JP2010202999A - Acrylic carbon fiber precursor fiber bundle package and method for producing the same - Google Patents

Acrylic carbon fiber precursor fiber bundle package and method for producing the same Download PDF

Info

Publication number
JP2010202999A
JP2010202999A JP2009049918A JP2009049918A JP2010202999A JP 2010202999 A JP2010202999 A JP 2010202999A JP 2009049918 A JP2009049918 A JP 2009049918A JP 2009049918 A JP2009049918 A JP 2009049918A JP 2010202999 A JP2010202999 A JP 2010202999A
Authority
JP
Japan
Prior art keywords
fiber bundle
mass
oil agent
package
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009049918A
Other languages
Japanese (ja)
Inventor
Hisahiro Hoshikawa
久弘 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2009049918A priority Critical patent/JP2010202999A/en
Publication of JP2010202999A publication Critical patent/JP2010202999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber precursor fiber bundle package good in wound shape and having few problems of getting out of wound shape and package edge face swelling, etc. despite being extremely low in an oil pickup amount and moisture content as compared with a conventional package, and to provide a method for producing the package slight in fiber damage despite being extremely low in lubricant use levels in the production process. <P>SOLUTION: In producing the carbon fiber precursor fiber bundle package, oiling steps for the fiber bundle is divided into two; the oil pickup amount is under control at a specific level; and a drying step is subjected prior to the winding step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油剤付着量及び水分量が従来よりも極めて低い水準にあり、かつ荷姿形態良好なアクリル系炭素繊維前駆体繊維束のボビンパッケージ、及びその製造方法に関する。   The present invention relates to a bobbin package of an acrylic carbon fiber precursor fiber bundle having an oil agent adhesion amount and a moisture amount that are extremely lower than those of conventional ones and having a good packing form, and a method for producing the same.

炭素繊維は他の繊維と比較して優れた比強度及び比弾性率を有する。炭素繊維はその有する軽量性及び優れた機械的特性を利用して、樹脂と複合化する補強繊維として、広く工業的に利用されている。   Carbon fibers have superior specific strength and specific modulus compared to other fibers. Carbon fiber is widely used industrially as a reinforcing fiber to be combined with resin by utilizing its light weight and excellent mechanical properties.

近年、炭素繊維を利用する複合材料の工業的な用途は、多くの分野に広がりつつある。特にスポーツ・レジャー分野、航空宇宙分野においては、より高性能化(高強度化、高弾性化)に向けた要求が強まっている。炭素繊維と樹脂との複合化において高性能化を追求するためには、樹脂の持つ物性よりも炭素繊維そのものの物性を向上させることが不可欠である。   In recent years, industrial applications of composite materials using carbon fibers are spreading in many fields. Particularly in the sports / leisure field and the aerospace field, demands for higher performance (higher strength, higher elasticity) are increasing. In order to pursue high performance in the composite of carbon fiber and resin, it is essential to improve the physical properties of the carbon fiber itself rather than the physical properties of the resin.

現在、ポリアクリロニトリル(以下、PANとも表記する。)系炭素繊維の製造工程は、PAN系炭素繊維前駆体繊維(以下、単に前駆体繊維とも表記する)を製造する工程(前工程)と、該前駆体繊維を焼成して炭素繊維を製造する工程(後工程)とに分断して行われるのが一般的である。その理由は、ポリマー原液を紡糸して前駆体繊維を製造する速度と、該前駆体繊維を焼成してPAN系炭素繊維を製造する速度とが著しく異なっているからである(特に、前駆体繊維を焼成する際の耐炎化工程が最も律速となる。)。よって、PAN系炭素繊維の製造においては、各工程に速度差が存在することにより、前工程で得られる前駆体繊維は一時的に保存されるのが一般的である。前駆体繊維の保存方法としては、一般にボビンに巻き取ってパッケージの形態で保存する方式が採られている。   Currently, the production process of polyacrylonitrile (hereinafter also referred to as PAN) -based carbon fiber includes a process (pre-process) of manufacturing a PAN-based carbon fiber precursor fiber (hereinafter also simply referred to as precursor fiber), In general, the process is divided into a process (post-process) in which the precursor fiber is fired to produce carbon fiber. The reason is that the speed at which the precursor fiber is produced by spinning the polymer stock solution and the speed at which the precursor fiber is fired to produce the PAN-based carbon fiber are remarkably different (particularly, the precursor fiber). The flame-proofing process when baking is the most rate-determining). Therefore, in the production of PAN-based carbon fibers, the precursor fibers obtained in the previous step are generally temporarily stored due to the difference in speed in each step. As a method for preserving the precursor fibers, a method is generally employed in which the precursor fibers are wound around a bobbin and stored in the form of a package.

ボビンパッケージの巻崩れや端面膨れ等が無く、良好な形態で巻き上げるためには、前駆体繊維束の集束性を向上させる必要がある。集束性を向上させるためには、上記製造方法のように、凝固糸繊維束に油剤を付着させるのが一般的である。   In order to roll up the bobbin package in a good form without causing collapse of the bobbin package or end face swelling, it is necessary to improve the convergence of the precursor fiber bundle. In order to improve convergence, it is common to attach an oil agent to a coagulated fiber bundle as in the above production method.

特許文献1には、湿熱延伸後の繊維束に油剤を0.5〜2.0質量%で付着させる方法が記載されている。かかる方法では、油剤付着量が0.5質量%未満の場合、繊維束の集束性が十分でないと記載してある。繊維束の集束性が低い場合には、ボビンパッケージ質量が大きくなると、巻崩れが発生する、あるいは巻形状が悪くなるといった問題を生じさせる。   Patent Document 1 describes a method in which an oil agent is attached to a fiber bundle after wet heat drawing at 0.5 to 2.0 mass%. In such a method, it is described that the fiber bundle is not sufficiently converged when the oil agent adhesion amount is less than 0.5% by mass. In the case where the bundle property of the fiber bundle is low, when the bobbin package mass is increased, there arises a problem that the winding collapse occurs or the winding shape is deteriorated.

一方、油剤の多量使用は前駆体繊維束の製造コストを上昇させる。また、焼成工程において、油剤に含まれるシリコーン系油が熱分解し、酸化珪素や窒化珪素が発生して耐炎化炉、焼成炉を汚染する。さらに、繊維内部に異物としてケイ素が残留すると、最終的に得られる炭素繊維の品質低下につながる。   On the other hand, the use of a large amount of oil increases the production cost of the precursor fiber bundle. Further, in the firing step, the silicone oil contained in the oil agent is thermally decomposed to generate silicon oxide and silicon nitride, which contaminates the flameproofing furnace and the firing furnace. Furthermore, if silicon remains as a foreign substance inside the fiber, the quality of the carbon fiber finally obtained is reduced.

前駆体繊維束の集束性を向上させる方法としては、前駆体繊維束に油剤を付着させる方法以外にも、前駆体繊維束に水分を付与する方法がある。特許文献2には、水分率が5〜20質量%の前駆体繊維束を巻き取ってパッケージとする方法が記載されている。かかる方法によると、水分率が5質量%未満の場合は前駆体繊維束の集束性が悪く、パッケージの端面膨れが大きくなって巻崩れ等の問題が生じると記載してある。また、水分率が高い繊維束にはバクテリアが発生したり、水分率が変動したりして、最終的に得られる炭素繊維の品質が安定しない。さらに、後の乾燥工程において、多量の水分を蒸発させるのに余分なエネルギーを要する。   As a method for improving the converging property of the precursor fiber bundle, there is a method of imparting moisture to the precursor fiber bundle in addition to a method of attaching an oil agent to the precursor fiber bundle. Patent Document 2 describes a method of winding a precursor fiber bundle having a moisture content of 5 to 20% by mass into a package. According to this method, it is described that when the moisture content is less than 5% by mass, the convergence property of the precursor fiber bundle is poor, and the end face swelling of the package becomes large, causing problems such as winding collapse. Moreover, bacteria are generated in the fiber bundle having a high moisture content or the moisture content fluctuates, so that the quality of the finally obtained carbon fiber is not stable. Further, extra energy is required to evaporate a large amount of water in the subsequent drying step.

よって、油剤付着量や水分量を従来よりも低くしながらも、巻形状が良く巻重量の大きい前駆体繊維束のボビンパッケージが望まれている。   Therefore, there is a demand for a bobbin package of a precursor fiber bundle having a good winding shape and a large winding weight while lowering the oil agent adhesion amount and moisture amount than before.

特開2006−274472号公報JP 2006-274472 A 特開2004−123296号公報JP 2004-123296 A

本発明の目的は、従来と比較して、前駆体繊維束の油剤付着量及び水分量が極めて低いにも拘らず、巻形状が良く、巻崩れやパッケージ端面膨れ等の問題が少ない前駆体繊維束パッケージを提供することにある。また、本発明の他の目的は、前駆体繊維束の製造工程における油剤使用量が極めて少ないにも拘らず、繊維の損傷が少ない前駆体繊維束パッケージの製造方法を提供することにある。   The object of the present invention is to provide a precursor fiber that has a good winding shape and less problems such as collapse and package end face swell, despite the fact that the amount of oil attached to the precursor fiber bundle and the amount of water in the precursor fiber bundle are extremely low. It is to provide a bundle package. Another object of the present invention is to provide a method for producing a precursor fiber bundle package with little damage to the fiber, although the amount of oil used in the production process of the precursor fiber bundle is extremely small.

本発明者は、上記課題について検討した結果、油剤付与工程を二回に分け、前駆体繊維束の油剤付着量を特定量に制御し、且つ、巻取り前に乾燥工程を通す事で、前駆体繊維束の油剤付着量と水分量を従来のボビンパッケージよりも少ない水準に保ちながらも、巻形状が良く、巻崩れやパッケージ端面膨れ等の問題が少ないボビンパッケージが得られることを見出し、本発明を完成するに至った。   As a result of studying the above problems, the present inventor divided the oil agent application step into two steps, controlled the amount of oil agent adhesion of the precursor fiber bundle to a specific amount, and passed the drying step before winding, so that the precursor It was found that a bobbin package with good winding shape and less problems such as collapse and package end face swell while maintaining the amount of oil agent adhesion and moisture content of the body fiber bundle at a level lower than that of the conventional bobbin package. The invention has been completed.

上記目的を達成する本発明は、以下に記載するものである。
〔1〕 ボビンと、前記ボビンに巻き回されたアクリル系炭素繊維前駆体繊維束とからなるパッケージであって、前記アクリル系炭素繊維前駆体繊維束がその100質量部に対してシリコーン系油剤を0.10〜0.50質量部、及び水を0.10〜2.0質量部含有していることを特徴とするアクリル系炭素繊維前駆体繊維束パッケージ。
〔2〕 紡糸原液を紡糸して得られる凝固糸繊維束に、凝固糸繊維束100質量部に対して0.03〜0.40質量部のシリコーン系油剤を付着した後、前記シリコーン系油剤を付着した凝固糸繊維束を熱空気により乾燥し、次いで前記熱空気乾燥した繊維束をスチーム延伸し、次いで前記スチーム延伸した繊維束100質量部に対し、シリコーン系油剤を0.05〜0.40質量部(但し、シリコーン系油剤の合計付着量はアクリル系炭素繊維前駆体繊維束100質量部に対して0.10〜0.50質量部とする。)付着させて乾燥することによりアクリル系炭素繊維前駆体繊維束100質量部に対する水の含有量を0.10〜2.0質量部とし、その後ボビンに巻き取ることを特徴とする〔1〕のパッケージの製造方法。
The present invention for achieving the above object is described below.
[1] A package comprising a bobbin and an acrylic carbon fiber precursor fiber bundle wound around the bobbin, wherein the acrylic carbon fiber precursor fiber bundle contains a silicone oil agent with respect to 100 parts by mass. An acrylic carbon fiber precursor fiber bundle package containing 0.10 to 0.50 parts by mass and 0.10 to 2.0 parts by mass of water.
[2] 0.03 to 0.40 parts by mass of a silicone-based oil agent is attached to a coagulated fiber bundle obtained by spinning the spinning dope with respect to 100 parts by mass of the coagulated fiber bundle. The adhering coagulated yarn fiber bundle is dried with hot air, then the hot air dried fiber bundle is subjected to steam stretching, and then silicone oil is added to 0.05 to 0.40 with respect to 100 parts by mass of the steam stretched fiber bundle. Mass parts (however, the total adhesion amount of the silicone-based oil is 0.10 to 0.50 parts by mass with respect to 100 parts by mass of the acrylic carbon fiber precursor fiber bundle). The method for producing a package according to [1], wherein the water content is set to 0.10 to 2.0 parts by mass with respect to 100 parts by mass of the fiber precursor fiber bundle, and then wound on a bobbin.

本発明の前駆体繊維束パッケージは、巻形状が良く、巻崩れやパッケージ端面膨れ等の問題が極めて少ない。また、前駆体繊維束は油剤付着量が少ないため、これを炭素化して得られるアクリル系炭素繊維中に油剤に由来する異物の含有量が低くなる。さらに、水分量が少ないため、バクテリア発生などの問題を生じない。   The precursor fiber bundle package of the present invention has a good winding shape, and has very few problems such as unwinding and package end face swelling. In addition, since the precursor fiber bundle has a small amount of oil agent adhesion, the content of foreign matters derived from the oil agent in the acrylic carbon fiber obtained by carbonizing the precursor fiber bundle becomes low. Furthermore, since the amount of water is small, problems such as generation of bacteria do not occur.

本発明の前駆体繊維束パッケージの製造方法によれば、第一の油剤付与工程における乾燥工程が熱空気で繊維を乾燥させるので油剤使用量が少ないにも拘らず、繊維の損傷が極めて少ない。また、得られる前駆体繊維束パッケージは、巻形状が良く、巻崩れやパッケージ端面膨れ等の問題が極めて少ない。   According to the method for producing a precursor fiber bundle package of the present invention, since the drying step in the first oil agent application step dries the fiber with hot air, the amount of the oil agent used is small, but the damage to the fiber is extremely small. Further, the obtained precursor fiber bundle package has a good winding shape, and there are very few problems such as winding collapse and package end face swelling.

本発明のボビンパッケージの製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the bobbin package of this invention. 本発明のボビンパッケージの一端側の一例を示す斜視図である。It is a perspective view which shows an example of the one end side of the bobbin package of this invention. 従来のボビンパッケージの一端側の一例を示す斜視図である。It is a perspective view which shows an example of the one end side of the conventional bobbin package.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は本発明のボビンパッケージの製造方法の一例を示す工程図である。   FIG. 1 is a process diagram showing an example of a bobbin package manufacturing method according to the present invention.

図中の1は紡糸原液であり、この紡糸原液1は紡糸口金2を通じて凝固液3中に紡出されて凝固糸繊維束4aが得られる。凝固糸繊維束4aは、洗浄槽5内の洗浄液6で洗浄される。その後、洗浄された凝固糸繊維束4bは、第一の油剤付与工程に送られ、油剤付与槽7において所定量の油剤8が付着されて油剤付着凝固糸繊維束4cが得られ、その後、熱風乾燥機9で乾燥される。次いで、前記熱空気乾燥された凝固糸繊維束4dはスチーム延伸機11で加熱延伸されてスチーム延伸繊維束4eが得られる。   In the figure, 1 is a spinning stock solution, and this spinning stock solution 1 is spun into a coagulating solution 3 through a spinneret 2 to obtain a coagulated yarn fiber bundle 4a. The coagulated yarn fiber bundle 4 a is washed with the washing liquid 6 in the washing tank 5. Thereafter, the washed coagulated fiber bundle 4b is sent to the first oil agent application step, and a predetermined amount of oil 8 is adhered in the oil agent application tank 7 to obtain the oil agent-attached coagulated fiber fiber bundle 4c. It is dried with a dryer 9. Next, the hot air-dried coagulated fiber bundle 4d is heated and drawn by the steam drawing machine 11 to obtain a steam drawn fiber bundle 4e.

次に、第二の油剤付与工程に移る。スチーム延伸繊維束4eは、油剤付与槽13において油剤14の付着量が所定量に調節される。次いで、油剤が付着された第二油剤付着繊維束4fは乾熱ローラー15によって水分量が所定量に調節されて前駆体繊維束20になる。その後、前駆体繊維束20はワインダー17により巻取られ、本発明であるボビンパッケージ19が得られる。   Next, the process moves to the second oil agent application step. In the steam drawn fiber bundle 4e, the adhesion amount of the oil agent 14 is adjusted to a predetermined amount in the oil agent application tank 13. Next, the moisture amount of the second oil agent-attached fiber bundle 4 f to which the oil agent is attached is adjusted to a predetermined amount by the dry heat roller 15 to become the precursor fiber bundle 20. Then, the precursor fiber bundle 20 is wound up by the winder 17, and the bobbin package 19 which is this invention is obtained.

なお、各工程は従来公知の方法を用いて行えばよい。また、本発明の効果を妨げない限度において、各工程間に他の工程が介在することを妨げない。   Each step may be performed using a conventionally known method. Moreover, it does not prevent that another process intervenes between each process in the limit which does not prevent the effect of this invention.

以下、本発明の実施態様の一例について、より具体的に説明する。   Hereinafter, an example of an embodiment of the present invention will be described more specifically.

〈紡糸原液の調製〉
本例の前駆体繊維の製造に用いる出発原料の紡糸原液は、アクリル系炭素繊維製造用の紡糸原液であれば従来公知のものが何ら制限なく使用できる。例えば、アクリロニトリルを単独で重合したポリアクリロニトリル、又はアクリロニトリルを90質量%以上、好ましくは94質量%以上含有する単量体混合物を重合した共重合体からなる紡糸原液が挙げられる。アクリロニトリルと共重合する単量体としては、イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸等の公知の単量体が挙げられる。
<Preparation of spinning dope>
As the starting raw material spinning solution used in the production of the precursor fiber of this example, any conventionally known spinning solution can be used without limitation as long as it is a spinning raw solution for producing acrylic carbon fibers. Examples thereof include a spinning dope comprising a polyacrylonitrile obtained by polymerizing acrylonitrile alone or a copolymer obtained by polymerizing a monomer mixture containing 90% by mass or more, preferably 94% by mass or more of acrylonitrile. Examples of the monomer copolymerized with acrylonitrile include known monomers such as itaconic acid, methyl acrylate, ethyl acrylate, and acrylic acid.

上記単量体の重合方法としては、溶液重合、懸濁重合、乳化重合等がある。重合体溶液をそのまま紡糸できることから、溶液重合が好ましく、重合溶媒として塩化亜鉛溶媒を用いる溶液重合が最も好ましい。   Examples of the polymerization method for the monomer include solution polymerization, suspension polymerization, and emulsion polymerization. Since the polymer solution can be spun as it is, solution polymerization is preferred, and solution polymerization using a zinc chloride solvent as the polymerization solvent is most preferred.

紡糸原液は、塩化亜鉛水溶液を溶媒として用い、上記単量体を重合させた重合体溶液を用いることが好ましい。   The spinning dope is preferably a polymer solution obtained by polymerizing the above monomers using an aqueous zinc chloride solution as a solvent.

紡糸原液の濃度は、得られる前駆体繊維の比重に影響を与える。溶媒として塩化亜鉛水溶液を用いる場合、紡糸原液の濃度は、10〜40質量%が好ましく、20〜30質量%が更に好ましい。紡糸原液の濃度が低い場合は、得られる前駆体繊維の比重が低くなり、低比重の炭素繊維が得られる。一方、濃度が高い場合は、ポリマーの溶媒に対する溶解度には限界があるため、紡糸原液が不均一になり、好ましくない。   The concentration of the spinning dope affects the specific gravity of the resulting precursor fiber. When using an aqueous zinc chloride solution as a solvent, the concentration of the spinning dope is preferably 10 to 40% by mass, and more preferably 20 to 30% by mass. When the concentration of the spinning dope is low, the specific gravity of the obtained precursor fiber is low, and a low specific gravity carbon fiber is obtained. On the other hand, if the concentration is high, there is a limit to the solubility of the polymer in the solvent, and the spinning dope becomes non-uniform, which is not preferable.

〈紡糸工程〉
1つの紡糸口金に好ましくは1000〜30000の紡糸孔を有する紡糸口金から凝固液中に紡糸原液を紡出して凝固させることにより、凝固糸繊維束を得る。紡糸原液は、低温に冷却した凝固液(紡糸する際の溶媒と水の混合液)を入れた凝固浴中に紡出させる。この紡糸方法としては、公知の湿式紡糸方法や乾湿式紡糸方法等を用いることができる。湿式紡糸法は、紡糸原液を直接凝固液中に紡出する方法である。一方、乾湿式紡糸方法は、紡糸原液を空気中に吐出させた後、3〜5mm程度の空間を通して凝固浴に投入し、凝固させる方法である。最終的に得られる炭素繊維が表面に襞を形成し、樹脂との接着性が期待できるので、湿式紡糸方法がより好ましい。凝固して得られる上記凝固糸繊維束は、公知の方法により水洗を行う。
<Spinning process>
A spinning stock solution is spun into a coagulation liquid from a spinneret having preferably 1,000 to 30,000 spinning holes in one spinneret and solidified to obtain a coagulated fiber bundle. The spinning solution is spun into a coagulating bath containing a coagulating liquid (mixed liquid of solvent and water used for spinning) cooled to a low temperature. As this spinning method, a known wet spinning method, dry wet spinning method, or the like can be used. The wet spinning method is a method of spinning a spinning solution directly into a coagulation solution. On the other hand, the dry and wet spinning method is a method in which a spinning solution is discharged into the air, and then poured into a coagulation bath through a space of about 3 to 5 mm to coagulate. Since the finally obtained carbon fiber forms wrinkles on the surface and adhesion with the resin can be expected, the wet spinning method is more preferable. The coagulated yarn fiber bundle obtained by coagulation is washed with water by a known method.

〈第一油剤付与工程〉
水洗された凝固糸繊維束には第一油剤付与工程にて油剤を付着させる。給油は浸漬給油、タッチローラー給油、スプレー給油など公知の方法により行える。この油剤の付与の目的は、スチーム延伸前の乾燥工程(以下、第一の乾燥工程ともいう。)及びスチーム延伸工程において、単繊維同士の融着防止を図ること、及び水洗された凝固糸繊維束の集束性を向上させることにある。第一の油剤付与工程における油剤の付着量は、絶乾状態における凝固糸繊維束100質量部に対し0.03〜0.40質量部であり、0.05〜0.35質量部が好ましく、0.06〜0.30質量部がより好ましい。0.03質量部未満であると、第一の乾燥工程及びスチーム延伸工程において単繊維同士が融着しやすい。また、油剤付与後の凝固糸繊維束の集束性が悪く、第一の乾燥工程及びスチーム延伸工程において前駆体繊維束が広がり、工程が安定しない。一方、0.40質量部を超えて付着させても、融着や集束性に対する効果は付着量に比例して増加しない。むしろ、最終的に得られる炭素繊維中に、油剤由来の不純物が混入して、炭素繊維の品質が悪くなる。
<First oil agent application process>
In the first oil agent application step, the oil agent is adhered to the washed coagulated fiber bundle. Lubrication can be performed by a known method such as immersion lubrication, touch roller lubrication, or spray lubrication. The purpose of applying this oil agent is to prevent fusion between single fibers in the drying step before steam drawing (hereinafter also referred to as the first drying step) and the steam drawing step, and the coagulated yarn fibers washed with water. It is to improve the convergence of the bundle. The adhesion amount of the oil agent in the first oil agent application step is 0.03 to 0.40 parts by mass with respect to 100 parts by mass of the coagulated fiber bundle in the absolutely dry state, preferably 0.05 to 0.35 parts by mass, 0.06-0.30 mass part is more preferable. If the amount is less than 0.03 parts by mass, the single fibers are easily fused in the first drying step and the steam drawing step. Moreover, the convergence property of the coagulated yarn fiber bundle after application of the oil agent is poor, the precursor fiber bundle spreads in the first drying step and the steam drawing step, and the process is not stable. On the other hand, even if the amount exceeds 0.40 parts by mass, the effect on fusion and convergence is not increased in proportion to the amount of adhesion. Rather, impurities derived from the oil agent are mixed in the carbon fiber finally obtained, and the quality of the carbon fiber is deteriorated.

油剤としてはシリコーンを含有する油剤を用いる。シリコーンは、未変性シリコーン、変性シリコーンの何れでもよいが、変性シリコーンがより好ましい。変性シリコーンの中でもエポキシ変性シリコーン、エチレンオキサイド変性シリコーン、ポリシロキサン、アミノ変性シリコーンが好ましく、アミノ変性シリコーンが特に好ましい。シリコーンを含有する油剤は公知のものが多数市販されている。該油剤と親水基を持つ浸透性油剤とを組み合わせて用いることが好ましい。   As the oil agent, an oil agent containing silicone is used. Silicone may be either unmodified silicone or modified silicone, but modified silicone is more preferable. Among the modified silicones, epoxy-modified silicone, ethylene oxide-modified silicone, polysiloxane, and amino-modified silicone are preferable, and amino-modified silicone is particularly preferable. Many known oils containing silicone are commercially available. It is preferable to use the oil agent in combination with a permeable oil agent having a hydrophilic group.

浸透性油剤は官能基として、スルフィン酸、スルホン酸、燐酸、カルボン酸やそのアルカリ金属塩、アンモニウム塩、その誘導体を有するものが好ましい。これらの浸透性油剤のうちでも、浸透しやすい燐酸アンモニウム若しくはその誘導体を用いるのが特に好ましい。   The osmotic oil agent preferably has sulfinic acid, sulfonic acid, phosphoric acid, carboxylic acid, its alkali metal salt, ammonium salt or its derivative as a functional group. Among these penetrating oils, it is particularly preferable to use ammonium phosphate or a derivative thereof that easily penetrates.

〈第一油剤付与工程後の乾燥工程〉
油剤付着付与後の凝固糸繊維束は乾燥工程で、乾燥される(第一の乾燥工程)。この乾燥工程は、非接触加熱である、熱風乾燥方式が好ましい。乾熱ローラーによる乾燥は、繊維束への油剤付着量が少ない本発明においては、ローラーとの擦れによる繊維損傷を生じやすい。更には、熱圧着による単繊維同士の融着を生じやすい。乾燥温度は、70〜150℃が好ましく、80〜140℃が更に好ましい。乾燥時間は、1〜10分間が好ましい。この熱風乾燥により、凝固糸繊維束100質量部中の水分付着量は0.1〜1.0質量部になる。
<Drying step after the first oil agent application step>
The coagulated fiber bundle after the application of the oil agent is dried in the drying process (first drying process). This drying step is preferably a hot air drying method which is non-contact heating. Drying with a dry heat roller tends to cause fiber damage due to rubbing with the roller in the present invention in which the amount of the oil agent attached to the fiber bundle is small. Furthermore, it is easy to produce the fusion | bonding of the single fibers by thermocompression bonding. The drying temperature is preferably 70 to 150 ° C, more preferably 80 to 140 ° C. The drying time is preferably 1 to 10 minutes. By this hot air drying, the water adhesion amount in 100 parts by mass of the coagulated fiber bundle is 0.1 to 1.0 part by mass.

〈スチーム延伸工程〉
乾燥された凝固糸繊維束は、スチーム延伸工程により、加熱延伸される。スチーム延伸は公知の方法を用いて行えばよい。スチーム延伸条件は、温度100〜150℃、飽和スチーム圧力0.1〜5.0MPa(絶対圧)とすることが好ましい。また、延伸倍率は、水洗・乾燥・スチーム延伸処理を通してのトータル延伸倍率で10〜15倍とすることが好ましい。
<Steam stretching process>
The dried coagulated yarn fiber bundle is heated and stretched by a steam stretching process. The steam stretching may be performed using a known method. The steam stretching conditions are preferably a temperature of 100 to 150 ° C. and a saturated steam pressure of 0.1 to 5.0 MPa (absolute pressure). The stretching ratio is preferably 10 to 15 times in terms of the total stretching ratio through washing, drying and steam stretching.

〈第二油剤付与工程〉
上記スチーム延伸処理後のスチーム延伸繊維束は、延伸により繊維表面の第一油剤膜の分布が不均一になると考えられる。そのため、スチーム延伸繊維束は集束性に劣り、後述するボビンパッケージにする際に巻崩れ等の巻形状不良の原因となる。よって、スチーム延伸繊維束に対して、再度、油剤を付着させる。この工程におけるスチーム延伸繊維束に対する付着量は、絶乾状態における繊維束100質量部に対し0.05〜0.40質量部であり、0.10〜0.35質量部が好ましく、0.15〜0.30質量部が特に好ましい。0.05質量部未満であると、繊維束の集束性が悪く、良好な巻形状のボビンパッケージが得られない。また、0.40質量部を超えて付着させても、集束性に対する効果は上限である。更に、最終的に得られる炭素繊維の品質が悪くなる。なお、第一の油剤付与工程と第二の油剤付与工程における油剤の付着量の合計量は、前駆体繊維束100質量部に対して0.10〜0.50質量部であり、0.20〜0.40質量部が好ましい。付着量の合計量が0.10質量部未満であると、繊維束の集束性が悪く、良好な巻形状のボビンパッケージが得られない。また、0.40質量部を超えて付着させても、集束性に対する効果は上限であるどころか、最終的に得られる炭素繊維の品質が悪くなる恐れがある。
<Second oil agent application step>
It is considered that the distribution of the first oil agent film on the fiber surface becomes nonuniform in the steam-stretched fiber bundle after the steam stretching treatment. For this reason, the steam-stretched fiber bundle is inferior in converging property, and causes a winding shape defect such as collapse when the bobbin package described later is used. Therefore, an oil agent is made to adhere again to the steam drawn fiber bundle. The adhesion amount with respect to the steam stretched fiber bundle in this step is 0.05 to 0.40 part by mass with respect to 100 parts by mass of the fiber bundle in the absolutely dry state, preferably 0.10 to 0.35 part by mass, 0.15 -0.30 mass part is especially preferable. If the amount is less than 0.05 parts by mass, the fiber bundle is poorly converged and a bobbin package having a good winding shape cannot be obtained. Moreover, even if it makes it adhere exceeding 0.40 mass part, the effect with respect to convergence is an upper limit. Furthermore, the quality of the carbon fiber finally obtained becomes worse. In addition, the total amount of the adhesion amount of the oil agent in the first oil agent application step and the second oil agent application step is 0.10 to 0.50 parts by mass with respect to 100 parts by mass of the precursor fiber bundle, and is 0.20. -0.40 mass part is preferable. If the total amount of adhesion is less than 0.10 parts by mass, the fiber bundle is poorly converged and a bobbin package having a good winding shape cannot be obtained. Moreover, even if it makes it adhere exceeding 0.40 mass part, the effect with respect to convergence is not the upper limit, but there exists a possibility that the quality of the carbon fiber finally obtained may worsen.

付着させる油剤は第一の油剤付与工程で使用する油剤と同一の油剤であっても、異なる油剤であっても構わない。   The oil agent to be attached may be the same oil agent as the oil agent used in the first oil agent application step or a different oil agent.

〈第二油剤付与工程後の乾燥工程〉
上記第二油剤付着繊維束は、その後、乾燥工程に付され、これにより前駆体繊維束が得られる。この乾燥工程は、繊維束の処理速度が速いため、熱効率の良い乾熱ローラーによる接触加熱方式で乾燥させることが好ましい。乾燥条件は、前駆体繊維束100質量部に対して水分量が0.10〜2.0質量部となるように調節することが必要である。0.10質量部未満の場合は、特に問題はないが、余分の熱エネルギーを要し、不経済である。2.0質量部を超える場合には、バクテリアが発生したり、前駆体繊維束の内部と外部で水分量が変動したりするため、最終的に得られる炭素繊維の品質が安定しない。乾燥温度については適宜調節すれば良いが、70〜240℃が好ましく、90〜220℃が特に好ましい。乾燥時間については適宜調節すれば良いが、1〜20秒間が好ましい。
<Drying step after the second oil agent application step>
The second oil agent-attached fiber bundle is then subjected to a drying step, whereby a precursor fiber bundle is obtained. This drying step is preferably performed by a contact heating method using a dry heat roller with good thermal efficiency because the processing speed of the fiber bundle is high. It is necessary to adjust the drying conditions so that the water content is 0.10 to 2.0 parts by mass with respect to 100 parts by mass of the precursor fiber bundle. When the amount is less than 0.10 parts by mass, there is no particular problem, but extra heat energy is required, which is uneconomical. When the amount exceeds 2.0 parts by mass, bacteria are generated and the amount of water varies between the inside and outside of the precursor fiber bundle, so that the quality of the finally obtained carbon fiber is not stable. Although what is necessary is just to adjust suitably about drying temperature, 70-240 degreeC is preferable and 90-220 degreeC is especially preferable. Although what is necessary is just to adjust suitably about drying time, 1 to 20 second is preferable.

〈巻取り工程〉
上記処理によって得られた前駆体繊維束は、公知のワインダー装置を用いてボビンに巻き取られ、ボビンパッケージとなり、保存される。ボビン材については、紙やプラスチック、繊維強化プラスチックなど、既知の材を用いることができる。また、係るパッケージに巻き取る際、複数の前駆体繊維束を何本か合糸してから巻き取っても良い。
<Winding process>
The precursor fiber bundle obtained by the above treatment is wound around a bobbin using a known winder device, becomes a bobbin package, and is stored. As the bobbin material, known materials such as paper, plastic, and fiber reinforced plastic can be used. Moreover, when winding up to such a package, you may wind up, after combining several several precursor fiber bundles.

〈焼成〉
上記の前駆体繊維束は、加熱空気中230〜260℃で30〜100分間耐炎化処理される。この耐炎化処理により、アクリル系繊維の環化反応を生じさせ、酸素結合量を増加させて耐炎化繊維を得る。この耐炎化処理は、一般的に、延伸倍率1.00〜1.20の範囲で延伸されることが好ましい。この耐炎化処理により、繊維密度1.33〜1.36g/cm3の耐炎化繊維束が得られる。耐炎化時の張力は上記延伸倍率の範囲を超えない限り特に限定されない。
<Baking>
The precursor fiber bundle is flameproofed at 230 to 260 ° C. in heated air for 30 to 100 minutes. By this flameproofing treatment, a cyclization reaction of the acrylic fiber is caused, and the oxygen bond amount is increased to obtain a flameproof fiber. In general, the flameproofing treatment is preferably performed in a range of a draw ratio of 1.00 to 1.20. By this flameproofing treatment, a flameproofed fiber bundle having a fiber density of 1.33 to 1.36 g / cm3 is obtained. The tension at the time of flame resistance is not particularly limited as long as it does not exceed the range of the draw ratio.

上記耐炎化繊維束は、従来の公知の方法を採用して炭素化することができる。例えば、窒素雰囲気下300〜800℃で焼成炉(第一炭素化炉)で徐々に温度勾配をかけ、耐炎化繊維束の張力を制御して緊張下で一段目の炭素化をする(第一炭素化処理)。より炭素化を進め、且つグラファイト化、即ち炭素の高結晶化を進める為に、窒素等の不活性ガス雰囲気下で昇温し、焼成炉(第二炭素化炉)で徐々に温度勾配をかけ、第一炭素化処理後の繊維束の張力を制御して弛緩条件で焼成する(第二炭素化処理)。焼成温度については、第二炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは800〜2500℃、より好ましくは1100〜2100℃で焼成する。   The flame-resistant fiber bundle can be carbonized using a conventionally known method. For example, a temperature gradient is gradually applied in a firing furnace (first carbonization furnace) at 300 to 800 ° C. in a nitrogen atmosphere, and the tension of the flame-resistant fiber bundle is controlled to perform first-stage carbonization under the tension (first Carbonization treatment). In order to further promote carbonization and promote graphitization, that is, high crystallization of carbon, the temperature is raised in an inert gas atmosphere such as nitrogen, and a temperature gradient is gradually applied in a firing furnace (second carbonization furnace). Then, the tension of the fiber bundle after the first carbonization treatment is controlled, and firing is performed under a relaxation condition (second carbonization treatment). About baking temperature, a temperature gradient is applied in a 2nd carbonization furnace, Preferably it is 800-2500 degreeC in a maximum temperature range, More preferably, it bakes at 1100-2100 degreeC.

上記第二炭素化処理後の繊維束は、引き続き表面酸化処理を施すことが好ましい。表面酸化処理には気相、液相処理によることができるが、工程管理の簡便さと生産性を高める点から、液相処理が好ましい。液相処理のうちでも、液の安全性・安定性の面から、電解液を用いる電解処理が好ましい。電解酸化処理に用いられる電解液としては、硫酸、硝酸、塩酸等の無機酸や、水酸化ナトリウム、水酸化カリウムなどの無機水酸化物、硫酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩類などが挙げられる。   The fiber bundle after the second carbonization treatment is preferably subsequently subjected to surface oxidation treatment. The surface oxidation treatment can be performed by a gas phase or a liquid phase treatment, but a liquid phase treatment is preferable from the viewpoint of easy process control and productivity. Among the liquid phase treatments, electrolytic treatment using an electrolytic solution is preferable from the viewpoint of liquid safety and stability. Examples of the electrolytic solution used for the electrolytic oxidation treatment include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, inorganic hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic salts such as ammonium sulfate, sodium carbonate, and sodium bicarbonate. Can be mentioned.

上記表面酸化処理後の繊維束には、必要に応じ、サイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができる。サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥させることが好ましい。   The fiber bundle after the surface oxidation treatment is subjected to sizing treatment as necessary. The sizing method can be performed by a conventionally known method. The sizing agent is preferably used after changing the composition as appropriate according to the application, and after uniformly depositing the sizing agent.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件、並びに、スチーム延伸処理後の繊維束、耐炎化繊維及び炭素繊維の物性についての評価方法は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the processing method in each Example and a comparative example, and the evaluation method about the physical property of the fiber bundle after a steam extending process, a flame-resistant fiber, and carbon fiber were implemented with the following method.

[シリコーン系油剤の付着量]
JIS L 1015に規定された方法により、繊維束の油剤付着量を測定した。
[Adhesion amount of silicone oil]
The oil agent adhesion amount of the fiber bundle was measured by a method defined in JIS L 1015.

[水分量]
JIS L 0105に規定された方法により、巻取り後の前駆体繊維束の質量をWwとし、前駆体の絶乾質量をWdとして、下記の式
水分量(質量%) = 100 × (Ww−Wd)/Ww
により計算した。
[amount of water]
By the method specified in JIS L 0105, the mass of the precursor fiber bundle after winding is Ww, the absolute dry mass of the precursor is Wd, and the following formula: Water content (mass%) = 100 × (Ww−Wd ) / Ww
Calculated by

[パッケージ端面の膨れ幅]
パッケージの端面において、最外部と最大膨れ箇所の幅を円周沿いに3点計測し、その平均を膨れ幅とした。
[Bulge width of package end face]
On the end face of the package, the width of the outermost part and the maximum swollen part was measured along the circumference at three points, and the average was taken as the swollen width.

[解舒時のトラブル発生率]
前駆体繊維のボビンパッケージを解舒し、耐炎化工程に送る際に、リンガー等のパッケージの形態によるトラブルに起因して切断が発生した頻度を表し、下記の式
トラブル発生率(%) = 100 × 切断本数(本)/投入本数(本)
で計算した。
[Problem occurrence rate when solving]
When the precursor fiber bobbin package is unpacked and sent to the flameproofing process, it represents the frequency of cutting due to trouble due to the form of the package such as Ringer, and the following formula trouble occurrence rate (%) = 100 × Number of cuts (pieces) / Number of throws (pieces)
Calculated with

[耐炎化・炭素化時のケイ素脱落量]
得られた前駆体繊維1000kgを公知の装置、方法を用いて耐炎化・炭素化する際に、炉内に脱落するケイ素の量を以下の基準により評価した。
A:炉内に殆ど観察されない。
B:炉内の一部に確認される。
C:炉内全体に確認される。
D:炉内全体に確認され、かつ炉内壁の一部に堆積している状態である。
E:炉内全体に確認され、かつ炉内壁に堆積している状態である。
[Amount of silicon falling off during flame resistance and carbonization]
When 1000 kg of the obtained precursor fiber was flameproofed and carbonized using a known apparatus and method, the amount of silicon dropped into the furnace was evaluated according to the following criteria.
A: Almost no observation in the furnace.
B: Confirmed in part of the furnace.
C: Confirmed throughout the furnace.
D: It is confirmed in the entire furnace and is deposited on a part of the inner wall of the furnace.
E: The state confirmed in the entire furnace and deposited on the inner wall of the furnace.

[炭素繊維引張強度]
炭素繊維の樹脂含浸ストランド強度は、JIS R 7601に規定された方法により測定した。
[Carbon fiber tensile strength]
The resin-impregnated strand strength of the carbon fiber was measured by the method defined in JIS R7601.

[実施例1]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、1つの紡糸口金に3000の紡糸孔を有する紡糸口金を通して、6℃の25質量%塩化亜鉛水溶液中に紡出して凝固させ、凝固糸繊維束を得た。この繊維束を水洗後、油剤付与槽に導き、油剤としてアミノ変性シリコーン系油剤を表1に示す量を付与した(第一の油剤付与工程)。この繊維束を熱風乾燥機中を通して140℃で乾燥させた後、温度120℃で延伸倍率が6倍になるようにスチーム延伸を行った。その後、この繊維束に対してアミノ変性シリコーン系油剤を表1に示す量を付与し(第二の油剤付与工程)、更に165℃の乾熱ローラーで乾燥させ、単繊維繊度1.1d、フィラメント数3000の前駆体繊維束を得た。得られた前駆体繊維束は、前駆体繊維束100質量部当りの油剤付着量が0.38質量部、水分量が0.9質量部であった。この前駆体繊維束を長さ720mm、外径160mmの紙管に巻厚み300mmとなるまで巻き取った。次いで上記の前駆体繊維束を、公知の方法で焼成することにより炭素繊維を得た。
[Example 1]
A copolymer spinning stock consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid was passed through a spinneret having 3000 spin holes in one spinneret, and a 25% by mass aqueous zinc chloride solution at 6 ° C. It was spun in and coagulated to obtain a coagulated yarn fiber bundle. After washing this fiber bundle with water, it was led to an oil agent application tank, and an amino-modified silicone oil was added as an oil agent in the amount shown in Table 1 (first oil agent application step). The fiber bundle was dried at 140 ° C. through a hot air dryer, and then subjected to steam drawing at a temperature of 120 ° C. so that the draw ratio was 6 times. Thereafter, the amount of amino-modified silicone oil agent shown in Table 1 was applied to the fiber bundle (second oil agent application step), and further dried with a dry heat roller at 165 ° C. to obtain a single fiber fineness of 1.1d, filaments Several 3000 precursor fiber bundles were obtained. The obtained precursor fiber bundle had an oil agent adhesion amount of 0.38 parts by mass and a water content of 0.9 parts by mass per 100 parts by mass of the precursor fiber bundle. This precursor fiber bundle was wound up on a paper tube having a length of 720 mm and an outer diameter of 160 mm until the winding thickness reached 300 mm. Subsequently, carbon fiber was obtained by baking said precursor fiber bundle by a well-known method.

[実施例2〜4]
実施例1における油剤付着量を変更した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束、及び炭素繊維を得た。
[Examples 2 to 4]
Except having changed the oil agent adhesion amount in Example 1, it processed similarly to Example 1 and obtained the precursor fiber bundle and carbon fiber of the physical property shown in Table 1.

[比較例1]
実施例1における第二の油剤付与工程を省き、第一の油剤付与工程での油剤付着量を変更した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束、及び炭素繊維を得た。得られた前駆体繊維束は、集束性に乏しいためと考えられるが、実施例1と比較してボビン解舒時のリンガーや毛羽立ち、及び糸切れといったトラブルが多かった。
[Comparative Example 1]
A precursor fiber bundle having the physical properties shown in Table 1 was processed in the same manner as in Example 1 except that the second oil agent application step in Example 1 was omitted and the oil agent adhesion amount in the first oil agent application step was changed. And carbon fibers were obtained. The obtained precursor fiber bundle is thought to be due to poor convergence, but compared with Example 1, there were more troubles such as ringers, fluffing, and yarn breakage during bobbin unwinding.

[比較例2、5]
実施例1における第二の油剤付与工程を省き、第一の油剤付与工程での油剤付着量を変更した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束、及び炭素繊維を得た。得られた前駆体繊維束は、パッケージ端面の膨れが大きく、巻厚み100mmの時点で採取を終了した。また、ボビン解舒時のリンガーや毛羽立ち、及び糸切れといったトラブルが多かった。
[Comparative Examples 2 and 5]
A precursor fiber bundle having the physical properties shown in Table 1 was processed in the same manner as in Example 1 except that the second oil agent application step in Example 1 was omitted and the oil agent adhesion amount in the first oil agent application step was changed. And carbon fibers were obtained. The obtained precursor fiber bundle had a large package end face swelling, and the collection was completed when the winding thickness was 100 mm. In addition, there were many troubles such as ringers, fluffing and thread breakage during bobbin unwinding.

[比較例3、4、8]
実施例1の方法に加えて巻き取り直前に水分を付与したこと、及び油剤の付着量と巻量を変更した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束、及び炭素繊維を得た。得られた前駆体繊維束を焼成したところ、カビやバクテリアの発生によるものと考えられるが、炭素繊維の強度は実施例1と比較して低くなった。
[Comparative Examples 3, 4, 8]
The precursor of the physical property shown in Table 1 is processed in the same manner as in Example 1 except that in addition to the method of Example 1, moisture was applied just before winding, and the adhesion amount and winding amount of the oil agent were changed. Fiber bundles and carbon fibers were obtained. When the obtained precursor fiber bundle was fired, it was considered that it was caused by the generation of mold and bacteria, but the strength of the carbon fiber was lower than that in Example 1.

[比較例6]
実施例1における第一の油剤付与工程後の第一の乾燥工程において乾熱ローラー方式によって乾燥した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束を得た。得られた炭素繊維前駆体繊維束は、集束性に乏しいためと考えられるが、パッケージ端面の膨れが大きく、またボビン解舒時のリンガーや毛羽立ち、及び糸切れといったトラブルが多かった。更に、接触加熱により繊維表面が損傷した為と考えられるが、炭素繊維強度は実施例1と比較して低くなった。
[Comparative Example 6]
Except having dried by the dry heat roller system in the first drying step after the first oil agent application step in Example 1, the same treatment as in Example 1 was performed to obtain a precursor fiber bundle having physical properties shown in Table 1. It was. The obtained carbon fiber precursor fiber bundle is thought to be due to poor convergence, but the package end face swelled greatly, and there were many troubles such as ringers, fluffing, and yarn breakage during bobbin unwinding. Furthermore, although it is considered that the fiber surface was damaged by contact heating, the carbon fiber strength was lower than that of Example 1.

[比較例7、9]
実施例1における油剤付着量を変更した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束を得た。得られた前駆体繊維束を用いて、炭素繊維の製造を行ったところ、耐炎化・炭素化時のケイ素の脱落が多く見られた。
[Comparative Examples 7 and 9]
Except having changed the oil agent adhesion amount in Example 1, it processed similarly to Example 1 and obtained the precursor fiber bundle of the physical property shown in Table 1. When carbon fiber was produced using the obtained precursor fiber bundle, silicon was frequently dropped during flame resistance and carbonization.

[比較例10]
実施例1における油剤付着量を変更し、第一の油剤付与工程後の第一の乾燥工程において乾熱ローラー方式によって乾燥した以外は、実施例1と同様に処理を行い、表1に示す物性の前駆体繊維束を得た。得られた前駆体繊維束を用いて、炭素繊維の製造を行ったところ、耐炎化・炭素化時のケイ素の脱落が多く見られた。
[Comparative Example 10]
The physical properties shown in Table 1 are the same as those in Example 1, except that the amount of oil attached in Example 1 is changed and dried by the dry heat roller method in the first drying step after the first oil applying step. A precursor fiber bundle was obtained. When carbon fiber was produced using the obtained precursor fiber bundle, silicon was frequently dropped during flame resistance and carbonization.

Figure 2010202999
Figure 2010202999

100 本発明のボビンパッケージの製造工程
1 紡糸原液
2 紡糸口金
3 凝固液
4a 凝固糸繊維束
4b 洗浄された凝固糸繊維束
4c 油剤付着凝固糸繊維束
4d 熱空気乾燥された凝固糸繊維束
4e スチーム延伸繊維束
4f 第二油剤付着繊維束
5 洗浄槽
6 洗浄液
7 第一の油剤付与槽
8 油剤
9 熱風乾燥機
11 スチーム延伸機
13 第二の油剤付与槽
14 油剤
15 乾熱ローラー
17 ワインダー
19 ボビンパッケージ
20 前駆体繊維
200 本発明のボビンパッケージの一端側
21 ボビン
23 ボビンに巻かれた炭素繊維前駆体繊維束
300 従来のボビンパッケージの一端側
31 ボビン
33 ボビンに巻かれた炭素繊維前駆体繊維束
100 Manufacturing process 1 of bobbin package of the present invention Spinning stock solution 2 Spinneret 3 Coagulating liquid 4a Coagulated fiber bundle 4b Washed coagulated fiber bundle 4c Oil agent-attached coagulated fiber bundle 4d Hot air dried coagulated fiber bundle 4e Steam Stretched fiber bundle 4f Second oil agent-attached fiber bundle 5 Cleaning tank 6 Cleaning liquid 7 First oil agent application tank 8 Oil agent 9 Hot air dryer 11 Steam drawing machine 13 Second oil agent application tank 14 Oil agent 15 Dry heat roller 17 Winder 19 Bobbin package 20 Precursor fiber 200 One end side 21 of bobbin package of the present invention 21 Bobbin 23 Carbon fiber precursor fiber bundle 300 wound around bobbin 300 One end side 31 of conventional bobbin package Bobbin 33 Carbon fiber precursor fiber bundle wound around bobbin

Claims (2)

ボビンと、前記ボビンに巻き回されたアクリル系炭素繊維前駆体繊維束とからなるパッケージであって、前記アクリル系炭素繊維前駆体繊維束がその100質量部に対してシリコーン系油剤を0.10〜0.50質量部、及び水を0.10〜2.0質量部含有していることを特徴とするアクリル系炭素繊維前駆体繊維束パッケージ。 A package comprising a bobbin and an acrylic carbon fiber precursor fiber bundle wound around the bobbin, wherein the acrylic carbon fiber precursor fiber bundle contains 0.10 silicone oil with respect to 100 parts by mass. An acrylic carbon fiber precursor fiber bundle package containing ˜0.50 parts by mass and 0.10 to 2.0 parts by mass of water. 紡糸原液を紡糸して得られる凝固糸繊維束に、凝固糸繊維束100質量部に対して0.03〜0.40質量部のシリコーン系油剤を付着した後、前記油剤を付着した凝固糸繊維束を熱空気により乾燥し、次いで前記熱空気乾燥した繊維束をスチーム延伸し、次いで前記スチーム延伸した繊維束100質量部に対し、シリコーン系油剤を0.05〜0.40質量部(但し、シリコーン系油剤の合計付着量はアクリル系炭素繊維前駆体繊維束100質量部に対して0.10〜0.50質量部とする。)付着させて乾燥することによりアクリル系炭素繊維前駆体繊維束100質量部に対する水の含有量を0.10〜2.0質量部とし、その後ボビンに巻き取ることを特徴とする請求項1のパッケージの製造方法。 To a coagulated fiber bundle obtained by spinning the spinning dope, 0.03 to 0.40 parts by mass of a silicone-based oil agent is attached to 100 parts by mass of the coagulated fiber bundle, and then the coagulated fiber is attached with the oil. The bundle is dried with hot air, and then the hot air-dried fiber bundle is steam-stretched, and then the silicone-based oil agent is added in an amount of 0.05 to 0.40 parts by mass (provided that 100 parts by mass of the steam-stretched fiber bundle (provided that The total adhesion amount of the silicone-based oil is 0.10 to 0.50 parts by mass with respect to 100 parts by mass of the acrylic carbon fiber precursor fiber bundle.) The acrylic carbon fiber precursor fiber bundle is adhered and dried. The method for producing a package according to claim 1, wherein the content of water with respect to 100 parts by mass is set to 0.10 to 2.0 parts by mass and then wound on a bobbin.
JP2009049918A 2009-03-03 2009-03-03 Acrylic carbon fiber precursor fiber bundle package and method for producing the same Pending JP2010202999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049918A JP2010202999A (en) 2009-03-03 2009-03-03 Acrylic carbon fiber precursor fiber bundle package and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049918A JP2010202999A (en) 2009-03-03 2009-03-03 Acrylic carbon fiber precursor fiber bundle package and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010202999A true JP2010202999A (en) 2010-09-16

Family

ID=42964758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049918A Pending JP2010202999A (en) 2009-03-03 2009-03-03 Acrylic carbon fiber precursor fiber bundle package and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010202999A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920644B1 (en) * 2015-02-26 2016-05-18 東洋紡株式会社 Protective clothing material
JP6069721B1 (en) * 2016-04-26 2017-02-01 東洋紡株式会社 Sewing thread, protective material, protective clothing and protective equipment using the sewing thread

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920644B1 (en) * 2015-02-26 2016-05-18 東洋紡株式会社 Protective clothing material
JP2016163681A (en) * 2015-02-26 2016-09-08 東洋紡株式会社 Protective clothing material
JP6069721B1 (en) * 2016-04-26 2017-02-01 東洋紡株式会社 Sewing thread, protective material, protective clothing and protective equipment using the sewing thread

Similar Documents

Publication Publication Date Title
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP5100758B2 (en) Carbon fiber strand and method for producing the same
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP2007162144A (en) Method for producing carbon fiber bundle
JP2010222731A (en) Apparatus for cleaning coagulated yarn of polyacrylonitrile polymer and method for producing polyacrylonitrile-based fiber
JP2010202999A (en) Acrylic carbon fiber precursor fiber bundle package and method for producing the same
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP2011017100A (en) Method for producing carbon fiber
JP2010236139A (en) Method for producing acrylic fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP4983261B2 (en) Textile manufacturing method
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber