)/Aが、炭素繊維のせん断弾性率と極めて高い相関性があることを見出した。より具体的には、式(2)の中央の項の値が大きくなるほどせん断弾性率は低くなり、式(2)の中央の項の値が小さくなるほどせん断弾性率は大きくなる。 Further, the present inventors have found that the correlation with the shear modulus of carbon fibers is not necessarily sufficient only with the nonlinearity of the stress σ-strain ε curve. Theories related to stress and deformation in carbon fibers are described, for example, in "Carbon" (Netherlands), Elsevier, 1991, Vol. 29, No. 8, pp. 1267-1279. ing. However, this is an academic study, and was difficult to use for practical studies to control the shear modulus of carbon fibers. As a result of repeated studies based on these theories, the present inventors have found that from a practical point of view, the degree of crystal orientation Π, which is relatively easy to measure, and the above formula derived from the coefficient A of the approximate formula (1) It was found that the value (0.0000832 Π 2 -0.0184 Π + 1.00)/A in the middle term of (2) has an extremely high correlation with the shear modulus of carbon fiber. More specifically, the shear modulus decreases as the value of the middle term in formula (2) increases, and the shear modulus increases as the value in the middle term of formula (2) decreases.
 せん断弾性率は単繊維に曲げや圧縮方向の応力がかかった際の変形しやすさの指標であり、高次加工工程における操業性を改善するために重要である。前記式(2)の中央の項の値が-410~-310であると、高次加工工程で曲げや圧縮の応力を受けた際に繊維が適度に変形し、単繊維の破断や、それに続くローラーやガイドへの巻き付きを抑制できる。前記式(1)の係数Aは、耐炎化工程の延伸倍率、予備炭素化工程の延伸倍率、炭素化工程の延伸倍率で制御できる。また、結晶配向度Πは、予備炭素化工程の延伸倍率、炭素化工程の延伸倍率および炭素化工程の温度で制御できる。 The shear modulus is an index of how easily a single fiber deforms when stress is applied in the bending or compressive directions, and is important for improving workability in advanced processing processes. When the value of the middle term in the above formula (2) is -410 to -310, the fiber is moderately deformed when subjected to bending or compressive stress in the high-order processing step, resulting in single fiber breakage and Wrapping around subsequent rollers and guides can be suppressed. The coefficient A in the formula (1) can be controlled by the draw ratio in the flameproofing step, the draw ratio in the preliminary carbonization step, and the draw ratio in the carbonization step. Further, the degree of crystal orientation Π can be controlled by the draw ratio in the preliminary carbonization step, the draw ratio in the carbonization step, and the temperature in the carbonization step.
 また、本発明の炭素繊維束は、初期弾性率が240~279GPaであり、好ましくは245~269GPaであり、より好ましくは245~260GPaである。初期弾性率は、単繊維に引張方向の応力がかかった際の初期の変形しやすさの指標であり、高次加工工程における操業性を改善するために重要である。初期弾性率が240~279GPaであれば、高次加工工程で引張方向の応力を受けた際に繊維が適度に変形し、単繊維の破断や、それに続くローラーやガイドへの巻き付きを抑制できる。かかる初期弾性率は後述の樹脂含浸ストランド引張試験により測定される応力σ-歪みε曲線を近似式(1)でフィッティングした際の係数Bの逆数1/Bとして計算される。かかる初期弾性率は、耐炎化工程の延伸倍率、予備炭素化工程の延伸倍率、炭素化工程の延伸倍率および炭素化工程の温度で制御できる。 In addition, the carbon fiber bundle of the present invention has an initial elastic modulus of 240 to 279 GPa, preferably 245 to 269 GPa, more preferably 245 to 260 GPa. The initial modulus of elasticity is an index of the ease of initial deformation when stress is applied to a single fiber in the tensile direction, and is important for improving workability in advanced processing steps. If the initial elastic modulus is 240 to 279 GPa, the fibers will deform appropriately when subjected to stress in the tensile direction in the advanced processing step, and breakage of single fibers and subsequent winding around rollers and guides can be suppressed. The initial elastic modulus is calculated as the reciprocal 1/B of the coefficient B obtained by fitting the stress σ-strain ε curve measured by the resin-impregnated strand tensile test described later with the approximation formula (1). Such an initial elastic modulus can be controlled by the draw ratio in the flameproofing step, the draw ratio in the preliminary carbonization step, the draw ratio in the carbonization step, and the temperature in the carbonization step.
 本発明の炭素繊維束は、フィラメント数が24,000~72,000であり、好ましくは36,000~60,000であり、より好ましくは48,000~50,000である。フィラメント数は、炭素繊維束を構成する単繊維の本数であり、多いほど炭素繊維強化複合材料の生産性に優れるが、多すぎると炭素繊維束の拡がり性や、樹脂含浸性の観点から得られる炭素繊維強化複合材料の力学特性が低下することがある。フィラメント数が24,000~72,000であれば、複合材料成形時の生産性に優れ、産業用途に好適に用いることができる。かかるフィラメント数は、ポリアクリロニトリル系前駆体繊維束の製糸工程における口金の孔数や、糸条の分割、合糸によって制御できる。 The carbon fiber bundle of the present invention has a filament number of 24,000 to 72,000, preferably 36,000 to 60,000, more preferably 48,000 to 50,000. The number of filaments is the number of single fibers that make up the carbon fiber bundle, and the more the number, the better the productivity of the carbon fiber reinforced composite material. The mechanical properties of carbon fiber reinforced composite materials may deteriorate. If the number of filaments is 24,000 to 72,000, the productivity in molding the composite material is excellent, and it can be suitably used for industrial applications. The number of filaments can be controlled by adjusting the number of holes in the spinneret, the splitting of the yarn, and the doubling of the yarn in the spinning process of the polyacrylonitrile-based precursor fiber bundle.
 本発明の炭素繊維束は、実質的に無撚である。ここでいう実質的に無撚とは、炭素繊維束の撚りが1mあたり0.5ターン以下であることを意味する。炭素繊維束が実質的に無撚であれば、炭素繊維強化複合材料中における繊維の配向乱れを抑制でき、炭素繊維強化複合材料の補強効果が良好となる。 The carbon fiber bundle of the present invention is substantially untwisted. The term "substantially untwisted" as used herein means that the twist of the carbon fiber bundle is 0.5 turns or less per meter. If the carbon fiber bundle is substantially untwisted, it is possible to suppress disordered orientation of the fibers in the carbon fiber reinforced composite material, thereby improving the reinforcing effect of the carbon fiber reinforced composite material.
 本発明の炭素繊維束は、結晶子サイズLcが好ましくは1.80~2.20nmである。結晶子サイズLcは、炭素繊維中の黒鉛の結晶の[002]方向の大きさである。結晶子サイズLcが1.80~2.20nmであれば、強度、弾性率のバランスにより優れる炭素繊維が得られる。かかる結晶子サイズLcは、広角X線回折測定により後述する結晶子サイズLcの測定方法で評価できる。かかる結晶子サイズLcは、炭素化工程の温度で制御できる。 The carbon fiber bundle of the present invention preferably has a crystallite size Lc of 1.80 to 2.20 nm. The crystallite size Lc is the size of graphite crystals in the carbon fiber in the [002] direction. If the crystallite size Lc is from 1.80 to 2.20 nm, carbon fibers with better balance between strength and elastic modulus can be obtained. Such a crystallite size Lc can be evaluated by a method for measuring the crystallite size Lc, which will be described later, by wide-angle X-ray diffraction measurement. Such crystallite size Lc can be controlled by the temperature of the carbonization step.
 本発明の炭素繊維束は、単繊維繊度が好ましくは0.63~1.35dtexであり、より好ましくは0.67~1.35dtexであり、さらに好ましくは0.74~1.20dtexである。単繊維繊度は、単繊維の単位長さあたりの質量である。単繊維繊度が0.63~1.35dtexであれば、生産性と力学特性を両立できる。単繊維繊度は後述の方法により、単位長さ当たりの質量を測定することで評価できる。かかる単繊維繊度は、ポリアクリロニトリル系前駆体繊維束の製糸工程におけるポリアクリロニトリル系重合体の吐出量や延伸倍率で制御できる。 The carbon fiber bundle of the present invention preferably has a single fiber fineness of 0.63 to 1.35 dtex, more preferably 0.67 to 1.35 dtex, still more preferably 0.74 to 1.20 dtex. Single fiber fineness is the mass per unit length of single fiber. If the single fiber fineness is 0.63 to 1.35 dtex, both productivity and mechanical properties can be achieved. The single fiber fineness can be evaluated by measuring the mass per unit length by the method described later. Such single fiber fineness can be controlled by the discharge amount and draw ratio of the polyacrylonitrile-based polymer in the spinning process of the polyacrylonitrile-based precursor fiber bundle.
 本発明の炭素繊維束は、単繊維断面の真円度が好ましくは0.86~0.98であり、より好ましくは0.87~0.96であり、さらに好ましくは0.87~0.93である。単繊維断面の真円度は、単繊維断面の周長Lと面積Acsから次のように定義される。
(真円度)=4πAcs/L
The carbon fiber bundle of the present invention preferably has a single fiber cross-sectional circularity of 0.86 to 0.98, more preferably 0.87 to 0.96, still more preferably 0.87 to 0.96. 93. The circularity of the single fiber cross section is defined as follows from the perimeter L and the area Acs of the single fiber cross section.
(Circularity)=4πA cs /L 2 .
 単繊維断面の真円度が0.86~0.98であれば、高次加工時の集束性と耐擦過性をより確実に両立でき、高次加工時の操業性により優れる。かかる単繊維断面の真円度は、後述の方法により、単繊維を垂直に切断した切断面の画像から評価することができる。かかる単繊維断面の真円度は、製糸工程における口金の吐出孔の形状や凝固工程の条件により制御できる。 If the roundness of the single fiber cross section is 0.86 to 0.98, both bundling property and abrasion resistance during high-order processing can be achieved more reliably, and workability during high-order processing is superior. The roundness of the cross section of the single fiber can be evaluated from the image of the cross section obtained by cutting the single fiber vertically by the method described later. The roundness of the single fiber cross section can be controlled by the shape of the ejection hole of the spinneret in the spinning process and the conditions of the coagulation process.
 次に、本発明の炭素繊維束を得ることに好ましい炭素繊維束の製造方法について述べる。 Next, a method for producing a carbon fiber bundle that is preferable for obtaining the carbon fiber bundle of the present invention will be described.
 炭素繊維束の製造に際し、ポリアクリロニトリル系前駆体繊維束を製糸する。ポリアクリロニトリル系前駆体繊維束の製造に供する原料としては、好ましくはポリアクリロニトリル系重合体を用いる。なお、本発明においてポリアクリロニトリル系重合体とは、少なくともアクリロニトリルが重合体骨格の主構成成分となっているものをいい、主構成成分とは、通常、重合体骨格の90~100質量%を占める構成成分のことをいう。ポリアクリロニトリル系重合体は、製糸性向上の観点および、耐炎化処理を効率良く行う観点等から、好ましくは、イタコン酸、アクリルアミド、メタクリル酸などの共重合成分を含む。ポリアクリロニトリル系重合体の製造方法としては、公知の重合方法の中から選択することができる。ポリアクリロニトリル系前駆体繊維束の製造において、紡糸原液は、前記したポリアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドあるいは硝酸・塩化亜鉛・ロダンソーダ水溶液などのポリアクリロニトリルが可溶な溶媒に溶解したものである。 When manufacturing the carbon fiber bundle, the polyacrylonitrile-based precursor fiber bundle is spun. A polyacrylonitrile-based polymer is preferably used as the raw material for the production of the polyacrylonitrile-based precursor fiber bundle. In the present invention, the polyacrylonitrile-based polymer refers to a polymer in which at least acrylonitrile is the main component of the polymer skeleton, and the main component usually accounts for 90 to 100% by mass of the polymer skeleton. Refers to constituents. The polyacrylonitrile-based polymer preferably contains a copolymer component such as itaconic acid, acrylamide, and methacrylic acid from the viewpoint of improving the spinning property and efficiently performing the flame-resistant treatment. A method for producing a polyacrylonitrile-based polymer can be selected from known polymerization methods. In the production of the polyacrylonitrile-based precursor fiber bundle, the spinning dope is prepared by adding the above-mentioned polyacrylonitrile-based polymer to a solvent in which polyacrylonitrile is soluble, such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, or an aqueous solution of nitric acid, zinc chloride, and rhodan soda. It is dissolved.
 本発明で使用されるポリアクリロニトリル系前駆体繊維束の製造方法には特に制限がないが、好ましくは湿式紡糸が用いられ、その後、延伸、水洗、油剤付与、乾燥緻密化,必要あれば後延伸などの工程を経て得ることができる。ポリアクリロニトリル系前駆体繊維束の製造工程における製糸口金の孔数は、前述の炭素繊維束のフィラメント数を達成するために、好ましくは3,000~200,000ホールであり、分割や合糸によって所定のフィラメント数のポリアクリロニトリル系前駆体繊維束を得ることができる。 The method for producing the polyacrylonitrile-based precursor fiber bundle used in the present invention is not particularly limited, but wet spinning is preferably used, followed by drawing, washing with water, application of oil, drying and densification, and post-drawing if necessary. It can be obtained through processes such as The number of holes in the spinneret in the production process of the polyacrylonitrile-based precursor fiber bundle is preferably 3,000 to 200,000 holes in order to achieve the above-mentioned number of filaments in the carbon fiber bundle. A polyacrylonitrile-based precursor fiber bundle having a predetermined number of filaments can be obtained.
 ポリアクリロニトリル系前駆体繊維束の製造において、凝固浴には、紡糸原液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、ポリアクリロニトリル系重合体を溶解せず、かつ紡糸原液に用いる溶媒と相溶性があるものを使用することができる。好ましくは凝固促進成分として水を使用する。 In the production of polyacrylonitrile-based precursor fiber bundles, the coagulation bath preferably contains a solvent such as dimethylsulfoxide, dimethylformamide, and dimethylacetamide used as the solvent for the spinning dope, and a so-called coagulation accelerating component. As the coagulation accelerating component, a component that does not dissolve the polyacrylonitrile-based polymer and is compatible with the solvent used for the spinning dope can be used. Water is preferably used as the clot-promoting ingredient.
 ポリアクリロニトリル系前駆体繊維束の製造において、水洗工程は、温度が30~98℃の、複数段からなる水洗浴を用いることが好ましい。また、水洗工程においては、延伸倍率を2~6倍に設定することも好ましい。 In the production of the polyacrylonitrile-based precursor fiber bundle, it is preferable that the water washing step uses a water washing bath consisting of multiple stages at a temperature of 30 to 98°C. Further, in the water washing step, it is also preferable to set the draw ratio to 2 to 6 times.
 水洗工程の後、単繊維同士の接着を防止する目的から、好ましくは糸条にシリコーン等からなる油剤を付与する。かかるシリコーン油剤は、好ましくは変性されたシリコーンであり、好ましくは耐熱性の高いアミノ変性シリコーンを含有するものである。 After the water-washing process, an oil such as silicone is preferably applied to the threads in order to prevent the single fibers from sticking to each other. Such a silicone oil agent is preferably a modified silicone, and preferably contains an amino-modified silicone having high heat resistance.
 乾燥熱処理工程(上述の乾燥緻密化の工程)は、公知の方法を利用することができる。例えば、乾燥温度は100~200℃が例示される。 A known method can be used for the dry heat treatment step (the above-described dry densification step). For example, the drying temperature is 100-200°C.
 本発明の炭素繊維束の製造方法におけるポリアクリロニトリル系前駆体繊維束の単繊維繊度は好ましくは1.20~2.40dtexであり、より好ましくは1.20~2.20dtexであり、さらに好ましくは1.40~1.80dtexである。単繊維繊度は、単繊維の単位長さあたりの質量である。単繊維繊度が1.20dtex以上であれば、十分に高い生産性で炭素繊維束が得られ、単繊維繊度が2.40dtex以下であれば、耐炎化工程以降の熱処理における処理むらが低減し、高い力学特性の炭素繊維束が得られる。かかる単繊維繊度は、製糸工程における吐出量や延伸倍率で制御できる。 The single fiber fineness of the polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention is preferably 1.20 to 2.40 dtex, more preferably 1.20 to 2.20 dtex, and even more preferably 1.40 to 1.80 dtex. Single fiber fineness is the mass per unit length of single fiber. If the single fiber fineness is 1.20 dtex or more, a carbon fiber bundle can be obtained with sufficiently high productivity. A carbon fiber bundle with high mechanical properties is obtained. Such single fiber fineness can be controlled by the discharge amount and draw ratio in the spinning process.
 本発明の炭素繊維束の製造方法におけるポリアクリロニトリル系前駆体繊維束は、単繊維断面の真円度が好ましくは0.86~0.98であり、より好ましくは0.87~0.96であり、さらに好ましくは0.87~0.93である。単繊維断面の真円度は、単繊維断面の周長Lと面積Acsから次のように定義される。
(真円度)=4πAcs/L
The polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention preferably has a single fiber cross-sectional circularity of 0.86 to 0.98, more preferably 0.87 to 0.96. and more preferably 0.87 to 0.93. The circularity of the single fiber cross section is defined as follows from the perimeter L and the area Acs of the single fiber cross section.
(Circularity)=4πA cs /L 2 .
 単繊維断面の真円度が0.86~0.98であれば、得られる炭素繊維の集束性および耐擦過性をより確実に両立でき、得られる炭素繊維束の高次加工時の操業性により優れる。かかるポリアクリロニトリル系前駆体繊維束の単繊維断面の真円度は、後述の方法により、単繊維を垂直に切断した切断面の画像から評価することができる。かかるポリアクリロニトリル系前駆体繊維束の単繊維断面の真円度は、製糸工程における口金の吐出孔の形状や凝固工程の条件により制御できる。 If the roundness of the single fiber cross section is 0.86 to 0.98, the bundling property and abrasion resistance of the obtained carbon fiber can be more reliably achieved, and the obtained carbon fiber bundle can be processed in a higher order. better than The roundness of the single fiber cross section of such a polyacrylonitrile-based precursor fiber bundle can be evaluated from the image of the cut surface obtained by vertically cutting the single fiber by the method described later. The roundness of the single fiber cross section of such a polyacrylonitrile-based precursor fiber bundle can be controlled by the shape of the ejection hole of the spinneret in the spinning process and the conditions of the coagulation process.
 本発明の炭素繊維束の製造方法におけるポリアクリロニトリル系前駆体繊維束のフィラメント数は、好ましくは24,000~72,000であり、より好ましくは36,000~60,000であり、さらに好ましくは48,000~50,000である。フィラメント数は、ポリアクリロニトリル系前駆体繊維束を構成する単繊維の本数であり、多いほど炭素繊維束製造の生産性および得られる炭素繊維束を用いた炭素繊維強化複合材料の生産性に優れるが、多すぎると耐炎化工程、予備炭素化工程、炭素化工程での処理むらが増加したり、得られる炭素繊維束の拡がり性や、樹脂含浸性の観点から得られる炭素繊維強化複合材料の力学特性が低下したりすることがある。ポリアクリロニトリル系前駆体繊維束のフィラメント数が24,000~72,000であれば、炭素繊維束および炭素繊維強化複合材料の生産性に優れ、産業用途に好適に用いることができる炭素繊維束が得られる。かかるポリアクリロニトリル系前駆体繊維束のフィラメント数は、ポリアクリロニトリル系前駆体繊維束を構成する単繊維の本数を数えることで評価できる。かかるフィラメント数は、製糸工程における口金の孔数や口金から吐出された繊維束の分割数、繊維束の合糸数により制御できる。 The number of filaments of the polyacrylonitrile-based precursor fiber bundle in the carbon fiber bundle production method of the present invention is preferably 24,000 to 72,000, more preferably 36,000 to 60,000, and still more preferably 48,000 to 50,000. The number of filaments is the number of single fibers that make up the polyacrylonitrile-based precursor fiber bundle. , If it is too large, the unevenness of the treatment in the flameproofing process, the preliminary carbonization process, and the carbonization process will increase, and the dynamics of the carbon fiber reinforced composite material obtained from the viewpoint of the spreadability of the obtained carbon fiber bundle and the resin impregnation property. characteristics may deteriorate. If the number of filaments in the polyacrylonitrile-based precursor fiber bundle is 24,000 to 72,000, the productivity of the carbon fiber bundle and the carbon fiber reinforced composite material is excellent, and the carbon fiber bundle can be suitably used for industrial applications. can get. The number of filaments in such a polyacrylonitrile-based precursor fiber bundle can be evaluated by counting the number of single fibers constituting the polyacrylonitrile-based precursor fiber bundle. The number of filaments can be controlled by the number of holes in the spinneret in the spinning process, the number of divisions of the fiber bundle extruded from the spinneret, and the number of doubling of the fiber bundle.
 本発明の炭素繊維束の製造方法においては、上記のような実質的に無撚のポリアクリロニトリル系前駆体繊維束を、酸化性雰囲気中220~280℃の温度で熱処理する(耐炎化工程)。耐炎化工程における温度は好ましくは220~280℃である。耐炎化処理の温度が220℃以上であれば、十分な耐炎性を有した耐炎化繊維束を製造できるため、耐炎性の不足による毛羽の発生を抑制することができ、得られる炭素繊維束の高次加工時の操業性に優れる。耐炎化処理する温度が280℃以下であれば、発熱速度が過剰に高くならないため、耐炎化繊維束内の温度斑を低減することができ、力学特性に優れた炭素繊維束が得られる。かかる耐炎化処理の温度は、耐炎化炉に熱電対などの温度計を挿入して炉内温度を測定すればよく、炉内温度を数点測定した際に温度斑、温度分布があった際は単純平均温度を算出する。かかる耐炎化処理の温度は、公知の耐炎化炉で使用される加熱方法において、加熱の出力により制御できる。例として熱風循環式の耐炎化炉であれば、酸化性雰囲気の加熱に使用するヒーターの出力を変更すればよい。 In the method for producing a carbon fiber bundle of the present invention, the substantially untwisted polyacrylonitrile-based precursor fiber bundle as described above is heat-treated at a temperature of 220 to 280°C in an oxidizing atmosphere (flameproofing step). The temperature in the flameproofing step is preferably 220-280°C. If the temperature of the flameproofing treatment is 220° C. or higher, a flameproofed fiber bundle having sufficient flame resistance can be produced, so the occurrence of fluff due to lack of flame resistance can be suppressed, and the resulting carbon fiber bundle can be improved. Excellent workability during advanced processing. When the flameproofing temperature is 280° C. or lower, the heat generation rate does not become excessively high, so that the temperature unevenness in the flameproofed fiber bundle can be reduced, and a carbon fiber bundle having excellent mechanical properties can be obtained. The temperature of such flameproofing treatment can be determined by inserting a thermometer such as a thermocouple into the flameproofing furnace and measuring the furnace temperature. calculates the simple average temperature. The temperature of such flameproofing treatment can be controlled by heating output in a heating method used in a known flameproofing furnace. For example, in the case of a hot air circulation type flameproof furnace, the output of the heater used for heating the oxidizing atmosphere may be changed.
 耐炎化工程においては、互いに異なる温度に設定された複数の熱処理炉、または、熱処理炉内に設けられ互いに異なる温度に設定された複数の熱処理セクションを用いて、段階的にポリアクリロニトリル系前駆体繊維束に熱処理を施す(以下においては、このような熱処理炉および熱処理セクションを、「熱処理炉/熱処理セクション」と称する場合がある)。なお、本発明においては、複数の熱処理炉/熱処理セクションの中で、少なくとも2つの熱処理炉/熱処理セクションの間で温度が異なればよく、例えば3つの熱処理炉/熱処理セクションのうち2つの熱処理炉/熱処理セクションが同じ温度であってもよい。そして本発明においては、耐炎化工程中で最も低い熱処理炉または熱処理セクションの温度を230℃未満、好ましくは225℃以下、さらに好ましくは223℃以下とする。最も低い熱処理炉または熱処理セクションの温度を230℃未満とすることで、高い総繊度のポリアクリロニトリル系前駆体繊維束において生じやすい熱処理斑を低減でき、後述の予備炭素化工程および炭素化工程の延伸において品位を高く維持できる。なお、最も低い熱処理炉または熱処理セクションの温度が230℃以上であれば、耐炎化工程での熱処理斑が増大し、予備炭素化工程および炭素化工程の延伸によって品位が低下する。 In the flameproofing step, a plurality of heat treatment furnaces set to different temperatures from each other, or a plurality of heat treatment sections provided in the heat treatment furnace and set to different temperatures, are used to stepwise polyacrylonitrile-based precursor fibers. Subjecting the bundle to a heat treatment (hereinafter such heat treatment furnaces and heat treatment sections may be referred to as "heat treatment furnaces/heat treatment sections"). In the present invention, the temperature may be different between at least two heat treatment furnaces/heat treatment sections among the plurality of heat treatment furnaces/heat treatment sections, for example, two heat treatment furnaces/ The heat treatment sections may be at the same temperature. In the present invention, the temperature of the heat treatment furnace or heat treatment section, which is the lowest in the flameproofing process, is less than 230°C, preferably 225°C or less, more preferably 223°C or less. By setting the temperature of the lowest heat treatment furnace or heat treatment section to less than 230 ° C., heat treatment unevenness that tends to occur in polyacrylonitrile-based precursor fiber bundles with a high total fineness can be reduced, and stretching in the preliminary carbonization step and carbonization step described later. High quality can be maintained in If the temperature of the lowest heat treatment furnace or heat treatment section is 230° C. or higher, heat treatment unevenness increases in the flameproofing step, and the grade deteriorates due to stretching in the preliminary carbonization step and the carbonization step.
 また、本発明においては、耐炎化工程中で最も高い熱処理炉または熱処理セクションの温度を280℃以下、好ましくは275℃以下、さらに好ましくは270℃以下とする。最も高い熱処理炉または熱処理セクションの温度を280℃以下とすることで、高い総繊度のポリアクリロニトリル系前駆体繊維束において生じやすい熱処理斑を低減でき、後述の予備炭素化工程および炭素化工程の延伸において品位を高く維持できる。なお、かかる熱処理炉または熱処理セクションの温度が280℃超であれば、耐炎化工程での熱処理斑が増大し、予備炭素化工程および炭素化工程の延伸によって品位が低下する。 In addition, in the present invention, the temperature of the heat treatment furnace or heat treatment section, which is the highest in the flameproofing process, is 280°C or lower, preferably 275°C or lower, and more preferably 270°C or lower. By setting the temperature of the highest heat treatment furnace or heat treatment section to 280 ° C. or less, it is possible to reduce the heat treatment unevenness that tends to occur in the polyacrylonitrile-based precursor fiber bundle with a high total fineness, and the stretching of the preliminary carbonization step and the carbonization step described later. High quality can be maintained in If the temperature of the heat treatment furnace or heat treatment section exceeds 280° C., heat treatment unevenness increases in the flameproofing step, and the quality is lowered by stretching in the preliminary carbonization step and the carbonization step.
 前記ポリアクリロニトリル系前駆体繊維束製造工程および耐炎化工程に引き続いて、予備炭素化を行う。予備炭素化工程においては、前述のようにして得られた耐炎化繊維束を不活性雰囲気中、最高温度300~1,000℃において、好ましくは密度が1.5~1.8g/cmになるまで熱処理する。 Following the polyacrylonitrile-based precursor fiber bundle production step and the flameproofing step, pre-carbonization is performed. In the preliminary carbonization step, the flameproof fiber bundle obtained as described above is heated in an inert atmosphere at a maximum temperature of 300 to 1,000° C., preferably to a density of 1.5 to 1.8 g/cm 3 . heat-treated until
 前記予備炭素化に引き続いて、炭素化を行う。炭素化工程では、予備炭素化繊維束を不活性雰囲気中、最高温度1,000~1,600℃において熱処理する。 Carbonization is performed following the preliminary carbonization. In the carbonization step, the pre-carbonized fiber bundle is heat-treated at a maximum temperature of 1,000 to 1,600° C. in an inert atmosphere.
 なお、本発明においては、予備炭素化工程および炭素化工程においても、複数の熱処理炉または熱処理セクションを用い、それらを互いに異なる温度に設定してもよい。そのため、各工程で最も温度の高い熱処理炉または熱処理セクションの温度を、「最高温度」と称する。 In addition, in the present invention, a plurality of heat treatment furnaces or heat treatment sections may be used in the preliminary carbonization step and the carbonization step and set to temperatures different from each other. Therefore, the temperature of the heat treatment furnace or heat treatment section with the highest temperature in each step is referred to as the "maximum temperature".
 本発明の炭素繊維束の製造方法においては、予備炭素化工程における延伸倍率が1.05~1.20であり、炭素化工程における延伸倍率が0.960~0.990であり、かつ該予備炭素化工程と該炭素化工程の延伸倍率の積が1.020~1.180である。 In the method for producing a carbon fiber bundle of the present invention, the draw ratio in the preliminary carbonization step is 1.05 to 1.20, the draw ratio in the carbonization step is 0.960 to 0.990, and the preliminary The product of the carbonization step and the draw ratio in the carbonization step is 1.020 to 1.180.
 予備炭素化工程における延伸倍率は、好ましくは1.10~1.20であり、より好ましくは1.10~1.15である。 The draw ratio in the preliminary carbonization step is preferably 1.10 to 1.20, more preferably 1.10 to 1.15.
 炭素化工程における延伸倍率は、好ましくは0.975~0.990であり、より好ましくは0.975~0.985である。 The draw ratio in the carbonization step is preferably 0.975-0.990, more preferably 0.975-0.985.
 予備炭素化工程における延伸倍率と炭素化工程における延伸倍率の積は、好ましくは1.040~1.130であり、より好ましくは1.070~1.130である。 The product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is preferably 1.040 to 1.130, more preferably 1.070 to 1.130.
 予備炭素化工程の延伸倍率が1.05以上、炭素化工程の延伸倍率が0.960以上、予備炭素化工程における延伸倍率と炭素化工程における延伸倍率の積が1.020以上となるように制御することで、得られる炭素繊維束の前記式(2)の中央の項の値および初期弾性率を適切な範囲に制御できる。一方、予備炭素化工程の延伸倍率が1.20以下、炭素化工程の延伸倍率が0.990以下、予備炭素化工程における延伸倍率と炭素化工程における延伸倍率の積が1.180以下となるように制御することで、延伸による糸切れを抑制し、炭素繊維製造時の操業性の低下や、得られる炭素繊維束の毛羽数の増加を抑制することができる。 The draw ratio in the preliminary carbonization step is 1.05 or more, the draw ratio in the carbonization step is 0.960 or more, and the product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is 1.020 or more. By controlling, the value of the middle term of the above formula (2) and the initial elastic modulus of the obtained carbon fiber bundle can be controlled within an appropriate range. On the other hand, the draw ratio in the preliminary carbonization step is 1.20 or less, the draw ratio in the carbonization step is 0.990 or less, and the product of the draw ratio in the preliminary carbonization step and the draw ratio in the carbonization step is 1.180 or less. By controlling in such a manner, it is possible to suppress yarn breakage due to drawing, thereby suppressing a decrease in workability during carbon fiber production and an increase in the number of fluffs in the obtained carbon fiber bundle.
 以上のようにして得られた炭素繊維束には、マトリックス樹脂との接着性を向上させるために、酸化処理が施され、酸素含有官能基が導入されることが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。液相電解酸化の方法については特に指定はなく、公知の方法で行えばよい。 The carbon fiber bundles obtained as described above are preferably subjected to oxidation treatment to introduce oxygen-containing functional groups in order to improve adhesion with the matrix resin. Gas-phase oxidation, liquid-phase oxidation, and liquid-phase electrolytic oxidation are used as the oxidation treatment method. Liquid-phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment. The liquid-phase electrolytic oxidation method is not particularly specified, and a known method may be used.
 かかる電解処理の後、得られた炭素繊維束に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、複合材料に使用されるマトリックス樹脂の種類に応じて、該マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。 After such electrolytic treatment, a sizing treatment can be applied to impart bundling properties to the obtained carbon fiber bundles. As the sizing agent, a sizing agent having good compatibility with the matrix resin used in the composite material can be appropriately selected according to the type of the matrix resin.
 以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these.
 <炭素繊維束の樹脂含浸ストランド引張試験>
 炭素繊維束の樹脂含浸ストランドの引張弾性率(ストランド弾性率E(GPa))、樹脂含浸ストランドの引張強度(ストランド強度(GPa))および応力σ-歪みε曲線は、JISR7608(2008)「樹脂含浸ストランド試験法」に従って求める。ストランド弾性率Eは歪み範囲0.1~0.6%の範囲で測定する。なお、試験片は、次の樹脂組成物を炭素繊維束に含浸し、130℃の温度で35分間熱処理の硬化条件により作製する。
<Resin Impregnated Strand Tensile Test of Carbon Fiber Bundle>
The tensile elastic modulus of the resin-impregnated strand of the carbon fiber bundle (strand elastic modulus E (GPa)), the tensile strength of the resin-impregnated strand (strand strength (GPa)), and the stress σ-strain ε curve are calculated according to JISR7608 (2008) "Resin impregnation Strand test method”. The strand elastic modulus E is measured over a strain range of 0.1-0.6%. A test piece is prepared by impregnating a carbon fiber bundle with the following resin composition and subjecting it to curing conditions of heat treatment at a temperature of 130° C. for 35 minutes.
 [樹脂組成]
・3,4-エポキシシクロヘキシルメチル-3,4-エポキシ-シクロヘキサン-カルボキシレート(100質量部)
・3フッ化ホウ素モノエチルアミン(3質量部)
・アセトン(4質量部)
 また、ストランドの測定本数は6本とし、各測定結果の算術平均値をその炭素繊維束のストランド弾性率およびストランド強度とする。
[Resin composition]
· 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexane-carboxylate (100 parts by mass)
・ Boron trifluoride monoethylamine (3 parts by mass)
・ Acetone (4 parts by mass)
The number of strands to be measured is 6, and the arithmetic mean value of each measurement result is taken as the strand elastic modulus and strand strength of the carbon fiber bundle.
 <応力σ-歪みε曲線の解析>
 樹脂含浸ストランド引張試験によって得られた応力σ-歪みε曲線の解析は、縦軸に歪みε(-)、横軸に応力σ(GPa)をプロットし、次の式(1)のよってフィッティングすることで係数A,B,Cを算出する。フィッティングは測定で得られた応力σ-歪みε曲線のうち、応力σが0~3GPaの領域について行う。フィッティングはMicrosoft製「Excel」を用いて、2次関数によるフィッティングを行う。
ε=Aσ+Bσ+C  ・・・(1)。
<Analysis of stress σ-strain ε curve>
Analysis of the stress σ-strain ε curve obtained by the resin-impregnated strand tensile test is performed by plotting the strain ε (-) on the vertical axis and the stress σ (GPa) on the horizontal axis, and fitting according to the following equation (1). The coefficients A, B, and C are calculated by The fitting is performed for a region where the stress σ is 0 to 3 GPa in the stress σ-strain ε curve obtained by the measurement. Fitting is performed using Microsoft's "Excel" using a quadratic function.
ε=Aσ 2 +Bσ+C (1).
 <初期弾性率(GPa)>
 炭素繊維束の初期弾性率は、上述の応力σ-歪みε曲線の解析によって、式(1)によりフィッティングして得られた係数Bを用いて、次のように算出する。
初期弾性率(GPa)=1/B。
<Initial elastic modulus (GPa)>
The initial elastic modulus of the carbon fiber bundle is calculated as follows using the coefficient B obtained by fitting according to the equation (1) by analyzing the stress σ-strain ε curve described above.
Initial modulus (GPa) = 1/B.
 <炭素繊維束の結晶配向度Π(%)>
 測定に供する炭素繊維束を引き揃え、コロジオン・アルコール溶液を用いて固めることにより、長さ4cm、1辺の長さが1mmの四角柱の測定試料を用意する。用意された測定試料について、広角X線回折装置を用いて、次の条件により測定を行う。
・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
2θ=25~26°付近に現れるピークを円周方向にスキャンして得られる回折強度分布の半価幅H(°)から次式を用いて求める。
結晶配向度Π(%)=[(180-H)/180]×100
 なお、実施例では上記広角X線回折装置として、島津製作所製XRD-6100を用いた。
<Degree of crystal orientation Π (%) of carbon fiber bundle>
Carbon fiber bundles to be measured are aligned and solidified using a collodion/alcohol solution to prepare a square pole measuring sample having a length of 4 cm and a side length of 1 mm. A prepared measurement sample is measured using a wide-angle X-ray diffraction device under the following conditions.
・X-ray source: CuKα ray (tube voltage 40 kV, tube current 30 mA)
・ Detector: goniometer + monochromator + scintillation counter 2θ = Obtained using the following formula from the half width H (°) of the diffraction intensity distribution obtained by scanning the peak appearing in the vicinity of 25 to 26 ° in the circumferential direction .
Crystal orientation degree Π (%) = [(180-H) / 180] × 100
In the examples, XRD-6100 manufactured by Shimadzu Corporation was used as the wide-angle X-ray diffraction device.
 <結晶子サイズLc(nm)>
・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=10~40°
・走査モード:ステップスキャン、ステップ単位0.02°、計数時間2秒。
<Crystallite size Lc (nm)>
・X-ray source: CuKα ray (tube voltage 40 kV, tube current 30 mA)
・Detector: goniometer + monochromator + scintillation counter ・Scanning range: 2θ = 10 to 40°
• Scanning mode: step scan, step unit 0.02°, counting time 2 seconds.
 得られた回折パターンにおいて、2θ=25~26°付近に現れるピークについて、半値幅を求め、この値から、次のシェラー(Scherrer)の式により結晶子サイズを算出する。 In the obtained diffraction pattern, the half-value width is determined for the peak appearing near 2θ=25 to 26°, and from this value, the crystallite size is calculated by the following Scherrer's formula.
 結晶子サイズ(nm)=Kλ/βcosθ
 但し、
 K:1.0、λ:0.15418nm(X線の波長)
 β:(β -β 1/2
 β:見かけの半値幅(測定値)rad
 β:1.046×10-2rad
 θ:Braggの回析角。
Crystallite size (nm) = Kλ/β 0 cos θ B
however,
K: 1.0, λ: 0.15418 nm (X-ray wavelength)
β 0 : (β E 2 - β 1 2 ) 1/2
β E : Apparent half width (measured value) rad
β 1 : 1.046×10 −2 rad
θ B : Bragg's diffraction angle.
 <真円度の測定(‐)>
 ポリアクリロニトリル系前駆体繊維束または炭素繊維束を片刃カミソリで繊維軸方向に対して垂直に切断し、得た断面を日立ハイテクノロジーズ社製の走査電子顕微鏡(SEM)「S-4800」を用いて、繊維断面の垂直方向から観察する。取得した画像を画像解析ソフトウェア「ImageJ」を用いて解析し、前記繊維断面に含まれる単繊維について、該単繊維の断面の周長と面積から次の定義にしたがって真円度を算出する。この測定を1つの断面において、ランダムに25本の単繊維について繰り返し、真円度を平均したものを、単繊維断面の真円度とする。
単繊維断面の真円度は、単繊維断面の周長Lと面積Acsから次のように定義される。
(真円度)=4πAcs/L
<Roundness measurement (-)>
The polyacrylonitrile-based precursor fiber bundle or carbon fiber bundle is cut perpendicular to the fiber axis direction with a single-edged razor, and the obtained cross section is scanned with a scanning electron microscope (SEM) "S-4800" manufactured by Hitachi High Technologies. , observed from the direction perpendicular to the fiber cross-section. The acquired image is analyzed using the image analysis software "ImageJ", and the roundness of the single fiber included in the fiber cross section is calculated from the perimeter and area of the cross section of the single fiber according to the following definition. This measurement is randomly repeated for 25 single fibers in one cross section, and the average roundness is taken as the roundness of the cross section of the single fiber.
The circularity of the single fiber cross section is defined as follows from the perimeter L and the area Acs of the single fiber cross section.
(Circularity)=4πA cs /L 2 .
 <高次加工性の評価>
 炭素繊維束のボビンをクリールに設置し、張力1.6mN/dtexで引き出し10本のフリーローラーを介した後、5本の固定ガイドに擦過させ、速度10m/分の駆動ローラーで引き取ってワインダーで巻き取る。このとき、発生する毛羽を駆動ローラー直前で10分間カウントし、以下の指標で評価をする。
A:10個未満/m
B:10個以上50個未満/m
C:50個以上/m。
<Evaluation of high-order workability>
A carbon fiber bundle bobbin is placed on a creel and pulled out with a tension of 1.6 mN / dtex. take up. At this time, the generated fluff is counted for 10 minutes just before the drive roller and evaluated according to the following indices.
A: less than 10/m
B: 10 or more and less than 50/m
C: 50 or more/m.
 (実施例1~4)
 アクリロニトリルとイタコン酸からなるポリアクリロニトリル系共重合体を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル系共重合体を製造して紡糸原液を得た。得られた紡糸原液を、孔数50,000の製糸口金からジメチルスルホキシドの水溶液からなる凝固浴中に導入する湿式紡糸法により凝固し、繊維束とした。この繊維束を、常法により30~98℃で水洗し、その際に延伸を行った。続いて、この水洗延伸後の繊維束に対して、アミノ変性シリコーン油剤を付与し、130℃の加熱ローラーを用いて乾燥緻密化処理を行い、単繊維本数50,000本、単繊維繊度1.50dtexのポリアクリロニトリル系前駆体繊維束を得た。なお、ポリアクリロニトリル系前駆体繊維束に加撚処理は行わなかった。
(Examples 1 to 4)
A polyacrylonitrile-based copolymer composed of acrylonitrile and itaconic acid was polymerized by a solution polymerization method using dimethylsulfoxide as a solvent to produce a polyacrylonitrile-based copolymer to obtain a spinning dope. The obtained spinning dope was coagulated by a wet spinning method in which it was introduced into a coagulation bath comprising an aqueous solution of dimethyl sulfoxide through a spinneret with 50,000 holes to form a fiber bundle. This fiber bundle was washed with water at 30 to 98° C. in a conventional manner, and drawn at that time. Subsequently, an amino-modified silicone oil agent was applied to the fiber bundle after washing and stretching, and a drying and densification treatment was performed using a heating roller at 130° C., resulting in a single fiber count of 50,000 and a single fiber fineness of 1.5. A 50 dtex polyacrylonitrile precursor fiber bundle was obtained. The polyacrylonitrile-based precursor fiber bundle was not twisted.
 得られたポリアクリロニトリル系前駆体繊維束を、表1に示す条件の耐炎化工程、予備炭素化工程、炭素化工程で処理し、炭素繊維束を得た。なお、耐炎化工程、予備炭素化工程、炭素化工程それぞれにおいて、異なる温度を有する複数の熱処理炉によって温度を段階的に高くして熱処理を行った。また、耐炎化工程、予備炭素化工程、炭素化工程において加撚処理は行わなかった。得られた炭素繊維束の特性を表2に示す。 The obtained polyacrylonitrile-based precursor fiber bundle was treated with a flameproofing step, a preliminary carbonization step, and a carbonization step under the conditions shown in Table 1 to obtain a carbon fiber bundle. In each of the flameproofing process, the preliminary carbonization process, and the carbonization process, heat treatment was performed by increasing the temperature stepwise using a plurality of heat treatment furnaces having different temperatures. No twisting treatment was performed in the flameproofing process, the preliminary carbonization process, or the carbonization process. Table 2 shows the properties of the obtained carbon fiber bundles.
 (実施例5)
 紡糸原液の吐出量を変更して単繊維繊度が1.65dtexのポリアクリロニトリル系前駆体繊維束を得、続く予備炭素化工程、炭素化工程の条件を表1に示す通り変更したほかは、実施例1と同様に実施した。
(Example 5)
A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 1.65 dtex was obtained by changing the discharge amount of the spinning stock solution, and the conditions of the subsequent preliminary carbonization step and carbonization step were changed as shown in Table 1. It was carried out analogously to Example 1.
 (実施例6)
 紡糸原液の吐出量を変更して単繊維繊度が2.40dtexのポリアクリロニトリル系前駆体繊維束を得、続く予備炭素化工程、炭素化工程の条件を表1に示す通り変更したほかは、実施例1と同様に実施した。
(Example 6)
A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 2.40 dtex was obtained by changing the discharge amount of the spinning stock solution, and the conditions of the subsequent preliminary carbonization step and carbonization step were changed as shown in Table 1. It was carried out analogously to Example 1.
 (実施例7)
 耐炎化温度、予備炭素化工程の延伸比、炭素化工程の延伸比を表1に示す条件に変更した以外は実施例1と同様に実施した。
(Example 7)
The procedure was carried out in the same manner as in Example 1, except that the conditions shown in Table 1 were changed for the flameproofing temperature, the stretching ratio in the preliminary carbonization step, and the stretching ratio in the carbonization step.
 (比較例1)
 予備炭素化工程の延伸倍率を1.00、炭素化工程の延伸倍率が0.960、延伸倍率の積が0.960となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-307、初期弾性率は213GPaであり、高次加工時の操業性に劣るものであった。
(Comparative example 1)
A carbon fiber bundle was produced in the same manner as in Example 1 except that the draw ratio in the preliminary carbonization step was changed to 1.00, the draw ratio in the carbonization step was changed to 0.960, and the product of the draw ratios was changed to 0.960. Obtained. The obtained carbon fiber bundle had a value of -307 in the middle term of the formula (2) and an initial elastic modulus of 213 GPa, indicating poor workability during high-order processing.
 (比較例2)
 予備炭素化工程の延伸倍率を1.01、炭素化工程の延伸倍率が0.955、延伸倍率の積が0.965となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-286、初期弾性率は215GPaであり、高次加工時の操業性に劣るものであった。
(Comparative example 2)
A carbon fiber bundle was produced in the same manner as in Example 1, except that the draw ratio in the preliminary carbonization step was changed to 1.01, the draw ratio in the carbonization step was changed to 0.955, and the product of the draw ratios was changed to 0.965. Obtained. The obtained carbon fiber bundle had a value of -286 in the middle term of the formula (2) and an initial elastic modulus of 215 GPa, indicating poor workability during high-order processing.
 (比較例3)
 予備炭素化工程の延伸倍率を1.02、炭素化工程の延伸倍率が0.950、延伸倍率の積が0.969となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-287、初期弾性率は220GPaであり、高次加工時の操業性に劣るものであった。
(Comparative Example 3)
A carbon fiber bundle was produced in the same manner as in Example 1, except that the draw ratio in the preliminary carbonization step was changed to 1.02, the draw ratio in the carbonization step was changed to 0.950, and the product of the draw ratios was changed to 0.969. Obtained. The obtained carbon fiber bundle had a value of −287 in the middle term of the formula (2) and an initial elastic modulus of 220 GPa, indicating poor workability during high-order processing.
 (比較例4)
 紡糸原液の吐出量を変更して単繊維繊度が0.80dtexのポリアクリロニトリル系前駆体繊維束を得、さらに予備炭素化工程の延伸倍率を1.05、炭素化工程の延伸倍率が0.950、延伸倍率の積が0.998となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-290、初期弾性率は218GPaであり、高次加工時の操業性に劣るものであった。
(Comparative Example 4)
A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 0.80 dtex was obtained by changing the discharge amount of the spinning stock solution, and the draw ratio in the preliminary carbonization step was 1.05, and the draw ratio in the carbonization step was 0.950. , a carbon fiber bundle was obtained in the same manner as in Example 1, except that the product of the draw ratios was changed to 0.998. The obtained carbon fiber bundle had a value of -290 in the middle term of the formula (2) and an initial elastic modulus of 218 GPa, indicating poor workability during high-order processing.
 (比較例5)
 紡糸原液の吐出量を変更して単繊維繊度が3.00dtexのポリアクリロニトリル系前駆体繊維束を得、さらに予備炭素化工程の延伸倍率を1.00、炭素化工程の延伸倍率が0.955、延伸倍率の積が0.955となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-277、初期弾性率は225GPaであり、高次加工時の操業性に劣るものであった。
(Comparative Example 5)
A polyacrylonitrile-based precursor fiber bundle having a single fiber fineness of 3.00 dtex was obtained by changing the discharge amount of the spinning stock solution, and the draw ratio in the preliminary carbonization step was 1.00, and the draw ratio in the carbonization step was 0.955. , a carbon fiber bundle was obtained in the same manner as in Example 1, except that the product of the draw ratios was changed to 0.955. The obtained carbon fiber bundle had a value of -277 in the middle term of the formula (2), an initial elastic modulus of 225 GPa, and was inferior in workability during high-order processing.
 (比較例6)
 紡糸原液を製糸口金から一旦空気中に吐出したのちにジメチルスルホキシドの水溶液からなる凝固浴中に導入する乾湿式紡糸法により凝固させた以外は実施例1と同様にしてポリアクリロニトリル系前駆体繊維束を得、予備炭素化工程の延伸倍率を1.01、炭素化工程の延伸倍率が0.965、延伸倍率の積が0.975となるように変更したほかは実施例1と同様にして炭素繊維束を得た。得られた炭素繊維束の式(2)の中央の項の値は-290、初期弾性率は223GPaであり、高次加工時の操業性に劣るものであった。
(Comparative Example 6)
The polyacrylonitrile-based precursor fiber bundle was carried out in the same manner as in Example 1, except that the stock solution for spinning was once expelled into the air from a spinneret and then introduced into a coagulation bath consisting of an aqueous solution of dimethyl sulfoxide for coagulation by a dry-wet spinning method. Carbon was obtained in the same manner as in Example 1 except that the draw ratio in the preliminary carbonization step was changed to 1.01, the draw ratio in the carbonization step was changed to 0.965, and the product of the draw ratios was changed to 0.975. A fiber bundle was obtained. The obtained carbon fiber bundle had a value of -290 in the middle term of the formula (2) and an initial elastic modulus of 223 GPa, indicating poor workability during high-order processing.
 (比較例7)
 予備炭素化工程の延伸倍率を1.23となるように変更したほかは実施例1と同様にしたところ、予備炭素化工程で繊維束が破断し、炭素繊維束が得られなかった。
(Comparative Example 7)
Example 1 was repeated except that the draw ratio in the preliminary carbonization step was changed to 1.23.
 (比較例8)
 予備単炭素化工程の延伸倍率を1.05、炭素化工程の延伸倍率を1.000、延伸倍率の積を1.050となるように制御したほかは実施例1と同様にしたところ、炭素化工程で繊維束が破断し、炭素繊維束が得られなかった。
(Comparative Example 8)
In the same manner as in Example 1, except that the draw ratio in the preliminary monocarbonization step was controlled to 1.05, the draw ratio in the carbonization step to 1.000, and the product of the draw ratios to 1.050, carbon The fiber bundle was broken in the curing step, and no carbon fiber bundle was obtained.
 (比較例9)
 耐炎化工程の温度を表1に示す条件に変更し、備炭素化工程の延伸倍率を1.05としたほかは実施例1と同様に実施したところ、予備炭素化繊維束の毛羽が増大し、品位が大幅に悪化したため、その後の工程の操業はできず、炭素繊維束は得られなかった。
(Comparative Example 9)
The temperature in the flameproofing step was changed to the conditions shown in Table 1, and the draw ratio in the pre-carbonizing step was changed to 1.05. , the quality deteriorated significantly, and the subsequent steps could not be operated, and no carbon fiber bundle was obtained.
 (比較例10)
 耐炎化工程の温度を表1に示す条件に変更し、備炭素化工程の延伸倍率を1.05としたほかは実施例1と同様に実施したところ、予備炭素化繊維束の毛羽が増大し、品位が大幅に悪化したため、その後の工程の操業はできず、炭素繊維束は得られなかった。
(Comparative Example 10)
The temperature in the flameproofing step was changed to the conditions shown in Table 1, and the draw ratio in the pre-carbonizing step was changed to 1.05. , the quality deteriorated significantly, and the subsequent steps could not be operated, and no carbon fiber bundle was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1. 樹脂含浸ストランド引張試験における応力σ-歪みε曲線において応力が0~3GPaの範囲で非線形性の近似式(1)から求まる係数Aと、広角X線回折測定における結晶配向度Π(%)と、の関係が、式(2)を満足し、初期弾性率が240~279GPaであり、フィラメント数が24,000~72,000であり、実質的に無撚である炭素繊維束。
    ε=Aσ+Bσ+C  ・・・(1)
    -410≦(0.0000832Π-0.0184Π+1.00)/A≦-310 ・・・(2)
    ここで、A、B、Cは応力σとひずみεの2次関数の係数であり、Πは結晶配向度である。
    In the stress σ-strain ε curve in the resin-impregnated strand tensile test, the stress is in the range of 0 to 3 GPa. satisfies formula (2), the initial elastic modulus is 240 to 279 GPa, the number of filaments is 24,000 to 72,000, and the carbon fiber bundle is substantially untwisted.
    ε=Aσ 2 +Bσ+C (1)
    −410≦(0.0000832Π 2 −0.0184Π+1.00)/A≦−310 (2)
    Here, A, B, and C are the coefficients of the quadratic function of stress σ and strain ε, and Π is the degree of crystal orientation.
  2. 単繊維繊度が0.63~1.35dtexである請求項1に記載の炭素繊維束。 The carbon fiber bundle according to claim 1, having a single fiber fineness of 0.63 to 1.35 dtex.
  3. 単繊維断面の真円度が0.86~0.98である請求項1または2に記載の炭素繊維束。 3. The carbon fiber bundle according to claim 1 or 2, wherein the single fiber cross section has a roundness of 0.86 to 0.98.
  4. 請求項1~3のいずれかに記載の炭素繊維束を製造する方法であって、
    フィラメント数が24,000~72,000で実質的に無撚のポリアクリロニトリル系前駆体繊維束を酸化性雰囲気中220~280℃の温度で熱処理する耐炎化工程と、該耐炎化工程で得られた耐炎化繊維束を不活性雰囲気中、最高温度が300~1,000℃で熱処理する予備炭素化工程と、該予備炭素化繊維束で得られた予備炭素化繊維束を不活性雰囲気中、最高温度が1,000~1,600℃で熱処理する炭素化工程とを含み、
    該予備炭素化工程における延伸倍率が1.05~1.20であり、該炭素化工程における延伸倍率が0.960~0.990であり、かつ該予備炭素化工程と該炭素化工程の延伸倍率の積が1.020~1.180であり、
    該耐炎化工程においては、互いに異なる温度に設定された複数の熱処理炉、または、熱処理炉内に設けられ互いに異なる温度に設定された複数の熱処理セクションで、ポリアクリロニトリル系前駆体繊維束に段階的に熱処理を施し、該耐炎化工程において最も温度が低い熱処理炉または熱処理セクションの温度を230℃未満、かつ、最も温度が高い熱処理炉または熱処理セクションの温度を280℃以下とする、
    炭素繊維束の製造方法。
    A method for producing the carbon fiber bundle according to any one of claims 1 to 3,
    A flameproofing step of heat-treating a substantially untwisted polyacrylonitrile-based precursor fiber bundle having a filament number of 24,000 to 72,000 in an oxidizing atmosphere at a temperature of 220 to 280°C, and a flameproofing step obtained by the flameproofing step. a preliminary carbonization step of heat-treating the flameproofed fiber bundle in an inert atmosphere at a maximum temperature of 300 to 1,000 ° C.; A carbonization step of heat treatment at a maximum temperature of 1,000 to 1,600 ° C.,
    The draw ratio in the preliminary carbonization step is 1.05 to 1.20, the draw ratio in the carbonization step is 0.960 to 0.990, and stretching in the preliminary carbonization step and the carbonization step The product of magnification is 1.020 to 1.180,
    In the flameproofing step, the polyacrylonitrile-based precursor fiber bundles are stepwise processed in a plurality of heat treatment furnaces set to mutually different temperatures, or in a plurality of heat treatment sections provided in the heat treatment furnace and set to mutually different temperatures. and the temperature of the heat treatment furnace or heat treatment section with the lowest temperature in the flameproofing step is set to less than 230 ° C., and the temperature of the heat treatment furnace or heat treatment section with the highest temperature is set to 280 ° C. or less.
    A method for producing a carbon fiber bundle.
  5. 前記ポリアクリロニトリル系前駆体繊維束の単繊維繊度が1.20~2.40dtexである請求項4に記載の炭素繊維束の製造方法。 5. The method for producing a carbon fiber bundle according to claim 4, wherein the polyacrylonitrile-based precursor fiber bundle has a single fiber fineness of 1.20 to 2.40 dtex.
  6. 前記ポリアクリロニトリル系前駆体繊維束の単繊維断面の真円度が0.86~0.98である請求項4または5に記載の炭素繊維束の製造方法。 6. The method for producing a carbon fiber bundle according to claim 4 or 5, wherein the polyacrylonitrile-based precursor fiber bundle has a single fiber cross-sectional circularity of 0.86 to 0.98.
PCT/JP2022/042352 2021-11-19 2022-11-15 Carbon fiber bundle and production method therefor WO2023090310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063686.1A CN117999385A (en) 2021-11-19 2022-11-15 Carbon fiber bundle and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-188467 2021-11-19
JP2021188467 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090310A1 true WO2023090310A1 (en) 2023-05-25

Family

ID=86397032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042352 WO2023090310A1 (en) 2021-11-19 2022-11-15 Carbon fiber bundle and production method therefor

Country Status (2)

Country Link
CN (1) CN117999385A (en)
WO (1) WO2023090310A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002391A1 (en) * 1985-10-09 1987-04-23 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
JP2005060871A (en) * 2003-08-11 2005-03-10 Mitsubishi Rayon Co Ltd Method for producing flame-proofed fiber and method for producing carbon fiber
JP2013181264A (en) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd Carbon fiber bundle
WO2016068034A1 (en) * 2014-10-29 2016-05-06 東レ株式会社 Carbon fiber bundle and method for manufacturing same
WO2017204026A1 (en) * 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
JP2018145541A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Carbon fiber bundle and method for production of the same
WO2019087766A1 (en) * 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002391A1 (en) * 1985-10-09 1987-04-23 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
JP2005060871A (en) * 2003-08-11 2005-03-10 Mitsubishi Rayon Co Ltd Method for producing flame-proofed fiber and method for producing carbon fiber
JP2013181264A (en) * 2012-03-02 2013-09-12 Mitsubishi Rayon Co Ltd Carbon fiber bundle
WO2016068034A1 (en) * 2014-10-29 2016-05-06 東レ株式会社 Carbon fiber bundle and method for manufacturing same
WO2017204026A1 (en) * 2016-05-24 2017-11-30 東レ株式会社 Carbon fiber bundle and method for manufacturing same
JP2018145541A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Carbon fiber bundle and method for production of the same
WO2019087766A1 (en) * 2017-10-31 2019-05-09 東レ株式会社 Carbon fiber bundle and method for producing same

Also Published As

Publication number Publication date
CN117999385A (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP4924714B2 (en) Carbon fiber precursor fiber, carbon fiber and production method thereof
JP6950526B2 (en) Carbon fiber bundle and its manufacturing method
CN112368432B (en) Carbon fiber and method for producing same
CN111788341B (en) Carbon fiber bundle and method for producing same
JP6610835B1 (en) Carbon fiber and method for producing the same
CN111263834B (en) Carbon fiber bundle and method for producing same
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
WO2023090310A1 (en) Carbon fiber bundle and production method therefor
CN113597484B (en) Carbon fiber bundle and method for producing same
JP2021059829A (en) Carbon fiber and production method of the same
WO2023042597A1 (en) Carbon fiber bundle and production method therefor
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
WO2023008273A1 (en) Carbon fiber bundle and production method for same
JP2019151956A (en) Carbon fiber bundle, carbon fiber and manufacturing method of carbon fiber bundle
US20240133081A1 (en) Carbon fiber bundle and production method for same
WO2023140212A1 (en) Carbon fiber bundle
JP7358793B2 (en) Method for manufacturing carbon fiber bundles
JP4715386B2 (en) Carbon fiber bundle manufacturing method
WO2024090012A1 (en) Carbon fiber bundle, tow-preg, carbon fiber-reinforced composite material and pressure vessel, and method for producing carbon fiber bundle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022571225

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895591

Country of ref document: EP

Kind code of ref document: A1