JP7408406B2 - Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device - Google Patents

Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device Download PDF

Info

Publication number
JP7408406B2
JP7408406B2 JP2020004158A JP2020004158A JP7408406B2 JP 7408406 B2 JP7408406 B2 JP 7408406B2 JP 2020004158 A JP2020004158 A JP 2020004158A JP 2020004158 A JP2020004158 A JP 2020004158A JP 7408406 B2 JP7408406 B2 JP 7408406B2
Authority
JP
Japan
Prior art keywords
fiber bundle
oil
precursor
precursor fiber
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004158A
Other languages
Japanese (ja)
Other versions
JP2020133092A (en
Inventor
陽輔 中村
文男 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to HUE20158322A priority Critical patent/HUE058697T2/en
Priority to EP20158322.6A priority patent/EP3699333B1/en
Priority to ES20158322T priority patent/ES2913134T3/en
Priority to US16/794,658 priority patent/US11598029B2/en
Publication of JP2020133092A publication Critical patent/JP2020133092A/en
Application granted granted Critical
Publication of JP7408406B2 publication Critical patent/JP7408406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐炎化繊維束又は炭素繊維束の製造方法に関するものであり、より詳しくは、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程を有する耐炎化繊維束又は炭素繊維束の製造方法及びかかる接続工程に用いる接続装置に関するものである。 The present invention relates to a method for producing a flame-resistant fiber bundle or a carbon fiber bundle, and more specifically, a connecting step of connecting an upstream precursor fiber bundle and a downstream precursor fiber bundle via a connecting fiber bundle. The present invention relates to a method for manufacturing a flame-resistant fiber bundle or a carbon fiber bundle, and a connecting device used in such a connecting step.

炭素繊維束は、引張強度、引張弾性率が高く、耐熱性、疲労特性に優れるなどの特長を有しており、スポーツ、レジャー、航空、宇宙等の分野で幅広く用いられている。 Carbon fiber bundles have features such as high tensile strength and tensile modulus, and excellent heat resistance and fatigue properties, and are widely used in fields such as sports, leisure, aviation, and space.

一般的に炭素繊維は、アクリル繊維等の炭素繊維前駆体繊維束を酸化性雰囲気中で200~300[℃]に加熱する耐炎化工程と、耐炎化された繊維を不活性雰囲気中で炭素化する炭素化工程とを経て製造される。
一般に前駆体繊維はボビンや袋等のパッケージに収容されており、連続的に製造を行う場合には、このパッケージの切替えの際に、製造工程に供給されている下流側繊維束の終端と、パッケージに収容されている上流側繊維束の始端とを接続する必要がある。
繊維束の接続方法として、例えば、特許文献1のように上流側、下流側それぞれの前駆体繊維束を接続繊維束を介して接続する方法などが提案されているが、前駆体繊維束の繊度や一度に処理する繊維束の本数が増えた場合や、生産速度などが上がった場合などでは、耐炎化工程や炭素化工程において、接続部分又はその周辺で繊維が切断する等のトラブルが発生しやすく、生産性はまだまだ満足できるものではなかった。
Generally, carbon fibers are produced through a flame-resistant process in which carbon fiber precursor fiber bundles such as acrylic fibers are heated to 200 to 300 [℃] in an oxidizing atmosphere, and then the flame-resistant fibers are carbonized in an inert atmosphere. It is manufactured through a carbonization process.
Generally, precursor fibers are stored in a package such as a bobbin or bag, and in the case of continuous production, when changing the package, the end of the downstream fiber bundle being supplied to the manufacturing process, It is necessary to connect it to the starting end of the upstream fiber bundle housed in the package.
As a method for connecting fiber bundles, for example, a method has been proposed in which precursor fiber bundles on the upstream side and downstream side are connected via a connecting fiber bundle as in Patent Document 1, but the fineness of the precursor fiber bundles When the number of fiber bundles processed at one time increases, or when the production speed increases, problems such as fibers breaking at or around the joints may occur during the flameproofing process or carbonization process. However, the productivity was still not satisfactory.

特開2015-120582号公報Japanese Patent Application Publication No. 2015-120582

本発明は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続して製造される炭素繊維束を高い生産性で生産できる製造方法及び、生産性の高い繊維束を製造できる繊維束の接続装置を得ることを目的とする。 The present invention provides a manufacturing method that can produce carbon fiber bundles with high productivity by connecting an upstream precursor fiber bundle and a downstream precursor fiber bundle via a connecting fiber bundle, and a manufacturing method that can produce carbon fiber bundles with high productivity. The object of the present invention is to obtain a fiber bundle connecting device capable of manufacturing a fiber bundle.

本発明に係る耐炎化繊維束の製造方法は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程と、前記接続した前駆体繊維束を耐炎化炉を走行させて耐炎化する耐炎化工程とを含む耐炎化繊維束の製造方法であって、前記接続工程では、接続対象の前駆体繊維束と前記接続繊維束とを接続する前に、前記接続対象の前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与する。
本発明に係る炭素繊維束の製造方法は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程と、前記接続した前駆体繊維束を耐炎化炉を走行させて耐炎化する耐炎化工程と、耐炎化された前駆体繊維束を炭素化する炭素化工程とを含む炭素繊維束の製造方法であって、前記接続工程では、接続対象の前駆体繊維束と前記接続繊維束とを接続する前に、前記接続対象の前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与する。
本発明に係る接続装置は、接続繊維束を介して上流側繊維束と下流側繊維束とを接続する接続装置であって、前記接続対象の繊維束に対して油剤を付与する油剤付与部と、前記油剤が付与された前記接続対象の繊維束を熱処理する熱処理部と、熱処理された前記接続対象の繊維束と前記接続繊維束とを重ね合わせて流体を噴射して接続する接続部とを備える。
The method for producing a flame-resistant fiber bundle according to the present invention includes a connecting step of connecting an upstream precursor fiber bundle and a downstream precursor fiber bundle via a connecting fiber bundle, and flame-resistant the connected precursor fiber bundle. A method for producing a flame-resistant fiber bundle including a flame-proofing step of running a furnace to make it flame-resistant, wherein in the connecting step, before connecting the precursor fiber bundle to be connected and the connecting fiber bundle, The oil is applied so that the amount of oil applied in the connection area of the precursor fiber bundle to be spliced is 0.15 to 0.85 wt%.
The method for producing a carbon fiber bundle according to the present invention includes a connecting step of connecting an upstream precursor fiber bundle and a downstream precursor fiber bundle via a connecting fiber bundle, and the connected precursor fiber bundle is heated in a flameproofing furnace. A method for manufacturing a carbon fiber bundle, comprising a flame-retardant step of making the fiber bundle flame-resistant by running the fiber bundle, and a carbonization step of carbonizing the flame-retardant precursor fiber bundle. Before connecting the fiber bundle and the connecting fiber bundle, an oil is applied so that the amount of oil applied in the connection area of the precursor fiber bundle to be connected is 0.15 to 0.85 wt%.
The connecting device according to the present invention is a connecting device that connects an upstream fiber bundle and a downstream fiber bundle via a connecting fiber bundle, and includes an oil agent applying section that applies an oil agent to the fiber bundle to be connected. , a heat treatment section that heat-treats the fiber bundle to be connected to which the oil agent has been applied; and a connection section that overlaps the heat-treated fiber bundle to be connected and the connection fiber bundle and connects them by jetting fluid. Be prepared.

本発明の耐炎化繊維の製造方法によれば、高い生産性で炭素繊維束を生産することができる耐炎化繊維を得ることができる。
本発明の炭素繊維の製造方法によれば、工程が安定して高い生産性で炭素繊維束を生産できる。
本発明の接続装置を炭素繊維束の製造に用いると、繊維束の接続部分又は接続部分周辺でのトラブルを少なくでき、高い生産性で炭素繊維束を生産することができる。
According to the method for producing flame-resistant fibers of the present invention, it is possible to obtain flame-resistant fibers that can produce carbon fiber bundles with high productivity.
According to the carbon fiber manufacturing method of the present invention, carbon fiber bundles can be produced with a stable process and high productivity.
When the connecting device of the present invention is used to manufacture carbon fiber bundles, troubles at or around the connecting portions of fiber bundles can be reduced, and carbon fiber bundles can be produced with high productivity.

接続装置の概略図である。FIG. 3 is a schematic diagram of a connecting device.

<概要>
炭素繊維束は、前駆体繊維束から耐炎化繊維束を経て製造され、炭素繊維束の製造工程は、前駆体繊維束を製造する前工程と、前駆体繊維束から炭素繊維束を製造する後工程とを含む。
前工程で製造された前駆体繊維は一旦、ボビン若しくはカートン又はケース等に収容され、先に使用されている(後工程に供給されている)前駆体繊維束の終端と接続されて、後工程に供給される。なお、後工程では少なくとも耐炎化工程を含む。
ここで、後工程で先に使用されている(すでに供給されている)前駆体繊維を下流側前駆体繊維とし、当該下流側前駆体繊維の終端に接続繊維束を利用して接続される前駆体繊維を上流側前駆体繊維とする。
したがって、本発明の炭素繊維束の製造方法は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程において、接続対象の前駆体繊維束と接続繊維束とを接続する前に、接続対象の前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与する。
これにより、炭素化工程での、接続部分又はその周辺での繊維束の切断を抑制することができ、高い生産性で炭素繊維を製造することができる。油剤付着量を0.15~0.85wt%とすることで、接続部分の交絡強力を25mN/tex以上にでき、工程中に接続部分で繊維束が抜けることが少なくなり、生産性を向上させることができる。
炭素繊維束の前駆体繊維としては、例えば、ピッチ繊維、レーヨン繊維、ポリアクリロニトリル系繊維、フェノール繊維などが用いられるが、操作性、工程通過性、及び機械強度等を鑑みるとアクリロニトリル系繊維を用いることが好ましい。
<Summary>
A carbon fiber bundle is manufactured from a precursor fiber bundle through a flame-resistant fiber bundle, and the carbon fiber bundle manufacturing process includes a pre-process of manufacturing the precursor fiber bundle and a post-process of manufacturing the carbon fiber bundle from the precursor fiber bundle. process.
The precursor fibers produced in the previous process are once stored in a bobbin, carton, case, etc., and connected to the terminal end of the precursor fiber bundle that has been used previously (supplied to the subsequent process), and then used in the subsequent process. supplied to Note that the post-process includes at least a flameproofing process.
Here, the precursor fibers that are used first (already supplied) in the subsequent process are referred to as downstream precursor fibers, and the precursor fibers are connected to the terminal end of the downstream precursor fibers using a connecting fiber bundle. The body fibers are used as upstream precursor fibers.
Therefore, in the method for manufacturing a carbon fiber bundle of the present invention, in the connecting step of connecting the upstream precursor fiber bundle and the downstream precursor fiber bundle via the connecting fiber bundle, the precursor fiber bundle to be connected and the connecting fiber Before connecting the bundles, an oil is applied so that the amount of oil applied to the connection area of the precursor fiber bundle to be connected is 0.15 to 0.85 wt%.
Thereby, cutting of the fiber bundle at or around the connecting portion during the carbonization process can be suppressed, and carbon fibers can be manufactured with high productivity. By setting the amount of oil attached to 0.15 to 0.85wt%, the entangling strength of the connection part can be increased to 25mN/tex or more, which reduces the chance of fiber bundles coming off at the connection part during the process, improving productivity. be able to.
As precursor fibers for carbon fiber bundles, for example, pitch fibers, rayon fibers, polyacrylonitrile fibers, phenol fibers, etc. are used, but acrylonitrile fibers are used in view of operability, processability, mechanical strength, etc. It is preferable.

<実施形態>
以下、ポリアクリロニトリル系繊維束を前駆体繊維束として炭素繊維束を製造する場合を説明する。
<Embodiment>
Hereinafter, a case will be described in which a carbon fiber bundle is manufactured using a polyacrylonitrile fiber bundle as a precursor fiber bundle.

<前工程>
1.全体
前駆体繊維束を製造する製造方法(前工程)は、少なくとも、ポリアクリロニトリル系重合体を製造する重合工程と、製造された前駆体繊維束をボビン若しくはカートン又はケース等に収容する収容工程とを含む。
前駆体繊維束の製造方法は、重合工程と収容工程以外に、例えば、紡糸原液を作成する原液作成工程、凝固繊維束に対して水洗と延伸とを繰り返す水洗・延伸工程、延伸された凝固繊維束に油剤を付与する油剤付与工程、油剤が付与された凝固繊維束を乾燥・緻密化する乾燥・緻密化工程、乾燥・緻密化した凝固繊維束をさらに延伸する延伸工程、延伸した凝固繊維束に水を付与する水付与工程等を適宜含んでもよい。以下、各工程について説明する。
<Pre-process>
1. Overall The manufacturing method (pre-process) for manufacturing a precursor fiber bundle includes at least a polymerization step for manufacturing a polyacrylonitrile polymer, and a housing step for housing the manufactured precursor fiber bundle in a bobbin, carton, case, etc. including.
In addition to the polymerization process and the storage process, the method for manufacturing the precursor fiber bundle includes, for example, a process for preparing a spinning dope, a washing/stretching process in which the coagulated fiber bundle is repeatedly washed with water and stretched, and a coagulated fiber that has been drawn. An oiling process of applying an oil to the bundle, a drying and densification process of drying and densifying the coagulated fiber bundle to which the oil has been applied, a stretching process of further stretching the dried and densified coagulated fiber bundle, and a drawn coagulated fiber bundle. The process may also include a water application step of applying water to the water. Each step will be explained below.

2.各工程の説明 2. Explanation of each process

(1)重合工程
ポリアクリロニトリル系繊維束の原料に用いるポリアクリロニトリル系重合体は、従来公知のものが何ら制限なく使用できる。ポリアクリロニトリル系重合体としては、アクリロニトリルを好ましくは90wt%以上、より好ましくは95~99wt%含有する単量体を単独又は共重合した重合体である。
ポリアクリロニトリル系重合体の組成としては、アクリロニトリル単量体90~99wt%、及びビニル骨格を有するアクリロニトリルと共重合可能なコモノマー1~10wt%含有する共重合体であることが好ましい。
(1) Polymerization Step As the polyacrylonitrile polymer used as the raw material for the polyacrylonitrile fiber bundle, any conventionally known polyacrylonitrile polymer can be used without any restrictions. The polyacrylonitrile polymer is a monomer or copolymer containing acrylonitrile preferably at 90 wt% or more, more preferably from 95 to 99 wt%.
The composition of the polyacrylonitrile polymer is preferably a copolymer containing 90 to 99 wt% of an acrylonitrile monomer and 1 to 10 wt% of a comonomer copolymerizable with acrylonitrile having a vinyl skeleton.

アクリロニトリルと共重合可能なコモノマーとしては、例えばアクリル酸、イタコン酸等の酸類及びその塩類、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル等のエステル類、アクリルアミド等のアミド類等が挙げられ、目的とする繊維特性に応じて1つ又は2つ以上を組み合わせて使用することができる。 Examples of comonomers that can be copolymerized with acrylonitrile include acids such as acrylic acid and itaconic acid and their salts, esters such as methyl acrylate, ethyl acrylate, and methyl methacrylate, and amides such as acrylamide. Depending on the desired fiber properties, one or more can be used in combination.

ポリアクリロニトリル系重合体の重合方法は、溶液重合、懸濁重合、乳化重合等公知の方法の何れも採用することができる。重合反応に用いる重合触媒としては、重合方法に応じて、適宜公知の触媒を用いることができ、例えば、アゾ化合物や過酸化物などのラジカル重合触媒やレドックス触媒等を用いることができる。レドックス触媒を用いる場合は、例えば還元剤としては、亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、アルキルメルカプタン類、亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、アスコルビン酸を、酸化剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、亜塩素酸ナトリウム、過硫酸アンモニウム、過酸化水素を挙げることができる。 As the method for polymerizing the polyacrylonitrile polymer, any of known methods such as solution polymerization, suspension polymerization, and emulsion polymerization can be employed. As the polymerization catalyst used in the polymerization reaction, appropriately known catalysts can be used depending on the polymerization method, and for example, radical polymerization catalysts such as azo compounds and peroxides, redox catalysts, etc. can be used. When using a redox catalyst, for example, as a reducing agent, sodium hydrogen sulfite, ammonium hydrogen sulfite, alkyl mercaptans, sodium hydrogen sulfite, ammonium hydrogen sulfite, ascorbic acid is used, and as an oxidizing agent, potassium persulfate, sodium persulfate, Mention may be made of ammonium persulfate, sodium chlorite, ammonium persulfate, and hydrogen peroxide.

(2)原液作成工程
前駆体繊維束の製造方法では上記ポリアクリロニトリル系重合体を溶剤に溶解した紡糸原液を紡糸することが好ましい。紡糸溶液に用いる溶剤としては、公知の溶剤を用いることができ、例えば塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液や、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤が挙げられる。紡糸溶液に用いる溶剤は、重合工程で用いた溶剤であってもよいし、異なっていてもよい。前記重合工程において、溶液重合など重合体が溶剤に溶解した重合体溶液が得られる重合方法を用いた場合、重合体を析出させることなく重合体溶液を紡糸原液として用いてもよい。
(2) Stock solution preparation step In the method for producing a precursor fiber bundle, it is preferable to spin a spinning stock solution in which the polyacrylonitrile polymer is dissolved in a solvent. As the solvent used in the spinning solution, known solvents can be used, such as aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate, and organic solvents such as dimethylacetamide, dimethylsulfoxide and dimethylformamide. The solvent used in the spinning solution may be the same as the solvent used in the polymerization step, or may be different. In the polymerization step, when a polymerization method such as solution polymerization that yields a polymer solution in which the polymer is dissolved in a solvent is used, the polymer solution may be used as a spinning stock solution without precipitating the polymer.

紡糸溶液を調整する際は、重合体濃度は特に限定されるものではないが、3~40wt%となるように溶剤の量を調節することが好ましく、4~30wt%とすることがより好ましく、5~25wt%とすることが特に好ましい。重合体濃度をこの範囲にすることで、紡糸しやすく、繊維の内部が緻密な凝固繊維を得やすい紡糸原液とすることができる。重合体濃度が高いほど、紡糸工程で得られる凝固繊維の繊維内部の緻密性が向上するため、高強度の炭素繊維を与える前駆体繊維を得やすい。重合体濃度が高くなりすぎると、紡糸原液の粘度が高くなり紡糸安定性が低下しやすい傾向がある。 When preparing the spinning solution, the polymer concentration is not particularly limited, but it is preferable to adjust the amount of solvent so that it is 3 to 40 wt%, more preferably 4 to 30 wt%, It is particularly preferable to set the content to 5 to 25 wt%. By setting the polymer concentration within this range, it is possible to obtain a spinning stock solution that is easy to spin and that makes it easy to obtain coagulated fibers with dense interiors. The higher the polymer concentration, the more dense the interior of the coagulated fibers obtained in the spinning process becomes, making it easier to obtain precursor fibers that provide high-strength carbon fibers. If the polymer concentration becomes too high, the viscosity of the spinning dope tends to increase and the spinning stability tends to decrease.

(3)紡糸工程
上記のようにして得られた紡糸原液を、公知の紡糸方法を用いて、紡糸口金から紡出し凝固させることで凝固繊維束を得ることができる。紡糸方法としては、特に制限は無く、用いた溶剤の種類等に応じて、気相中で紡糸原液を凝固させる乾式紡糸法、凝固液中で紡糸原液を凝固させる湿式紡糸法などを用いて行うことができる。ここでは、湿式紡糸法を用いている。湿式紡糸法としては、紡糸口金を凝固浴中へ浸漬して、吐出される原液を凝固する湿式紡糸法と、紡糸口金を凝固浴液面から上方に設置して、吐出された原液を一旦紡糸口金と凝固液液面の間にある気相中を通過させてから凝固液の中に導入し凝固を進める乾湿式紡糸法があり、いずれの方法にも適用可能であるが、紡糸口金を凝固浴中へ浸漬して、吐出される原液を凝固する湿式紡糸法がより好ましい。紡糸口金を凝固浴中へ浸漬して、吐出される原液を凝固する湿式紡糸法を用いることにより、表面に皺を有する前駆体繊維束及び炭素繊維束を得やすい。
(3) Spinning process A coagulated fiber bundle can be obtained by spinning the spinning solution obtained as described above from a spinneret and coagulating it using a known spinning method. The spinning method is not particularly limited, and depending on the type of solvent used, dry spinning method in which the spinning stock solution is coagulated in a gas phase, wet spinning method in which the spinning stock solution is coagulated in a coagulation liquid, etc. is used. be able to. Here, a wet spinning method is used. Wet spinning methods include a wet spinning method in which the spinneret is immersed in a coagulation bath to coagulate the discharged stock solution, and a spinneret is placed above the coagulation bath liquid level and the discharged stock solution is once spun. There is a wet-dry spinning method in which the spinneret passes through the gas phase between the spinneret and the surface of the coagulating liquid and then introduces it into the coagulating liquid to proceed with the coagulation. A wet spinning method in which the material is immersed in a bath and the ejected stock solution is coagulated is more preferred. By using a wet spinning method in which a spinneret is immersed in a coagulation bath and the discharged stock solution is coagulated, precursor fiber bundles and carbon fiber bundles having wrinkles on the surface can be easily obtained.

湿式紡糸法を用いる場合、凝固液としては、水にポリアクリロニトリル系重合体を溶解できる溶剤が溶解した水溶液を用いることが好ましい。凝固液中に含まれる溶剤としては、上述の紡糸溶剤に用いる溶剤として挙げられた溶剤を用いることができるが、使用する紡糸溶液の溶剤として用いた溶剤と同じであることが好ましい。凝固浴の溶剤濃度及び温度は特に限定されるものではないが、凝固性や紡糸安定性の点から溶剤濃度は10~70wt%であることが好ましく、15~40wt%であることがより好ましく、温度は20~60℃であることが好ましい。凝固浴の溶剤濃度が高い方また温度が低い方が、真円度が高い前駆体繊維束及び炭素繊維束を得やすくなる傾向がある。 When using the wet spinning method, it is preferable to use an aqueous solution in which a solvent capable of dissolving the polyacrylonitrile polymer is dissolved in water as the coagulating liquid. As the solvent contained in the coagulation solution, the solvents listed as the solvents used in the above-mentioned spinning solvent can be used, but it is preferably the same as the solvent used as the solvent in the spinning solution used. The solvent concentration and temperature of the coagulation bath are not particularly limited, but from the viewpoint of coagulation properties and spinning stability, the solvent concentration is preferably 10 to 70 wt%, more preferably 15 to 40 wt%, The temperature is preferably 20-60°C. There is a tendency that the higher the solvent concentration and the lower the temperature of the coagulation bath, the easier it is to obtain precursor fiber bundles and carbon fiber bundles with high roundness.

紡糸原液を押し出すための紡糸口金は、特に制限はないが、1,000以上の紡糸孔を備えていることが好ましい。より好ましくは、3,000~100,000の紡糸孔を備える。紡糸孔の数に応じて、特定のフィラメント数を有する凝固繊維束を得ることができる。紡糸孔の孔径は0.02~0.5mmであることが好ましい。孔径が0.02mm以上であれば、吐出された糸同士の接着が起こりにくいので、均質性に優れた前駆体繊維束を得やすい。孔径が0.5mm以下であれば、紡糸糸切れの発生を抑制し、紡糸安定性を維持しやすい。 The spinneret for extruding the spinning dope is not particularly limited, but preferably has 1,000 or more spinning holes. More preferably, it has 3,000 to 100,000 spinning holes. Depending on the number of spinning holes, coagulated fiber bundles with a certain number of filaments can be obtained. The diameter of the spinning hole is preferably 0.02 to 0.5 mm. If the pore diameter is 0.02 mm or more, adhesion between the discharged yarns is unlikely to occur, making it easy to obtain a precursor fiber bundle with excellent homogeneity. If the pore diameter is 0.5 mm or less, occurrence of spun yarn breakage can be suppressed and spinning stability can be easily maintained.

(4)水洗・延伸工程
紡糸工程で得られた凝固繊維束に対して、水洗すると共に水又は溶剤を含む液中で延伸するのが好ましい。工程通過性、生産性の観点から延伸倍率が3~15倍となるように延伸するのが好ましい。水洗と延伸は複数回(好ましくは5回以上)繰り返されるのが好ましい。なお、後述の後延伸工程と区別するための、本工程での延伸を「前延伸」とすることもある。
(4) Water washing/stretching process The coagulated fiber bundle obtained in the spinning process is preferably washed with water and stretched in a liquid containing water or a solvent. From the viewpoint of process passability and productivity, it is preferable to stretch the film at a stretching ratio of 3 to 15 times. It is preferred that water washing and stretching be repeated multiple times (preferably 5 or more times). Note that the stretching in this step may be referred to as "pre-stretching" to distinguish it from the post-stretching step described below.

(5)油剤付与工程
上記水洗・延伸工程を経た凝固繊維束に対して油剤を付与することが好ましい。油剤を付与する方法は特に限定はされないが、油剤を含有する水溶液に凝固繊維束を浸漬させて、繊維表面と油剤とを接触させる。油剤の種類は、単繊維間の接着、耐熱性、離形性、工程通過性の点からシリコーン系油剤を主成分とすることが好ましい。
シリコーン系油剤としてはアミノ変性シリコーン、エポキシ変性シリコーン、エーテル変性シリコーンが好ましく、これらのうち2種以上を混合してもよい。
(5) Oil application step It is preferable to apply an oil agent to the coagulated fiber bundle that has undergone the water washing and stretching process. The method of applying the oil agent is not particularly limited, but the coagulated fiber bundle is immersed in an aqueous solution containing the oil agent to bring the fiber surface into contact with the oil agent. The type of oil agent is preferably a silicone oil agent as a main component from the viewpoints of adhesion between single fibers, heat resistance, mold releasability, and processability.
As the silicone oil, amino-modified silicones, epoxy-modified silicones, and ether-modified silicones are preferred, and two or more of these may be mixed.

油剤の付着量は0.01~0.5wt%であることが好ましく、0.03~0.3wt%であることがより好ましい。油剤付着量をこの範囲に制御することで、その後の工程及び後工程での糸切れ、毛羽の発生を抑制し、高品質のポリアクリロニトリル系繊維束及び炭素繊維束を得ることができる。 The amount of oil applied is preferably 0.01 to 0.5 wt%, more preferably 0.03 to 0.3 wt%. By controlling the amount of oil attached within this range, it is possible to suppress the occurrence of yarn breakage and fuzz in subsequent steps and post-processes, and obtain high-quality polyacrylonitrile fiber bundles and carbon fiber bundles.

(6)乾燥・緻密工程
油剤付与工程を経た凝固繊維束に対して70~200℃で乾燥・緻密化処理を行うことが好ましい。乾燥・緻密化処理においては、繊維束を表面温度70~200℃の熱ローラを使用して加熱することが好ましい。乾燥時間については、1~10分間が好ましい。
(6) Drying and densification process It is preferable to perform a drying and densification process at 70 to 200°C on the coagulated fiber bundle that has undergone the oiling process. In the drying/densification treatment, it is preferable to heat the fiber bundle using a heated roller having a surface temperature of 70 to 200°C. The drying time is preferably 1 to 10 minutes.

(7)(後)延伸工程
油剤が付与された凝固繊維束に対して、もしくは、乾燥・緻密工程を経た凝固繊維束に対して、さらなる延伸処理(後延伸処理)を行ってもよい。後延伸工程の延伸方法は特に制限されないが、スチーム延伸であることが好ましい。スチーム延伸処理を行う場合、飽和スチーム圧力は、0.01~0.5MPa(絶対圧)とすることが好ましく、0.05~0.4MPaとすることがより好ましい。
(7) (Post) Stretching Process A further stretching process (post-stretching process) may be performed on the coagulated fiber bundle to which the oil agent has been applied, or on the coagulated fiber bundle that has undergone the drying and densification process. The stretching method in the post-stretching step is not particularly limited, but steam stretching is preferred. When steam stretching is performed, the saturated steam pressure is preferably 0.01 to 0.5 MPa (absolute pressure), more preferably 0.05 to 0.4 MPa.

スチーム延伸処理での延伸倍率は1.2~10倍であることが好ましく、1.8~8倍であることがより好ましく、2~7倍であることが特に好ましい。スチーム延伸処理の温度は、105~180℃が好ましく、110~160℃がより好ましい。
また、延伸倍率は、前延伸・乾燥・後延伸処理を通してのトータル延伸倍率で5~20倍とすることが好ましく、10~17倍とすることがより好ましい。スチーム延伸処理後の繊度は0.5~2dtexとすることが好ましい。
また、スチーム延伸処理後の凝固繊維束を、表面温度100~200℃の熱ローラを使用して熱処理を行うことも好ましい。
The stretching ratio in the steam stretching treatment is preferably 1.2 to 10 times, more preferably 1.8 to 8 times, and particularly preferably 2 to 7 times. The temperature of the steam stretching treatment is preferably 105 to 180°C, more preferably 110 to 160°C.
Further, the stretching ratio is preferably 5 to 20 times, more preferably 10 to 17 times, as a total stretching ratio through pre-stretching, drying, and post-stretching. The fineness after steam drawing treatment is preferably 0.5 to 2 dtex.
Further, it is also preferable to heat-treat the coagulated fiber bundle after steam drawing using a heat roller with a surface temperature of 100 to 200°C.

(8)水付与工程
後延伸工程を経た凝固繊維束に対して、凝固繊維束の含水率が20~50%となるように水を付与するのが好ましい。水の付与は、例えば、水中に凝固繊維束を浸漬させてもよいし、水の噴霧を吹き付けてもよい。
(8) Water application step Water is preferably applied to the coagulated fiber bundle that has undergone the post-stretching process so that the water content of the coagulated fiber bundle is 20 to 50%. Water may be applied, for example, by immersing the coagulated fiber bundle in water, or by spraying water.

(9)収容工程
水付与工程を経た凝固繊維束は、前駆体繊維として、所定の長さ又は重さ分、ボビンに巻き取られたり、カートン又はケース内に入れられたりして、一旦収容される。
(9) Storage process The coagulated fiber bundle that has undergone the water application process is wound up as a precursor fiber to a predetermined length or weight on a bobbin, or placed in a carton or case, and then stored once. Ru.

上記のポリアクリロニトリル系繊維束(前駆体繊維束)の製造方法によれば、大量生産可能であって高強度を有し且つ繊維束の糸割れが少ない高品質の炭素繊維束を得られる前駆体繊維束を製造することができる。
また、当該前駆体繊維束を用いて炭素繊維束とした際に、毛羽の少ない炭素繊維束が得られる。つまり、上記の前駆体繊維束を用いて炭素繊維束を製造(後工程)すると、繊維束の切断等がなく、製造工程が安定し、単糸切れの少ない炭素繊維束が得られる。
According to the above method for producing a polyacrylonitrile fiber bundle (precursor fiber bundle), a precursor that can be mass-produced, has high strength, and can obtain a high-quality carbon fiber bundle with less yarn breakage. Fiber bundles can be produced.
Furthermore, when the precursor fiber bundle is used to form a carbon fiber bundle, a carbon fiber bundle with less fuzz can be obtained. In other words, when a carbon fiber bundle is manufactured using the above-mentioned precursor fiber bundle (post-process), there is no cutting of the fiber bundle, the manufacturing process is stable, and a carbon fiber bundle with few single fiber breakages can be obtained.

前駆体繊維束の総繊維繊度は、得られる炭素繊維束の強度の観点から、1,000~7,000texであることが好ましい。前駆体繊維束の単繊維直径は7~12μmであることが好ましい。
このようにして得られたポリアクリロニトリル系繊維束を炭素繊維束の前駆体繊維束として用いると、炭素繊維束の製造工程における工程通過性及び生産性を向上させることができる。
The total fiber fineness of the precursor fiber bundle is preferably 1,000 to 7,000 tex from the viewpoint of the strength of the obtained carbon fiber bundle. The single fiber diameter of the precursor fiber bundle is preferably 7 to 12 μm.
When the polyacrylonitrile fiber bundle obtained in this way is used as a precursor fiber bundle of a carbon fiber bundle, process passability and productivity in the manufacturing process of the carbon fiber bundle can be improved.

<後工程>
1.全体
前駆体繊維束から炭素繊維束を製造する製造方法(後工程)は、耐炎化工程及び炭素化工程以外に、例えば、炭素化された繊維の表面を改善する表面処理工程、炭素化された繊維にサイジング剤を付与する(付着させる)サイジング工程等を適宜含んでもよい。さらに、炭素化工程後に黒鉛化工程を含んでもよい。以下、各工程について説明する。
<Post-process>
1. Overall The production method (post-process) for producing a carbon fiber bundle from a precursor fiber bundle includes, in addition to the flame-retardant process and the carbonization process, a surface treatment process to improve the surface of carbonized fibers, a carbonized It may also include a sizing step of applying (adhering) a sizing agent to the fibers, etc., as appropriate. Furthermore, a graphitization step may be included after the carbonization step. Each step will be explained below.

2.各工程の説明
(1)耐炎化工程
前駆体繊維束は、200~280℃の酸化性雰囲気中(加熱空気中)で耐炎化(酸化)処理される。耐炎化処理を行うことにより、前駆体繊維の分子内で環化反応が起こり、酸素結合量が増加する。その結果、前駆体繊維束は不融化され、難燃化されて、アクリル系耐炎化繊維を与える。
耐炎化工程は、前駆体繊維束の走行方向の上流側(前駆体繊維束が最初に処理される側)に位置し且つ上記温度範囲内の低めの温度で処理する予備耐炎化工程と、下流側に位置し且つ上記温度範囲内の高めの温度で処理する本耐炎化工程とを含んでいてもよい。予備耐炎化工程を含むことにより、環化反応がよりスムーズに行われる。予備耐炎化工程の温度は200~250℃であることが好ましく、本耐炎化工程の温度は230~280℃であることが好ましい。
2. Description of each step (1) Flame-retardant step The precursor fiber bundle is subjected to flame-retardant (oxidation) treatment in an oxidizing atmosphere (heated air) at 200 to 280°C. By performing flameproofing treatment, a cyclization reaction occurs within the molecules of the precursor fiber, and the amount of oxygen bonds increases. As a result, the precursor fiber bundle is made infusible and flame-retardant to provide flame-resistant acrylic fibers.
The flame-retardant step includes a preliminary flame-retardant step which is located on the upstream side in the running direction of the precursor fiber bundle (the side where the precursor fiber bundle is first treated) and is treated at a lower temperature within the above temperature range; It may also include a main flame-retardant step located on the side and treated at a higher temperature within the above temperature range. By including the preliminary flameproofing step, the cyclization reaction is carried out more smoothly. The temperature of the preliminary flameproofing step is preferably 200 to 250°C, and the temperature of the main flameproofing step is preferably 230 to 280°C.

耐炎化処理は、0.9~1.2の範囲の延伸倍率で延伸しながら行うことが好ましい。具体的には、予備耐炎化工程の延伸倍率は1.0~1.2であることが好ましく、本耐炎化工程の延伸倍率は0.9~1.1であることが好ましい。
耐炎化処理は、耐炎化された繊維束の密度が1.33~1.40g/cmとなるまで行うことが好ましい。耐炎化された繊維束の密度がこの範囲であると、より強度の高い炭素繊維束を得ることができる。
The flame-retardant treatment is preferably carried out while stretching at a stretching ratio in the range of 0.9 to 1.2. Specifically, the stretching ratio in the preliminary flameproofing step is preferably 1.0 to 1.2, and the stretching ratio in the main flameproofing step is preferably 0.9 to 1.1.
The flame-retardant treatment is preferably carried out until the density of the flame-retardant fiber bundle reaches 1.33 to 1.40 g/cm 3 . When the density of the flame-resistant fiber bundle is within this range, a carbon fiber bundle with higher strength can be obtained.

(2)炭素化工程
耐炎化された繊維束は、不活性雰囲気中で、最高温度が300~1,800℃で炭素化処理される。炭素化工程は、上流側に位置し且つ最高温度が300~800℃の第1炭素化工程と、下流側に位置し且つ最高温度が500~1,800℃の第2炭素化工程とを含むことが好ましい。これにより、炭素化がスムーズに行われる。また、必要により第2炭素化工程より最高温度の高い第3炭素化工程を有していてもよい。
(2) Carbonization process The flame-resistant fiber bundle is carbonized at a maximum temperature of 300 to 1,800°C in an inert atmosphere. The carbonization step includes a first carbonization step that is located on the upstream side and has a maximum temperature of 300 to 800°C, and a second carbonization step that is located on the downstream side and has a maximum temperature of 500 to 1,800°C. It is preferable. Thereby, carbonization is carried out smoothly. Further, if necessary, a third carbonization step having a higher maximum temperature than the second carbonization step may be included.

炭素化処理は、繊維束にテンションを作用させて行うことが好ましい。具体的には、第1炭素化工程では、50~200mg/dtex、第2炭素化工程では、50~1,000mg/dtexのテンションを負荷することが好ましい。この範囲でテンションを負荷することで、より強度の高い炭素繊維束を得ることができる。 The carbonization treatment is preferably performed by applying tension to the fiber bundle. Specifically, it is preferable to apply a tension of 50 to 200 mg/dtex in the first carbonization step and 50 to 1,000 mg/dtex in the second carbonization step. By applying tension within this range, a carbon fiber bundle with higher strength can be obtained.

(3)表面処理工程
炭素化された繊維束は気相又は液相により表面が酸化処理される。工程管理の簡便さや生産性を考慮すると、液相処理が好ましい。液相処理のうちでも、液の安全性、液の安定性の面から、電解液を用いる電解処理が好ましい。
(3) Surface treatment step The surface of the carbonized fiber bundle is oxidized in a gas phase or a liquid phase. Considering the ease of process control and productivity, liquid phase treatment is preferred. Among liquid phase treatments, electrolytic treatment using an electrolytic solution is preferable from the viewpoint of liquid safety and liquid stability.

(4)サイジング工程
表面処理された繊維束は、必要に応じ、サイジング処理される。サイジング処理は、公知の方法で行うことができる。サイジング剤は、公知のサイジング剤を用途に応じて適宜使用できる。サイジング剤を均一に付着させた後、乾燥させることが好ましい。
(4) Sizing process The surface-treated fiber bundle is subjected to a sizing process, if necessary. The sizing process can be performed by a known method. As the sizing agent, any known sizing agent can be used as appropriate depending on the purpose. It is preferable to dry the sizing agent after uniformly applying it.

このようにして後工程、つまり、前駆体繊維束から炭素繊維束を製造する工程を行うと、繊維束の切断等の工程トラブルが少なく、高い生産性が得られる。また、単糸切れも少なく、良好な毛羽品位の炭素繊維束が得られる。 When the post-process, that is, the process of producing a carbon fiber bundle from the precursor fiber bundle, is performed in this manner, there are fewer process troubles such as cutting of the fiber bundle, and high productivity can be obtained. In addition, there are few single yarn breakages, and a carbon fiber bundle with good fuzz quality can be obtained.

<接続工程>
1.全体
接続工程は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する。ここでは、接続対象繊維として、特に上流側前駆体繊維束について説明するが、下流側前駆体繊維束も同様であることが好ましい。
接続工程は、上流側前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、上流側前駆体繊維に油剤を付与する油剤付与工程と、油剤が付与された上流側前駆体繊維と接続繊維束とを接続するスプライス工程とを少なくとも含む。
ここでの接続工程は、上記の油剤付与工程とスプライス工程との間に、油剤が付与された上流側前駆体繊維を熱処理する熱処理工程をさらに含むことが好ましい。接続工程は、例えば、接続装置を用いて行われる。
以下、各工程及び接続装置について説明する。
<Connection process>
1. The overall connection step connects the upstream precursor fiber bundle and the downstream precursor fiber bundle via the connecting fiber bundle. Here, the upstream precursor fiber bundle will be particularly described as the fibers to be connected, but it is preferable that the same applies to the downstream precursor fiber bundle.
The connecting step includes a step of applying an oil agent to the upstream precursor fibers so that the amount of oil agent attached to the connection region of the upstream precursor fiber bundle is 0.15 to 0.85 wt%, and a step of applying an oil agent to the upstream precursor fibers. and a splicing step of connecting the upstream precursor fibers and the connecting fiber bundle.
It is preferable that the connection step here further includes a heat treatment step of heat-treating the upstream precursor fiber to which the oil agent has been applied, between the above-mentioned oil agent application step and splicing step. The connecting step is performed using, for example, a connecting device.
Each process and connection device will be explained below.

2.各工程の説明
(1)油剤付与工程
油剤を付与する方法は特に限定されないが、油剤を含有する溶液に繊維束を接触させる方法が挙げられる。具体的には、油剤溶液中にロールの一部を浸漬させ表面転写した後、このロールに繊維束を接触させて油剤溶液を付着させるタッチロール式、繊維束を直接油剤溶液に浸漬させる浸漬方式等が挙げられる。
油剤の種類は、単繊維間の接着、耐熱性、離形性、工程通過性の点からシリコーン系油剤を主成分とすることが好ましい。シリコーン系油剤としてはアミノ変性シリコーン、エポキシ変性シリコーン、エーテル変性シリコーンが好ましく、これらのうち2種以上を混合してもよい。
2. Description of each step (1) Oil application step The method of applying the oil is not particularly limited, but includes a method of bringing the fiber bundle into contact with a solution containing the oil. Specifically, the touch roll method involves dipping a part of the roll in an oil solution to transfer the surface, and then bringing the fiber bundle into contact with the roll to adhere the oil solution, and the immersion method, in which the fiber bundle is directly immersed in the oil solution. etc.
The type of oil agent is preferably a silicone oil agent as a main component from the viewpoints of adhesion between single fibers, heat resistance, mold releasability, and processability. As the silicone oil, amino-modified silicones, epoxy-modified silicones, and ether-modified silicones are preferred, and two or more of these may be mixed.

油剤の付着量は、前工程における油剤付与工程で付与された油剤と合わせて、0.15~0.85wt%であることが好ましく、0.2~0.7wt%であることがより好ましく、0.3~0.6wt%であることがさらに好ましい。油剤付着量をこの範囲に制御することで、その後の耐炎化工程及び炭素化工程での糸切れを抑制し、高い生産性で炭素繊維束を製造することができる。また、油剤付着量をこの範囲とすることで、接続部分に十分な交絡強力を与えることができる。油剤付着量が多すぎると、油剤による繊維表面の摩擦力が低下してしまい、接続部分の交絡強力も低下し、工程通過時の張力に耐えられずに、接続部分がす抜けやすくなる傾向がある。
シリコーン系油剤は、接続部分の耐炎化工程での単繊維同士のこう着発生を抑制し、炭素化工程の通過性を高めるという観点から有効であるが、シリコーン系油剤の付着量が多くなるほど、耐炎化工程、炭素化工程で発生する酸化珪素の量も増加し、各工程で蓄積してやがて繊維束の詰まりといった問題を引き起こす。これを回避するためには製造中の頻繁な清掃や連続運転期間の短縮といった対応が考えられるが、そのような対応を行うと生産量や設備稼働率が低下する傾向がある。
The amount of the oil applied, including the oil applied in the oil application step in the previous step, is preferably 0.15 to 0.85 wt%, more preferably 0.2 to 0.7 wt%, More preferably, it is 0.3 to 0.6 wt%. By controlling the amount of oil attached within this range, yarn breakage in the subsequent flameproofing process and carbonization process can be suppressed, and carbon fiber bundles can be manufactured with high productivity. Furthermore, by setting the amount of oil adhered within this range, sufficient entangling strength can be imparted to the connecting portion. If the amount of oil attached is too large, the frictional force of the oil on the fiber surface will decrease, and the entangling strength of the connection will also decrease, and the connection will tend to slip through without being able to withstand the tension when passing through the process. be.
Silicone oil is effective from the viewpoint of suppressing the occurrence of adhesion between single fibers during the flameproofing process of the connection part and increasing the passage through the carbonization process, but the greater the amount of silicone oil attached, the more The amount of silicon oxide generated during the flameproofing process and carbonization process also increases, and it accumulates in each process, eventually causing problems such as clogging of fiber bundles. To avoid this, measures such as frequent cleaning during manufacturing and shortening of continuous operation periods can be considered, but such measures tend to reduce production volume and equipment utilization rate.

本発明において、接続領域以外の前駆体繊維束の油剤付着量は0.01~0.5wt%であることが好ましく、0.03~0.3wt%であることがより好ましい。また、前駆体繊維束の接続領域に追加で付与する油剤の付着量は、0.05~0.8wt%であることが好ましく、0.1~0.65wt%であることがより好ましい。
本発明において、炭素繊維の製造方法では、接続部分のこう着発生を抑制するために、接続部分を含めた接続領域のみ接続工程で油剤を追加で付与することが好ましい。接続領域のみに油剤を追加付与することで、接続部分でない領域では油剤の付着量を少なくすることができる。接続領域以外の前駆体繊維束の油剤付着量を少なくすることで、耐炎化工程、炭素化工程で発生する酸化珪素の量を抑制でき、製造運転中における各炉の閉塞や清掃等に要する時間の増加を抑制し、連続運転性も損なうことがないため、生産量や設備稼働率の低下を抑制することができる。
In the present invention, the amount of oil applied to the precursor fiber bundle other than the connection area is preferably 0.01 to 0.5 wt%, more preferably 0.03 to 0.3 wt%. Further, the amount of the oil agent additionally applied to the connection region of the precursor fiber bundle is preferably 0.05 to 0.8 wt%, more preferably 0.1 to 0.65 wt%.
In the present invention, in the carbon fiber manufacturing method, it is preferable to additionally apply a lubricant to only the connection area including the connection part in the connection process in order to suppress the occurrence of sticking at the connection part. By additionally applying the oil only to the connection area, it is possible to reduce the amount of oil adhered to areas other than the connection area. By reducing the amount of oil adhering to the precursor fiber bundles other than the connection area, the amount of silicon oxide generated during the flameproofing process and carbonization process can be suppressed, and the time required for closing and cleaning each furnace during production operation can be reduced. This suppresses the increase in production and does not impair continuous operation, so it is possible to suppress a decrease in production volume and equipment operating rate.

油剤付着量は、油剤浴内に貯留されている溶液の濃度により、制御される。つまり、油剤浴の溶液中の油剤の濃度が増加するほど、油剤の付着量が増加する傾向があるため、油剤溶液の濃度を調整することで、繊維束に付与する油剤の付着量を管理できる。なお、付着量は、前駆体繊維の種類、前駆体繊維の繊度、前駆体繊維の浸漬時間、油剤浴を通過する速度等によっても決定される。 The amount of oil adhered is controlled by the concentration of the solution stored in the oil bath. In other words, as the concentration of oil in the solution in the oil bath increases, the amount of oil that adheres tends to increase, so by adjusting the concentration of the oil solution, the amount of oil that adheres to the fiber bundle can be controlled. . Note that the amount of adhesion is also determined by the type of precursor fiber, the fineness of the precursor fiber, the immersion time of the precursor fiber, the speed at which the precursor fiber passes through the oil bath, and the like.

(2)熱処理工程
本発明においては、油剤付与工程で油剤を付与した前駆体繊維束を接続繊維束と接続する前に、前駆体繊維束に対して熱処理することが好ましい。熱処理の方法は特に限定されないが、例えば、特定の温度に設定された加熱炉内を走行させる方法、走行中の前駆体繊維束に熱風を吹き付ける方法、前駆体繊維束を熱板や熱ローラなどに接触させる方法等がある。
熱処理温度は、220~300℃の範囲であることが好ましく、240~290℃の範囲であることがより好ましい。熱処理時間は、2~10分であることが好ましく、3~8分であることがより好ましい。かかる熱処理は、加熱後の前駆体繊維束の密度が1.19g/cm以上になるように行われることが好ましく、1.19~1.25g/cmの範囲になるように行われることがより好ましい。このような熱処理を行うことで、前駆体繊維束と接続繊維束の交絡強力を高めることができるとともに、耐炎化工程でのトラブルを少なくできる。
(2) Heat treatment step In the present invention, it is preferable to heat-treat the precursor fiber bundle before connecting the precursor fiber bundle to which the oil agent has been applied in the oil agent application step to the connection fiber bundle. The method of heat treatment is not particularly limited, but examples include a method of running the precursor fiber bundle in a heating furnace set at a specific temperature, a method of blowing hot air onto the running precursor fiber bundle, a method of passing the precursor fiber bundle on a hot plate or a hot roller, etc. There are methods of contacting the
The heat treatment temperature is preferably in the range of 220 to 300°C, more preferably in the range of 240 to 290°C. The heat treatment time is preferably 2 to 10 minutes, more preferably 3 to 8 minutes. Such heat treatment is preferably performed so that the density of the precursor fiber bundle after heating is 1.19 g/cm 3 or more, and preferably in the range of 1.19 to 1.25 g/cm 3 . is more preferable. By performing such heat treatment, it is possible to increase the strength of the entanglement of the precursor fiber bundle and the connecting fiber bundle, and to reduce troubles in the flame-retardant process.

(3)スプライス工程
接続繊維束と下流側前駆体繊維束、接続繊維束と上流側前駆体繊維束の接続は、一端部が下流側前駆体繊維束に接続された接続繊維束の他端部と、上流側前駆体繊維の下流端部(始端部)とを重ね合わせて流体を噴射して1個又は複数個の交絡部を形成することで行われる。交絡部の形成は、インタレースノズルをはじめとした公知の手段を用いることができる。
例えば、インタレースノズルを利用した場合、1個又は複数個の穴を持ったノズルから流体を噴出させ、接続繊維束の一端部と被接続繊維束である下流側前駆体繊維束の他端部とを重ね合わせて流体を噴射して第1の交絡部を形成するとともに、接続繊維束の他端部ともう一つの被接続繊維束である上流側前駆体繊維束の一端部とを重ね合わせて流体を噴射して第2の交絡部を形成することにより行われる。また、工程通過性を確保する観点からその交絡部の長さは20~1,500mmが好ましい。また、接続繊維束の交絡部と交絡部の中間にある非交絡部の長さは10~800mmが好ましい。
接続繊維束としては、耐炎化繊維や、予備炭素化繊維(密度1.5~1.67g/cm)、炭素繊維等の繊維束を利用できる。中でも、炭素繊維を用いると、より高い交絡強力を接続部分に与えることができるためより好ましい。
(3) Splicing process The connecting fiber bundle and the downstream precursor fiber bundle, and the connecting fiber bundle and the upstream precursor fiber bundle are connected at one end of the connecting fiber bundle connected to the downstream precursor fiber bundle and at the other end of the connecting fiber bundle. This is performed by overlapping the downstream end portion (starting end portion) of the upstream precursor fiber and jetting fluid to form one or more entangled portions. The interlaced portions can be formed using known means such as an interlace nozzle.
For example, when an interlace nozzle is used, fluid is ejected from a nozzle having one or more holes, and the fluid is ejected from one end of the connecting fiber bundle and the other end of the downstream precursor fiber bundle, which is the fiber bundle to be connected. and a fluid is injected to form a first entangled portion, and the other end of the connecting fiber bundle and one end of the upstream precursor fiber bundle, which is another fiber bundle to be connected, are overlapped. This is done by injecting fluid to form the second intertwined portion. Further, from the viewpoint of ensuring process passability, the length of the intertwined portion is preferably 20 to 1,500 mm. Further, the length of the unentangled portion located between the intertwined portion and the intertwined portion of the connecting fiber bundle is preferably 10 to 800 mm.
As the connecting fiber bundle, fiber bundles such as flame-resistant fibers, pre-carbonized fibers (density 1.5 to 1.67 g/cm 3 ), carbon fibers, etc. can be used. Among these, it is more preferable to use carbon fiber because it can impart higher entangling strength to the connecting portion.

3.接続装置
接続装置は、接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する装置である。ここでは、接続対象繊維は上流側前駆体繊維束と下流側前駆体繊維束であるが、上流側前駆体繊維束について説明する。
接続装置1は、図1に示すように、上流側前駆体繊維束A1に対して油剤を付与する油剤付与部3と、油剤が付与された上流側前駆体繊維束A2を熱処理する熱処理部5と、熱処理された上流側前駆体繊維束A3と接続繊維束Bとを重ね合わせて流体を噴射して接続する接続部7とを備える。
油剤付与部3は、油剤を含んだ溶液Cを貯留する油剤浴31と、油剤浴31内に上流側前駆体繊維束Aを通過させるためのローラ33,35とを備える。ここでは、ローラ33は油剤浴31の外側で固定され、ローラ35は油剤浴31に出入り自在に設けられている。これにより、上流側前駆体繊維束A1の油剤浴31への誘導が容易になる。
3. Connecting Device The connecting device is a device that connects the upstream precursor fiber bundle and the downstream precursor fiber bundle via the connecting fiber bundle. Here, the fibers to be connected are an upstream precursor fiber bundle and a downstream precursor fiber bundle, and the upstream precursor fiber bundle will be explained.
As shown in FIG. 1, the connecting device 1 includes an oil agent applying section 3 that applies an oil agent to the upstream precursor fiber bundle A1, and a heat treatment section 5 that heat-treats the upstream precursor fiber bundle A2 to which the oil agent has been applied. and a connecting portion 7 that overlaps the heat-treated upstream precursor fiber bundle A3 and the connecting fiber bundle B and connects them by jetting fluid.
The oil application unit 3 includes an oil bath 31 that stores a solution C containing an oil agent, and rollers 33 and 35 that allow the upstream precursor fiber bundle A to pass through the oil bath 31. Here, the roller 33 is fixed outside the oil bath 31, and the roller 35 is provided so as to be able to move in and out of the oil bath 31. This facilitates guiding the upstream precursor fiber bundle A1 to the oil bath 31.

熱処理部5は、所定の温度に設定可能な加熱炉51と、加熱炉51に上流側前駆体繊維束A2を通過させるための炉外のローラ53とを備える。加熱炉の方式としては、前駆体繊維束を熱処理する際の、加熱速度、温度制御性、糸同士の融着防止の点から熱風を吹き付ける方式が好ましい。その熱風は、循環させてもよく、循環させずに排気してもよい。また前駆体繊維束への熱風の当て方は、前駆体繊維束に対して垂直に吹き付けてもよく、水平に吹き付けてもよいし、またそれらを組み合わせてもよい。熱風の温度としては200~300℃が好ましい。
効率の観点から十分に高い温度が好ましいが、処理温度が高すぎる場合、前駆体繊維束が発熱(耐炎化)反応により熱暴走を起こし、切断しやすくなる傾向がある。また処理時間については2分以上であることが好ましい。熱処理時間がこの範囲であると、あらかじめ前駆体繊維の耐炎化を促進することができ、耐炎化工程中の熱暴走反応を抑制しやすい。一方、処理時間の上限は特に制約されるものではないが、10分処理すれば十分な効果が見込める。熱処理中の前駆体繊維束は毛羽立ち防止の観点から1~8%程度収縮させてもよい。
接続部7は、所謂、スプライサーであり、上流側前駆体繊維束A3と接続繊維束Bとを重ねた状態で支持する支持ユニット71,73と、重ねられた上流側前駆体繊維束A3と接続繊維束Bとに対して流体の一例である圧縮空気を吹き付けるインタレースノズルを有する吹付ユニット75とを備える。なお、圧縮空気の吹き付けにより交絡部が形成され、複数の交絡部を形成する場合、インタレースノズルを繊維に沿って移動させたり、複数のインタレースノズルを備えることで実施できる。
なお、油剤付与部では、上流側前駆体繊維束A3における接続領域の油剤付着量が0.15~0.85wt%となるように、溶液中の油剤の濃度が調整されている。
The heat treatment section 5 includes a heating furnace 51 that can be set to a predetermined temperature, and a roller 53 outside the furnace for passing the upstream precursor fiber bundle A2 through the heating furnace 51. As the method of the heating furnace, a method of blowing hot air is preferable from the viewpoint of heating rate, temperature controllability, and prevention of fusion between yarns when heat-treating the precursor fiber bundle. The hot air may be circulated or may be exhausted without being circulated. Further, the hot air may be applied to the precursor fiber bundle by blowing the hot air vertically or horizontally to the precursor fiber bundle, or by a combination of these methods. The temperature of the hot air is preferably 200 to 300°C.
A sufficiently high temperature is preferred from the viewpoint of efficiency, but if the treatment temperature is too high, the precursor fiber bundle tends to undergo thermal runaway due to an exothermic (flame-resistant) reaction and become easily cut. Further, the processing time is preferably 2 minutes or more. When the heat treatment time is within this range, flame resistance of the precursor fiber can be promoted in advance, and thermal runaway reactions during the flame resistance process can be easily suppressed. On the other hand, the upper limit of the treatment time is not particularly limited, but a sufficient effect can be expected if the treatment is performed for 10 minutes. The precursor fiber bundle during heat treatment may be shrunk by about 1 to 8% from the viewpoint of preventing fluffing.
The connecting portion 7 is a so-called splicer, and connects support units 71 and 73 that support the upstream precursor fiber bundle A3 and the connecting fiber bundle B in a stacked state, and the stacked upstream precursor fiber bundle A3. The fiber bundle B is provided with a blowing unit 75 having an interlaced nozzle that blows compressed air, which is an example of a fluid, onto the fiber bundle B. Note that when an interlaced portion is formed by blowing compressed air and a plurality of interlaced portions are formed, this can be achieved by moving an interlace nozzle along the fibers or by providing a plurality of interlace nozzles.
In the oil application section, the concentration of the oil in the solution is adjusted so that the amount of oil applied to the connection region of the upstream precursor fiber bundle A3 is 0.15 to 0.85 wt%.

以下、本発明を実施例及び比較例により更に具体的に説明する。各実施例、比較例における油剤の付着量、接続部分の引張試験、工程通過率は、以下の方法によった。
<油剤の付着量>
前駆体繊維束を約2g採取し、105℃で1時間乾燥した乾燥繊維質量(W)を測定した。その後、メチルエチルケトンによるソックスレー抽出法に準拠し、90℃のメチルエチルケトンに前駆体繊維束を8時間浸漬して付着した油剤を溶媒抽出し、105℃で1時間乾燥した乾燥繊維質量(W)を測定し、下記式により油剤の付着量を求めた。
油剤付着量[wt%]=(W-W)/W×100
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. The amount of oil adhered, the tensile test of the connected portion, and the process pass rate in each Example and Comparative Example were determined by the following methods.
<Amount of oil adhered>
About 2 g of the precursor fiber bundle was collected, dried at 105° C. for 1 hour, and the dry fiber mass (W 1 ) was measured. Then, according to the Soxhlet extraction method using methyl ethyl ketone, the precursor fiber bundle was immersed in methyl ethyl ketone at 90°C for 8 hours, the attached oil was extracted with a solvent, and the dry fiber mass (W 2 ) was measured after drying at 105°C for 1 hour. Then, the amount of oil adhered was determined using the following formula.
Oil adhesion amount [wt%] = (W 1 - W 2 )/W 1 ×100

<交絡強力>
前駆体繊維束と接続糸の端部に交絡処理を実施し、交絡部から両端150mmずつを残して余分な糸をカットし、接続部分を持った繊維束を作成した。このとき、交絡点は1点とした。次にその繊維束の両端50mmの長さで引張り試験機の掴み部となる紙タブを接着し、全長320mmの試験片とした。その試験片を島津製作所社製AUTOGRAH AG-X 100kNを用いて、引張速度20mm/minの条件で引張り試験を行い、最大荷重を求めた。得られた最大荷重[mN]を交絡部分の繊度[tex](すなわち、前駆体繊維束と接続糸の繊度を合わせた合計繊度)で除し、繊度当たりの交絡強力[mN/tex]とした。
<工程通過率>
工程通過率は、耐炎化工程又は炭素化工程の各工程途中で接続部分が切断されることなく通過した割合をいう。
<Strong confounding>
The ends of the precursor fiber bundle and the connecting thread were intertwined, and the excess thread was cut leaving 150 mm at both ends from the intertwined part to create a fiber bundle with a connecting part. At this time, the number of intertwined points was one point. Next, paper tabs to be used as gripping parts of a tensile tester were glued to 50 mm of each end of the fiber bundle to obtain a test piece with a total length of 320 mm. The test piece was subjected to a tensile test using AUTOGRAH AG-X 100 kN manufactured by Shimadzu Corporation at a tensile speed of 20 mm/min to determine the maximum load. The obtained maximum load [mN] was divided by the fineness [tex] of the entangled part (i.e., the total fineness of the precursor fiber bundle and the connecting yarn), and the entangling strength per fineness [mN/tex] was obtained. .
<Process passing rate>
The process pass rate refers to the rate at which the connection part passes through each process of the flameproofing process or the carbonization process without being disconnected.

<実施例1>
(実施例11)
アクリロニトリル95wt%/アクリル酸メチル4wt%/イタコン酸1wt%よりなる共重合体紡糸原液を、紡糸口金を通して、塩化亜鉛水溶液中に吐出して凝固させ、凝固糸を得た。この凝固糸を、水洗、延伸した後、紡糸油剤としてアミノ変性シリコーン油剤の付着量が0.06wt%、単繊維数が24,000本、前駆体繊維束として、繊維束繊度が3,067texのアクリロニトリル系前駆体繊維束を得た。一方、接続繊維束として、サイジング剤の付着していない炭素繊維束であって繊維束繊度が3,200texの繊維束を用いた。
<Example 1>
(Example 11)
A copolymer spinning stock solution consisting of 95 wt% acrylonitrile/4 wt% methyl acrylate/1 wt% itaconic acid was discharged into an aqueous zinc chloride solution through a spinneret and coagulated to obtain a coagulated thread. After washing and stretching this coagulated yarn, the amount of attached amino-modified silicone oil as a spinning oil was 0.06 wt%, the number of single fibers was 24,000, and the fiber bundle fineness was 3,067 tex as a precursor fiber bundle. An acrylonitrile precursor fiber bundle was obtained. On the other hand, as the connecting fiber bundle, a carbon fiber bundle to which no sizing agent was attached and whose fiber bundle fineness was 3,200 tex was used.

2本の上記の前駆体繊維束を、接続繊維束を介して接続装置1を利用して接続した。油剤浴の溶液の油剤濃度を10g/Lとし、紡糸油剤と合わせた全油剤付着量が0.25wt%となるようにして、前駆体繊維束の接続領域となる箇所に油剤を付与した。使用した油剤はアミノ変性シリコーン油剤である。油剤を付与した後の前駆体繊維束に対して、280℃で5分間熱処理を行った。上流側前駆体繊維束と接続繊維束の接続部、接続繊維束と下流側前駆体繊維の接続部それぞれの、スプライス工程の圧縮空気の吹き付け時間は10secであり、それぞれ8個の交絡部を形成した。
このようにして接続された前駆体繊維束と接続繊維束の接続部の引張り試験での交絡強力は120mN/texであった。
The two precursor fiber bundles described above were connected using the connecting device 1 via a connecting fiber bundle. The oil concentration of the solution in the oil bath was set to 10 g/L, and the total amount of oil deposited including the spinning oil was 0.25 wt %, and the oil was applied to the connection area of the precursor fiber bundle. The oil used was an amino-modified silicone oil. After applying the oil agent, the precursor fiber bundle was heat-treated at 280° C. for 5 minutes. The compressed air blowing time in the splicing process was 10 sec at the joint between the upstream precursor fiber bundle and the connecting fiber bundle and the joint between the connecting fiber bundle and the downstream precursor fiber, forming 8 entangled parts. did.
The entangling strength in a tensile test of the joint between the precursor fiber bundle and the connected fiber bundle thus connected was 120 mN/tex.

上記のようにして接続された接続繊維束に
対して酸化性雰囲気中耐炎化処理を行った。耐炎化工程は、温度が230~260℃、延伸倍率が1.04で予備耐炎化した後に、温度が240~270℃、延伸倍率が1.0で本耐炎化した。その後、耐炎化繊維束を、温度が600℃に設定された第一炭素化炉に供給した後、最高温度が1,500℃に設定された第二炭素化炉を通過させた。耐炎化工程の通過率は100%で、炭素化工程の通過率は90%であった。
以上の条件、付着量、交絡強力、工程通過率を表1にまとめる。
なお、前工程の条件、前工程の油剤の種類及び前駆体繊維の含水率、接続工程における熱処理工程、スプライス工程の条件並びに後工程の耐炎化工程及び炭素化工程は、すべての実施例及び比較例で同じであり、表1への記載を省略し、各実施例及び比較例での説明を省略する。
The connected fiber bundles connected as described above were subjected to flameproofing treatment in an oxidizing atmosphere. In the flameproofing step, after preliminary flameproofing was carried out at a temperature of 230 to 260°C and a draw ratio of 1.04, main flameproofing was carried out at a temperature of 240 to 270°C and a draw ratio of 1.0. Thereafter, the flame-resistant fiber bundle was supplied to a first carbonization furnace whose temperature was set to 600°C, and then passed through a second carbonization furnace whose maximum temperature was set to 1,500°C. The pass rate of the flameproofing process was 100%, and the pass rate of the carbonization process was 90%.
The above conditions, adhesion amount, entangling strength, and process pass rate are summarized in Table 1.
In addition, the conditions of the pre-process, the type of oil agent in the pre-process, the moisture content of the precursor fiber, the heat treatment process in the connection process, the conditions of the splicing process, and the flame-retardant process and carbonization process in the post-process are the same as in all examples and comparisons. This is the same in the examples, so the description in Table 1 is omitted, and the explanation in each example and comparative example is omitted.

(実施例12) (Example 12)

実施例11と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.45wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
The same precursor fiber bundle and connecting fiber bundle as in Example 11 were used. In the connection step, the procedure was the same as in Example 11 except that the oil concentration was 20 g/L and the amount of oil adhered was 0.45 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例13)
実施例11と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を30g/Lとして油剤付着量を0.65wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 13)
The same precursor fiber bundle and connecting fiber bundle as in Example 11 were used. In the connection step, the procedure was the same as in Example 11 except that the concentration of the oil was 30 g/L and the amount of oil adhered was 0.65 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例2>
(実施例21)
前駆体繊維束として、繊維束繊度が1,733tex、紡糸油剤の付着量が0.06wt%、単繊維数が24,000本のアクリロニトリル系前駆体繊維を用いた。一方、接続繊維束として、サイジング剤の付着していない炭素繊維束であって繊維束繊度が1,600texの繊維束を用いた。
接続工程において、油剤濃度を10g/Lとして油剤付着量を0.25wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Example 2>
(Example 21)
As the precursor fiber bundle, an acrylonitrile precursor fiber was used, the fiber bundle fineness was 1,733 tex, the amount of the spinning oil was 0.06 wt %, and the number of single fibers was 24,000. On the other hand, as the connecting fiber bundle, a carbon fiber bundle to which no sizing agent was attached and whose fiber bundle fineness was 1,600 tex was used.
In the connection step, the procedure was the same as in Example 11 except that the concentration of the oil was 10 g/L and the amount of oil attached was 0.25 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例22)
実施例21と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.45wt%とした以外、実施例21と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 22)
The same precursor fiber bundle and connecting fiber bundle as in Example 21 were used. In the connection step, the procedure was the same as in Example 21 except that the oil concentration was 20 g/L and the amount of oil adhered was 0.45 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例23)
実施例21と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を30g/Lとして油剤付着量を0.65wt%とした以外、実施例21と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 23)
The same precursor fiber bundle and connecting fiber bundle as in Example 21 were used. In the connection step, the procedure was the same as in Example 21 except that the oil concentration was 30 g/L and the amount of oil adhered was 0.65 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例3>
(実施例31)
前駆体繊維束として、繊維束繊度が3,093tex、紡糸油剤の付着量が0.06wt%、単繊維数が48,000本のアクリロニトリル系前駆体繊維を用いた。一方、接続繊維束として、サイジング剤の付着していない炭素繊維束であって繊維束繊度が3,200texの繊維束(実施例1と同じ)を用いた。
接続工程において、油剤濃度を10g/Lとして油剤付着量を0.25wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Example 3>
(Example 31)
As the precursor fiber bundle, acrylonitrile-based precursor fibers having a fiber bundle fineness of 3,093 tex, a coating amount of spinning oil of 0.06 wt %, and a single fiber count of 48,000 were used. On the other hand, as the connecting fiber bundle, a carbon fiber bundle to which no sizing agent was attached and whose fiber bundle fineness was 3,200 tex (same as in Example 1) was used.
In the connection step, the procedure was the same as in Example 11 except that the concentration of the oil was 10 g/L and the amount of oil attached was 0.25 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例32)
実施例31と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.45wt%とした以外、実施例31と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 32)
The same precursor fiber bundle and connecting fiber bundle as in Example 31 were used. In the connection step, the procedure was the same as in Example 31 except that the oil concentration was 20 g/L and the amount of oil adhered was 0.45 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例33)
実施例31と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を30g/Lとして油剤付着量を0.65wt%とした以外、実施例31と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 33)
The same precursor fiber bundle and connecting fiber bundle as in Example 31 were used. In the connection step, the procedure was the same as in Example 31 except that the concentration of the oil was 30 g/L and the amount of oil adhered was 0.65 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例4>
(実施例41)
前駆体繊維束として、繊維束繊度が2,800tex、紡糸油剤の付着量が0.15wt%、単繊維数が24,000本のアクリロニトリル系前駆体繊維を用いた。接続工程において追加の油剤を付着させず(付着量が前工程での油剤付着量となる)、付着量を前工程での油剤付着量と同じ0.15wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強度、工程通過率を表1に示す。
<Example 4>
(Example 41)
As the precursor fiber bundle, an acrylonitrile-based precursor fiber having a fiber bundle fineness of 2,800 tex, a coating amount of spinning oil of 0.15 wt %, and a single fiber count of 24,000 was used. Same as Example 11, except that no additional oil was applied in the connection process (the amount of oil applied is the same as the amount of oil applied in the previous process), and the amount of oil applied was 0.15 wt%, which is the same as the amount of oil applied in the previous process. It is.
Table 1 shows the above conditions, adhesion amount, entanglement strength, and process pass rate.

(実施例42)
実施例41と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を10g/Lとして油剤付着量を0.4wt%とした以外、実施例41と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 42)
The same precursor fiber bundle and connecting fiber bundle as in Example 41 were used. In the connection step, the procedure was the same as in Example 41 except that the oil concentration was 10 g/L and the amount of oil adhered was 0.4 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例43)
実施例41と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.6wt%とした以外、実施例41と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 43)
The same precursor fiber bundle and connecting fiber bundle as in Example 41 were used. In the connection step, the procedure was the same as in Example 41 except that the oil concentration was 20 g/L and the amount of oil adhered was 0.6 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例5>
(実施例51)
前駆体繊維束として、実施例41と同様に、繊維束繊度が2,800tex、紡糸油剤の付着量が0.15wt%、単繊維数が24,000本のアクリロニトリル系前駆体繊維を用いた。
前駆体繊維束として用いたものと同じアクリロニトリル系前駆体繊維束(単繊維数24,000本、繊維束総繊度2,800tex、含水率35wt%)に対して酸化性雰囲気中、温度230~260℃、延伸倍率が1.04で予備耐炎化し、さらに温度240~270℃、延伸倍率が1.0で本耐炎化を行った。その後、耐炎化繊維束を、最高温度が600℃に設定された第一炭素化炉に供給し、繊維密度が1.57g/cmとなるまで炭素化処理を行い、繊維束繊度が2,100texの予備炭素化繊維束を得た。得られた予備炭素化繊維束を接続繊維として用いた。
接続工程において追加の油剤を付着させず、付着量を前工程での油剤付着量と同じ0.15wt%とした。つまり、接続繊維束として予備炭素化繊維束を用いた以外、実施例41と同じである。
以上の条件、付着量、交絡強度、工程通過率を表1に示す。
(実施例52)
実施例51と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を10g/Lとして油剤付着量を0.4wt%とした以外、実施例51と同じである。つまり、接続繊維束として予備炭素化繊維束を用いた以外、実施例42と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Example 5>
(Example 51)
As the precursor fiber bundle, acrylonitrile precursor fibers having a fiber bundle fineness of 2,800 tex, a coating amount of spinning oil of 0.15 wt %, and a single fiber count of 24,000 were used as in Example 41.
The same acrylonitrile precursor fiber bundle as used as the precursor fiber bundle (24,000 single fibers, total fiber bundle fineness 2,800 tex, water content 35 wt%) was heated at a temperature of 230 to 260 in an oxidizing atmosphere. Preliminary flame resistance was carried out at a temperature of 240 to 270°C and a draw ratio of 1.04, and main flame resistance was carried out at a temperature of 240 to 270°C and a draw ratio of 1.0. Thereafter, the flame-resistant fiber bundle was supplied to a first carbonization furnace with a maximum temperature of 600°C, and carbonized until the fiber density reached 1.57 g/ cm3 . A pre-carbonized fiber bundle of 100 tex was obtained. The obtained pre-carbonized fiber bundle was used as a connecting fiber.
No additional oil was applied in the connection process, and the amount of oil applied was 0.15 wt%, the same as the amount of oil applied in the previous process. That is, it is the same as Example 41 except that a pre-carbonized fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entanglement strength, and process pass rate.
(Example 52)
The same precursor fiber bundle and connecting fiber bundle as in Example 51 were used. In the connection step, the procedure was the same as in Example 51 except that the oil concentration was 10 g/L and the amount of oil adhered was 0.4 wt%. That is, it is the same as Example 42 except that a pre-carbonized fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例53)
実施例51と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.6wt%とした以外、実施例51と同じである。換言すると、接続繊維束として予備炭素化繊維束を用いた以外、実施例43と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 53)
The same precursor fiber bundle and connecting fiber bundle as in Example 51 were used. In the connection step, the procedure was the same as in Example 51 except that the concentration of the oil was 20 g/L and the amount of oil adhered was 0.6 wt%. In other words, it is the same as Example 43 except that a pre-carbonized fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例54)
実施例51と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を30g/Lとして油剤付着量を0.8wt%とした以外、実施例51と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 54)
The same precursor fiber bundle and connecting fiber bundle as in Example 51 were used. In the connection step, the procedure was the same as in Example 51 except that the oil concentration was 30 g/L and the amount of oil adhered was 0.8 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例6>
(実施例61)
前駆体繊維束として、繊維束繊度が2,800tex、紡糸油剤の付着量が0.15wt%、単繊維数が24,000本のアクリロニトリル系前駆体繊維束を用いた(実施例41や実施例51と同じ)。
前駆体繊維束として用いたものと同じアクリロニトリル系前駆体繊維束(単繊維数24,000本、繊維束総繊度2,800tex、含水率35wt%)に対して酸化性雰囲気中、温度230~260℃、延伸倍率が1.04で予備耐炎化し、さらに温度240~270℃、延伸倍率が1.0で耐炎化処理を行い、繊維束繊度が3,000texの耐炎化繊維束を得た。得られた耐炎化繊維束を接続繊維束として用いた。
接続工程において油剤を付着させず、付着量を前工程での油剤付着量と同じ0.15wt%とした。つまり、接続繊維束として耐炎化繊維束を用いた以外、実施例41や実施例51と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Example 6>
(Example 61)
As the precursor fiber bundle, an acrylonitrile precursor fiber bundle having a fiber bundle fineness of 2,800 tex, a coating amount of spinning oil of 0.15 wt%, and a single fiber count of 24,000 was used (Example 41 and Examples 51).
The same acrylonitrile precursor fiber bundle as used as the precursor fiber bundle (24,000 single fibers, total fiber bundle fineness 2,800 tex, water content 35 wt%) was heated at a temperature of 230 to 260 in an oxidizing atmosphere. ℃ and a draw ratio of 1.04, and further flame resistant treatment was performed at a temperature of 240 to 270° C. and a draw ratio of 1.0 to obtain a flame resistant fiber bundle with a fiber bundle fineness of 3,000 tex. The obtained flame-resistant fiber bundle was used as a connecting fiber bundle.
No oil was applied in the connection process, and the amount of oil applied was 0.15 wt%, which was the same as the amount of oil applied in the previous process. That is, it is the same as Example 41 and Example 51 except that a flame-resistant fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例62)
実施例61と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を10g/Lとして油剤付着量を0.4wt%とした以外、実施例61と同じである。
以上の条件、付着量、交絡強度、工程通過率を表1に示す。
(実施例63)
実施例61と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を20g/Lとして油剤付着量を0.6wt%とした以外、実施例61と同じである。換言すると、接続繊維束として耐炎化繊維束を用いた以外、実施例43や実施例53と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 62)
The same precursor fiber bundle and connecting fiber bundle as in Example 61 were used. In the connection step, the procedure was the same as in Example 61 except that the concentration of the oil was 10 g/L and the amount of oil adhered was 0.4 wt%.
Table 1 shows the above conditions, adhesion amount, entanglement strength, and process pass rate.
(Example 63)
The same precursor fiber bundle and connecting fiber bundle as in Example 61 were used. In the connection step, the procedure was the same as in Example 61 except that the concentration of the oil was 20 g/L and the amount of oil adhered was 0.6 wt%. In other words, it is the same as Example 43 and Example 53 except that a flame-resistant fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例64)
実施例61と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を30g/Lとして油剤付着量を0.8wt%とした以外、実施例61と同じである。換言すると、接続繊維束として耐炎化繊維束を用いた以外、実施例54と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 64)
The same precursor fiber bundle and connecting fiber bundle as in Example 61 were used. In the connection step, the procedure was the same as in Example 61 except that the concentration of the oil was 30 g/L and the amount of oil adhered was 0.8 wt%. In other words, it is the same as Example 54 except that a flame-resistant fiber bundle was used as the connecting fiber bundle.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<実施例7>
(実施例71)
前駆体繊維束として、繊維束繊度が2,800tex、紡糸油剤の付着量が0.15wt%、単繊維数が24,000本のアクリロニトリル系前駆体繊維束を用いた(実施例41、実施例51及び実施例61と同じ)。接続繊維束として、サイジング剤の付着していない炭素繊維束であって繊維束繊度が3,000texの繊維束を用いた。
接続工程において、実施例43、実施例53及び実施例63と同様にして、前駆体繊維束の接続領域となる箇所に油剤を付与した。油剤を付与した後の前駆体繊維束に対して、280℃で1分間熱処理を行った以外、実施例43、実施例53及び実施例63と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Example 7>
(Example 71)
As the precursor fiber bundle, an acrylonitrile precursor fiber bundle with a fiber bundle fineness of 2,800 tex, a coating amount of spinning oil of 0.15 wt%, and a single fiber count of 24,000 was used (Example 41, Example 51 and Example 61). As the connecting fiber bundle, a carbon fiber bundle to which no sizing agent was attached and whose fiber bundle fineness was 3,000 tex was used.
In the connection step, in the same manner as in Example 43, Example 53, and Example 63, an oil agent was applied to the portion that would become the connection region of the precursor fiber bundle. This is the same as Example 43, Example 53, and Example 63, except that the precursor fiber bundle after applying the oil agent was heat-treated at 280° C. for 1 minute.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(実施例72)
実施例71と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤を付与した後の前駆体繊維束に対して、280℃で3分間熱処理を行った以外、実施例71と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(実施例73)
実施例71と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤を付与した後の前駆体繊維束に対して、280℃で5分間熱処理を行った以外、実施例71と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(実施例74)
実施例71と同じ前駆体繊維束を用いた。接続繊維束として、エポキシ樹脂系サイズ剤が1wt%付着した炭素繊維束を用いた。接続工程において、実施例73と同じ条件で油剤の付与と熱処理を行った。スプライス装置を用いず、接続繊維束の末端50cmに、熱処理後の前駆体繊維束を編み込むことで繊維束を接続した。接続繊維束にサイズ剤が付着していることと接続方法以外は実施例73と同様にして炭素繊維束を製造した。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Example 72)
The same precursor fiber bundle and connecting fiber bundle as in Example 71 were used. In the connection step, the procedure was the same as in Example 71 except that the precursor fiber bundle after applying the oil agent was heat-treated at 280° C. for 3 minutes.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.
(Example 73)
The same precursor fiber bundle and connecting fiber bundle as in Example 71 were used. In the connection step, the procedure was the same as in Example 71 except that the precursor fiber bundle after applying the oil agent was heat-treated at 280° C. for 5 minutes.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.
(Example 74)
The same precursor fiber bundle as in Example 71 was used. A carbon fiber bundle to which 1 wt % of an epoxy resin sizing agent was attached was used as the connecting fiber bundle. In the connection step, application of oil and heat treatment were performed under the same conditions as in Example 73. The fiber bundles were connected by weaving the heat-treated precursor fiber bundle into the terminal 50 cm of the connected fiber bundle without using a splicing device. A carbon fiber bundle was produced in the same manner as in Example 73, except that the sizing agent was attached to the connected fiber bundle and the connection method was used.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<比較例1>
(比較例11)
実施例11と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において油剤を付着させていない(付着量が前工程での油剤付着量と同じ0.06wt%となる)以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Comparative example 1>
(Comparative Example 11)
The same precursor fiber bundle and connecting fiber bundle as in Example 11 were used. It is the same as Example 11 except that no oil was applied in the connection process (the amount of oil applied was 0.06 wt%, which was the same as the amount of oil applied in the previous process).
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(比較例12)
実施例11と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を50g/Lとして油剤付着量を1.05wt%とした以外、実施例11と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
油剤付着量の高すぎる比較例12では、交絡強力が不十分となり、耐炎化工程の通過率すら40%と大変低く、十分な工程通過性を得ることはできなかった。
(Comparative example 12)
The same precursor fiber bundle and connecting fiber bundle as in Example 11 were used. In the connection step, the procedure was the same as in Example 11 except that the oil concentration was 50 g/L and the amount of oil adhered was 1.05 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.
In Comparative Example 12, in which the amount of oil adhering was too high, the entangling strength was insufficient, and even the passing rate of the flameproofing process was very low at 40%, making it impossible to obtain sufficient process passing properties.

<比較例2>
(比較例21)
実施例21と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において油剤を付着させていない(付着量が前工程での油剤付着量と同じ0.06wt%となる)以外、実施例21と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Comparative example 2>
(Comparative Example 21)
The same precursor fiber bundle and connecting fiber bundle as in Example 21 were used. This is the same as Example 21 except that no oil was applied in the connection process (the amount of oil applied was 0.06 wt%, which was the same as the amount of oil applied in the previous process).
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(比較例22)
実施例21と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を50g/Lとして油剤付着量を1.05wt%とした以外、実施例21と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Comparative example 22)
The same precursor fiber bundle and connecting fiber bundle as in Example 21 were used. In the connection step, the procedure was the same as in Example 21 except that the oil concentration was 50 g/L and the amount of oil adhered was 1.05 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<比較例3>
(比較例31)
実施例31と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において油剤を付着させていない(付着量が前工程で油剤付着量と同じ0.06wt%となる)以外、実施例31と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
<Comparative example 3>
(Comparative Example 31)
The same precursor fiber bundle and connecting fiber bundle as in Example 31 were used. This is the same as Example 31, except that no oil was applied in the connection process (the amount of oil applied was 0.06 wt%, which was the same as the amount of oil applied in the previous process).
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

(比較例32)
実施例31と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を50g/Lとして油剤付着量を1.05wt%とした以外、実施例31と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Comparative example 32)
The same precursor fiber bundle and connecting fiber bundle as in Example 31 were used. In the connection step, the procedure was the same as in Example 31 except that the oil concentration was 50 g/L and the amount of oil adhered was 1.05 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<比較例4> <Comparative example 4>

(比較例41)
実施例41と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を40g/Lとして油剤付着量を1.0wt%とした以外、実施例41と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Comparative example 41)
The same precursor fiber bundle and connecting fiber bundle as in Example 41 were used. In the connection step, the procedure was the same as in Example 41 except that the oil concentration was 40 g/L and the amount of oil adhered was 1.0 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<比較例5> <Comparative example 5>

(比較例51)
実施例51と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を40g/Lとして油剤付着量を1.0wt%とした以外、実施例51と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Comparative Example 51)
The same precursor fiber bundle and connecting fiber bundle as in Example 51 were used. In the connection step, the procedure was the same as in Example 51 except that the oil concentration was 40 g/L and the amount of oil adhered was 1.0 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

<比較例6> <Comparative example 6>

(比較例61)
実施例61と同じ前駆体繊維束及び接続繊維束を用いた。接続工程において、油剤濃度を40g/Lとして油剤付着量を1.0wt%とした以外、実施例61と同じである。
以上の条件、付着量、交絡強力、工程通過率を表1に示す。
(Comparative Example 61)
The same precursor fiber bundle and connecting fiber bundle as in Example 61 were used. In the connection step, the procedure was the same as in Example 61 except that the oil concentration was 40 g/L and the amount of oil adhered was 1.0 wt%.
Table 1 shows the above conditions, adhesion amount, entangling strength, and process pass rate.

Figure 0007408406000001
Figure 0007408406000001

<評価結果>
(1)交絡強力
接続部分糸繊度あたりの交絡強力は、25mN/tex以上あれば、繊維束が接続繊維束から抜けることがほとんどない。この観点から、油剤付着量が0.85wt%以下で接続部分糸繊度あたりの交絡強力が25mN/texとなり、油剤付着量が低い方がより高い交絡強力を得られた。また、交絡強力は、50mN/tex以上であることがより好ましく、接続繊維として炭素繊維束を用いることで、このような高い交絡強力を得やすくなる。
<Evaluation results>
(1) Entanglement strength If the entanglement strength per yarn fineness of the connected portion is 25 mN/tex or more, the fiber bundle will hardly come off from the connected fiber bundle. From this point of view, when the amount of oil applied was 0.85 wt% or less, the entanglement strength per yarn fineness of the connected portion was 25 mN/tex, and the lower the amount of oil applied, the higher the entanglement strength was obtained. Moreover, it is more preferable that the entangling strength is 50 mN/tex or more, and by using a carbon fiber bundle as the connecting fiber, it becomes easier to obtain such a high entangling strength.

(2)耐炎化工程
油剤付着量が0.6wt%以下の実施例で通過率が90%以上となる。また、油剤付着量が0.8wt%の実施例54及び実施例64でも通過率が90%となっている。
(2) Flameproofing process The passage rate is 90% or more in examples where the amount of oil adhered is 0.6 wt% or less. Furthermore, the passage rate was 90% in Examples 54 and 64 where the amount of oil adhesion was 0.8 wt%.

(3)炭素工程
油剤付着量が0.15wt%以上の場合、通過率が80%以上となる。また、油剤付着量が0.2wt%以上の場合、通過率が90%以上となる。
また、前駆体繊維の油剤付着量が比較的少ない実施例1-3(0.06wt%である)は、付着量が比較的多い実施例4-7(0.15wt%である)に比べ、シリカの発生量がより少なく、製造中の装置の清掃に係る時間が少なく製造効率がより高くなった。
(3) Carbon process When the amount of oil adhered is 0.15 wt% or more, the passage rate is 80% or more. Furthermore, when the amount of oil adhered is 0.2 wt% or more, the passage rate is 90% or more.
In addition, Example 1-3 (0.06 wt%), in which the amount of oil agent attached to the precursor fibers was relatively small, was compared to Example 4-7 (0.15 wt%), in which the amount of oil agent attached to the precursor fiber was relatively large. The amount of silica generated is lower, and the time required to clean the equipment during production is reduced, resulting in higher production efficiency.

(4)まとめ
上述のように、油剤付着量が0.15~0.85wt%の場合、繊維束が接続繊維束から抜けることがほとんどなく、耐炎化工程及び炭素化工程の両工程の通過率が高くなる。これにより、固定トラブルが少なくなり、高い生産性が得られる。
(4) Summary As mentioned above, when the amount of oil attached is 0.15 to 0.85 wt%, the fiber bundle hardly comes off from the connected fiber bundle, and the passage rate of both the flameproofing process and the carbonization process is becomes higher. This reduces fixing troubles and increases productivity.

<変形例>
1.繊維束
実施形態の繊維束は、前駆体繊維束を耐炎化、炭素化して製造される炭素繊維束を例にして説明したが、例えば、繊維束は、前駆体繊維束を耐炎化して製造される耐炎化繊維束であってもよい。
2.接続
実施形態では、主に、上流側前駆体繊維束と接続繊維束とについて説明したが、下流側前駆体繊維束と接続繊維束との接続も、上流側前駆体繊維束と接続繊維束との接続と同じ条件で行ってもよいし、異なる条件で行ってもよい。但し、工程の安定性を考慮すると、油剤の付着量(合計)は、0.15~0.85wt%となるように行うのが好ましい。

<Modified example>
1. Fiber Bundle The fiber bundle of the embodiment has been described using as an example a carbon fiber bundle manufactured by flame-resistant and carbonizing a precursor fiber bundle. It may also be a flame-resistant fiber bundle.
2. Connection In the embodiment, the upstream precursor fiber bundle and the connecting fiber bundle are mainly described, but the connection between the downstream precursor fiber bundle and the connecting fiber bundle is also the same as the upstream precursor fiber bundle and the connecting fiber bundle. The connection may be performed under the same conditions as the connection or under different conditions. However, considering the stability of the process, it is preferable that the amount (total) of the oil applied is 0.15 to 0.85 wt%.

Claims (5)

接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程と、
前記接続した前駆体繊維束を耐炎化炉を走行させて耐炎化する耐炎化工程と
を含む耐炎化繊維束の製造方法であって、
前記接続工程では、接続対象の前駆体繊維束と前記接続繊維束とを接続する前に、前記接続対象の前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与し、
前記接続対象の前駆体繊維束と前記接続繊維束とを接続する前であって前記油剤を付与した後に、前記接続対象の前駆体繊維束を220~300℃で2~10分間熱処理する
耐炎化繊維束の製造方法。
a connecting step of connecting the upstream precursor fiber bundle and the downstream precursor fiber bundle via the connecting fiber bundle;
A method for producing a flame resistant fiber bundle, comprising: a flame resistant step of running the connected precursor fiber bundle through a flame resistant furnace to make it flame resistant;
In the connecting step, before connecting the precursor fiber bundle to be connected and the connecting fiber bundle, the amount of oil applied in the connection area of the precursor fiber bundle to be connected is 0.15 to 0.85 wt%. Apply an oil agent to
Before connecting the precursor fiber bundle to be connected and the connecting fiber bundle and after applying the oil agent, the precursor fiber bundle to be connected is heat-treated at 220 to 300° C. for 2 to 10 minutes.
A method for producing a flame-resistant fiber bundle.
接続繊維束を介して上流側前駆体繊維束と下流側前駆体繊維束とを接続する接続工程と、
前記接続した前駆体繊維束を耐炎化炉を走行させて耐炎化する耐炎化工程と、
耐炎化された前駆体繊維束を炭素化する炭素化工程と
を含む炭素繊維束の製造方法であって、
前記接続工程では、接続対象の前駆体繊維束と前記接続繊維束とを接続する前に、前記接続対象の前駆体繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与し、
前記接続対象の前駆体繊維束と前記接続繊維束とを接続する前であって前記油剤を付与した後に、前記接続対象の前駆体繊維束を220~300℃で2~10分間熱処理する
炭素繊維束の製造方法。
a connecting step of connecting the upstream precursor fiber bundle and the downstream precursor fiber bundle via the connecting fiber bundle;
a flame-retardant step of making the connected precursor fiber bundle run through a flame-retardant furnace;
A method for producing a carbon fiber bundle, comprising: a carbonization step of carbonizing a flame-resistant precursor fiber bundle,
In the connecting step, before connecting the precursor fiber bundle to be connected and the connecting fiber bundle, the amount of oil applied in the connection area of the precursor fiber bundle to be connected is 0.15 to 0.85 wt%. Apply an oil agent to
Before connecting the precursor fiber bundle to be connected and the connecting fiber bundle and after applying the oil agent, the precursor fiber bundle to be connected is heat-treated at 220 to 300° C. for 2 to 10 minutes.
Method for manufacturing carbon fiber bundles.
前記熱処理後の前記接続対象の前駆体繊維束の密度は、1.19g/cm 以上である
請求項2に記載の炭素繊維束の製造方法。
The method for manufacturing a carbon fiber bundle according to claim 2 , wherein the density of the precursor fiber bundle to be connected after the heat treatment is 1.19 g/cm 3 or more.
前記上流側前駆体繊維束及び下流側繊維束はアクリル繊維束からなり、
前記接続繊維束は耐炎化繊維束又は炭素繊維束である
請求項2又は3に記載の炭素繊維束の製造方法。
The upstream precursor fiber bundle and the downstream fiber bundle are made of acrylic fiber bundles,
The method for manufacturing a carbon fiber bundle according to claim 2 or 3, wherein the connecting fiber bundle is a flame-resistant fiber bundle or a carbon fiber bundle.
接続繊維束を介して上流側繊維束と下流側繊維束とを接続する接続装置であって、
前記接続対象の前記繊維束に対して、前記接続対象の繊維束における接続領域の油剤付着量が0.15~0.85wt%となるように、油剤を付与する油剤付与部と、
前記油剤が付与された前記接続対象の繊維束を接続前に、220~300℃で2~10分間熱処理する熱処理部と、
熱処理された前記接続対象の繊維束と前記接続繊維束とを重ね合わせて流体を噴射して接続する接続部と
を備える接続装置。
A connecting device that connects an upstream fiber bundle and a downstream fiber bundle via a connecting fiber bundle,
an oil agent applying unit that applies an oil agent to the fiber bundle to be connected such that an oil agent adhesion amount in a connection area of the fiber bundle to be connected is 0.15 to 0.85 wt% ;
a heat treatment section that heat-treats the fiber bundle to be connected to which the oil agent has been applied at 220 to 300° C. for 2 to 10 minutes before connection ;
A connection device comprising: a connection section that overlaps the heat-treated fiber bundle to be connected and the connection fiber bundle and connects them by jetting fluid.
JP2020004158A 2019-02-20 2020-01-15 Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device Active JP7408406B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HUE20158322A HUE058697T2 (en) 2019-02-20 2020-02-19 Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
EP20158322.6A EP3699333B1 (en) 2019-02-20 2020-02-19 Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
ES20158322T ES2913134T3 (en) 2019-02-20 2020-02-19 Method for manufacturing an oxidized fiber bundle, method for manufacturing a carbon fiber bundle, and bonding apparatus
US16/794,658 US11598029B2 (en) 2019-02-20 2020-02-19 Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019028908 2019-02-20
JP2019028908 2019-02-20

Publications (2)

Publication Number Publication Date
JP2020133092A JP2020133092A (en) 2020-08-31
JP7408406B2 true JP7408406B2 (en) 2024-01-05

Family

ID=72262574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004158A Active JP7408406B2 (en) 2019-02-20 2020-01-15 Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device

Country Status (1)

Country Link
JP (1) JP7408406B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590620B2 (en) 1990-05-21 1997-03-12 東レ株式会社 Carbon fiber production method
JP2000144534A (en) 1998-11-09 2000-05-26 Mitsubishi Rayon Co Ltd Acrylic fiber yarn for producing carbon fiber and its production
JP2002302341A (en) 2001-04-09 2002-10-18 Mitsubishi Rayon Co Ltd Ending machine and carbon fiber producing method
WO2002101129A1 (en) 2001-06-12 2002-12-19 Mitsubishi Rayon Co.,Ltd. Production device for carbon fibers and production method therefor
JP2015120582A (en) 2013-12-24 2015-07-02 東邦テナックス株式会社 Connection method for fiber yarn, and manufacturing method for carbon fiber
WO2017135265A1 (en) 2016-02-03 2017-08-10 東邦テナックス株式会社 Method for manufacturing and method for connecting carbon fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077822A (en) * 1976-11-17 1978-03-07 Celanese Corporation Splice for use during the thermal stabilization of a flat multifilament band of an acrylic fibrous material comprising at least two segments
JPS5450624A (en) * 1977-09-29 1979-04-20 Showa Denko Kk Production of carbon fiber
JPS5637315A (en) * 1979-08-31 1981-04-11 Sumitomo Chem Co Ltd Continuous production of carbon fiber
GB2138740B (en) * 1983-04-11 1987-04-01 Hitco Splicing elongate webs
JPH0737686B2 (en) * 1985-06-07 1995-04-26 三菱化学株式会社 Carbon fiber manufacturing method
JPS6412850A (en) * 1987-07-03 1989-01-17 Amada Co Ltd Permanent magnet type linear pulse motor
JP3722323B2 (en) * 1997-02-14 2005-11-30 東レ株式会社 Carbon fiber, manufacturing method and manufacturing apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590620B2 (en) 1990-05-21 1997-03-12 東レ株式会社 Carbon fiber production method
JP2000144534A (en) 1998-11-09 2000-05-26 Mitsubishi Rayon Co Ltd Acrylic fiber yarn for producing carbon fiber and its production
JP2002302341A (en) 2001-04-09 2002-10-18 Mitsubishi Rayon Co Ltd Ending machine and carbon fiber producing method
WO2002101129A1 (en) 2001-06-12 2002-12-19 Mitsubishi Rayon Co.,Ltd. Production device for carbon fibers and production method therefor
JP2015120582A (en) 2013-12-24 2015-07-02 東邦テナックス株式会社 Connection method for fiber yarn, and manufacturing method for carbon fiber
WO2017135265A1 (en) 2016-02-03 2017-08-10 東邦テナックス株式会社 Method for manufacturing and method for connecting carbon fiber

Also Published As

Publication number Publication date
JP2020133092A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
TW508380B (en) The carbon fiber precursor fiber bundle with the product method
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
US11598029B2 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
JP7341648B2 (en) Precursor fiber bundle manufacturing method, carbon fiber bundle manufacturing method, and carbon fiber bundle
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same
JP2012219382A (en) Method for producing precursor fiber bundle of polyacrylonitrile-based carbon fiber, and precursor fiber bundle of polyacrylonitrile-based carbon fiber obtained by using the same
TWI830787B (en) Precursor fiber bundle manufacturing method and carbon fiber bundle manufacturing method and carbon fiber bundle
JP2010202999A (en) Acrylic carbon fiber precursor fiber bundle package and method for producing the same
JP7087740B2 (en) Manufacturing method of carbon fiber bundle
JP2022154119A (en) Manufacturing method of carbon fiber
JPS58214518A (en) Acrylic precursor yarn bundle
JP2004076208A (en) Method for producing carbon fiber precursor bundle
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JPH01221511A (en) Production of synthetic fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231220

R150 Certificate of patent or registration of utility model

Ref document number: 7408406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150