JP4459398B2 - Method for producing wound body of carbon fiber precursor fiber bundle - Google Patents

Method for producing wound body of carbon fiber precursor fiber bundle Download PDF

Info

Publication number
JP4459398B2
JP4459398B2 JP2000209311A JP2000209311A JP4459398B2 JP 4459398 B2 JP4459398 B2 JP 4459398B2 JP 2000209311 A JP2000209311 A JP 2000209311A JP 2000209311 A JP2000209311 A JP 2000209311A JP 4459398 B2 JP4459398 B2 JP 4459398B2
Authority
JP
Japan
Prior art keywords
fiber bundle
fiber
fiber bundles
carbon fiber
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000209311A
Other languages
Japanese (ja)
Other versions
JP2002020037A (en
Inventor
知之 小谷
有生 下田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000209311A priority Critical patent/JP4459398B2/en
Publication of JP2002020037A publication Critical patent/JP2002020037A/en
Application granted granted Critical
Publication of JP4459398B2 publication Critical patent/JP4459398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維前駆体繊維束の巻取体の製造方法に関する。更に詳しくは、フィラメント数の少ない炭素繊維束を効率的に製造するのに適した炭素繊維前駆体繊維束の巻取体の製造方法に関する。
【0002】
【従来の技術】
炭素繊維は、複合材料の強化繊維として航空宇宙用途やスポーツ用途、一般産業用途などに幅広く利用されている。
【0003】
炭素繊維は、その前駆体繊維であるポリアクリロニトリル系の繊維などを紡糸する紡糸工程、200〜300℃の空気、酸化窒素等の酸化性雰囲気中で前記前駆体繊維を加熱して酸化繊維に転換する耐炎化工程、更に、窒素、アルゴン、ヘリウム等の不活性雰囲気中で300〜3000℃に加熱して炭素化する炭素化工程を経て製造される。
【0004】
一般に、前記耐炎化工程や炭素化工程などの焼成工程では、その処理に長時間を要するため、繊維束の走行速度が、紡糸工程のそれに比べて遅い。そのため、炭素繊維を高効率で製造する場合に、上述した各製造工程のうち、焼成工程が律速になりやすい。従って、フィラメント数の少ない炭素繊維束を効率的に生産するには、焼成工程における各処理装置内の空間に対する繊維束が占める割合(以下、装置内の繊維束密度という。)を高めることが望ましい。つまり、1つの製造設備において走行させ得る繊維束の本数を増加させる必要がある。
【0005】
しかし、1つの製造設備において走行させる繊維束の本数を増加させようとすれば、その繊維束の本数の増加に伴い、焼成工程での仕掛け設備や炭素繊維束の巻き取り設備を増設する必要があり、設備投資コストが大きくなる。
【0006】
そこで、前駆体繊維束の焼成工程での仕掛け設備を増設することなく、フィラメント数の少ない炭素繊維束を効率的に生産するために、従来から、複数の繊維束を合糸して太い糸条とし、従来の耐炎化又は炭素化などの焼成装置において単一の繊維束を走行させていた部位に、複数本の繊維束を合糸して得られる太い糸条を走行させている。
【0007】
この太い糸条は焼成工程を経て炭素繊維となった後に、元の各繊維束に分割される。例えば特開平9−273032号公報に開示されている炭素繊維の製造方法では、後の分割を容易にするために、前駆体繊維束の紡糸時に、各繊維束をV型やU型の溝付ガイドを通過させ、或いは甘く撚りを掛けたり気体交絡処理を施したりして収束性を付与した後、かかる収束性が付与された複数本の繊維束をV型やU型の溝付ガイドを通過させて合糸した後、巻き取るようにしている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記公報に記載されている方法では、分割能を向上させているとはいえ、複数の繊維束を一本の糸条に合糸してから巻き取る以上、その巻取時に単繊維同士が交絡し、以降、各繊維束に分割する際の分割性が悪くなるのは否めず、各繊維束への分割の際に毛羽が発生して炭素繊維束の品質が低下する。
【0009】
そこで、糸条から複数の繊維束への分割性を向上させるためには、各繊維束の収束性を高めるべく、紡糸工程で加撚すればよい。しかしながら、その場合には、焼成工程で繊維束を解撚しなければならず、そのための設備コストが必要となり、好ましくない。
【0010】
本発明は、上述した従来の問題点を解消することを目的としており、具体的には前駆体繊維束を焼成して炭素繊維を製造する上で、新たな設備投資を抑えつつ、焼成工程における装置内の繊維束密度を高めて、フィラメント数の少ない炭素繊維束を高効率に生産でき、毛羽の発生が極めて少ない高品質の炭素繊維束が得られる炭素繊維前駆体繊維束の巻取体と同巻取体の製造方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
上述の目的を達成するために、本件請求項1に係る発明は、少なくとも2本の炭素繊維前駆体繊維束のそれぞれに気体交絡処理により収束性を付与した後、繊維束を引き揃えることなく独立して且つ同期してトラバースさせながら単一のボビンに巻き取ることを特徴としている。
【0013】
単一の前記炭素繊維前駆体繊維束が巻き取られている巻取体から、複数の繊維束を同時に引き出し、これを一本に引き揃えて従来の耐炎化及び炭素化装置に導入し、従来、単一の繊維束を走行させていた部位を走行させて耐炎化及び炭素化を行う。これにより、耐炎化及び炭素化装置内での繊維束密度が高まり、炭素繊維の製造効率が高まる。また、前記装置には既存の装置を採用できるため、新たな設備費も不要である。
【0014】
一本に引き揃えられて炭素化された複数の繊維束は、炭素化の後、元の各繊維束に分割される。このとき、本発明によれば巻取体の段階では、複数の繊維束を引き揃えておく必要はなく、個々の独立した繊維束が単一のボビンに一緒に巻き取られており、耐炎化及び炭素化の際に複数の繊維束を一本に引き揃えるにすぎないため、炭素化の後に分割する際にも、各繊維束は極めて容易に分割される。そのため、毛羽の発生も防止でき、優れた品質の炭素繊維を得ることができる。
【0015】
【発明の実施形態】
以下、本発明の好適な実施形態について具体的に説明する。
本発明における前駆体繊維束としては、アクリロニトリル90重量%以上からなるアクリル系重合体からなるアクリル系繊維束を用いることができる。10重量%以内であればアクリロニトリル以外のモノマーを共重合成分として含んでいてもよい。
【0016】
前記共重合モノマーとしては、アクリル酸、メタクリル酸、イタコン酸、もしくはこれらのメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、アルカリ金属塩、アンモニウム塩、又はアリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、もしくはこれらのアルカリ金属塩、スチレン、酢酸ビニル、アクリルアミド等を用いることができる。
【0017】
前駆体繊維束は次のようにして製造することができる。前記アクリル系重合体を乳化重合、塊状重合、溶液重合等の重合法を用いて重合し、さらにこれらの重合体からアクリル繊維を製造するに際してはジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、硝酸、ロダンソーダ水溶液、塩化亜鉛水溶液等を溶媒とするポリマー溶液を紡糸原液として、湿式紡糸法や乾湿式紡糸法によって繊維化する。
【0018】
紡出された繊維束には、通常、浴中延伸が施される。この浴中延伸は紡出された繊維束に直接施してもよいし、或いは、紡出された繊維束を一度水洗して溶媒を除去した後に浴中延伸を施すこともできる。前記浴中延伸では、通常50〜98℃の延伸浴中で約2〜6倍に延伸される。浴中延伸後の繊維束は、通常、油剤が付与され、ホットローラーなどで乾燥緻密化した後、スチーム中などで約2〜6倍に延伸されてアクリル系繊維束とされ、収束性が付与される。
【0019】
収束性を付与する手段としては、気体交絡処理やニードルパンチ処理等の繊維束を構成する単繊維同士を交絡させる手段や、仮撚り等による手段が挙げられるが、毛羽の発生を抑制する観点からは気体交絡処理による集束が最も好ましい。
【0020】
気体交絡により繊維束を収束させる場合には、気体交絡処理装置に供給する気体圧力を、好ましくは80〜650kPa、より好ましくは150〜550kPaとする。この気体圧力が80kPa以下では気体交絡により十分な収束性が付与できないし、650kPa以上では気体圧力が高すぎて繊維束にダメージを与え、炭素繊維前駆体繊維束の毛羽発生の原因となる。
【0021】
収束性を付与した複数本の繊維束をワインダーなどにより、引き揃えることなく単一のボビンに巻き取って炭素繊維前駆体繊維束の巻取体とする。後に複数の繊維束へと分割する際の分割のし易さや、設備制約の観点から、繊維束のフィラメント数は、好ましくは500〜12000フィラメント、より好ましくは1000〜8000フィラメントとし、単一の巻取体としてボビンに巻き取られる繊維束の本数は、好ましくは2〜10本、より好ましくは2〜6本とする。
【0022】
以下、本発明について具体的な実施例を挙げて説明する。
以下の実施例において、得られた炭素繊維束の糸条から複数の繊維束に分割した時の毛羽数は、走行状態の分割直後の繊維束を肉眼で1時間観察し繊維束表面の毛羽の数を計測して求めた。
【0023】
また、実施例中、前駆体繊維束の毛羽数は、焼成工程の仕掛け設備において巻取体から引き出されて走行状態にある前駆体繊維繊維束を肉眼で1時間観察し繊維束表面の毛羽の数を計測して求めた。
【0024】
(比較例1)
アクリル系重合体のジメチルアセトアミド溶液を紡糸原液として、3000ホールの口金を用いて、ジメチルアセトアミドと水とからなる凝固浴中に吐出し凝固繊維束を得た。前記凝固繊維束を水洗した後、熱水中で5倍に延伸し、油剤を付与し、その後、乾燥緻密化を行い、引き続いて加圧スチーム延伸工程を経て乾燥させ、単繊維繊度が1.0dで、総繊度が3000dの延伸繊維束とした。
上記延伸繊維束2本を引き揃えることなく独立して且つ同期してトラバースさせながら、単一のボビンにワインダーで巻き取り、前駆体繊維束の巻取体を製造した。
次いで、前記巻取体から複数の繊維束を同時に引き出して一本に引き揃え、焼成工程に導き、耐炎化処理し、引き続いて炭素化処理した。炭素化処理後、一本に引き揃えられた複数の繊維束を、元の各繊維束に分割しフィラメント数3000本の炭素繊維束を得た。この分割の際の毛羽数と前駆体繊維束の毛羽数を評価し表1に示した。
【0025】
(実施例1)
前記延伸繊維束にそれぞれ空気交絡処理機を用いて収束性を付与してから、この繊維束2本を引き揃えることなく独立して且つ同期してトラバースさせながら、単一のボビンにワインダ−で巻き取った。
その後、比較例1と同様に、前記巻取体から複数の繊維束を同時に引き出して一本に引き揃え、耐炎化及び炭素化処理を施した後、一本に引き揃えられた複数の繊維束を、元の各繊維束に分割しフィラメント数3000本の炭素繊維束を得た。各繊維束へ分割する際の毛羽数と前駆体繊維束の毛羽数を評価し表1に示した。
なお、空気交絡処理機の空気圧は、100、200、300、500、600kPaで交絡処理を行った。
【0026】
(比較例2)
延伸繊維束に収束性を付与する際の空気交絡処理機の空気圧を700kPaとして、実施例1と同様に前駆体繊維束の巻取体を製造した。その後、実施例1と同様にして、フィラメント数3000本の炭素繊維束を得た。各繊維束へ分割する際の毛羽数と前駆体繊維束の毛羽数を評価し表1に示した。
【0027】
(比較例3)
延伸繊維束に収束性を付与する際の空気交絡処理機の空気圧を300kPaとして得られた2本の収束性が付与された前駆体繊維束を、V型溝付きガイドを通過させて一本の糸条に合糸してから、単一のボビンに巻き取って巻取体を製造した。次いで、前記巻取体から前記糸条を引き出して、耐炎化及び炭素化処理を施した後、元の各繊維束に分割してフィラメント数3000本の炭素繊維束を得た。この分割の際の毛羽数と前駆体繊維束の毛羽数とを評価し表1に示した。
【0028】
【表1】

Figure 0004459398
【0029】
比較例1では、前駆体繊維束に収束性を付与せずに、2本の繊維束を巻取体に巻き取っているため、耐炎化及び炭素化の際に引き揃えれられたときに、各繊維束の単繊維同士が絡み合ってしまい、炭素化後に元の各繊維束に分割する際に毛羽が発生してしまう。
【0030】
また、比較例2では、前駆体繊維束に空気交絡処理により収束性を付与する際のエアー処理圧力が大きいため、この空気交絡処理により、前駆体繊維束に毛羽が発生してしまう。
【0031】
更に、比較例3では、適度に収束性が付与されている2本の繊維束を、V型溝を通過させて1本の糸条に合糸してからボビンに巻き取っているため、その巻取時に単繊維同士が交絡し、以降、各繊維束に分割する際の分割性が悪く、分割時に毛羽が発生する。
【0032】
以上、説明したように、本発明によれば、フィラメント数の少ない炭素繊維前駆体繊維束を焼成する際に、複数の前駆体繊維束を引き揃えることなく単一のボビンに巻き取られた巻取体を採用することにより、前記巻取体から引き出した複数の繊維束を1本に引き揃え、従来、単一の繊維束を走行させていた部位に安定して走行させ、焼成することができるため、焼成装置内での繊維密度が高まり、焼成工程での生産性を向上させ、フィラメント数の多い場合と同様の生産性を得ることが可能となる。
【0033】
また、複数の前駆体繊維束を引き揃えることなく単一の巻取体に巻き取っているため、各繊維束の独立性が高く、同巻取体から複数の繊維束を同時に引き出して、一本の糸条として引き揃えて焼成工程を経た後に再度、前記糸条から複数の繊維束に分割する際にも、容易に分割される。そのため、毛羽の発生も少なく、高品質の炭素繊維束を得ることができる。
【0034】
また、巻取体に巻き取る際に複数の繊維束を合糸するための工程が不要となるため、その設備も排除でき、更には、分割性が良好であるため、各繊維束を加撚する必要もなく、この加撚の設備とそれに伴う解撚の設備とを排除でき、設備費低減に寄与できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a wound body of carbon fiber precursor fiber bundles. More specifically, the present invention relates to a method for producing a wound body of carbon fiber precursor fiber bundles suitable for efficiently producing a carbon fiber bundle having a small number of filaments.
[0002]
[Prior art]
Carbon fibers are widely used as a reinforcing fiber for composite materials in aerospace applications, sports applications, general industrial applications, and the like.
[0003]
Carbon fiber is converted to oxidized fiber by heating the precursor fiber in a spinning process of spinning polyacrylonitrile fiber, which is the precursor fiber, in an oxidizing atmosphere such as air and nitrogen oxide at 200-300 ° C. And a carbonization step of heating to 300 to 3000 ° C. in an inert atmosphere such as nitrogen, argon or helium.
[0004]
In general, in the firing process such as the flameproofing process and the carbonization process, the processing takes a long time, so the traveling speed of the fiber bundle is slower than that in the spinning process. Therefore, when manufacturing carbon fiber with high efficiency, among the above-described manufacturing steps, the firing step tends to be rate-limiting. Therefore, in order to efficiently produce a carbon fiber bundle having a small number of filaments, it is desirable to increase the ratio of the fiber bundle to the space in each processing apparatus in the firing process (hereinafter referred to as the fiber bundle density in the apparatus). . That is, it is necessary to increase the number of fiber bundles that can be run in one manufacturing facility.
[0005]
However, if an attempt is made to increase the number of fiber bundles to be run in a single production facility, it is necessary to increase the installation equipment in the firing process and the take-up equipment for the carbon fiber bundle as the number of fiber bundles increases. Yes, the capital investment cost increases.
[0006]
Therefore, in order to efficiently produce a carbon fiber bundle with a small number of filaments without adding additional equipment for the precursor fiber bundle firing step, conventionally, a plurality of fiber bundles are combined to form a thick yarn. In the conventional firing apparatus such as flameproofing or carbonization, a thick yarn obtained by joining a plurality of fiber bundles is made to run in a part where a single fiber bundle is made to run.
[0007]
These thick yarns are divided into original fiber bundles after becoming a carbon fiber through a firing step. For example, in the carbon fiber manufacturing method disclosed in Japanese Patent Application Laid-Open No. 9-273032, in order to facilitate subsequent division, each fiber bundle is provided with a V-shaped or U-shaped groove when spinning the precursor fiber bundle. After passing the guide, or twisting sweetly or applying gas entanglement treatment to give convergence, pass multiple fiber bundles with such convergence through V-shaped or U-shaped grooved guides After being combined, they are wound up.
[0008]
[Problems to be solved by the invention]
However, in the method described in the above publication, the splitting ability is improved, but more than one fiber bundle is wound on a single yarn and wound, so that the single fibers are wound together at the time of winding. After that, it is unavoidable that the splitting property at the time of splitting into each fiber bundle deteriorates, and fluff is generated at the time of splitting into each fiber bundle and the quality of the carbon fiber bundle is lowered.
[0009]
Therefore, in order to improve the splitting property from the yarn into a plurality of fiber bundles, twisting may be performed in the spinning process in order to improve the convergence of each fiber bundle. However, in that case, the fiber bundle must be untwisted in the firing step, which necessitates equipment costs and is not preferable.
[0010]
The present invention aims to eliminate the above-described conventional problems, and specifically, in the production of carbon fibers by firing a precursor fiber bundle, while suppressing new equipment investment, in the firing step A carbon fiber precursor fiber bundle wound body that can increase the density of the fiber bundle in the apparatus, produce a carbon fiber bundle with a small number of filaments with high efficiency, and obtain a high-quality carbon fiber bundle with extremely low fluff generation; It aims at providing the manufacturing method of the winding body.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention does not align each fiber bundle after imparting convergence to each of at least two carbon fiber precursor fiber bundles by gas entanglement treatment. It is characterized by being wound on a single bobbin while traversing independently and synchronously .
[0013]
A plurality of fiber bundles are simultaneously drawn out from a wound body in which the single carbon fiber precursor fiber bundle is wound, and these are bundled together and introduced into a conventional flameproofing and carbonizing apparatus. Then, the part where the single fiber bundle was made to travel is made flameproof and carbonized. Thereby, the fiber bundle density in a flameproofing and carbonization apparatus increases, and the manufacturing efficiency of carbon fiber increases. Moreover, since an existing apparatus can be adopted as the apparatus, no new equipment cost is required.
[0014]
A plurality of fiber bundles that are aligned and carbonized are divided into original fiber bundles after carbonization. At this time, according to the present invention, it is not necessary to arrange a plurality of fiber bundles at the stage of the winding body, and individual independent fiber bundles are wound together on a single bobbin, so that flame resistance is achieved. In addition, since only a plurality of fiber bundles are aligned in one during carbonization, each fiber bundle can be divided very easily when dividing after carbonization. Therefore, generation | occurrence | production of fluff can also be prevented and the carbon fiber of the outstanding quality can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described.
As the precursor fiber bundle in the present invention, an acrylic fiber bundle made of an acrylic polymer composed of 90% by weight or more of acrylonitrile can be used. If it is within 10% by weight, a monomer other than acrylonitrile may be included as a copolymerization component.
[0016]
Examples of the copolymerization monomer include acrylic acid, methacrylic acid, itaconic acid, or methyl ester, ethyl ester, propyl ester, butyl ester, alkali metal salt, ammonium salt, or allyl sulfonic acid, methallyl sulfonic acid, styrene sulfone. An acid or an alkali metal salt thereof, styrene, vinyl acetate, acrylamide or the like can be used.
[0017]
The precursor fiber bundle can be manufactured as follows. The acrylic polymer is polymerized using a polymerization method such as emulsion polymerization, bulk polymerization, solution polymerization and the like, and when producing acrylic fibers from these polymers, dimethylacetamide, dimethyl sulfoxide, dimethylformamide, nitric acid, rhodium soda aqueous solution Then, a polymer solution using a zinc chloride aqueous solution or the like as a solvent is used as a spinning stock solution to be fiberized by wet spinning or dry wet spinning.
[0018]
The spun fiber bundle is usually stretched in a bath. The stretching in the bath may be performed directly on the spun fiber bundle, or the spun fiber bundle may be washed once with water to remove the solvent and then stretched in the bath. In the stretching in the bath, the stretching is usually performed about 2 to 6 times in a stretching bath at 50 to 98 ° C. The fiber bundle after stretching in the bath is usually provided with an oil agent, dried and densified with a hot roller, etc., and then stretched about 2 to 6 times in steam to obtain an acrylic fiber bundle, thereby imparting convergence. Is done.
[0019]
Examples of means for imparting convergence include means for entanglement of single fibers constituting the fiber bundle such as gas entanglement treatment and needle punch treatment, and means by false twisting, etc., from the viewpoint of suppressing the occurrence of fluff. Is most preferably focused by gas entanglement.
[0020]
When the fiber bundle is converged by gas entanglement, the gas pressure supplied to the gas entanglement processing apparatus is preferably 80 to 650 kPa, more preferably 150 to 550 kPa. If the gas pressure is 80 kPa or less, sufficient convergence cannot be imparted by gas entanglement, and if it is 650 kPa or more, the gas pressure is too high and damages the fiber bundle, causing fluffing of the carbon fiber precursor fiber bundle.
[0021]
A plurality of fiber bundles imparted with convergence are wound around a single bobbin without being aligned by a winder or the like to obtain a wound body of carbon fiber precursor fiber bundles. From the viewpoint of ease of splitting into a plurality of fiber bundles later, and from the viewpoint of equipment restrictions, the number of filaments in the fiber bundle is preferably 500-12000 filaments, more preferably 1000-8000 filaments, The number of fiber bundles wound around the bobbin as a collecting body is preferably 2 to 10, more preferably 2 to 6.
[0022]
Hereinafter, the present invention will be described with reference to specific examples.
In the following examples, the number of fluff when the obtained carbon fiber bundle was divided into a plurality of fiber bundles was determined by observing the fiber bundle immediately after division in the running state with the naked eye for 1 hour. It was determined by measuring the number.
[0023]
Further, in the examples, the number of fluffs of the precursor fiber bundles was determined by observing the precursor fiber fiber bundles that were pulled out of the winding body in the firing apparatus and in the running state with the naked eye for 1 hour. It was determined by measuring the number.
[0024]
(Comparative Example 1)
A dimethylacetamide solution of an acrylic polymer was used as a spinning stock solution and discharged into a coagulation bath composed of dimethylacetamide and water using a 3000 hole die to obtain a coagulated fiber bundle. After the coagulated fiber bundle is washed with water, it is stretched 5 times in hot water to give an oil agent, followed by drying and densification, followed by drying through a pressure steam stretching process, and the single fiber fineness is 1. A drawn fiber bundle having a total fineness of 3000 d at 0 d was obtained.
The two drawn fiber bundles were wound around a single bobbin with a winder while being traversed independently and synchronously without being aligned, thereby producing a wound body of precursor fiber bundles.
Next, a plurality of fiber bundles were pulled out from the wound body at the same time and aligned into one, led to a firing step, subjected to flame resistance treatment, and subsequently carbonized. After the carbonization treatment, a plurality of fiber bundles aligned into one were divided into original fiber bundles to obtain carbon fiber bundles having 3000 filaments. Table 1 shows the number of fluffs and the number of fluffs of the precursor fiber bundle at the time of the division.
[0025]
Example 1
After converging the stretched fiber bundles using an air entanglement processor, the two fiber bundles are traversed independently and synchronously without being aligned, and a single bobbin is wound with a winder. Winded up.
Thereafter, as in Comparative Example 1, a plurality of fiber bundles are drawn from the winding body at the same time and aligned to one, subjected to flame resistance and carbonization treatment, and then aligned to one. Was divided into original fiber bundles to obtain a carbon fiber bundle having 3000 filaments. Table 1 shows the number of fluffs when the fiber bundles are divided and the number of fluffs of the precursor fiber bundles.
In addition, the entanglement process was performed with the air pressure of the air entanglement processing machine being 100, 200, 300, 500, 600 kPa.
[0026]
(Comparative Example 2)
A winder of the precursor fiber bundle was manufactured in the same manner as in Example 1 with the air pressure of the air entanglement processor used to impart convergence to the drawn fiber bundle being 700 kPa. Thereafter, in the same manner as in Example 1, a carbon fiber bundle having 3000 filaments was obtained. Table 1 shows the number of fluffs when the fiber bundles are divided and the number of fluffs of the precursor fiber bundles.
[0027]
(Comparative Example 3)
Two precursor fiber bundles, which are obtained by setting the air pressure of the air entanglement processing machine when imparting convergence to the drawn fiber bundle to 300 kPa, are passed through a V-shaped grooved guide, After being combined with the yarn, it was wound around a single bobbin to produce a wound body. Next, the yarn was pulled out from the wound body, subjected to flame resistance and carbonization treatment, and then divided into original fiber bundles to obtain a carbon fiber bundle having 3000 filaments. Table 1 shows the number of fluffs and the number of fluffs of the precursor fiber bundle in this division.
[0028]
[Table 1]
Figure 0004459398
[0029]
In Comparative Example 1, since the two fiber bundles are wound around the winding body without imparting convergence to the precursor fiber bundle, each of the fiber bundles is aligned at the time of flame resistance and carbonization. Single fibers of the fiber bundle are entangled with each other, and fluff is generated when the fiber bundle is divided into original fiber bundles after carbonization.
[0030]
Further, in Comparative Example 2, since the air treatment pressure when the convergence property is imparted to the precursor fiber bundle by the air entanglement process, fluff is generated in the precursor fiber bundle due to the air entanglement process.
[0031]
Furthermore, in Comparative Example 3, since the two fiber bundles to which the convergence property is moderately imparted are passed through the V-shaped groove and combined with one yarn and wound around the bobbin, Single fibers are entangled at the time of winding, and after that, the splitability when splitting into each fiber bundle is poor, and fluff is generated during splitting.
[0032]
As described above, according to the present invention, when the carbon fiber precursor fiber bundle having a small number of filaments is fired, the winding wound around the single bobbin without aligning the plurality of precursor fiber bundles. By adopting a take-up body, a plurality of fiber bundles drawn from the take-up body are aligned to one, which can be stably run and fired in a portion where a single fiber bundle has been run conventionally. Therefore, the fiber density in the baking apparatus is increased, the productivity in the baking process is improved, and the same productivity as when the number of filaments is large can be obtained.
[0033]
In addition, since a plurality of precursor fiber bundles are wound around a single winding body without being aligned, each fiber bundle is highly independent, and a plurality of fiber bundles are simultaneously drawn out from the winding body. When the yarns are arranged as a book yarn and subjected to a firing process, the yarn is easily divided into a plurality of fiber bundles. Therefore, the generation of fluff is small and a high-quality carbon fiber bundle can be obtained.
[0034]
In addition, since a process for combining a plurality of fiber bundles when winding on a winding body becomes unnecessary, the equipment can be eliminated, and furthermore, the splitting property is good, so that each fiber bundle is twisted. Therefore, it is possible to eliminate the twisting equipment and the accompanying untwisting equipment, thereby contributing to a reduction in equipment costs.

Claims (1)

少なくとも2本の炭素繊維前駆体繊維束のそれぞれに気体交絡処理により収束性を付与した後、繊維束を引き揃えることなく独立して且つ同期してトラバースさせながら単一のボビンに巻き取ることを特徴とする炭素繊維前駆体繊維束巻取体の製造方法。After imparting convergence by the gas entangling treatment to each of at least two carbon fiber precursor fiber bundle, each fiber bundle pulling align things ku independently and synchronously wound to a single bobbin while traversing A method for producing a carbon fiber precursor fiber bundle wound body.
JP2000209311A 2000-07-11 2000-07-11 Method for producing wound body of carbon fiber precursor fiber bundle Expired - Fee Related JP4459398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000209311A JP4459398B2 (en) 2000-07-11 2000-07-11 Method for producing wound body of carbon fiber precursor fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000209311A JP4459398B2 (en) 2000-07-11 2000-07-11 Method for producing wound body of carbon fiber precursor fiber bundle

Publications (2)

Publication Number Publication Date
JP2002020037A JP2002020037A (en) 2002-01-23
JP4459398B2 true JP4459398B2 (en) 2010-04-28

Family

ID=18705740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000209311A Expired - Fee Related JP4459398B2 (en) 2000-07-11 2000-07-11 Method for producing wound body of carbon fiber precursor fiber bundle

Country Status (1)

Country Link
JP (1) JP4459398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081884B2 (en) * 2009-09-29 2012-11-28 三菱レイヨン株式会社 Manufacturing method of multiple carbon fiber bundle wound body
CN103171929A (en) * 2012-10-26 2013-06-26 东台市苏萌针织时装有限公司 Novel dyeing thread spinning method

Also Published As

Publication number Publication date
JP2002020037A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
WO2005078173A1 (en) Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
US20100252439A1 (en) Carbon fiber strand and process for producing the same
JPH10121325A (en) Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP6520767B2 (en) Precursor fiber bundle for carbon fiber, method for producing the same, and method for producing carbon fiber
JP5297644B2 (en) Carbon fiber bundle and method for producing the same
JP2011012363A (en) Fiber bundle of carbon fiber precursor and method for producing the same
JP2012188781A (en) Carbon fiber and method for manufacturing the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP4459398B2 (en) Method for producing wound body of carbon fiber precursor fiber bundle
TWI673398B (en) Method for producing combined yarn bundle and method for producing carbon fiber using the obtained yarn bundle
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP2012188766A (en) Carbon fiber precursor fiber bundle and carbon fiber bundle
JP2005060871A (en) Method for producing flame-proofed fiber and method for producing carbon fiber
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP3562115B2 (en) Carbon fiber precursor acrylic yarn package and method for winding carbon fiber precursor acrylic yarn
JP5081409B2 (en) Carbon fiber manufacturing method
WO2020203390A1 (en) Carbon-fiber-precursor fiber bundle and method for producing same
JP2013181264A (en) Carbon fiber bundle
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP2007314901A (en) Method for producing carbon fiber
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
JPH09273032A (en) Carbon fiber precursor filament yarn and its production and production of carbon fiber
JP4446817B2 (en) Method for producing acrylic carbon fiber precursor fiber bundle
JP7408406B2 (en) Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R151 Written notification of patent or utility model registration

Ref document number: 4459398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees