JPH0157165B2 - - Google Patents

Info

Publication number
JPH0157165B2
JPH0157165B2 JP59037245A JP3724584A JPH0157165B2 JP H0157165 B2 JPH0157165 B2 JP H0157165B2 JP 59037245 A JP59037245 A JP 59037245A JP 3724584 A JP3724584 A JP 3724584A JP H0157165 B2 JPH0157165 B2 JP H0157165B2
Authority
JP
Japan
Prior art keywords
nozzle
fibers
acrylic
filament
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59037245A
Other languages
Japanese (ja)
Other versions
JPS60185813A (en
Inventor
Koichi Imai
Fumio Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59037245A priority Critical patent/JPS60185813A/en
Publication of JPS60185813A publication Critical patent/JPS60185813A/en
Publication of JPH0157165B2 publication Critical patent/JPH0157165B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は、炭素繊維用アクリル系繊維の紡糸方
法に関し、更に詳細には、アクリル系重合体、紡
糸ノズル、凝固浴などの紡糸諸条件の改良設定に
より高強度の炭素繊維の前駆体として有用なアク
リル系繊維を製造する紡糸方法に関する。 〔従来技術とその問題点〕 現在、高強度の連続炭素繊維は、実用的にはア
クリル系繊維からしか得られていない。アクリル
系繊維から製造された高強度の炭素繊維、若しく
はこれを黒鉛化した高弾性の黒鉛繊維は、金属よ
り高強度若しくは高弾性の軽量なプラスチツク成
形品を得るための補強材料として、その用途が急
速に拡大しつつあり、また金属の補強にも検討さ
れつつある。更に、成形品の品質を改善し、かつ
繊維の含有率を下げてコスト低減を図るためによ
り高強度の繊維の出現が望まれている。 そもそも、炭素繊維の結晶構造から推定して、
理論強度が1800Kg/mm2と考えられるのに、現在市
場で入手可能の炭素繊維の強度は、せいぜい約
350Kg/mm2である。 この理論強度に比較し低強度の炭素繊維しか得
られない原因の一つとして次の説がある。 すなわち、一般にアクリル系繊維から炭素繊維
を製造する方法は、空気中で200〜300℃でフイラ
メントを加熱する耐炎化工程と、ここに得られた
耐炎フイラメントを800〜1500℃に加熱する炭素
化工程とから成つており、この耐炎化工程におい
てはポリアクリロニトリルの環化反応と酸化反応
とが生起し発熱することが知られている。しか
し、フイラメントの内層への酸素の拡散が充分で
なかつたり、また熱の放散が充分でなかつたりの
理由により、フイラメント内層で温度が高くなり
過ぎて繊維構造が破壊されたり、これらの原因に
より環化反応と酸化反応のバランスにむらができ
たりすることが理論強度に対し現実強度に限界が
あり低強度しか得られない理由の一部ではないか
と云われている。 本発明者等は、本発明に到達する初期段階にお
いて、上述の説に基づき強高度炭素繊維を得るた
めアクリル系繊維の各フイラメントの径を細くす
ることに目標を定め種々検討した。 すなわち、一般にアクリル系繊維はノズルから
凝固浴に押し出された後、冷延伸、熱水延伸、乾
熱延伸および蒸気延伸等の内の少なくとも2種以
上の延伸工程で延伸され、アクリル系重合体分子
が配向されて強度を増すと共に細くなる。従つ
て、これらの延伸工程で延伸倍率を大きくすれば
それだけフイラメントは細くなる。延伸工程を多
段に分割して少しずつ延伸すれば限界を若干は大
きくすることができるとはいうものの延伸倍率に
は当然限界がある。限界以上に延伸すれば毛羽の
発生が増大し、時には繊維が切断され安定な操業
ができなくなる。一般に、最終のフイラメントの
速度を凝固浴を出る時のフイラメント速度(凝固
浴中、若しくは2段以上の凝固浴がある時は浴間
に、積極回転するローラがある時にはこのローラ
の表面速度)で割つた値を総ドラフトと称し、す
なわち総ドラフトとは最後での振り落しまたは巻
取の糸速を第1ロール上での糸速(ロール表面速
度)で割つた値を意味し、本発明者の行つた初期
研究においては約25倍が限界であつた。この限界
近くでは、総ドラフト20倍の場合に較べてフイラ
メントの径は細くなり、アクリル系繊維の強度は
大きくなるが、これから得られる炭素繊維の強度
はかえつて弱くなることが見出された。ここに、
先述の本発明者等の初期研究目標は、1つの矛盾
的障害に突当つた。 そこで、本発明者等は、上述の矛盾した結果に
つき、過度の配向は炭素繊維の構造と合わないた
めとの仮定の基に、ノズル直後のアクリル系重合
体溶液が固化する前に延伸することによつて、分
子を配向させることなく延伸する方法につき鋭意
実験研究を重ねた結果、この延伸性にはアクリル
系重合体溶液の曳糸性と共にノズルの孔の構造が
大きく影響することを見出した。すなわち、ノズ
ルの孔長/孔径の比を大きくすることにより、ノ
ズルドラフト(この定義は後述)の上限を引上げ
ることができること、ノズルドラフトを大きくし
ても以後の延伸工程にあまり影響がないこと、こ
うしてノズルドラフトを大きくすることによつて
細くなし得たフイラメントの繊維は、著るしく強
度の改善された炭素繊維を与えることを突止めて
本発明を完成した。 〔発明の目的〕 それ故、本発明の一般的目的は、高強度の炭素
繊維を得て、有用なプラスチツクや金属の補強材
料を提供することにある。 本発明の主たる目的は、高強度の炭素繊維を与
えることのできるフイラメント径の小さいアクリ
ル系繊維を提供することにある。 本発明の別の目的は、凝固浴中でのフイラメン
トの延伸倍率を大きくすることを可能にし、これ
により高強度の炭素繊維を提供することにある。 本発明のもう一つ別の目的は、炭素繊維用アク
リル系繊維の紡糸の操業性を改善して工業的に有
利な高強度炭素繊維の製造方法を提供することに
ある。 〔発明の要点〕 本発明によれば、炭素繊維用アクリル系繊維を
紡糸するに際し、孔長/孔径の比が2以上のノズ
ルからアクリル系重合体溶液を凝固浴中に押し出
すことからなり、ノズルドラフトを0.5以上とし、
総ドラフトを14〜20とし、アクリル系重合体溶液
の溶媒および凝固浴を共に塩化亜鉛水溶液とし、
アクリル系重合体溶液の濃度を50〜150g/、
粘度を60ポアズ以上とし、前記アクリル系重合体
溶液をアクリロニトリルと5%未満のコモノマと
の重合体の溶液とすることを特徴とする炭素繊維
用アクリル系繊維の紡糸方法が提供される。 ここでノズルドラフトとは、フイラメントがノ
ズルを離れて一番最初に接触する駆動源を持つた
ローラ(以下第1ローラという)の表面速度をノ
ズルの孔内の重合体溶液の線速度で割つた値をい
う。重合体溶液はノズル孔を出て凝固溶液に接し
て次第に凝固してフイラメントとなるが、この時
第1ローラによりフイラメントは引張られている
が、フイラメントよりも未凝固重合体溶液の方が
伸び易いので、ノズルドラフトとは、重合体溶液
が固化するまでに引き伸ばされる倍率を示すこと
になる。 前述の4種の延伸(すなわち、冷延伸、熱水延
伸、乾熱延伸および蒸気延伸)では、前工程の延
伸倍率を大きくすれば、後工程の延伸の上限は下
がり、総ドラフトの限界は溶媒や溶液粘度等重合
体溶液でほとんど決つてしまうが、ノズルドラフ
トのみは後工程での最大延伸倍率をほとんど変化
させない。しかし、ノズルドラフトにも限界があ
り、それ以上ではノズル近傍でのフイラメント切
断が増大する。 本発明で用いるアクリル系重合体は、アクリロ
ニトリルを85%以上、好ましくは90%以上含むモ
ノマーを重合して得られる。コモノマーは用いな
くてもよいが少量用いると紡糸操業が安定し毛羽
が少なくなる。用いるコモノマーは特に限定はな
いがエステル基を持つたビニル化合物、例えばメ
チルアクリレート、メチルメタクリレート、酢酸
ビニルなどであり、またカルボキシル基を持つた
ビニル化合物、例えばアクリル酸、イタコン酸な
ど、更にスルホン酸基を持つたビニル化合物、例
えばパラスチレンスルホン酸などを用いることが
できる。アクリル酸など水溶性重合体を生成する
モノマーは5%以下とするのが好ましく、特にア
クリルアミドは1%以下とするのが好ましい。 溶媒も特に限定されず、ジメチルホルムアミ
ド、ジメチルスルホキシド、硝酸、ロダン塩水溶
液および塩化亜鉛水溶液などを溶媒に、またこれ
らを水で稀釈したものを凝固浴に使用できる。炭
素繊維用としてはフイラメント断面を均一な円形
になし得る点より、無機塩水溶液、特に塩化亜鉛
水溶液が好適である。更に塩化亜鉛水溶液は重合
体濃度が低くても良好な可紡性を有するので、こ
の面からもドラフトを上げることなくフイラメン
ト径を小さくできるので好適である。 アクリル系重合体溶液の濃度は、低い程ノズル
ドラフトを大きくすることなくフイラメント径を
細くすることができ好ましいが、低く過ぎると可
紡性が低下する。溶媒によつて異なるが50〜150
g/が好ましい。塩化亜鉛水溶液を溶媒とした
時はやや粘度が高くなるので132g/以下で良
好な結果が得られる。下限は重合体の分子量にも
よるが4%以上が好ましい。粘度が60ポイズ以上
となる様に濃度と分子量の組合せを選ぶと好く、
分子量は6〜25万が好ましい。溶媒および凝固浴
の濃度は、一般に使用される範囲でよい。塩化亜
鉛の場合、溶媒として56〜70%、凝固浴として20
〜35%が好ましい。更に、塩化亜鉛を使用する場
合に、不純物として含まれている塩基性塩と当量
以上の塩化水素を添加しておくことが、耐炎化工
程でのフイラメント膠着を防止するために好まし
い。 ノズルは孔形状が、孔長/孔径の比が2以上の
ものを使用する。ここで孔径とは重合体溶液が吐
出されるノズル孔の最小径をいい、孔長とはその
最小径部分の長さをいう。一般にノズルは、耐圧
の点から板厚を大きくしたいという要望と、重合
体溶液の流れに対する抵抗を小さくしてノズル着
圧の上昇を抑えたいという要望から、ノズル孔内
への導入部を若干拡げてあるのが普通であるが、
この場合の孔長(L)と孔径(D)の定義は、第1図およ
び第2図に示すように、ノズルの実質的部分を構
成するLとD、若しくは上述の最小径のDと、最
小径D部分の長さLを示す。孔径は50〜200μ、
特に80〜150μのものが好ましい。孔径が小さい
と、理由不明であるがノズルドラフトの上限が低
くなり、必らずしもフイラメント径を小さくでき
ず、操業性が悪化する。ノズル1個当りの孔数に
は特に制限はない。 重合体溶液はノズル孔から凝固浴中に押し出さ
れ、凝固してフイラメントを形成する。かつ凝固
浴の流れ若しくはロールによる張力により収縮を
抑制され若しくは延伸される。 本発明では、ノズルドラフトを0.5以上、好ま
しくは1以上とする。これはL/Dを2以上とす
ることにより容易に達成される。ある例では、
L/Dが1の時最大ノズルドラフトは0.37あつた
が、L/Dが2の時0.8、L/Dが3の時1.5であ
つた。 凝固浴で重合体溶液はフイラメントを形成し、
以後は通常の工程により水洗、冷延伸、乾燥、熱
延伸を径由する。乾燥工程でのフイラメント間の
膠着を防止するために水洗の後期に熱水処理を行
うのが好ましい。 総ドラフトは、溶媒、凝固浴などの条件で異な
るが、ノズルドラフトにほとんど影響されること
なく決定できる。ノズルドラフトでフイラメント
は従来より細くなつているので、総ドラフトを無
理に大きくする必要はない。無理に総ドラフトを
大きくすると、炭素繊維用アクリル系繊維の強度
は大きくなつても、最終炭素繊維の強度がかえつ
て弱くなることがあるので、耐炎化、炭素化など
の工程に応じて最適点を探すのが好ましい。 耐炎化工程、炭素化工程も特に従来と変る所な
く実施される。耐炎化の温度条件、雰囲気、重合
体の共重合成分などにより最適滞留時間は変る
が、繊維を構成するフイラメントの径が小さくな
ると耐炎化され易くなるので、従来より温度を下
げるか滞留時間を短縮するのが好ましい。一般に
耐炎化の指標となつているフイラメント中の酸素
増加量が4〜12%になるような条件を選ぶのが好
ましい。 本発明により、フイラメントの直径が10μm以
下であつて高強度の炭素繊維の原料として有用な
アクリル系繊維を容易に得ることができる。 〔発明の実施例〕 以下、実施例により本発明を具体的に説明す
る。 実施例 コモノマーとしてメチルアクリレート2%、イ
タコン酸0.5%を含有するアクリロニトリルを60
%塩化亜鉛水溶液中で常法により重合し、重合体
濃度5.2%(86g/)の溶液を得た。粘度260ポ
イズ(45℃)、分子量16万であつた。この溶液を
孔径100μ、孔数3000のノズルを用い5℃、27%
の塩化亜鉛水溶液中に紡出し、水洗(水洗の初期
に冷延伸)、熱水延伸、乾燥、蒸気延伸(蒸気圧
2Kg/mm2ゲージ)し、炭素繊維用アクリル系繊維
とした。得られた繊維を90℃で湿熱リラツクス処
理後、前半240℃、後半270℃の耐炎化炉をテンシ
ヨン400gで約30分(詳細には繊維中の酸素増加
量が6%になるよう糸速を調節した)かけて通過
させ、次いで高純度窒素中1300℃で炭素化した。
炭素繊維の強度はJIS R7601のストランド強度を
用いた。紡糸条件および結果を第1表に示す。
[Technical field to which the invention pertains] The present invention relates to a method for spinning acrylic fibers for carbon fibers, and more specifically, the present invention relates to a method for spinning acrylic fibers for carbon fibers, and more specifically, the present invention relates to a method for spinning acrylic fibers for carbon fibers, and more specifically, high-strength carbon fibers are produced by improving spinning conditions such as an acrylic polymer, a spinning nozzle, and a coagulation bath. The present invention relates to a spinning method for producing acrylic fibers useful as fiber precursors. [Prior art and its problems] Currently, high-strength continuous carbon fibers can only be obtained from acrylic fibers in practice. High-strength carbon fibers made from acrylic fibers, or highly elastic graphite fibers made from graphitized carbon fibers, can be used as reinforcing materials to obtain lightweight plastic molded products that are stronger or more elastic than metals. It is rapidly expanding and is also being considered for metal reinforcement. Furthermore, in order to improve the quality of molded products and lower the fiber content to reduce costs, there is a desire for higher strength fibers. In the first place, inferring from the crystal structure of carbon fiber,
Although the theoretical strength is thought to be 1800Kg/ mm2 , the strength of carbon fibers currently available on the market is at most approximately
It is 350Kg/ mm2 . One of the reasons why carbon fibers with lower strength than the theoretical strength can be obtained is as follows. In other words, the method for producing carbon fiber from acrylic fibers generally involves a flame-retardant process in which the filament is heated at 200-300°C in air, and a carbonization process in which the flame-resistant filament thus obtained is heated at 800-1500°C. It is known that in this flameproofing step, a cyclization reaction and an oxidation reaction of polyacrylonitrile occur and heat is generated. However, due to insufficient diffusion of oxygen to the inner layer of the filament or insufficient dissipation of heat, the temperature in the inner layer of the filament may become too high and the fiber structure may be destroyed. It is said that unevenness in the balance between the chemical reaction and the oxidation reaction is part of the reason why there is a limit to the actual strength compared to the theoretical strength and only low strength can be obtained. At the initial stage of arriving at the present invention, the present inventors conducted various studies with the aim of reducing the diameter of each filament of an acrylic fiber in order to obtain a high-strength carbon fiber based on the above-mentioned theory. That is, in general, acrylic fibers are extruded from a nozzle into a coagulation bath and then stretched in at least two of the following stretching processes, such as cold stretching, hot water stretching, dry heat stretching, and steam stretching, to form acrylic polymer molecules. is oriented, increasing its strength and becoming thinner. Therefore, the greater the stretching ratio in these stretching steps, the thinner the filament becomes. Although the limit can be increased somewhat by dividing the stretching process into multiple stages and stretching the film little by little, there is naturally a limit to the stretching ratio. If stretched beyond the limit, the occurrence of fuzz will increase, and sometimes the fibers will be cut, making stable operation impossible. Generally, the final filament speed is determined by the filament speed when leaving the coagulation bath (in the coagulation bath, or between the baths if there are two or more stages of coagulation baths, or the surface speed of this roller if there is an actively rotating roller). The divided value is called the total draft. In other words, the total draft means the value obtained by dividing the final shaking-off or winding yarn speed by the yarn speed on the first roll (roll surface speed). In the initial research carried out by the authors, the limit was about 25 times. It was found that near this limit, the diameter of the filament becomes smaller and the strength of the acrylic fiber increases compared to when the total draft is 20 times, but the strength of the carbon fiber obtained from it becomes weaker. Here,
The inventors' initial research goals mentioned above ran into one paradoxical obstacle. Therefore, in response to the above-mentioned contradictory results, the present inventors proposed that the acrylic polymer solution immediately after the nozzle be stretched before it solidifies, based on the assumption that excessive orientation does not match the structure of the carbon fiber. As a result of extensive experimental research into a method for stretching without orienting molecules, we discovered that the stretchability is greatly influenced by the spinnability of the acrylic polymer solution as well as the structure of the nozzle holes. . In other words, by increasing the nozzle hole length/hole diameter ratio, the upper limit of the nozzle draft (this definition will be explained later) can be raised, and even if the nozzle draft is increased, it will not have much effect on the subsequent stretching process. The present invention was completed by discovering that filament fibers made thinner by increasing the nozzle draft can provide carbon fibers with significantly improved strength. OBJECTS OF THE INVENTION It is therefore a general object of the present invention to obtain high strength carbon fibers to provide useful reinforcing materials for plastics and metals. The main object of the present invention is to provide an acrylic fiber with a small filament diameter that can provide high-strength carbon fiber. Another object of the present invention is to make it possible to increase the drawing ratio of filaments in a coagulation bath, thereby providing carbon fibers with high strength. Another object of the present invention is to provide an industrially advantageous method for producing high-strength carbon fibers by improving the operability of spinning acrylic fibers for carbon fibers. [Summary of the Invention] According to the present invention, when spinning acrylic fibers for carbon fibers, an acrylic polymer solution is extruded into a coagulation bath through a nozzle having a hole length/hole diameter ratio of 2 or more. Draft is 0.5 or more,
The total draft was set to 14 to 20, and the solvent and coagulation bath for the acrylic polymer solution were both a zinc chloride aqueous solution.
The concentration of the acrylic polymer solution is 50 to 150 g/,
There is provided a method for spinning acrylic fibers for carbon fibers, characterized in that the viscosity is 60 poise or more, and the acrylic polymer solution is a solution of a polymer of acrylonitrile and less than 5% of a comonomer. Here, the nozzle draft is defined as the surface velocity of the roller with the driving source that the filament contacts first after leaving the nozzle (hereinafter referred to as the first roller) divided by the linear velocity of the polymer solution in the nozzle hole. refers to value. The polymer solution exits the nozzle hole, comes into contact with the coagulation solution, and gradually solidifies into a filament. At this time, the filament is stretched by the first roller, but the uncoagulated polymer solution stretches more easily than the filament. Therefore, the nozzle draft indicates the magnification by which the polymer solution is stretched before it solidifies. In the four types of stretching described above (i.e., cold stretching, hot water stretching, dry heat stretching, and steam stretching), increasing the stretching ratio in the previous step lowers the upper limit of stretching in the subsequent step, and the limit of the total draft is determined by the solvent. Although the polymer solution, such as the viscosity and solution viscosity, is mostly determined by the polymer solution, the nozzle draft alone hardly changes the maximum stretching ratio in the subsequent process. However, there is a limit to the nozzle draft, beyond which filament breakage increases in the vicinity of the nozzle. The acrylic polymer used in the present invention is obtained by polymerizing monomers containing 85% or more, preferably 90% or more of acrylonitrile. It is not necessary to use a comonomer, but if a small amount is used, the spinning operation will be stabilized and fuzz will be reduced. The comonomers used are not particularly limited, but include vinyl compounds with ester groups, such as methyl acrylate, methyl methacrylate, and vinyl acetate, and vinyl compounds with carboxyl groups, such as acrylic acid and itaconic acid, as well as sulfonic acid groups. It is possible to use a vinyl compound such as para-styrene sulfonic acid. The content of monomers that produce water-soluble polymers such as acrylic acid is preferably 5% or less, and the content of acrylamide is particularly preferably 1% or less. The solvent is not particularly limited either, and dimethylformamide, dimethyl sulfoxide, nitric acid, aqueous rhodan salt solution, aqueous zinc chloride solution, and the like can be used as a solvent, and a diluted solution of these with water can be used in the coagulation bath. For carbon fibers, an inorganic salt aqueous solution, particularly a zinc chloride aqueous solution, is suitable because the cross section of the filament can be made into a uniform circular shape. Furthermore, since a zinc chloride aqueous solution has good spinnability even at a low polymer concentration, it is suitable from this point of view as well, since the filament diameter can be reduced without increasing the draft. It is preferable that the concentration of the acrylic polymer solution is lower because it allows the diameter of the filament to be made smaller without increasing the nozzle draft, but if it is too low, the spinnability decreases. 50-150 depending on solvent
g/ is preferred. When an aqueous zinc chloride solution is used as a solvent, the viscosity becomes a little high, so good results can be obtained at 132 g/or less. Although the lower limit depends on the molecular weight of the polymer, it is preferably 4% or more. It is best to choose a combination of concentration and molecular weight so that the viscosity is 60 poise or higher.
The molecular weight is preferably 60,000 to 250,000. The concentrations of the solvent and coagulation bath may be within commonly used ranges. For zinc chloride, 56-70% as solvent and 20% as coagulation bath
~35% is preferred. Furthermore, when using zinc chloride, it is preferable to add hydrogen chloride in an amount equivalent to or more than the basic salt contained as an impurity in order to prevent filament sticking in the flameproofing step. The nozzle used has a hole shape with a hole length/hole diameter ratio of 2 or more. Here, the pore diameter refers to the minimum diameter of the nozzle hole through which the polymer solution is discharged, and the pore length refers to the length of the minimum diameter portion. In general, nozzles are made by slightly enlarging the introduction part into the nozzle hole due to the desire to increase the plate thickness from the viewpoint of pressure resistance, and the desire to reduce the resistance to the flow of the polymer solution and suppress the increase in nozzle contact pressure. It is normal that there is
In this case, the definition of the hole length (L) and hole diameter (D) is, as shown in FIGS. 1 and 2, L and D that constitute a substantial part of the nozzle, or the minimum diameter D mentioned above, The length L of the minimum diameter D portion is shown. Pore diameter is 50~200μ,
Particularly preferred is one of 80 to 150μ. If the hole diameter is small, the upper limit of the nozzle draft becomes low for unknown reasons, and the filament diameter cannot necessarily be made small, resulting in poor operability. There is no particular limit to the number of holes per nozzle. The polymer solution is forced through the nozzle hole into the coagulation bath and coagulates to form filaments. In addition, shrinkage is suppressed or stretched by the flow of the coagulation bath or the tension by the rolls. In the present invention, the nozzle draft is set to 0.5 or more, preferably 1 or more. This can be easily achieved by setting L/D to 2 or more. In one example,
When L/D was 1, the maximum nozzle draft was 0.37, when L/D was 2, it was 0.8, and when L/D was 3, it was 1.5. In the coagulation bath the polymer solution forms filaments,
Thereafter, the usual steps include water washing, cold stretching, drying, and hot stretching. In order to prevent filaments from sticking together during the drying process, it is preferable to perform hot water treatment in the latter stage of washing. Although the total draft varies depending on conditions such as the solvent and coagulation bath, it can be determined almost unaffected by the nozzle draft. Since the filament is thinner than before due to the nozzle draft, there is no need to forcefully increase the total draft. Forcibly increasing the total draft may weaken the strength of the final carbon fiber, even if the strength of the acrylic fiber for carbon fiber increases. It is preferable to search for The flameproofing process and carbonization process are also carried out without any particular change from conventional methods. The optimal residence time varies depending on the temperature conditions for flame resistance, the atmosphere, the copolymerization components of the polymer, etc., but the smaller the diameter of the filaments that make up the fiber, the easier it is to achieve flame resistance, so lower the temperature or shorten the residence time than before. It is preferable to do so. It is preferable to select conditions such that the increase in oxygen in the filament, which is generally an indicator of flame resistance, is 4 to 12%. According to the present invention, an acrylic fiber having a filament diameter of 10 μm or less and useful as a raw material for high-strength carbon fiber can be easily obtained. [Examples of the Invention] The present invention will be specifically described below with reference to Examples. Example 60% of acrylonitrile containing 2% methyl acrylate and 0.5% itaconic acid as comonomers
% zinc chloride aqueous solution by a conventional method to obtain a solution with a polymer concentration of 5.2% (86 g/). It had a viscosity of 260 poise (45°C) and a molecular weight of 160,000. Using a nozzle with a pore diameter of 100μ and a number of holes of 3000, apply this solution at 5℃, 27%
The fibers were spun into an aqueous solution of zinc chloride, washed with water (cold stretching at the beginning of washing), stretched with hot water, dried, and stretched with steam (steam pressure 2 Kg/mm 2 gauge) to obtain acrylic fiber for carbon fiber. After the obtained fibers were subjected to a moist heat relaxation treatment at 90°C, they were heated in a flameproofing furnace at 240°C in the first half and 270°C in the latter half with a tension of 400 g for about 30 minutes (in detail, the yarn speed was adjusted so that the increase in oxygen in the fibers was 6%). regulated) and then carbonized at 1300° C. in high purity nitrogen.
The strand strength of JIS R7601 was used for the strength of carbon fiber. The spinning conditions and results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明によると、過度に分子配向することなく
フイラメント径の小さい炭素繊維用アクリル系繊
維が容易に得られ、極めて高強度の炭素繊維を工
業的に得ることができる。 以上、本発明に係る炭素繊維用アクリル系繊維
の紡糸方法につき、好適な実施例を挙げて説明し
たが、本発明の精神を逸脱しない範囲において
種々の変化がなされ得ることは勿論である。
According to the present invention, acrylic fibers for carbon fibers with small filament diameters can be easily obtained without excessive molecular orientation, and carbon fibers with extremely high strength can be obtained industrially. The method for spinning acrylic fibers for carbon fibers according to the present invention has been described above with reference to preferred embodiments, but it goes without saying that various changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるノズルのL/D比の定
義を説明するためのノズル断面図、第2図は第1
図と同じ目的のための別の形態のノズル断面図で
ある。
Figure 1 is a cross-sectional view of the nozzle for explaining the definition of the L/D ratio of the nozzle in the present invention, and Figure 2 is the cross-sectional view of the nozzle.
3 is a cross-sectional view of another form of nozzle for the same purpose as in the figure; FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維用アクリル系繊維を紡糸するに際
し、孔長/孔径の比が2以上のノズルからアクリ
ル系重合体溶液を凝固浴中に押し出すことからな
り、ノズルドラフトを0.5以上とし、総ドラフト
を14〜20とし、アクリル系重合体溶液の溶媒およ
び凝固浴を共に塩化亜鉛水溶液とし、アクリル系
重合体溶液の濃度を50〜150g/、粘度を60ポ
アズ以上とし、前記アクリル系重合体溶液をアク
リロニトリルと5%未満のコモノマとの重合体の
溶液とすることを特徴とする炭素繊維用アクリル
系繊維の紡糸方法。
1. When spinning acrylic fibers for carbon fibers, the acrylic polymer solution is extruded into a coagulation bath through a nozzle with a hole length/hole diameter ratio of 2 or more, with a nozzle draft of 0.5 or more and a total draft of 14 ~20, the solvent and coagulation bath for the acrylic polymer solution are both a zinc chloride aqueous solution, the concentration of the acrylic polymer solution is 50 to 150 g/, the viscosity is 60 poise or more, and the acrylic polymer solution is mixed with acrylonitrile. A method for spinning acrylic fibers for carbon fibers, the method comprising forming a solution of a polymer with less than 5% of a comonomer.
JP59037245A 1984-03-01 1984-03-01 Spinning of acrylic fiber for making carbon fiber Granted JPS60185813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037245A JPS60185813A (en) 1984-03-01 1984-03-01 Spinning of acrylic fiber for making carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037245A JPS60185813A (en) 1984-03-01 1984-03-01 Spinning of acrylic fiber for making carbon fiber

Publications (2)

Publication Number Publication Date
JPS60185813A JPS60185813A (en) 1985-09-21
JPH0157165B2 true JPH0157165B2 (en) 1989-12-04

Family

ID=12492234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037245A Granted JPS60185813A (en) 1984-03-01 1984-03-01 Spinning of acrylic fiber for making carbon fiber

Country Status (1)

Country Link
JP (1) JPS60185813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168723A (en) * 2008-12-26 2010-08-05 Toyobo Co Ltd Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus
WO2010100941A1 (en) * 2009-03-06 2010-09-10 東洋紡績株式会社 Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270119A (en) * 1975-12-02 1977-06-10 Toho Rayon Co Ltd Production of ra material fibers for manufacturing carbon fibers
JPS542426A (en) * 1977-06-03 1979-01-10 Toho Rayon Co Ltd Starting fibers for carbon fibers and their carbonization
JPS5427026A (en) * 1977-07-29 1979-03-01 Toray Ind Inc Production of acrylic filament yarns
JPS5721453A (en) * 1980-07-15 1982-02-04 Teijin Ltd Light wavelength-convertible polyester structure
JPS58214533A (en) * 1982-06-09 1983-12-13 Toray Ind Inc Carbon fiber bundle having improved mechanical property and production thereof
JPS58214535A (en) * 1982-06-08 1983-12-13 Toray Ind Inc Production of acrylic type carbon fiber
JPS58220821A (en) * 1982-06-09 1983-12-22 Toray Ind Inc Acrylic carbon fiber bundle with high strength and elongation and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270119A (en) * 1975-12-02 1977-06-10 Toho Rayon Co Ltd Production of ra material fibers for manufacturing carbon fibers
JPS542426A (en) * 1977-06-03 1979-01-10 Toho Rayon Co Ltd Starting fibers for carbon fibers and their carbonization
JPS5427026A (en) * 1977-07-29 1979-03-01 Toray Ind Inc Production of acrylic filament yarns
JPS5721453A (en) * 1980-07-15 1982-02-04 Teijin Ltd Light wavelength-convertible polyester structure
JPS58214535A (en) * 1982-06-08 1983-12-13 Toray Ind Inc Production of acrylic type carbon fiber
JPS58214533A (en) * 1982-06-09 1983-12-13 Toray Ind Inc Carbon fiber bundle having improved mechanical property and production thereof
JPS58220821A (en) * 1982-06-09 1983-12-22 Toray Ind Inc Acrylic carbon fiber bundle with high strength and elongation and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168723A (en) * 2008-12-26 2010-08-05 Toyobo Co Ltd Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus
WO2010100941A1 (en) * 2009-03-06 2010-09-10 東洋紡績株式会社 Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus
JP5697258B2 (en) * 2009-03-06 2015-04-08 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber

Also Published As

Publication number Publication date
JPS60185813A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
US4069297A (en) Process for producing carbon fibers
KR100364655B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
US4609540A (en) Process for producing carbon fibers
EP0159365A1 (en) Carbon fibers with high strength and high modulus, and process for their production
US4452860A (en) Carbon fibers and process for producing the same
US4002426A (en) Production of stabilized non-burning acrylic fibers and films
JP2006348462A (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
US4925604A (en) Process for preparing a carbon fiber of high strength
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JPH0157165B2 (en)
US4452601A (en) Process for the thermal stabilization of acrylic fibers and films
JPS6113004B2 (en)
EP0213772B1 (en) Method for the production of acrylic fibers with high physical properties
JPS63275718A (en) Production of high-tenacity carbon fiber
JPS5920004B2 (en) Carbon fiber manufacturing method
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
US3399260A (en) Production of acrylonitrile polymer fibers
JPH026847B2 (en)
JP3154595B2 (en) Method for producing acrylonitrile fiber
JPH026627A (en) Production of novel carbon fiber using predetermined stretching
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JPS6156328B2 (en)
JP2001288613A (en) Precursor for carbon fiber, method for producing the same precursor and method for producing carbon fiber
JPH0433890B2 (en)
JPS5838527B2 (en) Manufacturing method of acrylic hollow fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term