JP5012089B2 - Carbon fiber precursor fiber bundle and method for producing the same - Google Patents

Carbon fiber precursor fiber bundle and method for producing the same Download PDF

Info

Publication number
JP5012089B2
JP5012089B2 JP2007052320A JP2007052320A JP5012089B2 JP 5012089 B2 JP5012089 B2 JP 5012089B2 JP 2007052320 A JP2007052320 A JP 2007052320A JP 2007052320 A JP2007052320 A JP 2007052320A JP 5012089 B2 JP5012089 B2 JP 5012089B2
Authority
JP
Japan
Prior art keywords
acrylonitrile
yarn
stretching
fineness
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007052320A
Other languages
Japanese (ja)
Other versions
JP2008214795A (en
Inventor
直 鳥羽
英実 後藤
隆浩 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007052320A priority Critical patent/JP5012089B2/en
Publication of JP2008214795A publication Critical patent/JP2008214795A/en
Application granted granted Critical
Publication of JP5012089B2 publication Critical patent/JP5012089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

本発明は、高品位な炭素繊維を安定して製造するのに適した、アクリロニトリル系前駆体および炭素繊維の、製造方法に関する。更に詳しくは、繊度変動のバラツキが小さい、アクリロニトリル系前駆体および炭素繊維の製造方法に関する。   The present invention relates to an acrylonitrile-based precursor and a method for producing a carbon fiber suitable for stably producing a high-quality carbon fiber. More specifically, the present invention relates to a method for producing an acrylonitrile-based precursor and a carbon fiber with small variation in fineness variation.

炭素繊維は他の補強用繊維に比べて高い比強度および比弾性率をもつことから航空宇宙、スポーツおよび自動車・船舶・土木建築などの一般産業用途において、複合材料の補強繊維として工業的に幅広く利用されている。複合材料の補強繊維としての炭素繊維高性能化の要求が年々高まっている。とりわけ航空機用途の炭素繊維複合材料については、厳しい品質管理が要求され品質安定化が必須であり、炭素繊維を用いる複合材料の品質は炭素繊維そのものの品質でもあることから、炭素繊維の品質レベルそのものだけでなく、炭素繊維品質のばらつきの減少、言い換えれば品質の安定性についても求められている。   Carbon fiber has a high specific strength and specific modulus compared to other reinforcing fibers, so it is industrially widely used as a reinforcing fiber for composite materials in general industrial applications such as aerospace, sports and automobiles, ships, and civil engineering. It's being used. The demand for high-performance carbon fiber as a reinforcing fiber for composite materials is increasing year by year. In particular, for carbon fiber composite materials for aircraft use, strict quality control is required and quality stabilization is essential, and the quality of the composite material using carbon fiber is also the quality of the carbon fiber itself, so the quality level of the carbon fiber itself In addition, there is a demand for a reduction in carbon fiber quality variation, in other words, quality stability.

これらのユーザーからの需要に応えるべく、炭素繊維メーカーは高品質を維持しつつ、生産設備の大型化や炭素繊維の太物化などで生産能力を向上させている。また、炭素繊維用前駆体繊維としては、品質および生産安定性に優れたアクリロニトリル系繊維が一般的に利用されており、かかるアクリロニトリル系繊維としては炭素繊維の主要特性の1つである引張強度を高くするために、乾湿式紡糸法を適用して得られることが多い。   In order to meet the demands from these users, carbon fiber manufacturers are improving their production capacity by increasing production facilities and increasing the thickness of carbon fibers while maintaining high quality. In addition, as a precursor fiber for carbon fiber, acrylonitrile fiber having excellent quality and production stability is generally used, and such acrylonitrile fiber has tensile strength which is one of the main characteristics of carbon fiber. In order to make it high, it is often obtained by applying a dry and wet spinning method.

乾湿式紡糸法は、湿式紡糸法に比べてノズル孔ピッチを小さくすることが出来ないため、先に述べた生産設備の大型化や生産性向上のためには、糸条の高密度化・多糸条化と生産速度の向上が必須となる。一方、生産設備の大型化と生産速度の向上を行うと、アクリロニトリル系前駆体束の繊度バラツキが大きくなるという問題が生じてくる。この主たる原因はアクリロニトリル系ポリマーの吐出バラツキと、延伸でのバラツキであり、これを改善するため、過去にいくつかの提案がなされている。   The dry-wet spinning method cannot reduce the nozzle hole pitch compared to the wet spinning method. Therefore, in order to increase the size of the production equipment and improve the productivity mentioned above, it is necessary to increase the density and the number of yarns. Threading and production speed improvement are essential. On the other hand, when the production facility is increased in size and the production speed is improved, there arises a problem that the fineness variation of the acrylonitrile-based precursor bundle increases. The main cause of this is acrylonitrile-based polymer discharge variation and stretching variation, and several proposals have been made in the past to improve this.

まず、アクリロニトリル系前駆体束自体の繊度バラツキすなわち変動率を低減する方法がある(特許文献1参照)。本特許文献は、炭素繊維束の原料であるアクリロニトリル系前駆体繊維束を湿式紡糸方法で製造する際、加圧スチーム延伸工程において、該延伸装置直前に設置される加熱ローラーによる延伸倍率と加圧スチームによる延伸倍率は時間とともに変動するが、双方の延伸を全く同一時間に行うことができないために、実際は、これら2つの延伸の配分が断続的に変動することが前駆体繊維の長手方向の繊度変動を招くと指摘している。この前駆体繊維の繊度変動を抑制するために、加熱ローラーによる延伸倍率を抑え、加圧スチームの圧力変動を小さくするとことにより、延伸時の糸条張力の変動を少なくすることが重要と記載している。かかる延伸方法で得られた前駆体繊維束は、焼成して得られる炭素繊維束の長手方向繊度ムラが少なくなると記載されている。   First, there is a method of reducing the fineness variation, that is, the fluctuation rate of the acrylonitrile-based precursor bundle itself (see Patent Document 1). In this patent document, when an acrylonitrile-based precursor fiber bundle, which is a raw material of a carbon fiber bundle, is produced by a wet spinning method, in a pressurized steam stretching process, a stretching ratio and pressure are applied by a heating roller installed immediately before the stretching apparatus. Although the draw ratio due to steam varies with time, since the two stretches cannot be performed at exactly the same time, in fact, the distribution of the distribution of these two stretches varies intermittently. It points out that it will cause fluctuations. In order to suppress the fineness fluctuation of the precursor fiber, it is important to reduce the fluctuation of the yarn tension during drawing by reducing the draw ratio by the heating roller and reducing the pressure fluctuation of the pressure steam. ing. It is described that the precursor fiber bundle obtained by such a drawing method has less unevenness in the longitudinal direction of the carbon fiber bundle obtained by firing.

一方、延伸の均一化を図るべく、加圧スチームを用いた二次延伸性能を向上させる方法もある(特許文献2参照)。本文献に開示された方法は、延伸工程を予熱延伸工程と加熱延伸工程に分割し、それぞれに異なった圧力の加圧スチームを供給する方法であり、該方法は湿式紡糸、乾−湿式紡糸によらず効果があると記載されている。   On the other hand, there is also a method of improving secondary stretching performance using pressurized steam in order to make the stretching uniform (see Patent Document 2). The method disclosed in this document is a method in which the drawing process is divided into a preheating drawing process and a heating drawing process, and pressurized steam having different pressures is supplied to each, and the method is applied to wet spinning and dry-wet spinning. It is described as effective regardless.

しかし、これら技術では乾湿式紡糸法においては、繊度バラツキが小さく品質に優れたアクリロニトリル系前駆体繊維が得られなかった。
特再2000−005440 特開平5−263313
However, in these techniques, acrylonitrile-based precursor fibers with small variations in fineness and excellent quality were not obtained in the dry-wet spinning method.
Tokurei 2000-005440 JP-A-5-263313

本発明の目的は、かかる従来技術の問題点に鑑み、長手方向の繊度変動率の小さい高品位な、アクリロニトリル系繊維束および炭素繊維束の製造方法を提供することにある。   An object of the present invention is to provide a high-quality acrylonitrile fiber bundle and a carbon fiber bundle production method with a small fineness variation rate in the longitudinal direction in view of the problems of the prior art.

本発明者らは、かかる課題に対し、長手方向の繊度変動率が増加する加圧スチームを用いた延伸工程について鋭意検討したところ、糸条を予熱することにより繊度変動率を抑制できることを見出し、予熱に用いる加圧スチーム圧力とその工程の滞留時間と延伸に用いる加圧スチーム圧力とその工程の滞留時間により、繊度変動率を抑制するに至ったものである。すなわち、フィラメント数4000〜12000、単繊維繊度3.0〜6.0デシテックスのアクリロニトリル系繊維束を0.10〜0.35MPaの加圧スチーム雰囲気下の予熱延伸工程に2.0〜2.5秒間滞留させた後、実質的に連続する0.45〜0.70MPaの加圧スチーム雰囲気下の加熱延伸工程0.5〜2秒間滞留させることにより単繊維繊度0.5〜1.5デシテックスに延伸する実質的に無撚りの炭素繊維束製造用アクリロニトリル系前駆体繊維束の製造方法である。 The inventors of the present invention have made extensive studies on the stretching process using pressurized steam that increases the fineness variation rate in the longitudinal direction, and found that the fineness variation rate can be suppressed by preheating the yarn. The fineness fluctuation rate was suppressed by the pressurized steam pressure used for preheating, the residence time of the process, the pressurized steam pressure used for stretching, and the residence time of the process. That is, an acrylonitrile fiber bundle having a filament number of 4000 to 12000 and a single fiber fineness of 3.0 to 6.0 dtex is applied to a preheat drawing step in a pressurized steam atmosphere of 0.10 to 0.35 MPa in a range of 2.0 to 2.5. After being held for 2 seconds, the single fiber fineness is set to 0.5 to 1.5 dtex by being held for 0.5 to 2 seconds in a heating and stretching process in a substantially continuous pressure steam atmosphere of 0.45 to 0.70 MPa. It is a manufacturing method of the acrylonitrile type | system | group precursor fiber bundle for carbon fiber bundle manufacture for substantially untwisted carbon fiber which extends | stretches in (3).

本発明によれば、以下に説明するとおりアクリル系炭素繊維前駆体束の長手方向繊度変動率を小さくし、かかる前駆体束を用いた炭素繊維束の長手方向の繊度変動率を安定することにより、その性能を向上せしめ、その結果プリプレグを始めとする高次加工品の品質安定化を達成することができる   According to the present invention, as explained below, by reducing the longitudinal fineness variation rate of the acrylic carbon fiber precursor bundle, and stabilizing the longitudinal fineness variation rate of the carbon fiber bundle using the precursor bundle , Improve its performance, and as a result, can stabilize the quality of high-order processed products such as prepreg

以下本発明を詳細に説明する。   The present invention will be described in detail below.

本発明はアクリロニトリル系重合体を紡糸し、水洗、浴中延伸し、加熱ローラーにて乾燥、場合により延伸・弛緩処理し、さらに加圧スチームを使用して二次延伸することによりアクリロニトリル系前駆体束を製造する方法に関するものであり、特に、加圧スチームを使用した二次延伸の工程を特徴とするものである。すなわち、本発明におけるフィラメント数4000〜12000、単繊維繊度3.0〜6.0デシテックス(以降、dtexと略記することもある)のアクリロニトリル系繊維束とは、アクリロニトリル系重合体を紡糸し、水洗、浴中延伸し、加熱ローラーにて乾燥、場合により延伸・弛緩処理したものを指す。   In the present invention, an acrylonitrile polymer is spun, washed with water, stretched in a bath, dried with a heating roller, optionally stretched / relaxed, and further subjected to secondary stretching using pressurized steam. The present invention relates to a method of manufacturing a bundle, and in particular, is characterized by a secondary stretching process using pressurized steam. That is, in the present invention, an acrylonitrile fiber bundle having a filament number of 4000 to 12000 and a single fiber fineness of 3.0 to 6.0 dtex (hereinafter sometimes abbreviated as dtex) is obtained by spinning an acrylonitrile polymer and washing with water. , Stretched in a bath, dried with a heated roller, optionally stretched / relaxed.

本発明に適用するアクリロニトリル系繊維束は、構成する単繊維の数が4000〜12000本、3.0〜6.0デシテックスの範囲にあることが必要である。構成する単繊維の数が4000本を下回ると単位糸条あたりの生産性が低下するため生産速度のアップが必要になったり、糸条本数のアップなどが必要になる。一方12000本を上回ると熱の伝わりが低下するため、設備の更なる大型化が必要になる。単繊維繊度が、3.0デシテックスを下回ると単位糸条数あたりの生産能力が低下するため、加工速度のアップが必要になり、生産安定性が低下する。一方単繊維繊度が6.0デシテックスを生産能力が確保出来るものの、延伸工程の総倍率が大きくなるため、延伸工程での糸切れを発生することがある。また、総デシテックスが72000を越えると加圧スチームによる熱の伝わりが低下し、工程通過性が低下するためである。   The acrylonitrile fiber bundle applied to the present invention is required to have a number of single fibers constituting 4000 to 12000 and 3.0 to 6.0 dtex. If the number of monofilaments constituting the composition is less than 4000, the productivity per unit yarn is lowered, so that it is necessary to increase the production speed or the number of yarns. On the other hand, if the number exceeds 12,000, the transmission of heat decreases, so that further enlargement of the equipment is required. If the single fiber fineness is less than 3.0 dtex, the production capacity per unit yarn will be lowered, so that it is necessary to increase the processing speed and the production stability will be lowered. On the other hand, although the single fiber fineness is 6.0 dtex, the production capacity can be ensured, but the total magnification of the drawing process becomes large, so that yarn breakage may occur in the drawing process. Further, if the total decitex exceeds 72,000, the heat transfer by the pressurized steam is lowered, and the process passability is lowered.

フィラメント数4000〜12000、単繊維繊度3.0〜6.0デシテックスのアクリロニトリル系繊維束は以下のようにして得ることができる。   An acrylonitrile fiber bundle having a filament number of 4000 to 12000 and a single fiber fineness of 3.0 to 6.0 dtex can be obtained as follows.

本発明においてアクリロニトリル系重合体とは、アクリロニトリルのホモポリマーあるいは、コモノマーを少量共重合したアクリロニトリルの共重合体を総称するものとする。本発明のアクリロニトリル系重合体に用いるコモノマーは、具体的にはイタコン酸、メタクリルサン、アクリル酸などが挙げられる。本発明においては、これらコモノマーを0.11.0モル程度に使用したアクリロニトリル系重合体であることが好ましい。また、極限粘度[η]は生産性を鑑みた場合1.02.0の範囲にあることが好ましい。ホモポリマーもしくはコポリマーは従来公知の有機または無機の溶媒に溶解させ、紡糸原液とすることができる。 In the present invention, the acrylonitrile-based polymer is a generic term for an acrylonitrile homopolymer or an acrylonitrile copolymer obtained by copolymerizing a small amount of a comonomer. Specific examples of the comonomer used in the acrylonitrile-based polymer of the present invention include itaconic acid, methacrylic acid, and acrylic acid. In the present invention, an acrylonitrile-based polymer in which these comonomers are used in an amount of about 0.1 to 1.0 mol % is preferable. The intrinsic viscosity [η] is preferably in the range of 1.0 to 2.0 in view of productivity. The homopolymer or copolymer can be dissolved in a conventionally known organic or inorganic solvent to form a spinning dope.

次に一旦期中に紡出した糸条を凝固浴中に導入する乾−湿式紡糸法によって糸条を紡糸する。湿式紡糸法を用いても良いが、かかるアクリロニトリル系前駆体繊維の品質を考慮した場合、緻密なアクリロニトリル系原糸を得られ、より高強度な炭素繊維をえることができる乾−湿式紡糸法がより好ましい。かかる紡出には公知のギアポンプを用いることができる。口金は公知の口金を用いる。かかる口金のホール数は、炭素繊維のハンドリング性に優れる4000〜12000ホール(以下Hと略すこともある)である必要がある。設備の生産性を高めるためには6000H以上が好ましく、また、4000Hや6000Hの口金で得られた凝固糸を12000フィラメントに合糸しても良い。   Next, the yarn is spun by a dry-wet spinning method in which the yarn once spun during the period is introduced into a coagulation bath. Wet spinning method may be used, but when considering the quality of such acrylonitrile-based precursor fiber, a dry-wet spinning method that can obtain dense acrylonitrile-based yarn and obtain higher strength carbon fiber is available. More preferred. A known gear pump can be used for such spinning. A known base is used as the base. The number of holes in the base needs to be 4000 to 12000 holes (hereinafter sometimes abbreviated as H) which are excellent in carbon fiber handling properties. In order to increase the productivity of the equipment, 6000H or higher is preferable, and the coagulated yarn obtained with a 4000H or 6000H die may be combined into 12000 filaments.

かくして得られた4000〜12000フィラメントからなる凝固糸は、延伸される。このとき、延伸した後水洗しても良いが、乾−湿式紡糸では水洗後に温水中で湿熱延伸することが好ましく、加熱温水を循環させるだけでなく、新鮮水を湿熱延伸工程に連続的に供給すれば湿熱延伸と水洗を兼ねることも可能である。   The coagulated yarn composed of 4000-12000 filaments thus obtained is drawn. At this time, it may be washed with water after stretching. However, in dry-wet spinning, it is preferable to perform wet heat stretching in warm water after washing, and not only circulating heated hot water but also supplying fresh water continuously to the wet heat stretching process. By doing so, it is possible to perform both wet heat stretching and washing with water.

かかる湿熱延伸温度は30℃から80℃の範囲にあることが好ましく、より好ましくは35℃から70℃の範囲である。80℃を越えた場合、一般に乾−湿式紡糸ではフィラメント中の単糸同士が接着することがあり、かかる単糸同士の接着が生じた場合には炭素化した後に欠点となり、得られる炭素繊維束の発現強度が低下するため好ましくない。30℃を下回る場合は、温度不足によりフィラメント中の単糸が破断したり、湿熱延伸のバラツキを引き起す場合があり、かかる湿熱延伸のバラツキが生じた場合には炭素繊維束の品質を低下させるので好ましくない。   Such wet heat stretching temperature is preferably in the range of 30 ° C to 80 ° C, more preferably in the range of 35 ° C to 70 ° C. When the temperature exceeds 80 ° C., generally, in dry-wet spinning, single yarns in filaments may be bonded to each other, and when such single yarns are bonded to each other, it becomes a defect after carbonization, and the resulting carbon fiber bundle This is not preferable because the strength of the expression is reduced. When the temperature is lower than 30 ° C., the single yarn in the filament may be broken due to insufficient temperature or may cause variation in wet heat drawing. If such variation in wet heat drawing occurs, the quality of the carbon fiber bundle is deteriorated. Therefore, it is not preferable.

湿熱延伸倍率は1.56.0倍が好ましく、6.0倍を越える場合は糸条破断の発生率が増加し、生産性が低下するので好ましくない。また1.5倍を下回ると、前駆体束の配向性の低下により、炭素繊維束の強度低下が発生するので好ましくない。より好ましい範囲としては2.03.5倍である。 The wet heat draw ratio is preferably 1.5 to 6.0 times, and if it exceeds 6.0 times, the occurrence rate of yarn breakage increases, and the productivity decreases, which is not preferable. On the other hand, if the ratio is less than 1.5 times, the strength of the carbon fiber bundle is reduced due to the lowered orientation of the precursor bundle, which is not preferable. A more preferable range is 2.0 to 3.5 times.

さらに加熱ロールを用いてフィラメントを乾燥、延伸もしくは弛緩することが出来るが、乾燥前に公知のシリコン油剤などを付与すると、炭素繊維束の強度発現するのにより好ましい。乾燥温度、乾燥時間は公知の方法より適宜選択することができるが、加熱ロール上での延伸倍率は1.1倍を越えないことが好ましい。   Further, the filament can be dried, stretched or relaxed by using a heating roll, but it is more preferable to apply a known silicone oil agent or the like before drying to develop the strength of the carbon fiber bundle. The drying temperature and drying time can be appropriately selected from known methods, but the draw ratio on the heating roll preferably does not exceed 1.1 times.

さらに加圧スチームによる延伸を実施するにあたり、空気や蒸気など流体による公知の開繊処理などを施すと延伸の工程通過性が向上するので好ましい。   Further, when performing stretching by pressurized steam, it is preferable to perform a known opening process using a fluid such as air or steam because the stretching processability is improved.

本発明は、フィラメント数4000〜12000、単繊維繊度3.0〜6.0デシテックスのアクリロニトリル系繊維束を二次延伸するものであるが、二次延伸の工程では、延伸チューブに加圧スチームを吹き込むことにより延伸する。本発明では、この二次延伸工程を、予熱延伸工程とそれに続く加熱延伸工程の2工程に分割し、かつ、特定の加圧条件で延伸することを特徴とするものである。   In the present invention, an acrylonitrile fiber bundle having a filament number of 4000 to 12000 and a single fiber fineness of 3.0 to 6.0 dtex is secondarily drawn. In the second drawing step, pressurized steam is applied to the drawn tube. Stretch by blowing. In the present invention, the secondary stretching step is divided into two steps, a preheating stretching step and a subsequent heating stretching step, and is stretched under specific pressure conditions.

予熱延伸工程では、加圧スチームが0.10〜0.35MPaにあることが必要であり、0.20〜0.35MPaであれば好ましい。0.35MPaを越えた場合は糸条の外周部と内部の間に張力差が生じ、外周部が内部に比べて先行して不均一発生したり、断続的に過加熱部と非加熱部が発生しやすくなり、長手方向繊度バラツキが生じる。0.10MPaを下回ると、続く加熱延伸工程との温度差が大きくなり、毛羽の発生を生じ、かくして得られる炭素繊維束の品位が低下するためである。   In the preheating stretching step, it is necessary that the pressurized steam be in the range of 0.10 to 0.35 MPa, and preferably 0.20 to 0.35 MPa. If it exceeds 0.35 MPa, there will be a tension difference between the outer periphery and the inside of the yarn, the outer periphery will be uneven before the inside, or the overheated part and the non-heated part will be intermittently It becomes easy to generate | occur | produce and longitudinal direction fineness variation arises. This is because if the temperature is less than 0.10 MPa, the temperature difference from the subsequent heating and stretching step becomes large, the generation of fluff occurs, and the quality of the carbon fiber bundle thus obtained is lowered.

本発明では上記予熱の延伸工程に2.0〜2.5秒滞留させることが必要であ。該滞留時間が2.0未満の場合、特に12000フィラメントを延伸する場合に十分に糸条の予熱がなされないため、連続する加熱延伸工程でフィラメントの外周部と内部の間に延伸のバラツキを引き起こし、一方2.5を超える時間滞留させようとすると設備の更なる大型化が必要になったり、延伸機内での糸条の懸垂量が大きくなり擦過による毛羽発生が生じるためである。 In the present invention, Ru necessary der be retained 2.0-2.5 seconds stretching step of the preheater. When the residence time is less than 2.0 , the yarn is not sufficiently preheated particularly when a 12,000 filament is stretched, which causes variation in stretching between the outer periphery and the inside of the filament in a continuous heating and stretching process. On the other hand, if the retention time exceeds 2.5, it is necessary to further increase the size of the equipment or to increase the amount of yarn suspended in the drawing machine and to generate fluff due to abrasion.

予熱延伸工程でのアクリロニトリル前駆体の延伸は2.0倍以下にすることが好ましく、より好ましくは1.5倍以下である。該予熱延伸工程で2.0倍を越える延伸を行った場合は、糸条の破断や延伸斑の増大を引き起こす場合があるため好ましくない。   The stretching of the acrylonitrile precursor in the preheating stretching step is preferably 2.0 times or less, more preferably 1.5 times or less. It is not preferable to perform stretching exceeding 2.0 times in the preheating stretching step because it may cause breakage of the yarn or increase in stretched spots.

加熱延伸工程は0.45〜0.70MPaの加圧スチームが充填された雰囲気であることが必要であり、0.45〜0.60MPaであることが好ましい。0.45MPaを下回ると延伸に必要な熱量が不足し、延伸中に断糸を引き起こす頻度が上昇し、一方、0.70MPaを越えた場合は、糸条の溶断などが発生することがあるためである。さらに本発明では、少なくとも0.5秒以上滞留させつつ同時に延伸することが必要である。加熱延伸工程の滞留時間が0.5秒未満であると延伸のバラツキを引きおこすためである。一方2.0秒以上滞留させようとすると設備の更なる大型化が必要になり、機内での温度バラツキが大きくなり延伸斑を引き起こす場合があるため好ましくない。延伸機内での糸条の懸垂量が大きくなり擦過による毛羽発生が生じるためである。   The heating and stretching step needs to be an atmosphere filled with 0.45 to 0.70 MPa of pressurized steam, preferably 0.45 to 0.60 MPa. If it is less than 0.45 MPa, the amount of heat required for drawing is insufficient, and the frequency of causing yarn breakage during drawing increases. On the other hand, if it exceeds 0.70 MPa, fusing of the yarn may occur. It is. Furthermore, in the present invention, it is necessary to stretch at the same time while retaining for at least 0.5 seconds. This is because if the residence time in the heating and stretching step is less than 0.5 seconds, variations in stretching are caused. On the other hand, if the retention time is 2.0 seconds or longer, further enlargement of the equipment is required, and the temperature variation in the machine increases, which may cause stretch spots. This is because the amount of yarn suspended in the drawing machine increases and fluffing occurs due to abrasion.

これらの2次延伸に用いるスチームは公知の設備を用いて供給されるが、湿り蒸気であることが必要であり、たとえば乾き度が0.950.99の範囲の蒸気を好適に用いることができる。一方、乾き度が0.99を越える加熱蒸気を延伸に用いると、工程での断糸が煩雑に発生するため好ましくない。加熱に用いる蒸気流量は延伸に用いる糸条量に対して3〜20倍の重量範囲で適宜設定できるが通常は10倍量で十分である。3倍を下回ると熱量不足により糸条の破断などが生じるため好ましくない。なお、この延伸に用いられるスチームは糸条の可塑性を向上させるため、公知のアトマイザーなどの液滴添加方法を用いて、乾き度が0.70.99にすることができる。また、予熱延伸工程に供する加圧スチームの温度は、125135℃の範囲であるとより好ましい。135℃以下であれば予熱延伸工程で、延伸張力が0.10.9g/デシテックスの張力が糸条にかかっても延伸が開始されないため好ましい。 The steam used for the secondary stretching is supplied using known equipment, but needs to be wet steam. For example, steam having a dryness of 0.95 to 0.99 is preferably used. Can do. On the other hand, if heated steam having a dryness exceeding 0.99 is used for stretching, it is not preferable because yarn breakage in the process is complicated. The steam flow rate used for heating can be appropriately set within a weight range of 3 to 20 times the amount of yarn used for drawing, but usually 10 times is sufficient. If it is less than 3 times, the yarn breaks due to insufficient heat, which is not preferable. Incidentally, the steam used in the drawing in order to improve the plasticity of the yarn, using the droplet method of adding such a known atomizer, the dryness can be 0.7 to 0.99. Moreover, it is more preferable that the temperature of the pressurized steam used in the preheating stretching step is in the range of 125 to 135 ° C. Preheating stretching process if 135 ° C. or less is preferable because the draw tension of 0.1 tension of ~ 0.9 g / dtex is not started stretching also depend on yarn.

本発明の加圧スチーム延伸機は、公知の糸条通過口を有するシール部材を両端に有するチューブ状形式を用いても良く、スチーム吹き込み口を備えている。糸条の導入側に予熱延伸工程、糸条の取り出し側に加熱延伸工程を設け、その間には開口部を備えたラビリンスシールなどを適宜使用できる。予熱延伸工程と加熱延伸工程は実質的に連続であれば良い。本発明において予熱延伸工程と加熱延伸工程が実質的に連続するとは少なくとも予熱延伸工程で予熱されたアクリロニトリル系前駆体束の温度が5℃以上は低下しない状態で加熱延伸工程に到達しうることをいい、たとえば該2工程が連結していなくても、該2工程間の距離が50cm以下であればよく、該2工程間が糸条の保温のために筒状や管状部材などにより被覆されていれば好ましい。   The pressurizing steam drawing machine of the present invention may use a tubular type having a sealing member having a known yarn passage opening at both ends, and is provided with a steam blowing opening. A preheat drawing process is provided on the yarn introduction side, and a heat drawing process is provided on the yarn take-out side, and a labyrinth seal provided with an opening can be used as appropriate. The preheating stretching process and the heating stretching process may be substantially continuous. In the present invention, the fact that the preheating stretching process and the heating stretching process are substantially continuous means that at least the temperature of the acrylonitrile precursor bundle preheated in the preheating stretching process can reach the heating stretching process in a state where the temperature does not decrease by 5 ° C. or more. For example, even if the two steps are not connected, the distance between the two steps may be 50 cm or less, and the two steps are covered with a tubular or tubular member to keep the yarn warm. It is preferable.

この予熱延伸工程長と加熱延伸工程長は数十cmから数mと特に限定されないが、延伸速度と延伸倍率を鑑みて本発明の範囲に適宜設定すればよい。
加圧スチーム延伸の延伸倍率は、8倍以下で有れば安定した工程通過性を維持でき、その延伸倍率は概ね28倍の範囲が好適である。8倍以上であると過度な延伸により糸条の破断をきたしたり、2倍以下であると得られたアクリロニトリル系前駆体の配向が十分でなく、該前駆体を用いる炭素繊維の発現強度が低下することがある。
The preheating stretching process length and the heating stretching process length are not particularly limited to several tens of centimeters to several meters, but may be appropriately set within the scope of the present invention in view of the stretching speed and the stretching ratio.
If the stretch ratio of the pressurized steam stretching is 8 times or less, stable process passability can be maintained, and the stretch ratio is preferably in the range of 2 to 8 times. If it is 8 times or more, the yarn will break due to excessive stretching, or if it is 2 times or less, the orientation of the obtained acrylonitrile-based precursor is not sufficient, and the expression strength of the carbon fiber using the precursor is reduced. There are things to do.

予熱延伸工程の温度と加熱延伸工程の導入側および取出し側にははそれぞれ、ラビリンスノズルと称する小口径のパイプを複数個連ねて用いているが、これに限定されるものではない。なお、ラビリンスノズルを使用する場合は小口径の形状と寸法および使用個数で調節できる。小口径の形状は糸条が円滑に通過し、かつ本発明の形態の温度を適正に保たれていれば特に限定されない。予熱延伸工程に独立したスチーム吹き込み口を設けることは予熱延伸工程と加熱延伸工程のスチーム圧力を容易に独立して制御できるのでより好ましい。   A plurality of small-diameter pipes called labyrinth nozzles are used in series on the preheating drawing process temperature and the heating drawing process introduction side and take-out side, respectively, but the present invention is not limited to this. In addition, when using a labyrinth nozzle, it can be adjusted by the shape and size of the small diameter and the number used. The shape of the small diameter is not particularly limited as long as the yarn passes smoothly and the temperature of the embodiment of the present invention is properly maintained. It is more preferable to provide an independent steam blowing port in the preheating stretching process because the steam pressure in the preheating stretching process and the heating stretching process can be easily and independently controlled.

各工程の圧力と温度は、予熱延伸工程および加熱延伸工程のそれぞれの延伸機に2箇所の公知のデジタル式圧力温度計を設置し計測した。50ms毎に5分間測定し、3000点の平均値を工程温度とした。供給圧力の調整は公知の減圧弁などを用いて良く、より好ましくは調整機能を有したダイヤフラム式コントロールバルブへのフィードバック制御方式を用いることが出来る。予熱延伸工程と加熱延伸工程へのスチームの供給はそれぞれの工程に単独でもよく、各工程の中央部に供給し、オリフィスや前述のシール部材などで圧力を分配しても良い。オリフィスやシール部材の口径とその長さにより本発明の圧力範囲にあれば特に限定はされない。   The pressure and temperature in each process were measured by installing two known digital pressure thermometers in each stretching machine in the preheating stretching process and the heating stretching process. Measurement was performed every 50 ms for 5 minutes, and an average value of 3000 points was defined as the process temperature. For adjusting the supply pressure, a known pressure reducing valve or the like may be used. More preferably, a feedback control system to a diaphragm type control valve having an adjustment function can be used. The steam may be supplied to the preheating drawing process and the heating drawing process independently in each process, or may be supplied to the central portion of each process, and pressure may be distributed by an orifice, the above-described seal member, or the like. There is no particular limitation as long as it is within the pressure range of the present invention depending on the diameter and length of the orifice or seal member.

実質的に無撚りとは、無撚り、もしくは、たとえ撚りがあっても、アクリロニトリル系前駆体の長手方向1mあたり0.5ターン以下すなわち1mあたり、90°を越える反転が生じていないことである。0.5ターンを越える撚りを有しているアクリロニトリル系前駆体を耐炎化、炭素化しようとすると蓄熱により破断などを生じる可能性がある。   “Substantially no twist” means that even if there is no twist or twist, no reversal exceeding 90 ° per 1 m in the longitudinal direction of the acrylonitrile precursor occurs, that is, less than 90 ° per 1 m. . If an acrylonitrile-based precursor having a twist exceeding 0.5 turns is made flame resistant and carbonized, it may break due to heat storage.

単繊維繊度は0.5〜1.5デシテックスが好適である。0.5デシテックスを下回ると設備生産性が低下し、1.5デシテックスを上回ると、かかる耐炎化工程での耐炎化の進行が単繊維の内外層で不均一になり、毛羽が発生したり、糸条の切断が生じるので好ましくない。かくして得られたアクリロニトリル系前駆体束は公知の方法で巻き上げられ、公知の方法で耐炎化、炭素化工程へ供される。巻き上げの方法としてはボビンパッケージが好適に用いられる。   The single fiber fineness is preferably 0.5 to 1.5 dtex. If it is less than 0.5 decitex, the equipment productivity decreases, and if it exceeds 1.5 decitex, the progress of flame resistance in the flame resistance process becomes uneven in the inner and outer layers of the single fiber, and fluffing occurs. This is not preferable because the yarn is cut. The acrylonitrile-based precursor bundle thus obtained is wound up by a known method and is subjected to a flame resistance and carbonization step by a known method. As a winding method, a bobbin package is preferably used.

このアクリロニトリル系前駆体束の長手方向繊度変動率は下記方法によって測定される。長手方向繊度変動率評価用のサンプルである前駆体束をボビンから長手方向に1m撚りが入らないように50本正確に切断し、それぞれ105℃の熱風乾燥機で1.5時間乾燥したのち、乾燥後の重量を電子秤量し、次式に基づいて繊度変動率を算出した。   The longitudinal fineness variation rate of the acrylonitrile-based precursor bundle is measured by the following method. After accurately cutting 50 precursor bundles, which are samples for evaluating the longitudinal fineness variation rate, from the bobbin so that 1 m twist does not enter in the longitudinal direction, each is dried with a hot air dryer at 105 ° C. for 1.5 hours, The weight after drying was weighed electronically, and the fineness fluctuation rate was calculated based on the following formula.

長手方向繊度変動率(%)=(σ1/A)×100
ここで、σ1は測定データの標準偏差、Aは測定繊度データの平均値である。ここで全データとは採取したサンプル50のデータを指す。
Longitudinal fineness fluctuation rate (%) = (σ1 / A) × 100
Here, σ1 is the standard deviation of the measurement data, and A is the average value of the measurement fineness data. Here, the total data refers to the data of the collected sample 50.

なお、炭素繊維束の長手方向繊度変動率は、温度23±5℃、相対湿度60±20%の雰囲気中で、上記手順に準じて実施できる。
このように、本発明によれば、アクリロニトリル系前駆体束の長手方向繊度変動率を小さくすることでその品質安定性を向上せしめ、耐炎化、炭素化した炭素繊維束についても長手方向繊度変動率を小さくすることにより、炭素繊維束の品質のみならず、炭素繊維束を含むプリプレグ法やフィラメントワインディング法等で製造される高次加工品の品質安定化を達成することができる。
The longitudinal fineness variation rate of the carbon fiber bundle can be carried out according to the above procedure in an atmosphere having a temperature of 23 ± 5 ° C. and a relative humidity of 60 ± 20%.
As described above, according to the present invention, the longitudinal fineness fluctuation rate of the acrylonitrile-based precursor bundle is reduced to improve its quality stability, and the longitudinal fineness fluctuation rate of the carbon fiber bundle that is flame-resistant and carbonized is also improved. By reducing the size, it is possible to achieve not only the quality of the carbon fiber bundle but also the stabilization of the quality of the high-order processed product produced by the prepreg method or the filament winding method including the carbon fiber bundle.

本発明の炭素繊維束製造用アクリロニトリル系前駆体繊維束の製造方法に適用する装置を図面を用いて説明する。   The apparatus applied to the manufacturing method of the acrylonitrile type | system | group precursor fiber bundle for carbon fiber bundle manufacture of this invention is demonstrated using drawing.

図1は、本発明で用いる加圧スチーム延伸機の一例である。導入口より供給された糸条はシール部材5a,5bにて仕切られた予熱延伸工程1にて予熱される。予熱延伸工程1のスチーム供給圧力は3aで検出され、フィードバック制御によりコントロールバルブ4aで調整される。予熱された糸条はただちにシール部材5b,5cで仕切られた加熱延伸工程に導入され延伸される。加熱延伸工程2のスチーム供給圧力は3aで検出され、フィードバック制御によりコントロールバルブ4bで調整される。   FIG. 1 is an example of a pressure steam stretching machine used in the present invention. The yarn supplied from the introduction port is preheated in the preheating drawing step 1 partitioned by the seal members 5a and 5b. The steam supply pressure in the preheating stretching process 1 is detected at 3a and adjusted by the control valve 4a by feedback control. The preheated yarn is immediately introduced into the heating and drawing process partitioned by the seal members 5b and 5c and drawn. The steam supply pressure in the heating and stretching step 2 is detected at 3a and adjusted by the control valve 4b by feedback control.

図2、3は、本発明で用いる加圧スチーム延伸機の一例である。圧力制御に用いる圧力検出点3bを加熱延伸工程にのみ設置し、予熱延伸工程のスチーム供給圧力3aはフィードバック制御に用いずに、5a,5bのシール部材の径および個数によりコントロールする方法である。コントロールバルブの数を減じ、さらに複雑な配管を省略できるため、より安価な設備とすることができることから産業上有効である。   2 and 3 are examples of a pressure steam stretching machine used in the present invention. This is a method in which the pressure detection point 3b used for pressure control is installed only in the heating and stretching process, and the steam supply pressure 3a in the preheating and stretching process is controlled by the diameter and number of the seal members 5a and 5b without using feedback control. Since the number of control valves can be reduced and more complicated piping can be omitted, it is possible to make the equipment cheaper, which is industrially effective.

(使用機器、及び、測定方法)
・蒸気温度・圧力のデータ測定方法
下記の蒸気圧力測定機器、蒸気温度測定機器、及び、データ収集機器を用いて、糸条延伸下で50msの頻度で3000点のデータを収集し、その平均圧力と平均温度を求め代表値とした。
(Equipment used and measurement method)
・ Data measurement method of steam temperature and pressure Using the following steam pressure measurement equipment, steam temperature measurement equipment, and data collection equipment, 3000 points of data are collected at a frequency of 50 ms under yarn stretching, and the average pressure is collected. And the average temperature was determined as a representative value.

蒸気圧力測定機器:横河電気社製EJ430型小型圧力電伝送器
蒸気温度測定機器:岡崎製作所製PT100プローブ
データ収集機器:KEYENCE社データ収集器NR1000
・予熱延伸工程延伸倍率測定方法
予熱延伸機の導入口側、取り出し口で同時に糸条を切断しただちにスチーム供給を停止しサンプリングする。サンプリング糸を10cm毎にカットし、取り出し口側10cmあたりの糸条重量(A)を導入口側10cmあたりの糸条重量(B)で除した値を延伸倍率とした。
Vapor pressure measuring device: EJ430 type small pressure electric transmitter manufactured by Yokogawa Electric Co., Ltd. Vapor temperature measuring device: PT100 probe manufactured by Okazaki Seisakusho Data collecting device: KEYENCE data collector NR1000
-Preheat drawing process draw ratio measuring method Stop the steam supply and sample immediately after cutting the yarn at the inlet and outlet of the preheat drawing machine. The sampling yarn was cut every 10 cm, and the value obtained by dividing the yarn weight (A) per 10 cm of the take-out port side by the yarn weight (B) per 10 cm of the introduction port side was taken as the draw ratio.

・滞留時間測定方法
延伸機の導入口側で糸条に油性ペンでマークを入れ、取り出し口側に出てくるまでの時間をストップウオッチを用いて10回測定しその平均値滞留時間とした。
-Residence time measurement method A mark was put on the yarn with an oil pen on the inlet side of the drawing machine, and the time until it came out on the outlet side was measured 10 times using a stopwatch, and the average residence time was obtained.

(実施例1)
アクリロニトリル99モル%、イタコン酸1モル%含むポリアクリロニトリル系重合体のジメチルスルホキシド溶液を4000Hの口金を用いて乾―湿式紡糸し、ただちに3本を合糸し、12000フィラメントとした。40℃の温水中で2倍延伸および水洗し、70℃の温水中でさらに2倍の延伸を実施した後に乾燥して、12000フィラメントからなる総デシテックスが66000の糸条を得た。この糸条をスチーム延伸機へ供し、0.35Mpaの加圧スチーム条件下の予熱延伸工程に2.5秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度1.1dtexのアクリロニトリル系前駆体束の長手方向繊度斑は0.6%であり、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も0.9%と良好なものであった。
Example 1
A dimethyl sulfoxide solution of a polyacrylonitrile-based polymer containing 99 mol% acrylonitrile and 1 mol% itaconic acid was dry-wet-spun using a 4000H die, and the three were immediately combined to form 12000 filaments. The yarn was stretched twice and washed in warm water at 40 ° C., further stretched twice in warm water at 70 ° C. and then dried to obtain a yarn having a total decitex of 12,000 filaments of 66000. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.35 Mpa for 2.5 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Stretched over 0.7 seconds. The longitudinal fineness of the acrylonitrile-based precursor bundle having 12000 filaments and a single fiber fineness of 1.1 dtex thus obtained is 0.6%, and the longitudinal fineness of the carbon fiber obtained by flameproofing and carbonization is also 0. It was as good as 9%.

(実施例2)
アクリロニトリル99モル%、イタコン酸1モル%含むポリアクリロニトリル系重合体のジメチルスルホキシド溶液を4000Hの口金を用いて乾―湿式紡糸し、ただちに3本を合糸し、12000フィラメントとした。40℃の温水中で2倍延伸および水洗し、70℃の温水中でさらに2倍の延伸を実施した後に乾燥して、12000フィラメントからなる総デシテックスが42000の糸条を得た。この糸条をスチーム延伸機へ供し、0.20Mpaの加圧スチーム条件下の予熱延伸工程に2.0秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.6秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度0.7dtexのアクリロニトリル系前駆体束の長手方向繊度斑は0.6%であり、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も0.9%と良好なものであった。
(Example 2)
A dimethyl sulfoxide solution of a polyacrylonitrile-based polymer containing 99 mol% acrylonitrile and 1 mol% itaconic acid was dry-wet-spun using a 4000H die, and the three were immediately combined to form 12000 filaments. The yarn was stretched twice and washed in warm water at 40 ° C., further stretched twice in warm water at 70 ° C., and then dried to obtain a yarn having a total decitex of 12000 filaments of 42,000. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.20 Mpa for 2.0 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Stretched over 0.6 seconds. The longitudinal fineness of the acrylonitrile precursor bundle having 12000 filaments and a single fiber fineness of 0.7 dtex thus obtained is 0.6%, and the longitudinal fineness of the carbon fibers obtained by flameproofing and carbonization is also 0. It was as good as 9%.

(実施例3)
アクリロニトリル99モル%、イタコン酸1モル%含むポリアクリロニトリル系重合体のジメチルスルホキシド溶液を4000Hの口金を用いて乾―湿式紡糸し、40℃の温水中で2倍延伸および水洗し、70℃の温水中でさらに2倍の延伸を実施した後に乾燥して、4000フィラメントからなる総デシテックスが14000の糸条を得た。この糸条をスチーム延伸機へ供し、0.20Mpaの加圧スチーム条件下の予熱延伸工程に2.0秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.6秒間かけて延伸した。かくして得られた4000フィラメント、単繊維繊度0.7dtexのアクリロニトリル系前駆体束の長手方向繊度斑は0.6%であり、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も0.9%と良好なものであった。
(Example 3)
A dimethylsulfoxide solution of a polyacrylonitrile polymer containing 99 mol% acrylonitrile and 1 mol% itaconic acid is dry-wet-spun using a 4000H die, stretched twice in warm water at 40 ° C, washed with water, and heated at 70 ° C. In addition, the yarn was further stretched twice and then dried to obtain a yarn having a total decitex composed of 4000 filaments of 14,000. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.20 Mpa for 2.0 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Stretched over 0.6 seconds. The thus obtained 4000 filament, acrylonitrile-based precursor bundle having a single fiber fineness of 0.7 dtex has a longitudinal fineness unevenness of 0.6%, and the longitudinal fineness unevenness of the carbon fiber obtained by flame resistance and carbonization is also 0. It was as good as 9%.

(比較例1)
実施例1と同様に重合〜乾燥して得られた12000フィラメントからなる総デシテックスが66000の糸条を得た。この糸条をスチーム延伸機へ供し、0.05Mpaの加圧スチーム条件下の予熱延伸工程に2.5秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸したが、延伸時に糸条破断が多発し、原糸を得られなかった。
(Comparative Example 1)
In the same manner as in Example 1, a yarn having a total decitex of 66000 consisting of 12000 filaments obtained by polymerization and drying was obtained. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.05 Mpa for 2.5 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Although the film was drawn for 0.7 seconds, the yarn breakage occurred frequently at the time of drawing, and the original yarn could not be obtained.

(比較例2)
実施例1と同様に重合〜乾燥して得られた12000フィラメントからなる総デシテックスが66000の糸条を得た。この糸条をスチーム延伸機へ供し、0.40Mpaの加圧スチーム条件下の予熱延伸工程に2.5秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度1.1dtexのアクリロニトリル系前駆体束の長手方向繊度斑は1.5%、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も1.7%と不良となった。
(Comparative Example 2)
In the same manner as in Example 1, a yarn having a total decitex of 66000 consisting of 12000 filaments obtained by polymerization and drying was obtained. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.40 Mpa for 2.5 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Stretched over 0.7 seconds. The longitudinal fineness of the acrylonitrile-based precursor bundle having a 12000 filament and a single fiber fineness of 1.1 dtex thus obtained was 1.5%, and the longitudinal fineness of the carbon fiber obtained by flame resistance and carbonization was 1.7%. %.

(比較例3)
実施例1と同様に重合〜乾燥して得られた12000フィラメントからなる総デシテックスが66000の糸条を得た。この糸条をスチーム延伸機へ供し、0.35Mpaの加圧スチーム条件下の予熱延伸工程に0.9秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度1.1dtexのアクリロニトリル系前駆体束の長手方向繊度斑は1.5%かつ表面の毛羽立ちがあり、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も1.7%と不良なものとなった。
(Comparative Example 3)
In the same manner as in Example 1, a yarn having a total decitex of 66000 consisting of 12000 filaments obtained by polymerization and drying was obtained. This yarn is supplied to a steam drawing machine, and is retained for 0.9 seconds in a preheating drawing process under a 0.35 Mpa pressurized steam condition, and then immediately introduced into a heating drawing process under a 0.51 Mpa pressurized steam condition. Stretched over 0.7 seconds. The longitudinal fineness of the acrylonitrile-based precursor bundle having a 12000 filament and a single fiber fineness of 1.1 dtex thus obtained is 1.5% in length and has surface fluffing, and the longitudinal direction of the carbon fiber obtained by flame resistance and carbonization. Fineness spots were also poor at 1.7%.

(比較例4)
実施例2と同様に重合〜乾燥して得られた12000フィラメントからなる総デシテックスが42000の糸条を得た。この糸条をスチーム延伸機へ供し、0.40Mpaの加圧スチーム条件下の予熱延伸工程に2.0秒滞留させた後、ただちに0.51Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度0.7dtexのアクリロニトリル系前駆体束の長手方向繊度斑は1.5%であり、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も1.7%と不良なものとなった。
(Comparative Example 4)
In the same manner as in Example 2, a total decitex consisting of 12000 filaments obtained by polymerization and drying was 42,000. This yarn is supplied to a steam drawing machine and allowed to stay in a preheating drawing process under a pressure steam condition of 0.40 Mpa for 2.0 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.51 Mpa. Stretched over 0.7 seconds. The longitudinal fineness of the acrylonitrile precursor bundle having 12000 filaments and a single fiber fineness of 0.7 dtex thus obtained is 1.5%, and the longitudinal fineness of the carbon fiber obtained by flameproofing and carbonization is also 1 It was a bad 7%.

(比較例5)
従来技術(特許文献1)との比較
加圧スチームを使用した二次延伸の前に、170180℃の加熱ローラー上での延伸割り振りを1.1倍以下とし、圧力変動が0.5%以下の0.50MPa加圧スチーム下で5倍延伸(全延伸倍率13倍)した以外は、実施例1と同様にして12000フィラメント、単繊維繊度1.1dtexのアクリロニトリル系前駆体束を得た。アクリロニトリル系前駆体束の長手方向繊度斑は1.5%となり、特許文献1記載の1.0%以下という効果を確認出来なかった。これは、該特許文献記載の技術が、設備生産速度が100m/分と低速な、湿式紡糸によるアクリロニトリル系前駆体繊維を対象とした技術であるためと考えられる。すなわち、乾―湿式紡糸法の糸条が太繊度であり、高速・高倍率の延伸を実施するため、該特許文献と適用対象技術が、大きく異なることに起因しているためであると考えられる。
(Comparative Example 5)
Comparison with the prior art (Patent Document 1) Prior to secondary stretching using pressurized steam, the stretching allocation on a heating roller of 170 to 180 ° C. is 1.1 times or less, and the pressure fluctuation is 0.5%. An acrylonitrile-based precursor bundle having 12000 filaments and a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the film was stretched 5 times under the following 0.50 MPa pressure steam (total stretching ratio 13 times). The longitudinal fineness variation of the acrylonitrile-based precursor bundle was 1.5%, and the effect of 1.0% or less described in Patent Document 1 could not be confirmed. This is presumably because the technique described in the patent document is a technique for acrylonitrile-based precursor fibers by wet spinning, which has a low equipment production rate of 100 m / min. That is, it is considered that the yarn of the dry-wet spinning method has a large fineness, and the high speed and high magnification drawing is performed, so that the patent document and the application target technology are largely different. .

(比較例6)
従来技術(特許文献2)との比較
実施例1と同様に重合〜乾燥して得られた12000フィラメントからなる総デシテックスが66000の糸条を得た。この糸条をスチーム延伸機へ供し、0.40Mpaの加圧スチーム条件下の予熱延伸工程に2.5秒滞留させた後、ただちに0.50Mpaの加圧スチーム条件下の加熱延伸工程に導入し0.7秒間かけて延伸した。かくして得られた12000フィラメント、単繊維繊度1.1dtexのアクリロニトリル系前駆体束の長手方向繊度斑は1.2%、耐炎化・炭素化して得られた炭素繊維の長手方向繊度斑も1.6%と不良となった。
(Comparative Example 6)
Comparison with Prior Art (Patent Document 2) A yarn having a total decitex of 66000 consisting of 12000 filaments obtained by polymerization and drying as in Example 1 was obtained. The yarn is supplied to a steam drawing machine, and is allowed to stay in a preheating drawing process under a pressure steam condition of 0.40 Mpa for 2.5 seconds, and then immediately introduced into a heating drawing process under a pressure steam condition of 0.50 Mpa. Stretched over 0.7 seconds. The longitudinal fineness of the acrylonitrile-based precursor bundle having a 12000 filament and a single fiber fineness of 1.1 dtex thus obtained was 1.2%, and the longitudinal fineness of the carbon fiber obtained by flameproofing and carbonization was 1.6%. %.

Figure 0005012089
Figure 0005012089

本発明のアクリロニトリル系前駆体束を用いて得られた炭素繊維束は、その長手方向の繊度変動率が小さく、高次加工性での品質安定化が期待できることから、航空宇宙・スポーツおよび一般産業用途に応用できるが、その応用範囲がこれらに限られるものではない。本発明の炭素繊維束は、複合材料の補強繊維として工業的に幅広く利用されるものであり産業上有用である。   The carbon fiber bundle obtained by using the acrylonitrile-based precursor bundle of the present invention has a small fineness variation rate in the longitudinal direction and can be expected to stabilize the quality with higher workability. Although it can be applied to applications, its application range is not limited to these. The carbon fiber bundle of the present invention is widely used industrially as a reinforcing fiber for composite materials and is industrially useful.

本発明で用いる加圧スチーム延伸機の一例である。It is an example of a pressure steam drawing machine used in the present invention. 本発明で用いる加圧スチーム延伸機の一例である。It is an example of a pressure steam drawing machine used in the present invention. 本発明で用いる加圧スチーム延伸機の一例である。It is an example of a pressure steam drawing machine used in the present invention.

符号の説明Explanation of symbols

1:予熱延伸工程
2:加熱延伸工程
3a:予熱延伸工程圧力計 (PI)
3b:加熱延伸工程圧力計 (PI)
4,4ab:スチーム圧力制御装置
5abc:シール部材
6a:予熱延伸工程温度計 (TI)
6b:加熱延伸工程温度計 (TI)
1: Preheating stretching process 2: Heat stretching process 3a: Preheating stretching process pressure gauge (PI)
3b: Heat drawing process pressure gauge (PI)
4, 4ab: Steam pressure control device 5abc: Sealing member 6a: Preheat drawing process thermometer (TI)
6b: Thermo-drawing process thermometer (TI)

Claims (3)

フィラメント数4000〜12000、単繊維繊度3.0〜6.0デシテックスのアクリロニトリル系繊維束を0.10〜0.35MPaの加圧スチーム雰囲気下の予熱延伸工程に2.0〜2.5秒間滞留させた後、実質的に連続する0.45〜0.70MPaの加圧スチーム雰囲気下の加熱延伸工程0.5〜2秒間滞留させることにより単繊維繊度0.5〜1.5デシテックスに延伸する実質的に無撚りの炭素繊維束製造用アクリロニトリル系前駆体繊維束の製造方法。 An acrylonitrile fiber bundle having a filament number of 4000 to 12000 and a single fiber fineness of 3.0 to 6.0 dtex is retained for 2.0 to 2.5 seconds in a preheating drawing process in a pressurized steam atmosphere of 0.10 to 0.35 MPa. Then, the fiber is stretched to a single fiber fineness of 0.5 to 1.5 dtex by being retained for 0.5 to 2 seconds in a heating and stretching process in a substantially continuous 0.45 to 0.70 MPa pressurized steam atmosphere. The manufacturing method of the acrylonitrile type | system | group precursor fiber bundle for carbon fiber bundle manufacture which is substantially untwisted. 予熱延伸工程の延伸倍率が2倍以下である請求項1記載の炭素繊維束製造用アクリロニトリル系前駆体繊維束の製造方法。 Stretch ratio of preheating stretching step is two times or less The method of producing a carbon fiber bundle for producing acrylonitrile based precursor fiber bundle according to claim 1. 請求項1または2に記載の製造方法により得られたアクリロニトリル系前駆体繊維束を耐炎化し炭化して得られる長手方向繊度変動率評価方法で測定される変動率が1.0%以下である炭素繊維束の製造方法。 Carbon whose variation rate measured by the longitudinal fineness variation rate evaluation method obtained by flameproofing and carbonizing the acrylonitrile-based precursor fiber bundle obtained by the production method according to claim 1 or 2 is 1.0% or less. A method of manufacturing a fiber bundle.
JP2007052320A 2007-03-02 2007-03-02 Carbon fiber precursor fiber bundle and method for producing the same Active JP5012089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052320A JP5012089B2 (en) 2007-03-02 2007-03-02 Carbon fiber precursor fiber bundle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052320A JP5012089B2 (en) 2007-03-02 2007-03-02 Carbon fiber precursor fiber bundle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008214795A JP2008214795A (en) 2008-09-18
JP5012089B2 true JP5012089B2 (en) 2012-08-29

Family

ID=39835190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052320A Active JP5012089B2 (en) 2007-03-02 2007-03-02 Carbon fiber precursor fiber bundle and method for producing the same

Country Status (1)

Country Link
JP (1) JP5012089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407802B2 (en) 2015-12-31 2019-09-10 Ut-Battelle Llc Method of producing carbon fibers from multipurpose commercial fibers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122167A (en) * 2010-12-09 2012-06-28 Toray Ind Inc Monitoring apparatus for fiber bundle
JP6098033B2 (en) * 2012-02-03 2017-03-22 三菱レイヨン株式会社 Manufacturing method of acrylic fiber bundle and steam drawing apparatus of the same fiber bundle
ITMI20130821A1 (en) 2013-05-21 2013-08-20 M A E S P A EQUIPMENT FOR IRONING FIBERS OF ACRYLICS IN A PRESSURE STEAM ATMOSPHERE AND AN AUTOMATIC ENTRY DEVICE FOR SUCH EQUIPMENT.
US10604871B2 (en) 2013-06-21 2020-03-31 Mitsubishi Chemical Corporation Process for steam drawing carbon-fiber precursor acrylic fiber bundle
MX2019010210A (en) 2017-03-15 2019-10-09 Toray Industries Method for manufacturing acrylonitrile based fiber bundle and method for manufacturing carbon fiber bundle.
WO2019188236A1 (en) 2018-03-27 2019-10-03 東レ株式会社 Method for manufacturing acrylonitrilic fiber bundle and method for manufacturing carbon fiber bundle
CN113802196A (en) * 2021-10-21 2021-12-17 荣成碳纤维科技有限公司 Carbon fiber precursor production steam drafting device with automatic shredding and collecting device
WO2024090012A1 (en) * 2022-10-24 2024-05-02 東レ株式会社 Carbon fiber bundle, tow-preg, carbon fiber-reinforced composite material and pressure vessel, and method for producing carbon fiber bundle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169518A (en) * 1982-03-31 1983-10-06 Asahi Chem Ind Co Ltd Preparation of high-strength carbon fiber having improved uniformity
JPH0615723B2 (en) * 1987-04-09 1994-03-02 東レ株式会社 High strength acrylic fiber and manufacturing method thereof
JP2968377B2 (en) * 1991-07-25 1999-10-25 三菱レイヨン株式会社 Method for producing acrylic precursor yarn for carbon fiber
JP2705453B2 (en) * 1992-01-23 1998-01-28 東レ株式会社 Method and apparatus for steam stretching acrylic yarn
JPH0657524A (en) * 1992-08-03 1994-03-01 Toray Ind Inc Production of acrylic fiber
JPH11152626A (en) * 1997-11-18 1999-06-08 Toray Ind Inc Carbon fiber and its production
JP4228009B2 (en) * 1998-07-22 2009-02-25 三菱レイヨン株式会社 Method for producing acrylonitrile-based precursor fiber for carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407802B2 (en) 2015-12-31 2019-09-10 Ut-Battelle Llc Method of producing carbon fibers from multipurpose commercial fibers
US10961642B2 (en) 2015-12-31 2021-03-30 Ut-Battelle, Llc Method of producing carbon fibers from multipurpose commercial fibers

Also Published As

Publication number Publication date
JP2008214795A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5012089B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP5161604B2 (en) Carbon fiber manufacturing method
KR100570592B1 (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
KR102555678B1 (en) Method for producing acrylonitrile-based fiber bundles and method for producing carbon fiber bundles
JPWO2016104236A1 (en) Polyphenylene sulfide monofilament, method for producing the same, and package
JP4359999B2 (en) Method for producing polyphenylene sulfide fiber
JP5741815B2 (en) Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle
TW201908553A (en) Carbon fiber bundle and method for manufacturing same
KR20170037392A (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
US11649567B2 (en) Method for producing a multifilament yarn
JP2011017100A (en) Method for producing carbon fiber
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
KR101957061B1 (en) Process for preparing carbon fiber having high strength
JP2012193468A (en) Carbon fiber precursor fiber and method of manufacturing the same
CN110402307B (en) Method for producing acrylic fiber bundle and method for producing carbon fiber bundle
JP6729665B2 (en) Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JP2010236139A (en) Method for producing acrylic fiber
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP3044896B2 (en) Pressurized steam drawing method of thick acrylic filament yarn
JP2010031418A (en) Method for producing precursor fiber for carbon fiber
CN111304759A (en) Stretching method of polyester industrial yarn
CN111088535B (en) Oiling method of low-silicon polyacrylonitrile protofilament

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5012089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3