JP2011012363A - Fiber bundle of carbon fiber precursor and method for producing the same - Google Patents

Fiber bundle of carbon fiber precursor and method for producing the same Download PDF

Info

Publication number
JP2011012363A
JP2011012363A JP2009158035A JP2009158035A JP2011012363A JP 2011012363 A JP2011012363 A JP 2011012363A JP 2009158035 A JP2009158035 A JP 2009158035A JP 2009158035 A JP2009158035 A JP 2009158035A JP 2011012363 A JP2011012363 A JP 2011012363A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
fiber
mass
coagulation bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158035A
Other languages
Japanese (ja)
Other versions
JP5313788B2 (en
Inventor
Norifumi Hirota
憲史 廣田
Katsuhiko Ikeda
勝彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009158035A priority Critical patent/JP5313788B2/en
Publication of JP2011012363A publication Critical patent/JP2011012363A/en
Application granted granted Critical
Publication of JP5313788B2 publication Critical patent/JP5313788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber bundle of carbon fiber precursors capable of producing a carbon fiber bundle having good resin impregnating property and fiber openability and high strength.SOLUTION: The fiber bundle of carbon fiber precursors made of a plurality of single fibers and the single fiber made of an acrylonitrile-based polymer, where the ratio of a major diameter to a minor diameter (major diameter/minor diameter) of cross section of a single fiber is 1.35-1.5, the maximum height (Ry) of surface of the single fiber is 0.42-0.6 μm, and Ry/(major diameter/minor diameter) is 0.31 μm or above.

Description

本発明は、繊維強化複合材料の強化材として使用される炭素繊維束の製造に好適に用いられる炭素繊維前駆体繊維束およびその製造方法に関する。   The present invention relates to a carbon fiber precursor fiber bundle suitably used for the production of a carbon fiber bundle used as a reinforcing material for a fiber reinforced composite material, and a method for producing the same.

繊維強化複合材料には、炭素繊維、ガラス繊維、アラミド繊維等が使用されている。中でも、炭素繊維は、比強度、比弾性率、耐熱性、耐薬品性等に優れ、航空機用途、ゴルフシャフト、釣り竿等のスポーツ用途、一般産業用途の繊維強化複合材料の強化材として使用されている。炭素繊維を用いた繊維強化複合材料は、例えば、以下のようにして製造される。   Carbon fiber, glass fiber, aramid fiber, etc. are used for the fiber reinforced composite material. Among them, carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, etc., and is used as a reinforcing material for fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications. Yes. The fiber reinforced composite material using carbon fiber is manufactured as follows, for example.

まず、ポリアクリロニトリル系重合体の単繊維からなる前駆体繊維束を、焼成工程(耐炎化工程)にて、空気などの酸化性気体中、200〜300℃の温度で焼成して耐炎繊維束を得る。次いで炭素化工程にて、不活性雰囲気中、300〜2000℃の温度で耐炎繊維束を炭素化して炭素繊維束を得る。そして、得られた炭素繊維束を、必要に応じて織物等に加工した後、これに合成樹脂を含浸させ、所定形状に成形することにより繊維強化複合材料を得る。   First, a precursor fiber bundle composed of a single fiber of a polyacrylonitrile-based polymer is fired at a temperature of 200 to 300 ° C. in an oxidizing gas such as air in a firing process (flame resistance process) to form a flame resistant fiber bundle. obtain. Next, in the carbonization step, the flame resistant fiber bundle is carbonized at a temperature of 300 to 2000 ° C. in an inert atmosphere to obtain a carbon fiber bundle. Then, the obtained carbon fiber bundle is processed into a woven fabric or the like as necessary, and then impregnated with a synthetic resin and molded into a predetermined shape to obtain a fiber-reinforced composite material.

炭素繊維束の製造に用いられる前駆体繊維束には、焼成工程において繊維束がばらけて、繊維束を構成する単繊維が、隣接する繊維束に絡まったり、ローラに巻き付いたりしないように、高い集束性が要求される。しかしながら、集束性の高い前駆体繊維束から得られる炭素繊維束は、その集束性の高さのため、樹脂が含浸しにくいという問題を有していた。   In the precursor fiber bundle used for the production of the carbon fiber bundle, the fiber bundle is scattered in the firing step, so that the single fiber constituting the fiber bundle is not entangled with the adjacent fiber bundle or wound around the roller. High convergence is required. However, the carbon fiber bundle obtained from the precursor fiber bundle having a high bundling property has a problem that the resin is difficult to be impregnated due to its high bundling property.

また、炭素繊維束を製織して得られる炭素繊維織物は、樹脂を含浸する際に、樹脂のボイドが発生しないように、できるだけ目開きの小さい織物とする必要がある。そのために、製織中または製織後に何らかの開繊処理が施される。しかしながら、集束性の高い前駆体繊維束から得られる炭素繊維束は、その集束性の高さのため、開繊しにくいという問題を有していた。また、炭素繊維織物は、目開きの小さい均一な織り目が要求されるため、嵩高い炭素繊維束が必要とされていた。   In addition, the carbon fiber fabric obtained by weaving the carbon fiber bundle needs to be a fabric having as small an opening as possible so that a resin void does not occur when the resin is impregnated. For this purpose, some opening process is performed during or after weaving. However, the carbon fiber bundle obtained from the precursor fiber bundle having high bundling property has a problem that it is difficult to open due to its high bundling property. In addition, since the carbon fiber fabric is required to have a uniform weave having a small mesh opening, a bulky carbon fiber bundle is required.

これらの問題点を改善する方法として、特許文献1では、アクリロニトリル系重合体の単繊維の断面の長径と短径との比(長径/短径)が、1.05〜1.6であり、ICP発光分析によって測定されるSi量が、500〜4000ppmの範囲である炭素繊維前駆体繊維束とすることで、焼成して炭素繊維としたときに樹脂含浸性、開繊性が良好となる炭素繊維前駆体繊維束が開示されている。   As a method for improving these problems, in Patent Document 1, the ratio of the major axis to the minor axis (major axis / minor axis) of the cross section of the single fiber of the acrylonitrile-based polymer is 1.05 to 1.6, Carbon that has good resin impregnation and spreadability when calcined into carbon fiber by forming a carbon fiber precursor fiber bundle having an Si amount measured by ICP emission analysis in the range of 500 to 4000 ppm. A fiber precursor fiber bundle is disclosed.

特開2002−20927号公報JP 2002-20927 A

しかしながら、特許文献1の実施例で得られた炭素繊維前駆体繊維束は、開繊性、および強度は良好であるものの、樹脂含浸性は5.1以下しか得られておらず、改善の余地がある。
本発明は前記事情に鑑みてなされたもので、樹脂含浸性および開繊性が良好で、強度が高い炭素繊維束を製造できる炭素繊維前駆体繊維束およびその製造方法を提供することを目的とする。
However, although the carbon fiber precursor fiber bundle obtained in the example of Patent Document 1 has good spreadability and strength, the resin impregnation property is only 5.1 or less, and there is room for improvement. There is.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carbon fiber precursor fiber bundle capable of producing a carbon fiber bundle having good resin impregnation property and spreadability and high strength, and a method for producing the same. To do.

前記課題を解決すために本発明の炭素繊維前駆体繊維束は、アクリロニトリル系重合体からなる炭素繊維前駆体繊維束であって、単繊維の断面の長径と短径との比(長径/短径)が、1.35〜1.5であり、単繊維の表面の最大高さ(Ry)が、0.42〜0.6μmであり、Ry/(長径/短径)が、0.31μm以上である。   In order to solve the above-mentioned problems, the carbon fiber precursor fiber bundle of the present invention is a carbon fiber precursor fiber bundle made of an acrylonitrile-based polymer, and the ratio of the major axis to the minor axis of the single fiber (major axis / short axis). Diameter) is 1.35 to 1.5, the maximum height (Ry) of the surface of the single fiber is 0.42 to 0.6 μm, and Ry / (major axis / minor axis) is 0.31 μm. That's it.

アクリロニトリル系重合体が、アクリルアミド単量体単位を0.5〜4質量%含むことが好ましい。
単繊維の表面の中心線平均粗さ(Ra)が、0.07〜0.15μmであり、Ra/(長径/短径)が、0.05μm以上であることが好ましい。
単繊維の表面にしわを有し、局部山頂の間隔(S)が、0.7〜1.0μmであり、S/(長径/短径)が、0.5μm以上であることが好ましい。
繊維束の総繊度が、15000dtex以下であることが好ましい。
The acrylonitrile-based polymer preferably contains 0.5 to 4% by mass of acrylamide monomer units.
The center line average roughness (Ra) of the surface of the single fiber is preferably 0.07 to 0.15 μm, and Ra / (major axis / minor axis) is preferably 0.05 μm or more.
It is preferable that the surface of the single fiber has wrinkles, the local summit spacing (S) is 0.7 to 1.0 μm, and S / (major axis / minor axis) is 0.5 μm or more.
The total fineness of the fiber bundle is preferably 15000 dtex or less.

また本発明の炭素繊維前駆体繊維束の製造方法は、95質量%以上のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、有機溶剤濃度52〜58質量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にするとともに、前記凝固糸を第1凝固浴中から紡糸原液吐出線速度の0.8倍以下の引き取り速度で引き取る工程と、前記凝固糸に対して、有機溶剤濃度60〜70質量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて2.6〜3.5倍の延伸を施す工程と、第2凝固浴中での延伸を終えた、膨潤状態にある繊維束に対して3倍以上の湿熱延伸を行う工程と、前記湿熱延伸後の繊維束に対して、0.4〜1.5質量%に調整したシリコン系油剤の添油処理を行う工程と、前記添油処理の後、前記繊維束を乾燥した後に、1.2〜4倍のスチーム延伸を施す工程とを有する。   Moreover, the manufacturing method of the carbon fiber precursor fiber bundle of this invention is the organic solvent density | concentration 52-58 mass%, temperature 30 for the spinning stock solution which consists of an organic solvent solution of the acrylonitrile-type polymer containing 95 mass% or more of acrylonitrile units. The coagulated yarn is discharged into a first coagulation bath composed of an organic solvent aqueous solution at ˜50 ° C. to obtain coagulated yarn, and the coagulated yarn is taken out from the first coagulation bath at a take-off speed of 0.8 times or less of the spinning solution discharge linear velocity. And a step of stretching the solidified yarn by 2.6 to 3.5 times in a second coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 60 to 70% by mass and a temperature of 30 to 50 ° C. And a step of performing wet heat stretching 3 times or more to the swollen fiber bundle that has been stretched in the second coagulation bath, and 0.4 to 1 to the fiber bundle after the wet heat stretching. .Silicon oil adjusted to 5% by mass And performing hydrogenated oil processing, after the hydrogenated oil processing, after drying the fiber bundle, and a step of performing steam drawing of 1.2 to 4 times.

アクリロニトリル系重合体が、アクリルアミド単量体単位を0.5〜4質量%含むことが好ましい。
得られる炭素繊維前駆体繊維束の総繊度が15000dtex以下であることが好ましい。
The acrylonitrile-based polymer preferably contains 0.5 to 4% by mass of acrylamide monomer units.
The total fineness of the obtained carbon fiber precursor fiber bundle is preferably 15000 dtex or less.

本発明によれば、樹脂含浸性および開繊性が良好で、強度が高い炭素繊維束を製造できる炭素繊維前駆体繊維束が得られる。   According to the present invention, a carbon fiber precursor fiber bundle capable of producing a carbon fiber bundle having good resin impregnation property and spreadability and high strength is obtained.

中心線平均粗さ(Ra)を説明する、炭素繊維前駆体繊維束の単繊維表面の断面図である。It is sectional drawing of the single fiber surface of a carbon fiber precursor fiber bundle explaining centerline average roughness (Ra). 最大高さ(Ry)を説明する、炭素繊維前駆体繊維束の単繊維表面の断面図である。It is sectional drawing of the single fiber surface of a carbon fiber precursor fiber bundle explaining the maximum height (Ry). 局部山頂の間隔(S)を説明する、炭素繊維前駆体繊維束の単繊維表面の断面図である。It is sectional drawing of the single fiber surface of a carbon fiber precursor fiber bundle explaining the space | interval (S) of a local peak.

以下、本発明を詳細に説明する。
本発明の炭素繊維前駆体繊維束は、複数のアクリロニトリル系重合体の単繊維(以下、単に繊維ということもある。)を束ねたトウである。
アクリロニトリル系重合体としては、アクリロニトリル単位を95質量%以上含有する重合体が、炭素繊維前駆体繊維束を焼成して得られる炭素繊維束の強度発現性の点で好ましい。アクリロニトリル系重合体は、アクリロニトリルと、必要に応じてこれと共重合しうる単量体とを、水溶液中におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合などによって、重合させて得ることができる。
Hereinafter, the present invention will be described in detail.
The carbon fiber precursor fiber bundle of the present invention is a tow obtained by bundling a plurality of acrylonitrile polymer single fibers (hereinafter sometimes simply referred to as fibers).
As the acrylonitrile-based polymer, a polymer containing 95% by mass or more of an acrylonitrile unit is preferable in terms of strength development of a carbon fiber bundle obtained by firing a carbon fiber precursor fiber bundle. An acrylonitrile polymer is a polymer of acrylonitrile and a monomer that can be copolymerized with it by redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, emulsion polymerization using a dispersing agent, or the like. Can be obtained.

アクリロニトリルと共重合しうる単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類;(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類;マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル;スチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体;2−ビニルピリジン、2−メチル−5−ビニルピリジンのピリジン基を含む重合性不飽和単量体等が挙げられる。これらはいずれか1種を用いてもよく2種以上を用いてもよい。
炭素繊維前駆体繊維束の製造時における凝固の緻密性を確保するため、アクリロニトリル系重合体が、アクリルアミド単量体単位を含むことが好ましい。アクリルアミド単量体単位の含有量としては0.5〜4質量%が好ましく、1〜3.5質量%がより好ましい。アクリルアミド単量体単位が0.5質量%未満では、凝固の緻密性への効果が不十分であり、強度の高い炭素繊維が得られにくくなる。また、4質量%を超えると重合体のコストアップが著しくなるため好ましくない。
Examples of monomers that can be copolymerized with acrylonitrile include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Esters; vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride; acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts; maleic imide, phenylmaleimide, (meth) acrylamide, Styrene, α-methylstyrene, vinyl acetate; polymerizable unsaturated monomer containing a sulfo group such as sodium styrene sulfonate, sodium allyl sulfonate, sodium β-styrene sulfonate, sodium methallyl sulfonate; 2-vinylpyridine 2-methyl-5-vinylpyridine pyri Examples thereof include polymerizable unsaturated monomers containing a gin group. These may use any 1 type and may use 2 or more types.
In order to ensure the denseness of solidification during the production of the carbon fiber precursor fiber bundle, the acrylonitrile-based polymer preferably includes an acrylamide monomer unit. The content of the acrylamide monomer unit is preferably 0.5 to 4% by mass, and more preferably 1 to 3.5% by mass. When the acrylamide monomer unit is less than 0.5% by mass, the effect on the denseness of solidification is insufficient, and it becomes difficult to obtain high-strength carbon fibers. On the other hand, if it exceeds 4% by mass, the cost of the polymer is remarkably increased.

本発明におけるアクリロニトリル系重合体の単繊維の断面の長径と短径との比(長径/短径)は、1.35〜1.5であり、好ましくは、1.36〜1.49である。長径/短径比が前記範囲内にあれば、前駆体繊維束の焼成工程通過性と、これから得られる炭素繊維束の樹脂含浸性および開繊性とを同時に満足することができる。長径/短径比が1.35未満では、単繊維間の空隙が減少し、得られる炭素繊維束の樹脂含浸性および開繊性が不十分になりやすい。長径/短径比が1.5を超えると、繊維束の集束性が低下し、焼成工程通過性が悪化する。また、ストランド強度が低下する傾向にある。   The ratio (major axis / minor axis) of the major axis to the minor axis of the cross section of the single fiber of the acrylonitrile polymer in the present invention is 1.35 to 1.5, preferably 1.36 to 1.49. . If the ratio of major axis / minor axis is within the above range, it is possible to simultaneously satisfy the firing processability of the precursor fiber bundle and the resin impregnation property and fiber opening property of the carbon fiber bundle obtained therefrom. When the major axis / minor axis ratio is less than 1.35, the voids between the single fibers are reduced, and the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle tend to be insufficient. When the major axis / minor axis ratio exceeds 1.5, the convergence of the fiber bundle decreases, and the firing process passability deteriorates. Moreover, it exists in the tendency for strand strength to fall.

(単繊維の繊維断面の長径と短径との比(長径/短径)の測定方法)
本発明における、単繊維の断面の長径と短径との比(長径/短径)は、以下のようにして決定される値である。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の単繊維の束を通した後、これをナイフで輪切りにして試料を準備する。
ついで、前記試料を単繊維の断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、走査型電子顕微鏡(PHILIPS社製、製品名:XL20)により、加速電圧7.00kV、作動距離31mmの条件で観察し、単繊維の断面の長径および短径を測定し、長径を短径で割ることで長径/短径の比率を求める。
同様にして、前記チューブ内に通した単繊維の全部について長径/短径の比率を求め、その平均値を、単繊維の断面の長径と短径との比(長径/短径)とする。
(Measurement method of ratio of major axis to minor axis (major axis / minor axis) of fiber cross section of single fiber)
In the present invention, the ratio of the major axis to the minor axis (major axis / minor axis) of the cross section of the single fiber is a value determined as follows.
After passing a bundle of single fibers for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, a sample is prepared by cutting the bundle with a knife.
Next, the sample was bonded to an SEM sample stage so that the cross section of the single fiber faced upward, and Au was sputtered to a thickness of about 10 nm, and then a scanning electron microscope (manufactured by PHILIPS, product name: XL20). ) Under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, the major axis and minor axis of the cross section of the single fiber are measured, and the major axis / minor axis ratio is determined by dividing the major axis by the minor axis.
Similarly, the ratio of the major axis / minor axis is obtained for all the single fibers passed through the tube, and the average value is defined as the ratio of the major axis to the minor axis of the single fiber (major axis / minor axis).

本発明の炭素繊維前駆体繊維束のSi量は、500〜4000ppmの範囲であることが好ましく、1000〜3000ppmの範囲であることが更に好ましい。Si量が前記範囲内にあれば、前駆体繊維束の焼成工程通過性と、これから得られる炭素繊維束の樹脂含浸性および開繊性とを同時に満足することができる。Si量が500ppm未満では、繊維束の集束性が低下し、焼成工程通過性が悪化する可能性がある。また、得られる炭素繊維束のストランド強度が低下する可能性がある。Si量が4000ppmを超えると、前駆体繊維束の焼成時にシリカが多く飛散し、焼成安定性が悪くなる。また、得られる炭素繊維束が、ばらけにくくなり、樹脂含浸性および開繊性が悪くなる。
前記Si量は、炭素繊維前駆体繊維束を製造する際に使用されるシリコン系油剤に由来するものである。Si量は、ICP発光分析装置を用いて測定することができる。
The Si content of the carbon fiber precursor fiber bundle of the present invention is preferably in the range of 500 to 4000 ppm, and more preferably in the range of 1000 to 3000 ppm. If the amount of Si is within the above range, it is possible to satisfy both the passability of the precursor fiber bundle through the firing step and the resin impregnation property and the fiber opening property of the carbon fiber bundle obtained therefrom. If the amount of Si is less than 500 ppm, the fiber bundle's convergence may be lowered, and the firing process passability may be deteriorated. Moreover, the strand strength of the obtained carbon fiber bundle may be lowered. When the amount of Si exceeds 4000 ppm, a large amount of silica is scattered during firing of the precursor fiber bundle, and firing stability is deteriorated. Further, the obtained carbon fiber bundle is less likely to be separated, and the resin impregnation property and the fiber opening property are deteriorated.
The amount of Si is derived from the silicon-based oil used when producing the carbon fiber precursor fiber bundle. The amount of Si can be measured using an ICP emission analyzer.

本発明におけるアクリロニトリル系重合体の単繊維強度は、好ましくは5.0cN/dtex以上であり、より好ましくは6.5cN/dtex以上であり、さらに好ましくは7.0cN/dtex以上である。単繊維強度が5.0cN/dtex未満では、焼成工程での単糸切れによる毛羽の発生が多くなって焼成工程通過性が悪くなる。   The single fiber strength of the acrylonitrile-based polymer in the present invention is preferably 5.0 cN / dtex or more, more preferably 6.5 cN / dtex or more, and still more preferably 7.0 cN / dtex or more. If the single fiber strength is less than 5.0 cN / dtex, the generation of fluff due to single yarn breakage in the firing process increases, and the firing processability deteriorates.

本明細書におけるアクリロニトリル系重合体の単繊維強度は、単繊維自動引張強伸度測定機(オリエンテック社製、製品名:UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度測定することによって求められる値である。   The single fiber strength of the acrylonitrile-based polymer in the present specification is determined by using a single fiber automatic tensile strength / elongation measuring machine (product name: UTM II-20, manufactured by Orientec Co., Ltd.), and using the single fiber attached to the mount as a load cell. It is a value calculated | required by mounting | wearing the chuck | zipper of this and performing a tensile test at a speed | rate of 20.0 mm / min, and measuring a strong elongation.

本発明の炭素繊維前駆体繊維束は、単繊維の表面に繊維束の長手方向に延びるしわを有していることが好ましい。かかるしわの存在により、本発明の炭素繊維前駆体繊維束は、良好な集束性を有すると同時に、得られる炭素繊維束は、良好な樹脂含浸性と開繊性とを有するようになる。
しわの深さは、以下の中心線平均粗さ(Ra)、最大高さ(Ry)および局部山頂の間隔(S)によって規定される。
The carbon fiber precursor fiber bundle of the present invention preferably has wrinkles extending in the longitudinal direction of the fiber bundle on the surface of the single fiber. Due to the presence of such wrinkles, the carbon fiber precursor fiber bundle of the present invention has good sizing properties, and at the same time, the resulting carbon fiber bundle has good resin impregnation properties and fiber opening properties.
The wrinkle depth is defined by the following centerline average roughness (Ra), maximum height (Ry) and local summit spacing (S).

図1〜3は、炭素繊維前駆体繊維束を構成している単繊維の、繊維長さ方向に対して垂直な断面における、単繊維表面の断面形状を模式的に示した図である。
単繊維の表面の中心線平均粗さ(Ra)とは、図1に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、抜き取り部分の中心線mから測定曲線までの偏差の絶対値を合計し、平均した値である。中心線平均粗さ(Ra)は、レーザー顕微鏡を用いることによって測定される。
単繊維の表面の最大高さ(Ry)とは、図2に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、抜き取り部分における、最も高い山頂線と中心線mとの間隔Rpおよび最も低い谷底線と中心線mとの間隔Rvの合計値(Rp+Rv)である。最大高さ(Ry)は、レーザー顕微鏡を用いることによって測定される。
局部山頂の間隔(S)とは、しわの間隔を規定するパラメータであり、図3に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、抜き取り部分の隣り合う局部山頂間の間隔S1、S2、S3、・・・の平均値Sである。局部山頂の間隔(S)は、レーザー顕微鏡を用いることによって測定される。
1 to 3 are diagrams schematically showing a cross-sectional shape of a single fiber surface in a cross section perpendicular to a fiber length direction of single fibers constituting a carbon fiber precursor fiber bundle.
The centerline average roughness (Ra) of the surface of the single fiber is, as shown in FIG. 1, extracted from the roughness curve by the reference length L in the direction of the centerline m, and measured from the centerline m of the extracted portion. The absolute values of the deviations up to are totaled and averaged. The center line average roughness (Ra) is measured by using a laser microscope.
As shown in FIG. 2, the maximum height (Ry) of the surface of the single fiber is extracted by a reference length L in the direction of the center line m from the roughness curve, and the highest peak line and center line in the extracted part The total value (Rp + Rv) of the distance Rp to m and the distance Rv between the lowest valley line and the center line m. The maximum height (Ry) is measured by using a laser microscope.
The local summit interval (S) is a parameter that defines the interval between the wrinkles. As shown in FIG. 3, the reference length L is extracted from the roughness curve in the direction of the center line m and adjacent to the extracted portion. It is the average value S of the distances S1, S2, S3,. The local summit spacing (S) is measured by using a laser microscope.

最大高さ(Ry)は、0.42〜0.6μmであり、好ましくは0.42〜0.56μmである。最大高さ(Ry)が0.42μm未満では、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなり、嵩高さが不十分となる。最大高さ(Ry)が0.6μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
また、Ry/(長径/短径)は、0.31μm以上である。0.31μmより小さいと繊維の断面形状(長径/短径)に比べて相対的に繊維表面のしわが小さいことになり、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなる。
すなわち、繊維の断面形状は、長径/短径の値が大きいほど、より扁平な楕円となる。良好な樹脂含浸性および開繊性を得るために、Ry/(長径/短径)の値が、所定の値以上であることが必要とは、繊維断面における楕円の扁平の程度に応じて、ある程度以上のしわの高さが必要であり、楕円がより扁平になるほど、必要なしわの高さがより大きくなることを意味する。
The maximum height (Ry) is 0.42 to 0.6 μm, preferably 0.42 to 0.56 μm. When the maximum height (Ry) is less than 0.42 μm, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated, and the bulkiness is insufficient. When the maximum height (Ry) exceeds 0.6 μm, the surface area of the fiber bundle increases, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
Ry / (major axis / minor axis) is 0.31 μm or more. If it is smaller than 0.31 μm, the wrinkles on the fiber surface are relatively small compared to the cross-sectional shape (major axis / minor axis) of the fiber, and the resin impregnation property and fiber opening property of the resulting carbon fiber bundle are deteriorated.
That is, the cross-sectional shape of the fiber becomes a flattened ellipse as the value of the major axis / minor axis increases. In order to obtain good resin impregnation property and spreadability, the value of Ry / (major axis / minor axis) needs to be equal to or greater than a predetermined value, depending on the degree of flatness of the ellipse in the fiber cross section. It means that the wrinkle height of a certain level or more is necessary, and the flatter the ellipse becomes, the larger the wrinkle height becomes.

中心線平均粗さ(Ra)は、好ましくは0.07〜0.15μmであり、より好ましくは0.07〜0.13μmであり、さらに好ましくは0.08〜0.12μmである。中心線平均粗さ(Ra)が0.07μm未満では、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなり、嵩高さが不十分となる。中心線平均粗さ(Ra)が0.15μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
また、Ra/(長径/短径)は、0.05μm以上であることが好ましい。0.05μmより小さいと繊維の断面形状(長径/短径)に比べて相対的に繊維表面のしわが小さいことになり、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなる。
すなわち、良好な樹脂含浸性および開繊性を得るために、Ra/(長径/短径)の値が、所定の値以上であることが好ましいとは、繊維断面における楕円の扁平の程度に応じて、ある程度以上しわの粗さが大きいことが好ましく、楕円がより扁平になるほど、好ましいしわの粗さがより大きくなることを意味する。
The center line average roughness (Ra) is preferably 0.07 to 0.15 μm, more preferably 0.07 to 0.13 μm, and still more preferably 0.08 to 0.12 μm. When the center line average roughness (Ra) is less than 0.07 μm, the resin impregnation property and fiber opening property of the obtained carbon fiber bundle are deteriorated, and the bulkiness is insufficient. When the center line average roughness (Ra) exceeds 0.15 μm, the surface area of the fiber bundle is increased, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
Further, Ra / (major axis / minor axis) is preferably 0.05 μm or more. If it is smaller than 0.05 μm, the wrinkles on the fiber surface are relatively small compared to the cross-sectional shape (major axis / minor axis) of the fiber, and the resin impregnation property and the fiber opening property of the resulting carbon fiber bundle are deteriorated.
That is, in order to obtain good resin impregnation property and spreadability, the value of Ra / (major axis / minor axis) is preferably equal to or greater than a predetermined value depending on the degree of flattening of the ellipse in the fiber cross section. Thus, it is preferable that the wrinkle roughness is large to some extent, and the more flat the ellipse is, the more preferable wrinkle roughness is.

局部山頂の間隔(S)は、好ましくは0.7〜1.0μmであり、より好ましくは0.7〜0.9μmである。局部山頂の間隔(S)が0.7μm未満では、得られる炭素繊維束の樹脂含浸性および開繊性が不十分となる。局部山頂の間隔(S)が1.0μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
また、S/(長径/短径)は、0.5μm以上であることが好ましい。0.5μmより小さいと繊維の断面形状(長径/短径)に比べて相対的に繊維表面のしわが小さいことになり、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなる。
すなわち、良好な樹脂含浸性および開繊性を得るために、S/(長径/短径)の値が、所定の値以上であることが好ましいとは、繊維断面における楕円の扁平の程度に応じて、ある程度以上しわの間隔が大きいことが好ましく、楕円がより扁平になるほど、好ましいしわの間隔がより大きくなることを意味する。
The distance (S) between the local peaks is preferably 0.7 to 1.0 μm, and more preferably 0.7 to 0.9 μm. If the distance (S) between the local peaks is less than 0.7 μm, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle will be insufficient. When the distance (S) between the local peaks exceeds 1.0 μm, the surface area of the fiber bundle increases, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
Further, S / (major axis / minor axis) is preferably 0.5 μm or more. If it is smaller than 0.5 μm, the wrinkles on the fiber surface are relatively small compared to the cross-sectional shape (major axis / minor axis) of the fiber, and the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated.
That is, in order to obtain good resin impregnation and spreadability, the value of S / (major axis / minor axis) is preferably equal to or greater than a predetermined value depending on the degree of flattening of the ellipse in the fiber cross section. Thus, it is preferable that the wrinkle interval is large to some extent, and the more flat the ellipse is, the larger the preferable wrinkle interval is.

本発明の炭素繊維前駆体繊維束を構成するアクリロニトリル系重合体の単繊維の数は、好ましくは、12000本以下であり、より好ましくは6000本以下であり、さらに好ましくは3000本以下である。単繊維の数が12000本を超えると、トウハンドリングおよびトウボリュウームが増加し、乾燥負荷が増大することから、紡糸速度を上げることができなくなる。また、均一な交絡を与える事が困難となり、その結果、焼成工程での通過性が悪化する。   The number of single fibers of the acrylonitrile polymer constituting the carbon fiber precursor fiber bundle of the present invention is preferably 12000 or less, more preferably 6000 or less, and further preferably 3000 or less. When the number of single fibers exceeds 12,000, tow handling and tow volume increase and the drying load increases, so that the spinning speed cannot be increased. Moreover, it becomes difficult to give uniform entanglement, and as a result, the permeability in a baking process deteriorates.

本発明の炭素繊維前駆体繊維束の総繊度は、15000dtex以下であることが好ましい。より好ましくは10000dtex以下である。総繊度が15000dtexを超えると乾燥負荷が増大し、紡糸速度を上げることが困難となるため好ましくない。
総繊度の下限値は特に限定されないが、生産性を確保する点で1000dtex以上が好ましく、3000dtex以上がより好ましい。
The total fineness of the carbon fiber precursor fiber bundle of the present invention is preferably 15000 dtex or less. More preferably, it is 10,000 dtex or less. If the total fineness exceeds 15000 dtex, the drying load increases and it is difficult to increase the spinning speed, which is not preferable.
The lower limit of the total fineness is not particularly limited, but is preferably 1000 dtex or more, more preferably 3000 dtex or more in terms of ensuring productivity.

次に、本発明の炭素繊維前駆体繊維束の製造方法について説明する。
[1]まず、95質量%以上のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、紡糸口金を通して、第1凝固浴中に一定の線速度(紡糸原液吐出線速度)で吐出させて凝固糸を形成し、第1凝固浴中から凝固糸を一定の速度(引き取り速度)で引き取る。
紡糸原液に使用する有機溶剤としては、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。中でも、ジメチルアセトアミドは、溶剤の加水分解による性状の悪化が少なく、良好な紡糸性を与えるので、好適に用いられる。
紡糸原液におけるアクリロニトリル系重合体の濃度は、10〜40質量%が好ましく、15〜25質量%がより好ましい。前記範囲内であると良好な紡糸性が得られやすい。
Next, the manufacturing method of the carbon fiber precursor fiber bundle of this invention is demonstrated.
[1] First, a spinning solution comprising an organic solvent solution of an acrylonitrile polymer containing 95% by mass or more of an acrylonitrile unit is passed through a spinneret into a first coagulation bath at a constant linear velocity (spinning solution discharge linear velocity). To form a coagulated yarn, and the coagulated yarn is taken out from the first coagulation bath at a constant speed (take-off speed).
Examples of the organic solvent used for the spinning dope include dimethylacetamide, dimethylsulfoxide, dimethylformamide, and the like. Among them, dimethylacetamide is preferably used because it is less deteriorated due to hydrolysis of the solvent and gives good spinnability.
The concentration of the acrylonitrile polymer in the spinning dope is preferably 10 to 40% by mass, and more preferably 15 to 25% by mass. Within the above range, good spinnability is easily obtained.

紡糸原液を押し出すための紡糸口金には、アクリロニトリル系重合体の単繊維の一般的な太さである、1.0デニール(1.1dtex)程度のアクリロニトリル系重合体の単繊維を製造する際の孔径、すなわち15〜100μmの孔径のノズル孔を有する紡糸口金を好適に使用できる。ノズル孔の孔数は、得ようとする炭素繊維前駆体繊維束を構成する単繊維の数と同じである。   The spinneret for extruding the spinning dope is used for producing an acrylonitrile polymer single fiber of about 1.0 denier (1.1 dtex), which is a general thickness of an acrylonitrile polymer single fiber. A spinneret having a nozzle hole having a hole diameter of 15 to 100 μm can be preferably used. The number of nozzle holes is the same as the number of single fibers constituting the carbon fiber precursor fiber bundle to be obtained.

第1凝固浴は、有機溶剤の濃度52〜58質量%、温度30〜50℃の有機溶剤水溶液からなる。第1凝固浴の有機溶剤としては、紡糸原液に使用する有機溶剤と同様のものが挙げられる。紡糸原液に使用する有機溶剤と第1凝固浴の有機溶剤とは同じであってもよく、異なってもよい。溶剤回収工程を複雑にしないために同じであることが好ましい。
第1凝固浴の有機溶剤濃度が低いと繊維の断面の長径/短径の値が大きくなる傾向があり、有機溶剤濃度が高くなると長径/短径は1に近くなる。本発明において、繊維の断面の長径/短径の値を1.35〜1.5の範囲とするためには、第1凝固浴の有機溶剤濃度を52〜58質量%とすることが好ましい。
第1凝固浴の温度が前記範囲であると、得られる凝固糸にマクロボイドの発生がほとんど見られず、最終的に得られる炭素繊維束の強度が良好なものとなる。第1凝固浴のより好ましい温度は20〜40℃である。
The first coagulation bath is composed of an organic solvent aqueous solution having an organic solvent concentration of 52 to 58 mass% and a temperature of 30 to 50 ° C. Examples of the organic solvent for the first coagulation bath include the same organic solvents used for the spinning dope. The organic solvent used for the spinning dope and the organic solvent for the first coagulation bath may be the same or different. The same is preferable so as not to complicate the solvent recovery step.
When the organic solvent concentration in the first coagulation bath is low, the value of the major axis / minor axis of the cross section of the fiber tends to increase, and when the organic solvent concentration is increased, the major axis / minor axis approaches 1. In the present invention, it is preferable that the concentration of the organic solvent in the first coagulation bath is 52 to 58% by mass in order to set the long axis / short axis value of the cross section of the fiber to a range of 1.35 to 1.5.
When the temperature of the first coagulation bath is within the above range, macrovoids are hardly observed in the obtained coagulated yarn, and the strength of the finally obtained carbon fiber bundle is improved. A more preferable temperature of the first coagulation bath is 20 to 40 ° C.

第1凝固浴中から凝固糸を引き取る速度(引き取り速度)は、紡糸原液を、紡糸口金を通して第1凝固浴中に吐出させる際の線速度(紡糸原液吐出線速度)の0.8倍以下とする。すなわち「引き取り速度/紡糸原液吐出線速度」の値が0.8以下であり、この範囲であると良好な紡糸性を維持することができる。「引き取り速度/紡糸原液吐出線速度」の下限値は特に限定されないが、紡糸速度を上げて生産性を向上するためには0.4以上が好ましい。   The speed at which the coagulated yarn is taken out from the first coagulation bath (take-off speed) is 0.8 times or less of the linear velocity (spinning solution discharge linear velocity) at which the spinning stock solution is discharged into the first coagulation bath through the spinneret. To do. That is, the value of “take-off speed / spinning stock solution discharge linear speed” is 0.8 or less, and good spinnability can be maintained within this range. The lower limit of “take-off speed / spinning solution discharge linear speed” is not particularly limited, but is preferably 0.4 or more in order to increase the spinning speed and improve productivity.

本工程において第1凝固浴から引き上げた凝固糸は、第1凝固浴および紡糸原液に由来する有機溶剤と、第1凝固浴に由来する水を含有しており、凝固糸が含有する液体中の有機溶剤の濃度は、第1凝固浴における有機溶剤の濃度を超えている。このため、凝固糸は、表面だけが凝固した半凝固状態となっており、次工程の第2凝固浴中での良好な延伸性が得られる。   The coagulated yarn pulled up from the first coagulation bath in this step contains an organic solvent derived from the first coagulation bath and the spinning dope and water derived from the first coagulation bath, and is contained in the liquid contained in the coagulated yarn. The concentration of the organic solvent exceeds the concentration of the organic solvent in the first coagulation bath. For this reason, the coagulated yarn is in a semi-solidified state in which only the surface is coagulated, and good stretchability in the second coagulation bath in the next step can be obtained.

炭素繊維前駆体繊維束を構成する繊維は表層部と繊維内部とが均一に配向していることが好ましい。本工程において、第1凝固浴中での凝固糸製造の際の「引き取り速度/紡糸原液吐出線速度」が低いと、第1凝固浴中で形成される凝固糸の凝固が均一になりやすく、表層部と繊維内部とが均一に配向した繊維が得られやすい。一方、「引き取り速度/紡糸原液吐出線速度」が高すぎると、第1凝固浴中での凝固糸の凝固と延伸とが同時に起こり、第1凝固浴中で形成される凝固糸の凝固が不均一になる。従って、これを第2凝固浴中で延伸しても、繊維内部まで均一に配向した繊維にはなりにくい。   The fibers constituting the carbon fiber precursor fiber bundle preferably have a uniform surface layer portion and fiber interior. In this step, if the “take-off speed / spinning solution discharge linear speed” at the time of producing the coagulated yarn in the first coagulation bath is low, coagulation of the coagulated yarn formed in the first coagulation bath tends to be uniform, A fiber in which the surface layer portion and the inside of the fiber are uniformly oriented is easily obtained. On the other hand, if the “take-off speed / spinning solution discharge linear speed” is too high, coagulation and stretching of the coagulated yarn in the first coagulation bath occur at the same time, and coagulation of the coagulated yarn formed in the first coagulation bath does not occur. It becomes uniform. Therefore, even if this is stretched in the second coagulation bath, it is difficult to form a fiber that is uniformly oriented to the inside of the fiber.

[2]次に、第1凝固浴から引き取った凝固糸を、第2凝固浴中にて2.6〜3.5倍に延伸する。第2凝固浴は、有機溶剤の濃度60〜70質量%、温度30〜50℃の有機溶剤水溶液からなる。
第2凝固浴の有機溶剤としては、紡糸原液に使用する有機溶剤と同様のものが挙げられる。紡糸原液または第1凝固浴の有機溶剤と、第2凝固浴の有機溶剤は同じであってもよく、異なってもよい。溶剤回収工程を複雑にしないために同じであることが好ましい。
本発明では、第1凝固浴の有機溶剤濃度よりも第2凝固浴の有機溶剤濃度の方が高く設定される。第2凝固浴の有機溶剤濃度を高くすることにより、第2凝固浴中での延伸倍率を上げることが可能となり、しわを深くすることができる。第2凝固浴の有機溶剤濃度および温度を前記の範囲とすることにより、単繊維切れの発生を防止しつつ、2.6〜3.5倍の延伸を安定して行うことができる。
第2凝固浴での延伸倍率が2.6倍よりも低いと、しわが深くなりにくくなり、3.5倍よりも高いと、単繊維切れが発生し易くなり、紡糸安定性が低下し、しかもその後の湿熱延伸工程での延伸性が悪化する。
[2] Next, the coagulated yarn taken from the first coagulation bath is stretched 2.6 to 3.5 times in the second coagulation bath. The second coagulation bath is composed of an organic solvent aqueous solution having an organic solvent concentration of 60 to 70% by mass and a temperature of 30 to 50 ° C.
Examples of the organic solvent for the second coagulation bath include the same organic solvents used for the spinning dope. The organic solvent for the spinning dope or the first coagulation bath and the organic solvent for the second coagulation bath may be the same or different. The same is preferable so as not to complicate the solvent recovery step.
In the present invention, the organic solvent concentration in the second coagulation bath is set higher than the organic solvent concentration in the first coagulation bath. By increasing the concentration of the organic solvent in the second coagulation bath, the draw ratio in the second coagulation bath can be increased and wrinkles can be deepened. By setting the organic solvent concentration and temperature of the second coagulation bath in the above ranges, stretching of 2.6 to 3.5 times can be stably performed while preventing the occurrence of single fiber breakage.
If the draw ratio in the second coagulation bath is lower than 2.6 times, wrinkles are difficult to deepen, and if it is higher than 3.5 times, single fiber breakage is likely to occur, and spinning stability decreases. Moreover, the stretchability in the subsequent wet heat stretching step is deteriorated.

なお、第1凝固浴から引き出した凝固液を含んだままの膨潤状態にある凝固糸は、空気中で延伸することも可能であるが、本工程のように第2凝固浴中で延伸することにより、凝固糸の凝固を促進させることができ、また、延伸時の温度制御も容易になる。
上記の条件で第2凝固浴中での延伸を行うことにより、最大高さ(Ry)が0.42〜0.6μm、Ry/(長径/短径)が0.31μm以上の炭素繊維前駆体繊維束を得ることが可能になる。
In addition, the coagulated yarn in the swollen state containing the coagulation liquid drawn out from the first coagulation bath can be drawn in the air, but is drawn in the second coagulation bath as in this step. As a result, solidification of the coagulated yarn can be promoted, and temperature control during stretching becomes easy.
A carbon fiber precursor having a maximum height (Ry) of 0.42 to 0.6 μm and a Ry / (major axis / minor axis) of 0.31 μm or more by stretching in the second coagulation bath under the above conditions. A fiber bundle can be obtained.

[3]続いて、第2凝固浴中での延伸を終えた膨潤状態にある繊維束に対して湿熱延伸を行う。これにより繊維の配向をさらに高めることができる。湿熱延伸は、具体的には、第2凝固浴中での延伸を終えた膨潤状態にある膨潤繊維束を、水洗に付しながらの延伸、あるいは熱水中での延伸によって行われる。水洗と同時の延伸は紡糸工程の簡略化、効率化の点で好ましく、熱水中での延伸は生産性の点で好ましい。
湿熱延伸における延伸倍率は2.5倍以上である必要があり、3倍以上が更に好ましい。2.5倍よりも低いと、繊維の配向を高める効果が不十分となりやすい。延伸倍率の上限は特に限定されないが、紡糸工程の安定性の点からは4倍以下が好ましい。
[3] Subsequently, wet heat drawing is performed on the fiber bundle in a swollen state after drawing in the second coagulation bath. Thereby, the orientation of the fiber can be further increased. Specifically, the wet heat stretching is performed by stretching a swollen fiber bundle in a swollen state after stretching in the second coagulation bath while being subjected to water washing or stretching in hot water. Drawing at the same time as washing with water is preferable from the viewpoint of simplification and efficiency of the spinning process, and drawing in hot water is preferable from the viewpoint of productivity.
The draw ratio in the wet heat drawing needs to be 2.5 times or more, and more preferably 3 times or more. If it is lower than 2.5 times, the effect of increasing the fiber orientation tends to be insufficient. The upper limit of the draw ratio is not particularly limited, but is preferably 4 times or less from the viewpoint of the stability of the spinning process.

[4]次に、湿熱延伸を終えた繊維束に対してシリコン系油剤の添油処理を行う。シリコン系油剤としては、例えばアミノシリコン系油剤等、一般的なシリコン系油剤を用いることができる。シリコン系油剤は、0.4〜1.5質量%の濃度に調製されて用いられる。シリコン系油剤の濃度が0.4質量%未満であると繊維への油剤の付着量が少なくなりすぎて好ましくなく、1.5質量%を超えると油剤の付着量が多くなりすぎて好ましくない。シリコン系油剤の濃度のより好ましい範囲は0.8〜1.5質量である。 [4] Next, a silicon oil additive is added to the fiber bundle that has been subjected to wet heat drawing. As the silicon-based oil, a general silicon-based oil such as an aminosilicon-based oil can be used. The silicon-based oil agent is prepared to a concentration of 0.4 to 1.5% by mass and used. If the concentration of the silicone-based oil is less than 0.4% by mass, the amount of oil attached to the fiber is not preferable because it is too small, and if it exceeds 1.5% by mass, the amount of oil is too large. A more preferable range of the concentration of the silicone-based oil is 0.8 to 1.5 mass.

[5]次に、シリコン系油剤の添油処理を終えた繊維束を乾燥し、さらにスチーム延伸機で1.2〜4倍に延伸する。スチーム延伸を実施することで、安定に高倍率での延伸が可能になり、また、静電気の発生による製造工程でのトラブルを抑制することができる。スチーム延伸の延伸倍率は1.2倍以上であり、好ましくは1.5倍以上である。
仮に、スチーム延伸の代わりに乾熱延伸を実施すると、しわが深くなりすぎて繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
[5] Next, the fiber bundle that has been subjected to the silicon oil addition process is dried and further stretched 1.2 to 4 times with a steam stretching machine. By carrying out the steam stretching, stretching at a high magnification can be stably performed, and troubles in the manufacturing process due to generation of static electricity can be suppressed. The draw ratio of steam drawing is 1.2 times or more, preferably 1.5 times or more.
If dry heat drawing is performed instead of steam drawing, the wrinkles become too deep, the surface area of the fiber bundle increases, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.

[6]次に、スチーム延伸を行った繊維束に対して、必要に応じてタッチロールで水分率の調整を行った後、公知の方法でエアーを吹き付けて交絡処理を施し、炭素繊維前駆体繊維束を得る。本発明において交絡処理は必須ではないが、炭素繊維前駆体繊維束のフィラメント同士に交絡を付与する事で、集束性を付与して1本のトウの形態を保持する繊維束が得ることができる。また繊維束をばらけにくくして、焼成工程通過性を向上させることができる。 [6] Next, the moisture content of the fiber bundle subjected to the steam drawing is adjusted with a touch roll as necessary, and then entangled with air by a known method to obtain a carbon fiber precursor. Obtain a fiber bundle. In the present invention, the entanglement treatment is not essential, but by providing entanglement between the filaments of the carbon fiber precursor fiber bundle, it is possible to obtain a fiber bundle that imparts convergence and maintains the form of one tow. . In addition, the fiber bundle can be made difficult to disperse and the baking process passage property can be improved.

交絡処理が施される前の繊維束の水分率は、好ましくは15質量%以下であり、より好ましくは、10質量%以下であり、さらに好ましくは、3〜5質量%である。水分率が15質量%を超えると、繊維束にエアーを吹き付けて交絡を施した際に、単繊維が交絡しにくくなる。
本明細書における水分率は、ウエット状態にある繊維束の質量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の質量w0 とにより、水分率(質量%)=(w−w0 )×100/w0 によって求めた数値である。
The moisture content of the fiber bundle before being entangled is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 3 to 5% by mass. When the moisture content exceeds 15% by mass, it becomes difficult for the single fibers to be entangled when the fiber bundle is entangled by blowing air.
The moisture content in this specification is the moisture content (mass%) = (w−) by the mass w of the fiber bundle in a wet state and the mass w 0 after drying this with a hot air dryer at 105 ° C. for 2 hours. It is a numerical value obtained by w0) × 100 / w0.

交絡処理を施した炭素繊維前駆体繊維束における交絡度は、好ましくは5〜20ヶ/mの範囲であり、より好ましくは10〜14ヶ/mの範囲である。交絡度が5ヶ/m未満では、交絡を付与することにより繊維束をばらけにくくして焼成工程通過性を向上させる効果が充分に得られない。交絡度が20ヶ/mを超えると、得られる炭素繊維束の樹脂含浸性および開繊性が悪くなる。
本明細書における炭素繊維前駆体繊維束の交絡度とは、繊維束中の1本の単繊維が隣接する他の単繊維と1mの間に何回交絡しているかを示すパラメータである。交絡度は、フックドロップ法により測定される。
The entanglement degree in the carbon fiber precursor fiber bundle subjected to the entanglement treatment is preferably in the range of 5 to 20 pieces / m, and more preferably in the range of 10 to 14 pieces / m. If the degree of entanglement is less than 5 / m, the effect of improving the passability of the firing process by imparting entanglement and making it difficult to disperse the fiber bundle cannot be obtained. When the entanglement degree exceeds 20 pcs / m, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated.
The entanglement degree of the carbon fiber precursor fiber bundle in the present specification is a parameter indicating how many times one single fiber in the fiber bundle is entangled between the adjacent single fibers and 1 m. The degree of entanglement is measured by the hook drop method.

以下、本発明について実施例を示して詳しく説明する。
本実施例における各測定は、以下の方法によって行った。
(Si量)
まず、試料をテフロン(登録商標)製密閉容器にとり、硫酸、次いで硝酸で加熱酸分解した後、定容として、ICP発光分析装置(ジャーレルアッシュ社製、製品名:IRIS−AP)を用いて測定した。
(交絡度)
乾燥状態にある炭素繊維前駆体の繊維束を用意し、垂下装置の上部に前記繊維束を取り付け、上部つかみ部から下方1mにおもりを取り付けつり下げた。ここで用いるおもり荷重は、デニール数の1/5のグラム数とした。前記繊維束の上部つかみから1cm下部の点に前記繊維束を2分割するようにフックを挿入し、2cm/Sの速度でフックを下降させた。フックが前記繊維束の絡みによって停止した点までのフックの下降距離L(mm)を求め、次式によって交絡度を算出した。尚、試験回数はN=50とし、その平均値の小数点1桁まで求めた。
交絡度=1000/L
ここで用いたフックは、直径が0.5mm〜1.0mmの針状で、表面が滑らかに仕上げ処理されたものである。
Hereinafter, the present invention will be described in detail with reference to examples.
Each measurement in this example was performed by the following method.
(Si amount)
First, a sample is placed in a Teflon (registered trademark) sealed container, and after acid decomposition with sulfuric acid and then nitric acid, an ICP emission analyzer (manufactured by Jarrel Ash, product name: IRIS-AP) is used as a constant volume. It was measured.
(Entanglement)
A fiber bundle of carbon fiber precursor in a dry state was prepared, the fiber bundle was attached to the upper part of the drooping device, and a weight was attached and suspended 1 m below from the upper gripping part. The weight load used here was 1/5 of the denier number. A hook was inserted so as to divide the fiber bundle into two at a point 1 cm below the upper grip of the fiber bundle, and the hook was lowered at a speed of 2 cm / S. The lowering distance L (mm) of the hook to the point where the hook stopped due to the entanglement of the fiber bundle was obtained, and the degree of entanglement was calculated by the following equation. The number of tests was N = 50, and the average value was obtained up to one decimal place.
Entanglement degree = 1000 / L
The hook used here is a needle having a diameter of 0.5 mm to 1.0 mm, and the surface is smoothly finished.

(しわ形状)
乾燥状態にある炭素繊維前駆体の繊維束をスライドガラスに貼り付け、レーザー顕微鏡(レーザーテック株式会社製、製品名:VL2000)を用い、繊維軸方向に対して垂直方向にRa、Ry、Sを測定した。測定は、繊維束を構成する単繊維から任意に選ばれた10本について行い平均値を求めた。得られたRa、Ry、Sの平均値と断面形状の測定結果から、Ra/(長径/短径)、Ry/(長径/短径)、S/(長径/短径)を算出した。
(総繊度)
まず、温度23±5℃、相対湿度60±20%の雰囲気中で、炭素繊維前駆体繊維束をボビンから長手方向に1m撚りが入らないように正確に切断して1本目のサンプルとした。次に前記で切り取った1本目のサンプルから、繊維束の長さ方向に沿って50m離れた位置で、同様にして2本目のサンプルを正確に切り取り、以下同様にして50mおきに合計20本のサンプルを切り取った。
採取した20本のサンプルを105℃、1時間の条件で乾燥機にて乾燥させ、電子天秤にて長さ1mの各サンプルの乾燥後質量(単位:g)を測定し、全データの平均値(Mとする。単位:g/m)を求めた。得られた平均値(M)を用い、炭素繊維前駆体繊維束の総繊度は次式により求めた。
炭素繊維前駆体繊維束の総繊度(dtex)=M(g/m)×10000(m)
(Wrinkle shape)
A fiber bundle of a carbon fiber precursor in a dry state is attached to a slide glass, and Ra, Ry, and S are measured in a direction perpendicular to the fiber axis direction using a laser microscope (manufactured by Lasertec Corporation, product name: VL2000). did. The measurement was performed on 10 fibers arbitrarily selected from the single fibers constituting the fiber bundle, and the average value was obtained. Ra / (major axis / minor axis), Ry / (major axis / minor axis), S / (major axis / minor axis) were calculated from the average values of Ra, Ry, and S obtained and the measurement results of the cross-sectional shape.
(Total fineness)
First, the carbon fiber precursor fiber bundle was cut accurately from the bobbin so as not to be twisted by 1 m in the longitudinal direction in an atmosphere having a temperature of 23 ± 5 ° C. and a relative humidity of 60 ± 20%, thereby obtaining a first sample. Next, the second sample is accurately cut in the same manner at a position 50 m away along the length direction of the fiber bundle from the first sample cut as described above. A sample was cut.
The collected 20 samples were dried in a dryer at 105 ° C. for 1 hour, the post-drying mass (unit: g) of each sample having a length of 1 m was measured with an electronic balance, and the average value of all data (M. Unit: g / m) was determined. Using the obtained average value (M), the total fineness of the carbon fiber precursor fiber bundle was determined by the following equation.
Total fineness (dtex) of carbon fiber precursor fiber bundle = M (g / m) × 10000 (m)

アクリロニトリル系繊維束(炭素繊維前駆体繊維束)を焼成して得られる炭素繊維束の評価方法は、以下の通りである。
(樹脂含浸性)
炭素繊維束を約20cm切り取り、グリシジルエーテル中に約3cm浸し15分間放置した。グリシジルエーテル中から取り出した後3分間放置し、下から3.5cmのところで切り落とし、残った炭素繊維束の長さ、質量を測定した。炭素繊維束の目付けから吸い上げたグリシジルエーテルの質量割合を算出し、樹脂含浸性の指標とした。
(開繊性)
炭素繊維束を0.06g/単繊維の張力下、走行速度1m/分で金属ロール上を走行させた際のトウ幅を測定し開繊性の指標とした。
(炭素繊維のストランド強度)
JIS−7601に準じて測定した。
A method for evaluating a carbon fiber bundle obtained by firing an acrylonitrile fiber bundle (carbon fiber precursor fiber bundle) is as follows.
(Resin impregnation)
The carbon fiber bundle was cut about 20 cm, immersed in about 3 cm in glycidyl ether, and left for 15 minutes. After taking out from glycidyl ether, it was allowed to stand for 3 minutes, cut off from the bottom at 3.5 cm, and the length and mass of the remaining carbon fiber bundle were measured. The mass ratio of glycidyl ether sucked up from the basis weight of the carbon fiber bundle was calculated and used as an index for resin impregnation.
(Opening property)
The tow width when the carbon fiber bundle was run on a metal roll at a running speed of 1 m / min under a tension of 0.06 g / single fiber was used as an index of the spreadability.
(Strand strength of carbon fiber)
It measured according to JIS-7601.

[実施例1]
アクリロニトリル、アクリルアミドおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=96/3/1(質量比)からなるアクリロニトリル系重合体を得た。前記アクリロニトリル系重合体をジメチルアセトアミドに溶解し、重合体濃度が21質量%の紡糸原液を調製した。
[Example 1]
Acrylonitrile, acrylamide and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / acrylamide unit / methacrylic acid unit = 96/3/1 (mass ratio) An acrylonitrile-based polymer was obtained. The acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a spinning dope having a polymer concentration of 21% by mass.

前記紡糸原液を孔数3000、孔径75μmの紡糸口金を通して、濃度55質量%、温度30℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中から前記凝固糸を、紡糸原液吐出線速度の0.8倍の引き取り速度で引き取った。前記凝固糸を引き続き濃度60質量%、温度30℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて2.8倍に延伸した。   The spinning solution is passed through a spinneret having a pore number of 3000 and a pore diameter of 75 μm and discharged into a first coagulation bath made of a dimethylacetamide aqueous solution having a concentration of 55% by mass and a temperature of 30 ° C. to obtain a coagulated yarn. The yarn was taken up at a take-up speed of 0.8 times the spinning solution discharge linear speed. The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 60% by mass and a temperature of 30 ° C., and stretched 2.8 times in the bath.

ついで、前記繊維束に対して水洗と同時に3倍の湿潤延伸を行い、これに1.5質量%に調製したアミノシリコン系油剤を添油した。前記繊維束を、熱ロールを用いて乾燥し、スチーム延伸機にて1.9倍に延伸した。その後、タッチロールにて繊維束の水分率を調整し、前記繊維束に繊維当たり5質量%の水分を含有させた。ついで、前記繊維束を、エア圧405kPaのエアーによって、交絡処理し、ワインダーでボビンに巻き取ることにより、単繊維繊度1.1dtex(1.0デニール)、総繊度3300dtexのアクリロニトリル系繊維束を得た。主な製造条件を表1に示す。   Subsequently, the fiber bundle was wet-stretched 3 times at the same time as being washed with water, and an aminosilicone oil prepared to 1.5% by mass was added thereto. The fiber bundle was dried using a hot roll and stretched 1.9 times with a steam stretching machine. Thereafter, the moisture content of the fiber bundle was adjusted with a touch roll, and the fiber bundle contained 5% by mass of water per fiber. Next, the fiber bundle is entangled with air having an air pressure of 405 kPa, and wound around a bobbin with a winder to obtain an acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex (1.0 denier) and a total fineness of 3300 dtex. It was. Table 1 shows the main manufacturing conditions.

得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度およびしわ形状を測定した。結果を表2に示す。
さらに、アクリロニトリル系繊維束を空気中230〜260℃の熱風循環式耐炎化炉にて50分間処理し耐炎化繊維束となし、ついで耐炎繊維束を窒素雰囲気中下で最高温度780℃にて1.5分間処理し、さらに同雰囲気下で最高温度が1300℃の高温熱処理炉にて約1.5分処理した後、重炭酸水素アンモニウム水溶液中で0.4Amin/mで電解処理を施し、炭素繊維束を得た。得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表3に示す。
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 2.
Further, the acrylonitrile fiber bundle was treated in a hot air circulation type flameproofing furnace at 230 to 260 ° C in air for 50 minutes to form a flameproofed fiber bundle, and then the flameproof fiber bundle was 1 at a maximum temperature of 780 ° C in a nitrogen atmosphere. After 5 minutes of treatment and further treatment in a high-temperature heat treatment furnace with a maximum temperature of 1300 ° C. for about 1.5 minutes in the same atmosphere, electrolytic treatment was performed at 0.4 Amin / m in an aqueous solution of ammonium bicarbonate to obtain carbon. A fiber bundle was obtained. The obtained carbon fiber bundle was evaluated for resin impregnation property, fiber opening property and strand strength. The results are shown in Table 3.

[実施例2〜6、比較例1〜11]
実施例1において、第1凝固浴の有機溶剤濃度、第2凝固浴の有機溶剤濃度、第2凝固浴中における延伸倍率、湿熱延伸における延伸倍率、およびスチーム延伸機による延伸倍率のうちの1つ以上を、表1に示すように変更したほかは実施例1と同様にしてアクリロニトリル系繊維束を得た。得られたアクリロニトリル系繊維束の単繊維繊度はいずれも1.1dtex、総繊度は3300dtexであった。
なお、比較例2、3、12は第2凝固浴で糸切れが発生したため、アクリロニトリル系繊維束を作製できなかった。
得られたアクリロニトリル系繊維束について、実施例1と同様の測定を行った。結果を表2に示す。
さらに、実施例1と同様にしてアクリロニトリル系繊維束を焼成して得られた炭素繊維束について実施例1と同様の評価を行った。結果を表3に示す。
[Examples 2-6, Comparative Examples 1-11]
In Example 1, one of the organic solvent concentration of the first coagulation bath, the organic solvent concentration of the second coagulation bath, the draw ratio in the second coagulation bath, the draw ratio in the wet heat drawing, and the draw ratio by the steam drawing machine An acrylonitrile fiber bundle was obtained in the same manner as in Example 1 except that the above was changed as shown in Table 1. The single fiber fineness of the obtained acrylonitrile fiber bundle was 1.1 dtex, and the total fineness was 3300 dtex.
In Comparative Examples 2, 3, and 12, yarn breakage occurred in the second coagulation bath, and thus an acrylonitrile fiber bundle could not be produced.
The obtained acrylonitrile fiber bundle was measured in the same manner as in Example 1. The results are shown in Table 2.
Further, the same evaluation as in Example 1 was performed on the carbon fiber bundle obtained by firing the acrylonitrile fiber bundle in the same manner as in Example 1. The results are shown in Table 3.

Figure 2011012363
Figure 2011012363

Figure 2011012363
Figure 2011012363

Figure 2011012363
Figure 2011012363

表3の結果に示されるように、単繊維の繊維断面における長径と短径との比(長径/短径)が、1.35〜1.5であり、単繊維の表面の最大高さ(Ry)が、0.42〜0.6μmであり、Ry/(長径/短径)が、0.31μm以上である実施例1〜6のアクリロニトリル系繊維束は、これを用いて製造された炭素繊維束の樹脂含浸性、開繊性、および強度のいずれも良好であった。
これに対して、第1凝固浴の有機溶剤濃度が60質量%と高い比較例1、5、9で得られたアクリロニトリル系繊維束は、単繊維の長径/短径比が1.32、Ryが0.42未満、Ry/(長径/短径)が0.31未満といずれも小さく、アクリロニトリル系繊維束から得られた炭素繊維束は、樹脂含浸性および開繊性に劣っていた。
また第1凝固浴の有機溶剤濃度が70質量%とさらに高い比較例4は、前記長径/短径比が1.02、Ryが0.20、Ry/(長径/短径)が0.20といずれも小さく、樹脂含浸性、開繊性、および強度のいずれも劣っていた。
第1凝固浴の有機溶剤濃度が50質量%と低い比較例6、8、11では、前記長径/短径比がそれぞれ1.52、1,53、1,52と大きいのに対して、Ryが0.42未満でしわが浅く、Ry/(長径/短径)が0.31未満と小さいため、アクリロニトリル系繊維束から得られた炭素繊維束は、樹脂含浸性および強度に劣っていた。
第1凝固浴の有機溶剤濃度が40質量%とさらに低い比較例7は、Ry/(長径/短径)は0.38と実施例と同等であるが、前記長径/短径比が1.72、Ryが0.65と大きいため、樹脂含浸性および開繊性は良好であるものの、強度が大幅に劣っていた。また集束性も劣っていた。
第2凝固浴の有機溶剤濃度が75質量%と高い比較例10は、前記長径/短径比は1.42であり実施例と同等であったが、Ryが0.36と小さくてしわが浅く、Ry/(長径/短径)が0.25と小さいため、樹脂含浸性および開繊性に劣っていた。
第2凝固浴の有機溶剤濃度が55質量%と低い比較例2、12、およびは第2凝固浴中での延伸倍率が4倍と高い比較例3では、第2凝固浴で糸切れが発生し、アクリロニトリル系繊維束を作製できなかった。
As shown in the results of Table 3, the ratio of the major axis to the minor axis (major axis / minor axis) in the fiber cross section of the single fiber is 1.35 to 1.5, and the maximum height of the surface of the single fiber ( Ry) is 0.42 to 0.6 μm, and Ry / (major axis / minor axis) is 0.31 μm or more, and the acrylonitrile fiber bundles of Examples 1 to 6 are produced using this carbon fiber. All of the resin impregnation property, fiber opening property, and strength of the fiber bundle were good.
In contrast, the acrylonitrile fiber bundles obtained in Comparative Examples 1, 5, and 9 having a high organic solvent concentration of 60% by mass in the first coagulation bath have a single fiber major axis / minor axis ratio of 1.32. Was less than 0.42 and Ry / (major axis / minor axis) was less than 0.31, and the carbon fiber bundle obtained from the acrylonitrile fiber bundle was inferior in resin impregnation property and fiber opening property.
Further, in Comparative Example 4 where the organic solvent concentration of the first coagulation bath is 70% by mass, the ratio of major axis / minor axis is 1.02, Ry is 0.20, and Ry / (major axis / minor axis) is 0.20. And the resin impregnation property, opening property, and strength were all inferior.
In Comparative Examples 6, 8, and 11, where the organic solvent concentration of the first coagulation bath is as low as 50% by mass, the major axis / minor axis ratio is as large as 1.52, 1, 53, and 1, 52, respectively. Is less than 0.42, the wrinkles are shallow, and Ry / (major axis / minor axis) is as small as less than 0.31, so the carbon fiber bundle obtained from the acrylonitrile fiber bundle was inferior in resin impregnation and strength.
In Comparative Example 7, where the organic solvent concentration of the first coagulation bath is 40 mass%, which is even lower, Ry / (major axis / minor axis) is 0.38, which is equivalent to the example, but the major axis / minor axis ratio is 1. Since 72 and Ry were as large as 0.65, the resin impregnation property and the fiber opening property were good, but the strength was significantly inferior. Also, the convergence was poor.
In Comparative Example 10 where the organic solvent concentration of the second coagulation bath was as high as 75% by mass, the ratio of major axis / minor axis was 1.42, which was the same as that of the example, but Ry was as small as 0.36 and wrinkles were observed. Since it was shallow and Ry / (major axis / minor axis) was as small as 0.25, the resin impregnation property and the fiber opening property were inferior.
In Comparative Examples 2 and 12, where the organic solvent concentration of the second coagulation bath is as low as 55% by mass, and in Comparative Example 3 where the draw ratio in the second coagulation bath is as high as 4 times, yarn breakage occurs in the second coagulation bath. However, an acrylonitrile fiber bundle could not be produced.

Claims (8)

アクリロニトリル系重合体からなる炭素繊維前駆体繊維束であって、
該炭素繊維前駆体繊維束を構成する単繊維の断面の長径と短径との比(長径/短径)が、1.35〜1.5であり、
単繊維の表面の最大高さ(Ry)が、0.42〜0.6μmであり、
Ry/(長径/短径)が、0.31μm以上である炭素繊維前駆体繊維束。
A carbon fiber precursor fiber bundle made of an acrylonitrile polymer,
The ratio (major axis / minor axis) of the major axis and the minor axis of the cross section of the single fiber constituting the carbon fiber precursor fiber bundle is 1.35 to 1.5,
The maximum height (Ry) of the surface of the single fiber is 0.42 to 0.6 μm,
A carbon fiber precursor fiber bundle in which Ry / (major axis / minor axis) is 0.31 μm or more.
アクリロニトリル系重合体が、アクリルアミド単量体単位を0.5〜4質量%含む請求項1に記載の炭素繊維前駆体繊維束。 The carbon fiber precursor fiber bundle according to claim 1, wherein the acrylonitrile-based polymer contains 0.5 to 4% by mass of an acrylamide monomer unit. 単繊維の表面の中心線平均粗さ(Ra)が、0.07〜0.15μmであり、
Ra/(長径/短径)が、0.05μm以上である請求項1または2に記載の炭素繊維前駆体繊維束。
The center line average roughness (Ra) of the surface of the single fiber is 0.07 to 0.15 μm,
The carbon fiber precursor fiber bundle according to claim 1 or 2, wherein Ra / (major axis / minor axis) is 0.05 µm or more.
単繊維の表面にしわを有し、局部山頂の間隔(S)が、0.7〜1.0μmであり、
S/(長径/短径)が、0.5μm以上である請求項1〜3にいずれかに記載の炭素繊維前駆体繊維束。
The surface of the single fiber has wrinkles, and the local summit interval (S) is 0.7 to 1.0 μm.
The carbon fiber precursor fiber bundle according to claim 1, wherein S / (major axis / minor axis) is 0.5 μm or more.
繊維束の総繊度が、15000dtex以下である請求項1〜4のいずれかに記載の炭素繊維前駆体繊維束。 The carbon fiber precursor fiber bundle according to any one of claims 1 to 4, wherein the total fineness of the fiber bundle is 15000 dtex or less. 95質量%以上のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、有機溶剤濃度52〜58質量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にするとともに、前記凝固糸を第1凝固浴中から紡糸原液吐出線速度の0.8倍以下の引き取り速度で引き取る工程と、
前記凝固糸に対して、有機溶剤濃度60〜70質量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて2.6〜3.5倍の延伸を施す工程と、
第2凝固浴中での延伸を終えた、膨潤状態にある繊維束に対して3倍以上の湿熱延伸を行う工程と、
前記湿熱延伸後の繊維束に対して、0.4〜1.5質量%に調整したシリコン系油剤の添油処理を行う工程と、
前記添油処理の後、前記繊維束を乾燥した後に、1.2〜4倍のスチーム延伸を施す工程とを有する炭素繊維前駆体繊維束の製造方法。
A spinning stock solution comprising an organic solvent solution of an acrylonitrile polymer containing 95% by mass or more of an acrylonitrile unit is placed in a first coagulation bath comprising an organic solvent aqueous solution having an organic solvent concentration of 52 to 58% by mass and a temperature of 30 to 50 ° C. A step of discharging into a coagulated yarn and taking the coagulated yarn from the first coagulation bath at a take-off speed of 0.8 times or less of the spinning solution discharge linear velocity;
A step of subjecting the coagulated yarn to 2.6 to 3.5 times stretching in a second coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 60 to 70% by mass and a temperature of 30 to 50 ° C;
A step of performing wet heat stretching three times or more on the swollen fiber bundle that has been stretched in the second coagulation bath;
A step of performing an oil addition treatment of the silicon-based oil adjusted to 0.4 to 1.5% by mass with respect to the fiber bundle after the wet heat drawing,
A method of producing a carbon fiber precursor fiber bundle having a step of subjecting the fiber bundle to a 1.2 to 4 times steam drawing after the oiling treatment.
アクリロニトリル系重合体が、アクリルアミド単量体単位を0.5〜4質量%含む請求項6に記載の炭素繊維前駆体繊維束の製造方法。 The method for producing a carbon fiber precursor fiber bundle according to claim 6, wherein the acrylonitrile-based polymer contains 0.5 to 4% by mass of an acrylamide monomer unit. 得られる炭素繊維前駆体繊維束の総繊度が15000dtex以下である請求項6または7のいずれかに記載の炭素繊維前駆体繊維束の製造方法。 The method for producing a carbon fiber precursor fiber bundle according to any one of claims 6 and 7, wherein the total fineness of the obtained carbon fiber precursor fiber bundle is 15000 dtex or less.
JP2009158035A 2009-07-02 2009-07-02 Carbon fiber precursor fiber bundle and method for producing the same Active JP5313788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158035A JP5313788B2 (en) 2009-07-02 2009-07-02 Carbon fiber precursor fiber bundle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158035A JP5313788B2 (en) 2009-07-02 2009-07-02 Carbon fiber precursor fiber bundle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011012363A true JP2011012363A (en) 2011-01-20
JP5313788B2 JP5313788B2 (en) 2013-10-09

Family

ID=43591536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158035A Active JP5313788B2 (en) 2009-07-02 2009-07-02 Carbon fiber precursor fiber bundle and method for producing the same

Country Status (1)

Country Link
JP (1) JP5313788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165231A1 (en) * 2011-05-27 2012-12-06 三菱レイヨン株式会社 Loom and weaving method using said loom
JP2015203166A (en) * 2014-04-14 2015-11-16 帝人株式会社 Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
KR20170005180A (en) 2014-08-27 2017-01-11 미쯔비시 레이온 가부시끼가이샤 Glossy pilling-resistant acrylic fiber, method for producing same, and spun yarn and knitted fabric including said acrylic fiber
JP2017160556A (en) * 2016-03-09 2017-09-14 東レ株式会社 Manufacturing method of carbon fiber precursor fiber bundle, manufacturing method of carbon fiber bundle and carbon fiber bundle
JP2018159139A (en) * 2017-03-22 2018-10-11 三菱ケミカル株式会社 Acrylic fiber bundle and production method of carbon fiber using the same
KR20190103443A (en) * 2017-02-16 2019-09-04 미쯔비시 케미컬 주식회사 Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Their Manufacturing Methods
JP2022085514A (en) * 2020-11-27 2022-06-08 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flame resistant fiber bundle, method for producing them and method for producing carbon fiber bundle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2002013022A (en) * 2000-06-23 2002-01-18 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle
JP2002020927A (en) * 2000-07-03 2002-01-23 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle
JP2002194626A (en) * 2000-12-21 2002-07-10 Mitsubishi Rayon Co Ltd Carbon fiber, carbon fiber-reinforced composite material, and method for producing carbon fiber
JP2002327339A (en) * 2001-04-27 2002-11-15 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
JP2006342487A (en) * 2006-08-18 2006-12-21 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor bundle
JP2006348462A (en) * 1998-07-22 2006-12-28 Mitsubishi Rayon Co Ltd Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2008280632A (en) * 2007-05-09 2008-11-20 Mitsubishi Rayon Co Ltd Method for producing precursor fiber bundle of carbon fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2006348462A (en) * 1998-07-22 2006-12-28 Mitsubishi Rayon Co Ltd Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2002013022A (en) * 2000-06-23 2002-01-18 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle
JP2002020927A (en) * 2000-07-03 2002-01-23 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber bundle
JP2002194626A (en) * 2000-12-21 2002-07-10 Mitsubishi Rayon Co Ltd Carbon fiber, carbon fiber-reinforced composite material, and method for producing carbon fiber
JP2002327339A (en) * 2001-04-27 2002-11-15 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
JP2006342487A (en) * 2006-08-18 2006-12-21 Mitsubishi Rayon Co Ltd Method for producing carbon fiber precursor bundle
JP2008280632A (en) * 2007-05-09 2008-11-20 Mitsubishi Rayon Co Ltd Method for producing precursor fiber bundle of carbon fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165231A1 (en) * 2011-05-27 2012-12-06 三菱レイヨン株式会社 Loom and weaving method using said loom
CN103562454A (en) * 2011-05-27 2014-02-05 三菱丽阳株式会社 Loom and weaving method using said loom
JP5664650B2 (en) * 2011-05-27 2015-02-04 三菱レイヨン株式会社 Weaving method using the weaving machine and the weaving machine
US9074307B2 (en) 2011-05-27 2015-07-07 Mitsubishi Rayon Co., Ltd. Loom and weaving method using the same
JP2015203166A (en) * 2014-04-14 2015-11-16 帝人株式会社 Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
KR20170005180A (en) 2014-08-27 2017-01-11 미쯔비시 레이온 가부시끼가이샤 Glossy pilling-resistant acrylic fiber, method for producing same, and spun yarn and knitted fabric including said acrylic fiber
JP2017160556A (en) * 2016-03-09 2017-09-14 東レ株式会社 Manufacturing method of carbon fiber precursor fiber bundle, manufacturing method of carbon fiber bundle and carbon fiber bundle
KR20190103443A (en) * 2017-02-16 2019-09-04 미쯔비시 케미컬 주식회사 Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Their Manufacturing Methods
KR20210082564A (en) * 2017-02-16 2021-07-05 미쯔비시 케미컬 주식회사 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
KR102273974B1 (en) 2017-02-16 2021-07-06 미쯔비시 케미컬 주식회사 Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Methods of Making Them
KR102385506B1 (en) 2017-02-16 2022-04-11 미쯔비시 케미컬 주식회사 Carbon fiber precursor acrylic fiber, carbon fiber, and manufacturing method for same
JP2018159139A (en) * 2017-03-22 2018-10-11 三菱ケミカル株式会社 Acrylic fiber bundle and production method of carbon fiber using the same
JP2022085514A (en) * 2020-11-27 2022-06-08 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flame resistant fiber bundle, method for producing them and method for producing carbon fiber bundle
JP7319955B2 (en) 2020-11-27 2023-08-02 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle

Also Published As

Publication number Publication date
JP5313788B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP5264150B2 (en) Carbon fiber strand and method for producing the same
KR100473126B1 (en) Carbon Fiber Precursor Fiber Bundle
TW201802315A (en) Carbon fiber bundle
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP5473468B2 (en) Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JP4775928B2 (en) Method for producing carbon fiber and acrylonitrile-based precursor fiber
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
JP5313797B2 (en) Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle
JP2013181264A (en) Carbon fiber bundle
JP4332285B2 (en) Carbon fiber precursor fiber bundle
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP6232814B2 (en) Acrylic fiber manufacturing method
JP2006225769A (en) Flameproof fiber, carbon fiber and manufacturing method thereof
JPH09273032A (en) Carbon fiber precursor filament yarn and its production and production of carbon fiber
JP2007284807A (en) Fiber bundle of acrylonitrile-based carbon fiber precursor, method for producing the same and carbon fiber bundle
JP2020007656A (en) Manufacturing method of carbon fiber bundle
JP2018159139A (en) Acrylic fiber bundle and production method of carbon fiber using the same
JP2004076208A (en) Method for producing carbon fiber precursor bundle
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP2017133123A (en) Carbon fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R151 Written notification of patent or utility model registration

Ref document number: 5313788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250