JPH026847B2 - - Google Patents

Info

Publication number
JPH026847B2
JPH026847B2 JP9775282A JP9775282A JPH026847B2 JP H026847 B2 JPH026847 B2 JP H026847B2 JP 9775282 A JP9775282 A JP 9775282A JP 9775282 A JP9775282 A JP 9775282A JP H026847 B2 JPH026847 B2 JP H026847B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
iodine
yarn
skin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9775282A
Other languages
Japanese (ja)
Other versions
JPS58214518A (en
Inventor
Takeshi Hino
Shigeo Mitsui
Tomimasa Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9775282A priority Critical patent/JPS58214518A/en
Publication of JPS58214518A publication Critical patent/JPS58214518A/en
Publication of JPH026847B2 publication Critical patent/JPH026847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維あるいは黒鉛化繊維の製造原
料であるアクリル系前駆体繊維束(プリカーサ)
に関する。 従来、アクリル系繊維は炭素繊維製造用原料と
して広く使用されているが、該炭素繊維の高性
能、高品質化およびコストの低減のために多くの
試みが為されている。すなわち、一般に炭素繊維
はアクリル系繊維を200〜400℃の酸化雰囲気中で
緊張下に加熱して、いわゆる耐炎化糸に転換した
後、少なくとも1000℃の高温不活性雰囲気中で加
熱して炭化し、所望により、さらに高温の不活性
雰囲気中で加熱して黒鉛化し、炭素繊維乃至黒鉛
化繊維とする方法により製造され、上記焼成に莫
大なエネルギーが消費され、しかも該アクリル系
繊維は高温雰囲気で急激な化学的変化を受けるの
で一定品質、性能の炭素繊維を大量に、短時間で
製造するには多くの技術的困難を伴うのが普通で
ある。 そして、上記製造プロセスにおいて、酸化性雰
囲気中での加熱工程、即ち、耐炎化工程はアクリ
ル系繊維を構成するポリマ鎖を酸化すると共にニ
トリル基を環化させ、該繊維の構造を熱的に安定
な構造に転換する工程であり、この工程における
化学的構造転換に伴つて、繊維は発熱し、単糸相
互間で融着したり、繊維の内部構造の欠陥が顕在
化して最終炭素繊維の力学的性質のみならず、毛
羽、糸切れ等品質低下の原因になると言われてい
る。 そこで、この耐炎化工程における上記融着防止
あるいは欠陥の顕在化を防止するために、このよ
うな欠点を生じがたいアクリル系繊維として、繊
維構成ポリマの共重合組成、製糸条件および各種
油剤あるいは耐炎化前処理等について種々の提案
が為されている。その一例を挙げると、乾湿式紡
糸によつて得られた繊維中の残存溶剤量を一定量
以下にすることによつて繊維中に発生するクラツ
ク,ボイド等を減少させたアクリル系繊維を焼成
する方法(特公昭51―34488号公報)、アクリル系
繊維にシリコンを付着させ、焼成する方法(特公
昭51―12739号公報)等がある。これらの提案は
それぞれ炭繊維製造における問題点の一解決手段
を示すものであるが、必ずしも十分でない。例え
ば、炭素繊維を工業的に安価に製造するために
は、単糸本数の多い複数本の繊維束を同時に焼成
するのが望ましいが、この場合には該繊維束の均
一な焼成が難しく、かつ多量のタール等熱分解物
が発生して得られる炭素繊維の物性を低下させ、
またはバラツキを著しくする等の問題がある。ま
た単糸本数および繊維束本数の増大は焼成時の単
糸間融着や毛羽の発生並びに蓄熱等が起り易く、
結果として優れた品質、性能を有する炭素繊維を
安定して製造することが難しくなるのが普通であ
る。 そして、上記シリコン、特にシリコン系油剤を
付与したプリカーサは焼成時の単糸間融着防止に
有効であることが知られるが、本発明者らの検討
によると、確かにシリコン系油剤は単糸間融着防
止に有効であるもののそのプリカーサへの付着、
含浸状態によつては得られる炭素繊維の物性向上
には寄与しないことを見出したのである。 本発明の目的は、焼成、特に酸化性雰囲気中で
の耐炎化が容易で、力学的性質に優れ、安定した
品質を有する炭素繊維を与えるアクリル系前駆体
繊維束、特に単糸本数が少なくとも1000本の繊維
束を提供するにあり、他の目的は単糸間相互の融
着が少なく、かつ物性もしくは性能の低下の少な
いシリコン系油剤付与アクリル系繊維束を提供す
るにある。 このような本発明の目的は、少なくとも92重量
%のアクリロニトリルを含有するアクリロニトリ
ル系重合体からなり、かつシリコン系油剤にて処
理された繊維であつて、後述する測定法によつて
求められるヨード吸着量が繊維重量当り約1〜3
重量%の範囲内であり、かつ該ヨード吸着によつ
て検出されるスキン層の厚さが約0.5〜3μの範囲
内である単糸繊度0.5〜1.5dおよびトータルデニ
ール1000〜30000Dのアクリル系前駆体繊維束に
よつて達成することができる。 本発明において、ヨード吸着量が約3%を越え
ると、耐炎化工程における単糸間の相互融着や繊
維中にボイド等の欠陥が発生し易く、他方約1%
よりも少なくなると、耐炎化工程における緊張乃
至伸長酸化処理において延伸性が悪くなり、単糸
切れが多発すると共に、耐炎化糸に構造欠陥を生
じて力学的性質の優れた炭素繊維の製造が困難に
なる。 またヨード吸着糸のスキン層の厚さが0.5μ未満
であつても、前記したヨード吸着量1%未満の場
合と同様に、耐炎化工程における緊張ないし伸長
酸化処理時の単糸切れ、耐炎化糸の構造破壊をも
たらし、その結果として炭素繊維の強伸度が低下
したり、毛羽の発生が増大する。一方スキン層が
大きくなると膨潤糸に油剤処理を施した場合にア
クリル系繊維特有のフイブリルを通して油剤が単
繊維内部へ浸透し、乾燥緻密化を阻害され、結果
として繊維内部の構造欠陥を生じ、炭素繊維の強
伸度の低下及び毛羽発生の増大をもたらすように
なる。このため該スキン層の厚さは3μまでに止
どめるべきである。 ここで、本発明のヨード吸着量およびヨード吸
着によつて検出されるスキン層の厚さは次の測定
法によつて測定される値である。 (1) ヨード吸着量の測定法 乾燥試料約0.5gを精秤し200ml共栓付三角フラ
スコに採る。 これにヨード溶液(I250.76g、2,4―ジク
ロフエノール10g、酢酸90gおよびヨウ化カリウ
ム100gを秤量し1Lメスフラスコに移し水で溶か
して定容とする)100mlを加えて、60±0.5℃で50
分間浸透しながら吸着処理を行なう。 ヨードを吸着した試料を流水中で30分間水洗し
た後遠心脱水をする。 脱水した試料を200mlビーカに入れ、100mlの
ジメチルスルホキシドで加温溶解する。 溶解した後N/10硝酸銀水溶液で電位差滴定に
よつてヨード吸着量を求める。 なお、ヨード吸着量の求め方として、ヨード吸
着試料の表色値、例えばハンター表色値で示され
るL値を使つてもよい。 ただし、この場合はヨード吸着量と表色値との
関係を検量化しておく必要がある。 (2) ヨード吸着糸のスキン層の測定法 ヨード吸着糸の50〜100本(フイラメント)を
顕微鏡観察法の常法であるパラフインで包埋した
後ミクロトームで6〜9ミクロン厚さに繊維断面
を切断し、200倍顕微鏡下でヨードが吸着して濃
褐色になつたスキン層の平均厚さを測定する。 上記測定法によつて求められるヨード吸着量お
よびスキン層の厚さがアクリル系前駆体繊維束と
しての性能に密接に関係する理由は十分明らかで
はないが、少なくとも該ヨード吸着によつて検出
されるスキン層の存在は、耐炎化工程における単
糸間の融着防止並びにこのような繊維の二重構造
性が耐炎化時の緊張乃至伸長のし易さに関係し
て、本発明の目的とする優れた物性を有する炭素
繊維の製造に有利に作用していると考えられる。
さらに、重要なことは前記ヨード吸着量およびス
キン層の厚さが、プリカーサとしての品質、性能
の判定基準となり、アクリル系前駆体繊維束の製
造プロセスおよびその条件設定を容易にすること
である。 特に、本発明のように単糸繊度が0.5〜1.5d、
トータルデニールが1000〜30000Dである繊維束
においては、繊維束構成単繊維間の物性のバラツ
キを測定することが難しいから、前記ヨード吸着
量およびスキン層の存在によつて、プリカーサと
しての性能を判定できることは工業上極めて有利
である。 また一般に単糸繊度が小さく、トータルデニー
ルが大きくなるにつれて、炭素繊維製造における
前述したトラブル、特に緊張または伸長耐炎化時
の毛羽、糸切れの発生および融着等の解消は困難
になるが、本発明に規定するヨード吸着量および
スキン層の厚さを満足するアクリル系前駆体繊維
を用いる限り、これらのトラブルは解消され、耐
炎化および炭化の各工程の条件設定が容易になる
のである。 本発明のアクリル系前駆体繊維束はアクリロニ
トリル(AN)を少なくとも92重量%含有するホ
モポリマもしくはコポリマからなる繊維であり、
共重合成分としては、例えば、アクリル酸、イタ
コン酸、クロトン酸およびその低級アルキルエス
テル類、α―メチルアクリロニトリル、アクリル
アミド、メタクリルアミド、β―ヒドロキシエチ
ルメタクリレート等のANに対して共重合性の不
飽和ビニル系モノマを挙げることができる。 これらのAN系重合体は25℃のジメチルホルム
アミド(DMF)溶液として測定される極限粘度
[η]が少なくとも1.4のものが用いられる。 本発明のアクリル系前駆体繊維束の製造法とし
ては、前記AN系重合体溶液の濃度が18〜21重量
%のDMF、ジメチルスルホキシド(DMSO)、
ジメチルアセタミド(DMAC)等の有機溶剤溶
液、ロダン塩、塩化亜鉛等の無機塩濃水溶液、硝
酸等の無機酸濃厚水溶液等の各種溶液を紡糸原液
として湿式または乾湿式紡糸することにより得ら
れるが、本発明の繊維束は、単糸繊度が0.5〜
1.5d、トータルデニールが1000D以上の繊維束で
あるから、紡糸方式としては湿式紡糸法が有利で
ある。 そして紡糸条件としては、紡糸原液を約50〜80
℃の温度にコントロールし、この紡糸原液温度と
実質的に同一温度に保たれた紡糸浴(凝固浴)中
に実質ドラフト比を2.5〜6、好ましくは2.5〜4.5
の範囲内に設定して紡糸口金から吐出し、凝固せ
しめる。このとき紡糸原液温度が50℃未満である
と、延伸工程での延伸張力が過大となり、得られ
たプリカーサのヨード吸着量及びスキン層の厚さ
が小となつて本発明の規定限界を外れるため、そ
れを焼成して得られる炭素繊維の強伸度特性が低
下するばかりか、毛羽の発生が増大する。更には
部分的な繊維の構造破壊を生じて延伸切れ、単糸
切れが発生する。一方80℃を越えると凝固糸の沈
澱構造が粗雑になり、単繊維内部に大きなボイド
が生じ、得られプリカーサのヨード吸着量及びス
キン層の厚さが大となつて本発明の規定限界を外
れるため、それを焼成して得られる炭素繊維の強
伸度特性が低下するようになる。 また紡糸浴温度を前記紡糸原液温度と実質的に
同一温度とすることによつて凝固斑が小さくな
り、繊維内部構造の均一性が向上し、結果として
炭素繊維の性能が向上する。さらに実質ドラフト
比が2.5未満では繊度斑が発生し、延伸時の単糸
切れが増大する。一方6を越えると紡糸口金面で
の糸切れが発生したり、また凝固糸の緻密性が低
下してプリカーサのヨード吸着量及びスキン層の
厚さが過大となるため、それを焼成して得られる
炭素繊維の物性が低下するようになる。 紡糸浴で形成された凝固糸条は、常法どおり、
約30〜98℃の温水浴または熱水浴中で3〜7倍程
度の延伸及び水洗を行なつた後、シリコン系油剤
処理を施すが、その際、延伸後の湿潤糸条は水分
含有量が乾燥繊維重量当り100〜250重量%、好ま
しくは150〜200重量%の範囲内に保持する必要が
ある。即ち、該湿潤糸条の水分含有量が250重量
%以上の過程でシリコン油剤処理を行なうと、油
剤の浸透過多による繊維の均質性が悪化し、得ら
れたプリカーサのヨード吸着量及びスキン層の厚
さが大となつて本発明の規定限界を外れる。一方
水分含有量が100%未満でシリコン油剤処理を行
なうと、油剤の浸透過少により、延伸時に繊維内
部の構造破壊をもたらし、炭素繊維物性が低下す
る。 このシリコン系油剤処理は上述したとおり本発
明の特徴である繊維中のヨード吸着量及びスキン
層の厚さに関係する。従つて、シリコン系油剤の
種類及びその付着量等には十分配慮すべきであ
る。 すなわち、シリコン系油剤としては、例えばポ
リエーテル変性ポリシロキサン(ポリジメチルポ
リシロキサンエチレンオキサイド共重合体)、ア
ルコール変性ポリシロキサン、アミノ変性ポリシ
ロキサン及び若干の乳化剤と併用するジメチルポ
リシロキサン、アルキル変性ポリシロキサン等が
望ましい。 またシリコン系油剤の付着量は通常約0.1〜5
重量%の範囲内が好ましい。 シリコン系油剤処理を施された湿潤糸条は、続
いて乾燥・緻密化処理を行なうことが必要である
が、その手段及び条件等は常法どおりでよく、例
えば約100〜200℃下で、複数段の熱ロール(また
は熱ドラム)あるいは熱風等により行ない、また
その際必要に応じて0〜10%程度弛緩させてもよ
い。 次に乾燥・緻密化された糸条は加圧スチーム中
で二次延伸を行ない、さらに必要に応じて乾燥さ
せる。その際の延伸条件としては、スチーム圧力
は約1〜6Kg/cm2G,延伸倍率はトータル延伸倍
率として少なくとも8倍、好ましくは8〜16倍の
範囲とすべきである。 このとき延伸倍率が8倍以下ではプリカーサの
繊維配向度が低下し、ヨード吸着量及びスキン層
の厚さが過大となつて、該プリカーサから得られ
る炭素繊維の強伸度は低下する。一方16倍以上に
なると延伸時の単糸切れが多発し、操業条件とし
て不適当である。 なお、上記製糸プロセスの細部条件について
は、引張強伸度が少なくとも6g/d及び10〜13
の繊維束を形成せしめるべく選択するのがよい。 かくして得られる本発明のアクリル系前駆体繊
維束は前述したように、炭素繊維製造繊維素材、
即ち、プリカーサとしての多くの優れた性質を有
しており、耐炎化乃至炭化工程における焼成、特
に物性向上のための緊張乃至伸長下酸化処理を容
易に行なうことができ、焼成時の単糸間融着、毛
羽や糸切れの発生を有効に防止することができる
ため、力学的性質に優れた炭素繊維を安定的に製
造することができる。 本発明のアクリル系前駆体繊維束から安定的に
得られる炭素繊維の物性の一例を示すと、該炭素
繊維の樹脂含浸ストランドの引張強伸度が、それ
ぞれ少なくとも380Kg/mm2および1.7%以上であ
る。 以下、実施例を挙げて本発明をより具体的に説
明する。 実施例 1 アクリロニトリル(AN)99.7%とアクリル酸
0.3%からなる共重合体をジメチルスルホキシド
(DMSO)に溶解してポリマ濃度が19.5重量%、
温度が65℃の紡糸原液を作成し、ほぼ同一温度の
65℃に保たれたDMSOの55%水溶液の凝固浴中
に実質ドラフト比3.5で吐出した。 このとき、紡糸口金としては、直径0.06mmφ、
ホール数1500ケのものを用いた。 凝固糸条を水洗、熱水中延伸した後、該湿潤糸
条の水分率を約200%になるよう4.5倍に延伸した
後、シリコン系油剤濃度が8%のシリコン系油剤
浴中に浸漬し、次いで表面温度が130℃の加熱ド
ラム上で乾燥緻密化した。得られた乾燥糸条束を
圧力4Kg/cm2の加圧スチーム中で2.8倍に延伸し、
再度乾燥して単糸繊度1d、トータルデニール
3000Dの繊維束を得た。この繊維束は6.3g/d
の引張強度、12.3%の伸度を有しており、またこ
の繊維束にエアー処理を施すと容易に単繊維に分
離、開繊され、単糸相互間に融着や擬融着を有し
ないことが判つた。 次に、該繊維束のヨード吸着量およびスキン層
の存在を調べ、その厚さを測定した結果、 ヨード吸着量 2.0% スキン層の厚さ 2μ であつた。 かくして得られた繊維束を230℃、240℃および
250℃の温度にた保たれた三段熱風循環加熱炉中
で0.2g/dの張力下で約40分間加熱して耐炎化
した後窒素雰囲気中で300℃から1250℃に昇温速
度800℃/分で5分間を要して炭化した。 得られた炭素繊維の樹脂含浸ストランド物性を
JIS―R―7601に準じて測定した。 結果を次に示す。 引張強度(Kg/mm2) 468 伸度(%) 1.86 初期弾性率(ton/mm2) 25.1 実施例 2 実施例1において凝固浴温度を変更し、他は実
施例1と同様にしてアクリル繊維束を作成した。 得られた繊維束の物性、ヨード吸着量、及びヨ
ード吸着糸のスキン層の厚さを第1表に示す。ま
た実施例1と同様にこれらの繊維束を焼成して得
た炭素繊維束の物性も第1表にあわせて示す。
The present invention relates to an acrylic precursor fiber bundle (precursor) that is a raw material for producing carbon fiber or graphitized fiber.
Regarding. Conventionally, acrylic fibers have been widely used as raw materials for producing carbon fibers, and many attempts have been made to improve the performance, quality, and cost reduction of these carbon fibers. That is, carbon fibers are generally made by heating acrylic fibers under tension in an oxidizing atmosphere at 200 to 400°C to convert them into so-called flame-resistant yarns, and then carbonizing them by heating them in a high-temperature inert atmosphere at at least 1000°C. If desired, the acrylic fibers are further heated in an inert atmosphere at a high temperature and graphitized to produce carbon fibers or graphitized fibers. Because carbon fiber undergoes rapid chemical changes, it is usually difficult to produce large quantities of carbon fiber of constant quality and performance in a short period of time. In the above manufacturing process, the heating step in an oxidizing atmosphere, that is, the flameproofing step, oxidizes the polymer chains constituting the acrylic fibers and cyclizes the nitrile groups, thereby thermally stabilizing the structure of the fibers. As the chemical structure changes during this process, the fibers generate heat, causing fusion between single filaments and defects in the internal structure of the fibers, which may cause problems in the mechanics of the final carbon fiber. It is said that it causes not only physical properties but also quality deterioration such as fuzz and thread breakage. Therefore, in order to prevent the above-mentioned fusion or the manifestation of defects in this flame-retardant process, we have developed an acrylic fiber that is resistant to such defects by adjusting the copolymer composition of the fiber constituent polymer, spinning conditions, various oil agents, and flame-retardant fibers. Various proposals have been made regarding pretreatment, etc. One example is the firing of acrylic fibers that reduce cracks, voids, etc. that occur in the fibers by reducing the amount of residual solvent in the fibers obtained by dry-wet spinning to a certain amount or less. There are methods such as (Japanese Patent Publication No. 51-34488) and a method of attaching silicon to acrylic fibers and firing them (Japanese Patent Publication No. 12739/1983). Although each of these proposals represents a solution to the problems in charcoal fiber production, they are not necessarily sufficient. For example, in order to industrially produce carbon fiber at low cost, it is desirable to simultaneously fire multiple fiber bundles with a large number of single filaments, but in this case, it is difficult to uniformly fire the fiber bundles, and A large amount of thermal decomposition products such as tar are generated, reducing the physical properties of the carbon fiber obtained.
Otherwise, there are problems such as significant variation. In addition, an increase in the number of single yarns and fiber bundles tends to cause fusion between single yarns, generation of fuzz, and heat accumulation during firing.
As a result, it is usually difficult to stably produce carbon fibers with excellent quality and performance. It is known that the precursor to which silicone, especially silicone-based oil, is applied is effective in preventing fusion between single filaments during firing, but according to the studies of the present inventors, it is true that silicone-based oil Although it is effective in preventing inter-fusion adhesion, its adhesion to the precursor,
It was discovered that depending on the impregnation state, it does not contribute to improving the physical properties of the obtained carbon fiber. The object of the present invention is to provide an acrylic precursor fiber bundle that can be easily flame-resistant during firing, especially in an oxidizing atmosphere, has excellent mechanical properties, and has stable quality. Another object of the present invention is to provide an acrylic fiber bundle coated with a silicone oil agent, which has less mutual fusion between single yarns and less deterioration in physical properties or performance. The object of the present invention is to provide a fiber made of an acrylonitrile polymer containing at least 92% by weight of acrylonitrile and treated with a silicone oil, which has iodine adsorption as determined by the measurement method described below. The amount is approximately 1 to 3 per fiber weight.
% by weight, and the thickness of the skin layer as detected by the iodine adsorption is within the range of about 0.5 to 3μ, a single yarn fineness of 0.5 to 1.5D and a total denier of 1000 to 30000D, an acrylic precursor. This can be achieved by body fiber bundles. In the present invention, if the iodine adsorption amount exceeds about 3%, defects such as mutual fusion between single fibers and voids in the fibers are likely to occur during the flameproofing process, and on the other hand, if the iodine adsorption amount exceeds about 3%,
If the carbon fiber is less than 100%, the drawability becomes poor during the tensioning or elongation oxidation treatment in the flame-retardant process, resulting in frequent breakage of single filaments and structural defects in the flame-retardant yarn, making it difficult to produce carbon fibers with excellent mechanical properties. become. In addition, even if the skin layer thickness of the iodine-adsorbing yarn is less than 0.5μ, similar to the case where the iodine adsorption amount is less than 1%, single fiber breakage during tension or elongation oxidation treatment in the flame-retardant process, flame-retardant This causes structural destruction of the yarn, resulting in a decrease in the strength and elongation of the carbon fiber and an increase in the occurrence of fuzz. On the other hand, when the skin layer becomes large, when the swollen yarn is treated with an oil agent, the oil agent penetrates into the single fiber through the fibrils unique to acrylic fibers, inhibiting drying and densification, resulting in structural defects inside the fiber, and carbon This results in a decrease in fiber strength and elongation and an increase in fluffing. Therefore, the thickness of the skin layer should be limited to 3μ or less. Here, the amount of iodine adsorption and the thickness of the skin layer detected by iodine adsorption of the present invention are values measured by the following measuring method. (1) Measuring method of iodine adsorption amount Accurately weigh approximately 0.5 g of the dry sample and transfer it to a 200 ml Erlenmeyer flask with a stopper. Add 100 ml of iodine solution (50.76 g of I 2 , 10 g of 2,4-diclophenol, 90 g of acetic acid and 100 g of potassium iodide, transfer to a 1 L volumetric flask and dissolve with water to make a constant volume), and add 50℃
Perform adsorption treatment while permeating for minutes. The iodine-adsorbed sample is washed under running water for 30 minutes and then dehydrated by centrifugation. Place the dehydrated sample in a 200ml beaker and dissolve with 100ml of dimethyl sulfoxide. After dissolving, the amount of iodine adsorbed is determined by potentiometric titration with an N/10 silver nitrate aqueous solution. In addition, as a method of determining the amount of iodine adsorption, the color value of the iodine adsorption sample, for example, the L value indicated by the Hunter color value may be used. However, in this case, it is necessary to calibrate the relationship between the amount of iodine adsorption and the color value. (2) Measuring method for the skin layer of iodine-adsorbing yarn After embedding 50 to 100 iodine-adsorbing yarns (filaments) in paraffin, which is a standard method for microscopic observation, the cross section of the fibers was cut using a microtome to a thickness of 6 to 9 microns. Cut it and measure the average thickness of the skin layer, which has become dark brown due to adsorption of iodine, under a 200x microscope. The reason why the amount of iodine adsorption and the thickness of the skin layer determined by the above measurement method are closely related to the performance as an acrylic precursor fiber bundle is not fully clear, but at least the amount of iodine adsorption determined by the iodine adsorption is closely related to the performance as an acrylic precursor fiber bundle. The presence of the skin layer prevents fusion between single fibers during the flameproofing process, and the double structure of such fibers is related to ease of tension or elongation during flameproofing, which is the object of the present invention. It is thought that this has an advantageous effect on the production of carbon fibers with excellent physical properties.
Furthermore, what is important is that the iodine adsorption amount and the thickness of the skin layer serve as criteria for determining the quality and performance of the precursor, and facilitate the manufacturing process of the acrylic precursor fiber bundle and the setting of its conditions. In particular, as in the present invention, the single yarn fineness is 0.5 to 1.5d,
In fiber bundles with a total denier of 1,000 to 30,000 D, it is difficult to measure the variation in physical properties among the single fibers that make up the fiber bundle, so the performance as a precursor is determined by the amount of iodine adsorbed and the presence of a skin layer. What can be done is extremely advantageous industrially. In general, as the fineness of single fibers decreases and the total denier increases, it becomes difficult to eliminate the aforementioned troubles in carbon fiber production, especially fuzzing during tension or elongation flame resistance, occurrence of yarn breakage, and fusion. As long as an acrylic precursor fiber that satisfies the iodine adsorption amount and skin layer thickness specified in the invention is used, these troubles will be resolved and the conditions for each process of flame resistance and carbonization will be easy to set. The acrylic precursor fiber bundle of the present invention is a fiber made of a homopolymer or copolymer containing at least 92% by weight of acrylonitrile (AN),
Copolymerizable components include, for example, acrylic acid, itaconic acid, crotonic acid and their lower alkyl esters, α-methylacrylonitrile, acrylamide, methacrylamide, β-hydroxyethyl methacrylate, and other unsaturated substances that are copolymerizable with AN. Examples include vinyl monomers. These AN-based polymers are those having an intrinsic viscosity [η] of at least 1.4 measured as a dimethylformamide (DMF) solution at 25°C. The method for producing the acrylic precursor fiber bundle of the present invention includes using DMF, dimethyl sulfoxide (DMSO), and the like in which the AN polymer solution has a concentration of 18 to 21% by weight.
Obtained by wet or dry-wet spinning using various solutions such as organic solvent solutions such as dimethyl acetamide (DMAC), concentrated aqueous solutions of inorganic salts such as rhodan salt and zinc chloride, and concentrated aqueous solutions of inorganic acids such as nitric acid as spinning stock solutions. However, the fiber bundle of the present invention has a single yarn fineness of 0.5 to
Since the fiber bundle has a fiber bundle of 1.5D and a total denier of 1000D or more, the wet spinning method is advantageous as the spinning method. As for the spinning conditions, the spinning stock solution is about 50 to 80%
The actual draft ratio is controlled to 2.5 to 6, preferably 2.5 to 4.5 in a spinning bath (coagulation bath) that is controlled at a temperature of 2.5 °C and kept at substantially the same temperature as the spinning stock solution temperature.
It is discharged from a spinneret and coagulated within the range of . At this time, if the temperature of the spinning dope is less than 50°C, the stretching tension in the stretching process will be excessive, and the iodine adsorption amount of the obtained precursor and the thickness of the skin layer will be small, which will fall outside the specified limits of the present invention. Not only does the strength and elongation properties of the carbon fiber obtained by firing the carbon fiber decrease, but also the occurrence of fuzz increases. Furthermore, partial structural destruction of the fibers occurs, resulting in stretching breakage and single filament breakage. On the other hand, when the temperature exceeds 80°C, the precipitated structure of the coagulated thread becomes coarse, large voids occur inside the single fiber, and the amount of iodine adsorbed in the resulting precursor and the thickness of the skin layer increase, which exceeds the specified limits of the present invention. Therefore, the strength and elongation characteristics of the carbon fiber obtained by firing the carbon fiber decrease. Furthermore, by setting the spinning bath temperature to substantially the same temperature as the spinning solution temperature, coagulation spots are reduced, the uniformity of the fiber internal structure is improved, and as a result, the performance of the carbon fiber is improved. Further, if the effective draft ratio is less than 2.5, uneven fineness occurs and single fiber breakage increases during drawing. On the other hand, if it exceeds 6, yarn breakage occurs on the spinneret surface, and the density of the coagulated yarn decreases, resulting in an excessive amount of iodine adsorption in the precursor and an excessive thickness of the skin layer. The physical properties of the carbon fibers deteriorate. The coagulated yarn formed in the spinning bath is processed as usual.
After stretching approximately 3 to 7 times in a hot water bath or hot water bath at approximately 30 to 98°C and washing with water, a silicone oil treatment is performed. must be maintained within the range of 100 to 250% by weight, preferably 150 to 200% by weight, based on the weight of dry fiber. In other words, if the silicone oil treatment is performed when the moisture content of the wet yarn is 250% by weight or more, the homogeneity of the fiber will deteriorate due to excessive penetration of the oil, and the iodine adsorption amount of the obtained precursor and the skin layer will deteriorate. The thickness becomes so large that it falls outside the specified limits of the present invention. On the other hand, if the silicone oil treatment is performed when the water content is less than 100%, insufficient penetration of the oil will cause structural destruction inside the fiber during stretching, resulting in a decrease in the physical properties of the carbon fiber. As mentioned above, this silicone oil treatment is related to the amount of iodine adsorbed in the fibers and the thickness of the skin layer, which are the characteristics of the present invention. Therefore, sufficient consideration should be given to the type of silicone oil and the amount of the silicone oil applied. In other words, silicone oils include, for example, polyether-modified polysiloxane (polydimethylpolysiloxane ethylene oxide copolymer), alcohol-modified polysiloxane, amino-modified polysiloxane, dimethylpolysiloxane used in combination with some emulsifiers, and alkyl-modified polysiloxane. etc. is desirable. Also, the amount of silicone oil adhered is usually about 0.1 to 5.
It is preferably within the range of % by weight. The wet yarn that has been treated with a silicone oil agent needs to be subsequently subjected to drying and densification treatment, but the means and conditions for this may be the same as conventional methods. For example, at about 100 to 200 ° C. This is carried out using a plurality of heated rolls (or heated drums) or hot air, and at that time, it may be relaxed by about 0 to 10% if necessary. Next, the dried and densified yarn is subjected to secondary stretching in pressurized steam, and further dried if necessary. As for the stretching conditions at that time, the steam pressure should be about 1 to 6 kg/cm 2 G, and the stretching ratio should be in the range of at least 8 times as a total stretching ratio, preferably 8 to 16 times. At this time, if the stretching ratio is 8 times or less, the degree of fiber orientation of the precursor decreases, the amount of iodine adsorbed and the thickness of the skin layer become excessive, and the strength and elongation of the carbon fiber obtained from the precursor decreases. On the other hand, if it is 16 times or more, single filament breakage occurs frequently during drawing, which is inappropriate as an operating condition. In addition, regarding the detailed conditions of the above yarn spinning process, the tensile strength and elongation is at least 6 g/d and 10 to 13
It is preferable to select the fiber bundle so as to form a fiber bundle of . As mentioned above, the acrylic precursor fiber bundle of the present invention thus obtained is a carbon fiber manufacturing fiber material,
In other words, it has many excellent properties as a precursor, and can be easily subjected to oxidation treatment during flame resistance and carbonization processes, especially under tension or elongation to improve physical properties. Since the occurrence of fusion, fuzz, and thread breakage can be effectively prevented, carbon fibers with excellent mechanical properties can be stably produced. An example of the physical properties of the carbon fibers stably obtained from the acrylic precursor fiber bundle of the present invention is that the tensile strength and elongation of the resin-impregnated strands of the carbon fibers are at least 380 Kg/mm 2 and 1.7% or more, respectively. be. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Acrylonitrile (AN) 99.7% and acrylic acid
A copolymer consisting of 0.3% was dissolved in dimethyl sulfoxide (DMSO) to give a polymer concentration of 19.5% by weight.
A spinning stock solution with a temperature of 65℃ was prepared, and
It was discharged at an effective draft ratio of 3.5 into a coagulation bath of a 55% aqueous solution of DMSO maintained at 65°C. At this time, the spinneret has a diameter of 0.06 mmφ,
A hole with 1500 holes was used. After washing the coagulated yarn with water and stretching it in hot water, the wet yarn was stretched 4.5 times so that the moisture content of the wet yarn was approximately 200%, and then immersed in a silicone oil bath with a silicone oil concentration of 8%. Then, it was dried and densified on a heated drum with a surface temperature of 130°C. The obtained dried yarn bundle was stretched 2.8 times in pressurized steam at a pressure of 4 kg/ cm2 ,
Dry again to obtain single yarn fineness of 1d and total denier.
A fiber bundle of 3000D was obtained. This fiber bundle is 6.3g/d
It has a tensile strength of 12.3% and an elongation of 12.3%, and when this fiber bundle is air-treated, it is easily separated and opened into single fibers, and there is no fusion or pseudo-fusion between the single fibers. It turned out that. Next, the amount of iodine adsorbed in the fiber bundle and the presence of a skin layer were examined, and the thickness thereof was measured. As a result, the amount of iodine adsorbed was 2.0% and the thickness of the skin layer was 2 μm. The fiber bundle thus obtained was heated to 230°C, 240°C and
Heat it for about 40 minutes under a tension of 0.2 g/d in a three-stage hot air circulation heating furnace maintained at a temperature of 250°C to make it flame resistant, then heat it from 300°C to 1250°C in a nitrogen atmosphere at a rate of 800°C. Carbonization took 5 minutes at a speed of 5 minutes. The physical properties of the resin-impregnated carbon fibers were
Measured according to JIS-R-7601. The results are shown below. Tensile strength (Kg/mm 2 ) 468 Elongation (%) 1.86 Initial elastic modulus (ton/mm 2 ) 25.1 Example 2 Acrylic fibers were prepared in the same manner as in Example 1 except that the coagulation bath temperature was changed. Created a bundle. Table 1 shows the physical properties of the obtained fiber bundle, the amount of iodine adsorbed, and the thickness of the skin layer of the iodine adsorbed yarn. Table 1 also shows the physical properties of carbon fiber bundles obtained by firing these fiber bundles in the same manner as in Example 1.

【表】 * 延伸中、単糸切れ多発により製糸不能。
実施例 3 実施例1において紡糸ドラフト比を変更し、他
は実施例1と同様にしてアクリル繊維束を作成し
た。 得られた繊維束の物性、ヨード吸着量、及びヨ
ード吸着糸のスキン層の厚さを第2表に示す。ま
た実施例1と同様にこれらの繊維束を焼成して得
た炭繊維束の物性も第2表にあわせて示す。
[Table] *During drawing, spinning was impossible due to frequent single yarn breakages.
Example 3 An acrylic fiber bundle was produced in the same manner as in Example 1 except that the spinning draft ratio was changed. Table 2 shows the physical properties of the obtained fiber bundle, the amount of iodine adsorbed, and the thickness of the skin layer of the iodine adsorbed yarn. Table 2 also shows the physical properties of charcoal fiber bundles obtained by firing these fiber bundles in the same manner as in Example 1.

【表】【table】

【表】 * 繊度斑が大きく、延伸中単糸切れ多発。
実施例 4 実施例1において加圧スチーム下での二次延伸
倍率を変更し、他は実施例1と同様にしてアクリ
ル繊維束を作成した(ただし、熱水浴中での一次
延伸倍率は4.5倍とした)。 得られた繊維束の物性、ヨード吸着量、及びヨ
ード吸着糸のスキン層の厚さを第3表に示す。ま
た実施例1と同様にこれらの繊維束を焼成して得
た炭素繊維束の物性も第3表にあわせて示す。
[Table] * Large unevenness in fineness and frequent breakage of single filaments during drawing.
Example 4 An acrylic fiber bundle was created in the same manner as in Example 1, except that the secondary draw ratio under pressurized steam was changed in Example 1 (however, the primary draw ratio in a hot water bath was 4.5 ). Table 3 shows the physical properties of the obtained fiber bundle, the amount of iodine adsorbed, and the thickness of the skin layer of the iodine adsorbed yarn. Table 3 also shows the physical properties of carbon fiber bundles obtained by firing these fiber bundles in the same manner as in Example 1.

【表】 * 延伸中、単糸切れ多発により製糸不能。
比較例 2 実施例1においてシリコン系油剤の代りに有機
系油剤ステアリルアルコールエチレンオキサイド
付加物(20モル)を2%付着させた繊維束の物性
およびヨード吸着量、糸のスキン層厚みを第4表
に、また該繊維束から得られた炭繊維束の品質を
第5表に示す。
[Table] *During drawing, spinning was impossible due to frequent single yarn breakages.
Comparative Example 2 Table 4 shows the physical properties, iodine adsorption amount, and yarn skin layer thickness of the fiber bundle in which 2% of the organic oil stearyl alcohol ethylene oxide adduct (20 mol) was attached instead of the silicone oil in Example 1. Table 5 also shows the quality of the charcoal fiber bundles obtained from the fiber bundles.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも92重量%のアクリロニトリルを含
有するアクリロニトリル系重合体からなり、かつ
シリコン系油剤にて処理された繊維であつて、ヨ
ード吸着量が繊維重量当り約1〜3重量%であ
り、かつ該ヨード吸着によつて検出されるスキン
層の厚さが約0.5〜3μの範囲内である単糸繊度0.5
〜1.5dおよびトータルデニール1000〜30000Dの
アクリル系前駆体繊維束。
1 Fibers made of an acrylonitrile polymer containing at least 92% by weight of acrylonitrile and treated with a silicone oil, with an iodine adsorption amount of about 1 to 3% by weight per fiber weight, and Single yarn fineness 0.5 with skin layer thickness detected by adsorption within the range of approximately 0.5-3μ
Acrylic precursor fiber bundles of ~1.5d and total denier 1000-30000D.
JP9775282A 1982-06-09 1982-06-09 Acrylic precursor yarn bundle Granted JPS58214518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9775282A JPS58214518A (en) 1982-06-09 1982-06-09 Acrylic precursor yarn bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775282A JPS58214518A (en) 1982-06-09 1982-06-09 Acrylic precursor yarn bundle

Publications (2)

Publication Number Publication Date
JPS58214518A JPS58214518A (en) 1983-12-13
JPH026847B2 true JPH026847B2 (en) 1990-02-14

Family

ID=14200608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775282A Granted JPS58214518A (en) 1982-06-09 1982-06-09 Acrylic precursor yarn bundle

Country Status (1)

Country Link
JP (1) JPS58214518A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321916A (en) * 1986-07-08 1988-01-29 Toray Ind Inc Production of acrylic fiber for producing carbon fiber
JPH0615722B2 (en) * 1986-07-31 1994-03-02 東レ株式会社 Method for producing acrylic fiber for producing carbon fiber
JPS6385168A (en) * 1986-09-29 1988-04-15 東レ株式会社 Production of ultrahigh strength carbon fiber
CN105954342A (en) * 2016-04-26 2016-09-21 兰州蓝星纤维有限公司 Method for testing density of polyacrylonitrile protofilament fibers

Also Published As

Publication number Publication date
JPS58214518A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US4080417A (en) Process for producing carbon fibers having excellent properties
US5168004A (en) Melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
KR20010072041A (en) Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof
US4935180A (en) Formation of melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
JP2016040419A (en) Method for producing carbon fiber
JP2008163537A (en) Method for producing carbon fiber
US5066433A (en) Method of manufacturing carbon fiber using preliminary stretch
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JPH026847B2 (en)
JPS6114248B2 (en)
JP3002549B2 (en) Manufacturing method of graphite fiber
JP3047731B2 (en) Carbon fiber for filament winding molding and method for producing the same
JP2002146681A (en) Method of producing carbon fiber and precursor thereof and method of applying finishing oil
JP2004060126A (en) Carbon fiber and method for producing the same
JPS5920004B2 (en) Carbon fiber manufacturing method
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JPS6141326A (en) Preparation of precursor for carbon fiber
JPS6335821A (en) Acrylic fiber for producing carbon fiber
WO2023140212A1 (en) Carbon fiber bundle
JPH02264011A (en) Acrylic fiber for graphite fibers
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
KR20240071429A (en) Manufacturing method of high modulus graphite fiber
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JPH04240220A (en) Precursor for carbon fiber
JPH0157165B2 (en)