JPS6052206B2 - Method for manufacturing acrylic carbon fiber - Google Patents
Method for manufacturing acrylic carbon fiberInfo
- Publication number
- JPS6052206B2 JPS6052206B2 JP53035016A JP3501678A JPS6052206B2 JP S6052206 B2 JPS6052206 B2 JP S6052206B2 JP 53035016 A JP53035016 A JP 53035016A JP 3501678 A JP3501678 A JP 3501678A JP S6052206 B2 JPS6052206 B2 JP S6052206B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- weight
- silicone
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】
本発明は補強材として優れた適正を発揮しうる高性能
炭素繊維を工業的に有利に製造するための方法に関する
ものであり、とくに特定構造のシロキサン含有油剤を特
定の工程にて、プレカーサーに付着せしめたものを焼成
することを特徴とする炭素繊維の製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing high-performance carbon fiber that can exhibit excellent suitability as a reinforcing material. The present invention relates to a method for producing carbon fibers, which is characterized in that the carbon fibers attached to precursors are fired in the process.
従来、炭素繊維製造用プレカーサーとしてはアクリロ
ニトリル系繊維が有用なものとして知られているが、ア
クリロニトリル系プレカーサーのもつ欠点としては焼成
時にケバ立ちが起り焼成炉通過性が阻害されること、並
びに焼成時に繊維相互間で融着、接着が起り、得られる
炭素繊維持性が損われることなどが指摘されている。Conventionally, acrylonitrile-based fibers have been known to be useful as precursors for producing carbon fibers, but the disadvantages of acrylonitrile-based precursors are that they form fluff during firing, which impedes passage through the firing furnace; It has been pointed out that fusion and adhesion occur between fibers, which impairs the durability of the resulting carbon fibers.
このような欠点を改良するための方法として、例えば水
膨潤状態の繊維に脂肪酸エステル、高級アルコール、高
級アルコール硫酸エステル、アルキルベンゼンスルホン
酸やノニオン系界面活性剤などの油剤を1〜6重量%付
着せしめ比表面積2〜7−1yなる疎なる表面構造の繊
維をプレカーサーとして用いる方法が特公昭49−16
66号として提案されているが、この方法にては未だ上
記目的を達成するには十分な方法とはいえない。また、
他の方法としてはアクリロニトリル系プレカーサーをア
ルキルシリコーン、フェニルシリコーン或いはこれらの
縮合物で処理する方法が特開昭49−117724号に
提案されているが、この方法によつて得られたプレカー
サーも、その焼成工程に於て、糸ガイドやローラーなど
との摩擦が起り、繊維に静電気が蓄積され、糸条が毛羽
立ち、ひろがり、糸切れなどのトラブルを起し、本発明
の目的とする炭素繊維を作ることは難しい。更に他の方
法としてはプレカーサー用原液中、又は水膨潤繊維に特
定構造のアミノシロキサンを繊維重量換算で0.01重
量%以上含浸若しくは含有せしめたものを焼成する方法
が、特開昭51−116225号或いは特開昭52−3
4025号として提案されている。この方法はアミノシ
ロキサンを繊維構造内部に捕捉せしめ、この繊維を熱処
理することによつて繊維内部にアミノシロキサン相互、
若しくはアクリロニトリル系重合体とアミノシロキサン
との間に架橋構造を形成せしめ、プレカーサーが外力を
受けた場合においてもプレカーサー内部にあるボードを
中心としたクラック発生を防止し、プレカーサー焼成時
のケバ発生による炭素繊維の破断や工程トラブルを防止
することにあるが、この方法にてはアミノシロキサンが
プレカーサーとなる繊維内部に強固に結合されているた
めその焼成時に繊維が静電気を蓄積し、静電気による単
糸の毛羽立ち、ひろがりなどによる糸の切断を防ぐこと
は難しい。更にアミノシロキサンをボード状繊維内に含
浸せしめるため、含浸処理した後乾燥しプレカーサーと
する方法は繊維表面にアミノシロキサンが付着している
と、プレカーサー乾燥時にその表面に付着したアミノシ
ロキサンの高分子量化が起り、ガイドやローラー等に粘
着して工程ストップなどのトラブル発生があると共に、
このプレカーサーは固く焼成により高性能炭素繊維を作
ることは難しくなるため、当該方法においてはプレカー
サー表面にシロキサンを付着せしめることは好ましいこ
とではなく、炭素繊維製造工程が極めて鋭敏となり工業
的見地より著しい改良がなされることが望まれている。
そこで本発明者等は、プレカーサー製造時に於ける工程
上のトラブルもなく、焼成時には好適に開繊されて、融
着や接着などの不都合を生ぜず、しかも炭素化工程に於
て集束性良好な状態で焼成を完了しうる炭素繊維の製造
方法について検討中のところ、通常の方法によつて製造
された乾燥後、即ちボードをほとんど含まないアクリロ
ニトリル系繊維に水に分散しうるシリコン系油剤を付着
せしめたものをプレカーサーとして用いることにより、
その目的を達成すると共に、しかも高弾性、高強度の炭
素繊維を作り得ることを見出し本発明を完成した。As a method to improve such defects, for example, 1 to 6% by weight of oil agents such as fatty acid esters, higher alcohols, higher alcohol sulfates, alkylbenzenesulfonic acids, and nonionic surfactants are attached to fibers in a water-swollen state. A method using fibers with a sparse surface structure with a specific surface area of 2 to 7-1y as a precursor was published in Japanese Patent Publication No. 49-16.
No. 66, however, this method is still not sufficient to achieve the above object. Also,
As another method, a method of treating an acrylonitrile precursor with alkyl silicone, phenyl silicone, or a condensate thereof is proposed in JP-A-49-117724, but the precursor obtained by this method also During the firing process, friction with yarn guides, rollers, etc. occurs, and static electricity accumulates in the fibers, causing problems such as fuzzing, spreading, and breakage of the yarns, resulting in the creation of the carbon fibers that are the object of the present invention. That's difficult. Still another method is to impregnate or contain 0.01% by weight or more of an aminosiloxane with a specific structure into a water-swollen fiber in a precursor stock solution or in a method disclosed in JP-A-51-116225. No. or JP-A-52-3
It is proposed as No. 4025. In this method, aminosiloxane is trapped inside the fiber structure, and by heat-treating the fiber, aminosiloxane is mutually trapped inside the fiber.
Alternatively, a crosslinked structure is formed between an acrylonitrile polymer and an aminosiloxane, and even when the precursor is subjected to external force, it prevents the occurrence of cracks centered on the board inside the precursor, and prevents carbon from forming due to fluff during firing of the precursor. The purpose of this method is to prevent fiber breakage and process troubles. However, in this method, aminosiloxane is strongly bonded inside the fiber as a precursor, so the fiber accumulates static electricity during firing, and the static electricity causes damage to the single yarn. It is difficult to prevent thread breakage due to fuzzing, spreading, etc. Furthermore, in order to impregnate the board-like fibers with aminosiloxane, the method of impregnating and drying it to form a precursor is a method in which if aminosiloxane is attached to the fiber surface, the molecular weight of the aminosiloxane attached to the surface increases when the precursor is dried. This can cause problems such as sticking to guides, rollers, etc. and stopping the process.
Since this precursor is hard and difficult to produce high-performance carbon fiber by firing, it is not preferable to attach siloxane to the surface of the precursor in this method, and the carbon fiber manufacturing process becomes extremely sensitive, resulting in significant improvements from an industrial standpoint. It is hoped that this will be done.
Therefore, the inventors of the present invention have developed a fiber that does not cause any trouble in the manufacturing process of the precursor, is properly opened during firing, does not cause problems such as fusion or adhesion, and has good bundling properties during the carbonization process. We are currently considering a method for manufacturing carbon fiber that can be fired in a dry state, using a method that involves attaching a silicone oil that can be dispersed in water to acrylonitrile fibers that are manufactured by the usual method after drying, that is, containing almost no board. By using the precursor as a precursor,
The inventors have completed the present invention by discovering that it is possible to achieve the above objectives and to produce carbon fibers with high elasticity and high strength.
本発明は紡糸、延伸、水洗並びに乾燥処理した実質的に
ボードのないアクリロニトリル系繊維に水分散性を有す
るシリコン系油剤を繊維重量換算で0.1〜2.5重量
%なる割合で付着せしめたアクリーロニトリル系繊維を
焼成し、炭素化ないし黒鉛化せしめることを特徴とする
炭素繊維の製造方法、並びに上記方法においてボードの
ないアクリロニトリル系繊維に繊維重量換算で3〜25
重量%の水と、水分散性を有するシリコン系油剤を繊維
重量換算で0.1〜2.5重量%なる割合で付着せしめ
たアクリロニトリル系繊維をプレカーサーとして用いる
方法にある。In the present invention, a water-dispersible silicone oil agent is attached to substantially board-free acrylonitrile fibers that have been spun, drawn, washed, and dried in a proportion of 0.1 to 2.5% by weight calculated as fiber weight. A method for producing carbon fiber characterized by firing an acrylonitrile fiber and carbonizing or graphitizing it, and in the above method, the acrylonitrile fiber without a board has a fiber weight of 3 to 25
The method uses as a precursor an acrylonitrile fiber to which 0.1 to 2.5 weight % of water and a water-dispersible silicone oil are attached in a ratio of 0.1 to 2.5 weight % in terms of fiber weight.
本発明を実施するに際して用いるアクリロニトリル系繊
維はアクリロニトリルの重合量が90モル%以上の重合
体を使用するのが好ましい。The acrylonitrile fiber used in carrying out the present invention is preferably a polymer containing 90 mol % or more of acrylonitrile.
アクリカ[ャgリル以外の共重合成分としては、例えばア
クリル酸、メタクリル酸、クロトン酸、イタコン酸、α
−メチレングルタル酸、メチルアクリレート、メチルメ
タクリレートなどのアクリル酸又はメタクリル酸のエス
テル類、アクリルアミド、メタクリルアミド、N−メチ
ロールアクリルアミド又はメタクリルアミド、N−アル
コキシメチルアクリルアミド又はメタクリルアミド、N
−N−ジメチルアクリルアミドなどのアミド誘導体、メ
チルビニルケトン、エチルビニルケトンなどのビニルケ
トン類、アクロレイン、メタクロレイン、ビニルピリジ
ン類、メタクリルスルホン酸ソーダ、スチレンスルホン
酸ソーダなどのビニルスルホン酸類、酢酸ビニル、メタ
クリロニトリルなどを挙げることができる。アクリロニ
トリル系重合体はラジカル重合法、レドックス重合法な
どの通常の重合触媒系を用い、通常の溶液重合法や水系
懸濁重合法、乳化重合法などの方法によつて製造するの
がよい。本発明の実施に際して用いるアクリロニトリル
系繊維を作るには、上述の如くして製造した繊維をジメ
チルアセトアミド、ジメチルホルムアミド、ジメチルス
ルホキシドなどの有機溶剤に溶解して紡糸原液となし、
溶剤一水系の凝固浴を用いて湿式又は乾湿式法により糸
条形成を行ない、次いで凝固浴を出た糸条は洗浄、延伸
、乾燥緻密化処理を施した後、水分散性を示すシリコン
系化合物で処理し、必要により適当な割合の水を含ませ
ればよい。Examples of copolymerized components other than acrylic acid include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, α
- Esters of acrylic acid or methacrylic acid such as methylene glutaric acid, methyl acrylate, methyl methacrylate, acrylamide, methacrylamide, N-methylolacrylamide or methacrylamide, N-alkoxymethylacrylamide or methacrylamide, N
Amide derivatives such as -N-dimethylacrylamide, vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone, acrolein, methacrolein, vinyl pyridines, vinyl sulfonic acids such as sodium methacryl sulfonate and sodium styrene sulfonate, vinyl acetate, and methacrylate. Examples include lonitrile. Acrylonitrile polymers are preferably produced by conventional methods such as solution polymerization, aqueous suspension polymerization, and emulsion polymerization using conventional polymerization catalyst systems such as radical polymerization and redox polymerization. To make the acrylonitrile fiber used in carrying out the present invention, the fiber produced as described above is dissolved in an organic solvent such as dimethylacetamide, dimethylformamide, or dimethyl sulfoxide to prepare a spinning stock solution.
Yarns are formed by a wet or wet-dry method using a solvent-aqueous coagulation bath, and the yarns that come out of the coagulation bath are washed, stretched, dried and densified, and then made into a silicone-based material that exhibits water dispersibility. It may be treated with a compound and, if necessary, contain water in an appropriate proportion.
本発明を実施するに際して用いる水に対して分散性を示
すシリコン系油剤としては、式 /−\
(但し、式中R1は−R(H−℃H2,−R″一NH2
又は−R′−N(R″)2であり、R″は−(CH2+
−*(式中X..yは前記に同じ、A..bは1〜10
の整数を示す)なるものを挙げることができる。The silicone oil agent that exhibits dispersibility in water used in carrying out the present invention has the formula /-\ (wherein, R1 is -R(H-℃H2, -R''-NH2
or -R'-N(R'')2, where R'' is -(CH2+
-*(In the formula, X..y is the same as above, A..b is 1 to 10
(indicates an integer of ).
上記したシリコン系油剤のアクリロニトリル系繊維への
付着処理は水洗、延伸、乾燥後の実質上ボードのないア
クリロニトリル系繊維へ付着せしめることが必要であり
、ボードのある水膨潤状態にある繊維へのシリコン系油
剤の処理にては種々の工程上のトラブルが発生すると共
に、得られる炭素繊維の特性も本発明の方法によつて作
られた−炭素繊維に比べ強度、弾性率も不満足なものと
なるので好ましくない。The process of adhering the silicone oil to the acrylonitrile fibers described above requires adhering to the acrylonitrile fibers that have virtually no board after washing, stretching, and drying. In addition to various process troubles occurring in the treatment of oil-based oils, the properties of the resulting carbon fibers are also unsatisfactory in strength and modulus compared to the carbon fibers produced by the method of the present invention. So I don't like it.
またシリコン系油剤の付着処理は、前記シリコン系油剤
をトルエン、アセトン、メチルエチルケトンなどの溶剤
に溶解して付着することもできるが、最も好ましい方法
は、前記シリコン系油剤を水に分散せしめた処理剤を用
い、繊維重量に対し、シリコン系油剤が0.1〜2.5
重量%、水が3〜25重量%なる割合となるように付着
処理する方法である。In addition, the silicone oil can be applied by dissolving the silicone oil in a solvent such as toluene, acetone, methyl ethyl ketone, etc., but the most preferable method is to use a treatment agent in which the silicone oil is dispersed in water. The amount of silicone oil based on the fiber weight is 0.1 to 2.5.
In this method, the adhesion treatment is performed so that the proportion of water is 3 to 25% by weight.
上述の如く、シリコン系油剤処理を施した本発明で用い
るアクリル系プレカーサー、とくに水を3〜25重量%
なる割合で含むプレカーサーはプレカーサー自体として
の捲取りも容易であり、かつコーン状に捲取つたものの
崩れも生じることが少なく、また焼成工程に供しめた場
合においても適度な開繊性を示しはするが、帯電による
異常なケバ立ちの発生やひろがりを生ずることなく、し
かも焼成時の融着や接着現象を極めて効率よく防止して
いるため、その連続焼成性は優れており、高弾性、高強
度の炭素繊維を作ることができるのである。As mentioned above, the acrylic precursor used in the present invention is treated with a silicone oil, especially containing 3 to 25% by weight of water.
Precursor containing a proportion of However, it does not cause abnormal fluffing or spreading due to charging, and it extremely efficiently prevents fusion and adhesion during firing, so it has excellent continuous firing properties, and has high elasticity and high properties. It is possible to make strong carbon fiber.
このようなことは本発明で特定した水分散性を示すシリ
コン系油剤を特定量、実質的にボードのないアクリル系
繊維に付着せしめることによ:′、、R″はCmH2.
.+1なる基を、X..yは0〜15の整数、M,.n
は1〜3の整数を示す)又は、式
つて初めて成しうるものであり、この系に水を更に加え
ることによつてその効果は更に助長される。This can be achieved by attaching a specific amount of the water-dispersible silicone oil specified in the present invention to the acrylic fibers that have substantially no board: ', , R'' is CmH2.
.. +1 group, X. .. y is an integer from 0 to 15, M, . n
represents an integer from 1 to 3) or the formula, and the effect can be further enhanced by further adding water to this system.
また、シリコン系油剤の処理に当りジメチルアミン、ジ
エタノールアミンなどのアミンの添加をすることによつ
て更に上記した効果も助長できる。Furthermore, the above-mentioned effects can be further enhanced by adding amines such as dimethylamine and diethanolamine during the treatment of silicone oils.
以下実施例によつて本発明をより具体的に説明するが、
実施例中の測定値について二三補足する。The present invention will be explained in more detail with reference to Examples below.
A few supplementary notes regarding the measured values in the examples.
共重合体の比粘度
0.10gの共重合体を0.1Nの口タンソータを含む
ジメチルホルムアミド(以斗DMFと称する)溶液10
0mt中に溶解して250℃で測定した。A copolymer with a specific viscosity of 0.10 g was added to a dimethylformamide (referred to as DMF) solution containing 0.1N in a sorter.
It was dissolved in 0 mt and measured at 250°C.
シリコーン系化合物の繊維付着量螢光X線分析装置(理
学電4a!GF−S型)によつて、一定形状に整列せし
めた繊維束にX線を照射し発生するケイ素の二次X線強
度を計測する。Fiber adhesion amount of silicone compound Secondary X-ray intensity of silicon generated by irradiating X-rays to fiber bundles arranged in a certain shape using a fluorescent X-ray analyzer (Rigakuden 4a! GF-S type) Measure.
付着量既知の繊維束について得られている検量線から付
着量未知の付着量を求める方法である。ストランド強度
および弾性率シェル化学のエポキシ樹脂(エピコート8
28)を含浸して硬化させた炭素繊維の束(ストランド
)を試長200T1r!n1変形速度5Tn!n/分て
伸張破断試験を行つて求めた。This is a method of determining the amount of adhesion for which the amount of adhesion is unknown from a calibration curve obtained for a fiber bundle whose amount of adhesion is known. Strand strength and modulus shell chemistry epoxy resin (Epicote 8
28) A bundle (strand) of carbon fiber impregnated and cured with a sample length of 200T1r! n1 deformation speed 5Tn! It was determined by conducting a tensile break test at n/min.
トウ強度
平行にひきそろえた炭素繊維の束を試長100顛、変形
速度1WrIn/分で伸長破断試験を行つて求めた。Tow strength was determined by conducting an elongation rupture test on a bundle of carbon fibers drawn parallel to each other with a trial length of 100 pieces and a deformation rate of 1 WrIn/min.
ストランド強度が高くかなり優れた炭素繊維性能を示す
かにみえるものも、トウ強度が6〜7V1d以下であれ
ば、複合材料に成型する操作の途中て張力を付与したと
きに容易に繊維束が切断され得る可能性がある。Even if carbon fibers have high strand strength and appear to exhibit fairly excellent performance, if the tow strength is less than 6 to 7 V1d, the fiber bundles will easily break when tension is applied during the process of forming the composite material. There is a possibility that it could be done.
実施例1
過硫酸カリおよび酸性亜硫酸ソーダからなるレドックス
触媒を用い、温度50℃で連続的に水系懸濁重合を行つ
て、アクリロニトリル(以下ANと称する)97.0モ
ル%、アクリル酸メチル(以下凧と称する)2.5モル
%、メタクリル酸(以下MAAと称する)0.5モル%
の組成を有する共重合体を調整した。Example 1 Using a redox catalyst consisting of potassium persulfate and acidic sodium sulfite, continuous aqueous suspension polymerization was carried out at a temperature of 50°C to produce 97.0 mol% of acrylonitrile (hereinafter referred to as AN) and methyl acrylate (hereinafter referred to as AN). methacrylic acid (hereinafter referred to as MAA) 0.5 mol%
A copolymer having the composition was prepared.
この共重合体の比粘度は0.221であつた。このハ共
重合体21部をジメチルアセトアミド(以下DMAcと
称す)冗部中に均一分散させてから80℃の温度に加熱
して溶解し、さらに脱泡、沖過を行つて紡糸用原液とし
た。紡糸原液の粘度は50℃で510ポイズであつた。
この紡糸原液を用いて孔数100001孔径0.065
T!r!!tφの紡糸口金を通して、DMAc68%お
よび水32%の組成からなる35℃の凝固浴中に吐出す
る湿式紡糸法によつてフィラメント束に賦型した。凝固
糸条は?℃の温水浴を持つ延伸機によつて8.4倍に延
伸されると同時に含有する溶剤が0.1%になるように
洗浄した後工程油剤を繊維重量当り0.1%付着せしめ
、表面温度が130℃に加熱された*シリンダーローラ
上を通過せしめて水分を乾燥除去するとともに透明感の
ある繊維となるよう緻密化する(これを乾燥繊維と呼ぷ
)。The specific viscosity of this copolymer was 0.221. 21 parts of this copolymer was uniformly dispersed in a portion of dimethylacetamide (hereinafter referred to as DMAc), heated to a temperature of 80°C to dissolve it, and further defoamed and filtered to obtain a stock solution for spinning. . The viscosity of the spinning dope was 510 poise at 50°C.
Using this spinning stock solution, the number of pores is 100,001 and the pore diameter is 0.065.
T! r! ! A filament bundle was formed by a wet spinning method in which the filament was discharged through a tφ spinneret into a coagulation bath at 35° C. having a composition of 68% DMAc and 32% water. What about coagulated threads? The fibers were stretched 8.4 times using a drawing machine with a warm water bath at 100°F, and at the same time the fibers were washed to reduce the solvent content to 0.1%.A post-process oil was applied to the fibers in an amount of 0.1% based on the weight of the fibers. The fibers are passed over cylinder rollers heated to 130°C to dry and remove moisture, and are densified into transparent fibers (this is called dry fiber).
乾式繊維の重量繊度は14383デニールであり、引張
り強度5.4fId1破断伸長11.2%であつた。The dry fiber had a weight fineness of 14,383 denier, a tensile strength of 5.4 fId1, and an elongation at break of 11.2%.
水分率は1.2%であり、走査型電子顕微鏡て観察した
繊維断面は平滑な組織であつて湿式紡糸繊維にしばしば
みられる大きなボードも小さなボード(フィフリル間空
隙)もみあたらなかつた。乾燥繊維は次いで、常圧水蒸
気中で2%収縮処理したのち水分散液としたシリコーン
処理がほどこされたのち巻きとられた。シリコーン水分
散液は1(1)部のUCCシリコーンY−6165とポ
リオキシエチレンノニールフエニルエーテル15部から
なる母液(日本ユニカー社製:アミノシロキサン分散液
)を水で希釈したものを用い、繊維の捲き取り直後の水
分率およびこれらの繊維を105℃の熱風温度で3時間
乾燥してから測定した。シリコーン固形物の付着量は第
1表に示す量となるように調整した。第1表には付着水
を風乾してとり除いた状態の原料繊維の性能を付した。
なお使用したUCCシリコーンY−6165は次式で示
される化学構成であるといわれているものであり、分析
した結果、元素構成比は炭素34.4%、水素8.6%
、窒素0.4%、シリカ含有量は約35%であつた。The moisture content was 1.2%, and the cross-section of the fiber observed with a scanning electron microscope showed a smooth texture, with neither large boards nor small boards (interfibril voids) often seen in wet-spun fibers observed. The dried fibers were then subjected to a 2% shrinkage treatment in atmospheric steam, silicone treated to form an aqueous dispersion, and then wound up. The silicone aqueous dispersion was prepared by diluting a mother liquor (manufactured by Nippon Unicar Co., Ltd.: aminosiloxane dispersion) consisting of 1 (1) part of UCC silicone Y-6165 and 15 parts of polyoxyethylene nonyl phenyl ether with water. The moisture content of the fibers was measured immediately after winding them up and after drying these fibers at a hot air temperature of 105° C. for 3 hours. The amount of silicone solids adhered was adjusted to be as shown in Table 1. Table 1 shows the performance of the raw material fibers after the adhering water was air-dried and removed.
The UCC silicone Y-6165 used is said to have a chemical composition shown by the following formula, and as a result of analysis, the elemental composition ratio is 34.4% carbon and 8.6% hydrogen.
, 0.4% nitrogen, and the silica content was approximately 35%.
第1表に示した繊維を常法によつて炭素繊維に焼成した
。The fibers shown in Table 1 were fired into carbon fibers by a conventional method.
即ち、225〜260℃の範囲で温度勾配を有する熱風
雰囲気の耐炎化炉に繊維束をローラ駆動によつて連続的
に供給し34分間滞在させて、耐炎化処理を行つた。耐
炎化処理での張力は約120m91dであり、繊維長さ
はほぼ原長に保つた。耐炎化繊維の密度はいずれも1.
37〜1.39y′dの範囲にあつた。耐炎化繊維を窒
素ガス雰囲気にある320〜700Cの範囲の温度勾配
を有する炭素化炉と1350℃の熱処理炉をそれぞれ7
分と4.5分間の滞在時間で通過させて炭素繊維に焼成
された。That is, the fiber bundle was continuously fed by roller drive into a flameproofing furnace in a hot air atmosphere having a temperature gradient in the range of 225 to 260°C, and was left there for 34 minutes to perform flameproofing treatment. The tension during the flameproofing treatment was approximately 120 m91d, and the fiber length was maintained at approximately the original length. The density of the flame-resistant fibers is 1.
It was in the range of 37 to 1.39 y'd. The flame-retardant fibers were heated in a carbonization furnace with a temperature gradient in the range of 320 to 700C and a heat treatment furnace at 1350C in a nitrogen gas atmosphere.
The carbon fibers were fired with a residence time of 4.5 minutes and 4.5 minutes.
得られた炭素繊維の物性は第2表に示すごとくであつた
。第2表が示すように本発明にかかわる試料番号1〜3
は優れた炭素繊維物性を持つていた。The physical properties of the obtained carbon fibers were as shown in Table 2. As shown in Table 2, sample numbers 1 to 3 related to the present invention
The carbon fiber had excellent physical properties.
比較例実施例1の原料繊維の紡糸工程において、延伸、
洗浄ののちのボードを含む繊維に工程油剤として実施例
1で用いたアミノシリコーン水分散液を用いシリコーン
付着量が0.2〜0.5%になるように処理した。Comparative Example In the spinning process of the raw material fiber of Example 1, drawing,
After washing, the fibers including the board were treated with the amino silicone aqueous dispersion used in Example 1 as a process lubricant so that the amount of silicone adhesion was 0.2 to 0.5%.
このアミノシロキサン付着繊維を乾燥するため、次の工
程である加熱シリンダーローラに供給したところ、アミ
ノシロキサンはローラ上に付着堆積する現象を呈し、し
かも高分子量化して経時的にその堆積量も増加した。When this aminosiloxane-adhered fiber was fed to a heated cylinder roller in the next step to dry it, the aminosiloxane adhered and deposited on the roller, and the amount of the aminosiloxane deposited increased over time as the molecular weight increased. .
このような現象の発生と共に加熱ローラで乾燥された繊
維束は粘着性堆積物に接触した部分から毛羽立ちを生じ
はじめると共に切断し巻き取り不能となつた。As this phenomenon occurred, the fiber bundle dried by the heating roller began to become fluffy at the portions that came into contact with the sticky deposits, and was cut and could no longer be wound up.
シリコーン付着設定量0.2%の場合毛羽立ち開始時間
は4時間2紛であり、0.5%の場合には1時間1紛で
あつた。一応巻取りをすることの出来た繊維の一部は実
施例1に述べた方法で炭素繊維に焼成を試みたところ、
耐炎化処理を行う際、ローラに単糸切れした毛羽が巻き
つき、連続送行は不可能であつた。実施例2実施例1の
方法によつて、AN98モル%、MAA2モル%の組成
を有するAN共重合体を調整した。When the set silicone adhesion amount was 0.2%, the fluffing start time was 4 hours and 2 powders, and when the silicone adhesion was 0.5%, it was 1 hour and 1 powder. Some of the fibers that could be wound up were tried to be fired into carbon fibers using the method described in Example 1.
When flame-retardant treatment was performed, broken single yarn fuzz wrapped around the roller, making continuous feeding impossible. Example 2 By the method of Example 1, an AN copolymer having a composition of 98 mol % AN and 2 mol % MAA was prepared.
この共重合体の比粘度は0.201であつた。A共重合
体はDMFを溶剤に用いて重合体濃度23.3%の紡糸
原液とした。溶解は低温で均一分散したのち80℃の温
度で加熱して行い、紡糸原液の50℃における粘度は7
00ポイズであつた。紡糸原液は60℃に保温してから
孔数500、孔径0.15mφの口金四ケから同時に吐
出され、約3WRの空隙を経て凝固浴に導びかれるとい
う乾湿式法で紡糸された。凝固浴組成はDMF6O%、
水40%であり、浴温度は40℃であつた。The specific viscosity of this copolymer was 0.201. Copolymer A was made into a spinning stock solution with a polymer concentration of 23.3% using DMF as a solvent. Dissolution is performed by uniformly dispersing at a low temperature and then heating at a temperature of 80°C, and the viscosity of the spinning stock solution at 50°C is 7.
It was 00 poise. The spinning stock solution was kept at 60° C., then simultaneously discharged from four nozzles each having 500 holes and a hole diameter of 0.15 mφ, and was then guided into a coagulation bath through a gap of approximately 3 WR for spinning. Coagulation bath composition is DMF6O%,
The water content was 40%, and the bath temperature was 40°C.
凝固糸は個々に55℃の水浴で溶剤が洗浄されたのち、
部℃の温水浴中で6倍に延伸された。延伸繊維は集束さ
れて2000フィラメントの繊維束となつてから工程油
剤が0.12%付着されたのち12(代)に加熱された
シリンダーローラ上を通過せしめられて乾燥し、ボード
のない繊維とした。乾燥繊維は、103℃の加熱水蒸気
雰囲気中で1.5倍の後延伸がほどこされてから、常圧
水蒸気中で5%の緩和収縮処理が行なわれた。次いで、
実施例1で用いたシリコーン水分散液を付着せしめてか
ら捲取つた。ここに取られた繊維の原糸性能は次のよう
であつた。すなわち、耐炎化の滞在時間を27分にした
以外は実施例1と全く同様の方法で焼成したところ、耐
炎化繊維密度は1.394q′dとなつた。After the coagulated threads were individually washed to remove the solvent in a 55°C water bath,
The film was stretched 6 times in a hot water bath at 30°C. The drawn fibers are bundled into a fiber bundle of 2,000 filaments, coated with 0.12% process oil, and then passed over heated cylinder rollers for 12 cycles to dry and form fibers without boards. did. The dried fibers were post-stretched by a factor of 1.5 in a heated steam atmosphere at 103° C., and then subjected to a relaxation shrinkage treatment of 5% in normal pressure steam. Then,
The aqueous silicone dispersion used in Example 1 was applied and then rolled up. The yarn properties of the fibers taken here were as follows. That is, when the fibers were fired in exactly the same manner as in Example 1 except that the residence time for flame resistance was changed to 27 minutes, the flame resistance fiber density was 1.394 q'd.
得られた炭素繊維のストランド強度は315kgIi1
同弾性率22.5t0nIi1トウ強度12.3VId
とすぐれた物性を有するものであつた。実施例3
実施例1において、得られた乾燥繊維を常圧水蒸気中で
2%収縮処理したのちシリコーン水分散液にて処理する
に際し、シリコーン水分散液に用いたシリコーン系化合
物の種類を次に示す如きものに変更して繊維を捲きとつ
た。The strand strength of the obtained carbon fiber was 315 kgIi1
Same elastic modulus 22.5t0nIi1 tow strength 12.3VId
It had excellent physical properties. Example 3 In Example 1, when the obtained dry fibers were subjected to a 2% shrinkage treatment in normal pressure steam and then treated with a silicone aqueous dispersion, the types of silicone compounds used in the silicone aqueous dispersion were as follows. I changed it to something like the one shown and rolled up the fibers.
シリコーン系化合物としては次のものを用いた。The following silicone compounds were used.
但し、R1、R2およびR3は−CH3、xは≧15の
整数、25℃で測定した粘度は約500センチストーク
である。However, R1, R2 and R3 are -CH3, x is an integer of ≧15, and the viscosity measured at 25°C is about 500 centistokes.
但し、R4は−C3H7、X..Yは≧15の整数、2
5℃で測定した粘度は約25αB)、500(C)およ
び1000センスストーク(9)である。However, R4 is -C3H7, X. .. Y is an integer of ≧15, 2
The viscosities measured at 5° C. are approximately 25 αB), 500 (C) and 1000 sense Stoke (9).
(E) (2)式の構造式においてR4が
外″−””−??ン””であり、該エポキシ基を約1
重量中に含む。(E) In the structural formula of formula (2), R4 is
outside "-""-??n"" and the epoxy group is about 1
Included in weight.
25℃で測定した粘度は5000〜7000センチスト
ークである。The viscosity measured at 25°C is 5000-7000 centistokes.
X..Yは≧15の整数
25℃で測定した粘度は約200センチストークである
。X. .. Y is an integer greater than or equal to 15. The viscosity measured at 25° C. is about 200 centistokes.
なお、シリコーン系化合物(4)を用いるにつきシ.り
コーン水分散液10?lこ対しジメチルアミンおよびジ
エタノールアミンをそれぞれ0.5部添加した系を用意
して繊維に付着処理した。In addition, when using the silicone compound (4), Corn water dispersion 10? A system was prepared in which 0.5 parts each of dimethylamine and diethanolamine were added to each sample, and was applied to fibers.
得られた繊維の原糸性能は第3表の如くであつた。The filament properties of the obtained fibers were as shown in Table 3.
試料番号5〜12の繊維は実施例1に示した方法によつ
て炭素繊維に焼成された。The fibers of sample numbers 5 to 12 were fired into carbon fibers by the method shown in Example 1.
なお耐炎化繊維の密度は試料番号6の場合1.403f
ICII17の場合1.396y1c!lとなつた以外
は1.37〜1.39y1cf1の範囲にあつた。得ら
れた炭素繊維の物性は第4表に示すごとくであり、いず
れも優れた炭素繊維性能をあられすものであつた。In addition, the density of the flame-resistant fiber is 1.403f in the case of sample number 6.
For ICII17 it is 1.396y1c! The values other than 1 were in the range of 1.37 to 1.39y1cf1. The physical properties of the obtained carbon fibers are as shown in Table 4, and all showed excellent carbon fiber performance.
Claims (1)
ドのないアクリロニトリル系繊維に繊維重量換算で3〜
25重量%の水と水分散性を有するシリコン系油剤を繊
維重量換算で0.1〜2.5重量%なる割合で付着せし
めたアクリロニトリル系繊維を焼成して、炭素化ないし
黒鉛化せしめることを特徴とする炭素繊維の製造方法。1 Spun, stretched, washed, and dried acrylonitrile fiber with virtually no voids containing 3 to 30% by weight in terms of fiber weight.
Acrylonitrile fibers to which 25% by weight of water and a water-dispersible silicone oil are attached at a ratio of 0.1 to 2.5% by weight in terms of fiber weight are fired to carbonize or graphitize them. Characteristic carbon fiber manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53035016A JPS6052206B2 (en) | 1978-03-27 | 1978-03-27 | Method for manufacturing acrylic carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53035016A JPS6052206B2 (en) | 1978-03-27 | 1978-03-27 | Method for manufacturing acrylic carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54131032A JPS54131032A (en) | 1979-10-11 |
JPS6052206B2 true JPS6052206B2 (en) | 1985-11-18 |
Family
ID=12430264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53035016A Expired JPS6052206B2 (en) | 1978-03-27 | 1978-03-27 | Method for manufacturing acrylic carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6052206B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144550A1 (en) | 2011-04-19 | 2012-10-26 | 東海ゴム工業株式会社 | Capacitance-type sensor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59116422A (en) * | 1982-12-22 | 1984-07-05 | Toray Ind Inc | Treatment of gas discharged from flame resistant treatment process in manufacture of carbon fiber |
JPS59137508A (en) * | 1983-01-24 | 1984-08-07 | Toray Ind Inc | Preparation of precursor yarn of acrylic carbon fiber |
JPS59179885A (en) * | 1983-03-31 | 1984-10-12 | 松本油脂製薬株式会社 | Treating agent for carbon fiber raw yarn |
US4582662A (en) * | 1983-05-27 | 1986-04-15 | Mitsubishi Chemical Industries Ltd. | Process for producing a carbon fiber from pitch material |
JPS6088124A (en) * | 1983-10-14 | 1985-05-17 | Nippon Oil Co Ltd | Method for infusibilizing pitch fiber |
JPS60134027A (en) * | 1983-12-20 | 1985-07-17 | Nippon Oil Co Ltd | Production of pitch carbon fiber |
JPS61225373A (en) * | 1985-03-27 | 1986-10-07 | 東邦レーヨン株式会社 | Carbon fiber bundle |
DE3685480D1 (en) * | 1985-11-18 | 1992-07-02 | Toray Industries | METHOD FOR THE PRODUCTION OF CARBON FIBERS WITH HIGH STRENGTH AND HIGH ELASTICITY MODULE. |
JPS62117814A (en) * | 1985-11-18 | 1987-05-29 | Toray Ind Inc | Acrylic fiber precursor for high-strength and high-modulus carbon fiber and production thereof |
JP5722991B2 (en) * | 2010-03-31 | 2015-05-27 | コーロン インダストリーズ インク | Carbon fiber manufacturing method and carbon fiber precursor fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5112739A (en) * | 1974-07-23 | 1976-01-31 | Naonobu Shimomura | |
JPS52148227A (en) * | 1976-05-10 | 1977-12-09 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber from acrylic fiber |
-
1978
- 1978-03-27 JP JP53035016A patent/JPS6052206B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5112739A (en) * | 1974-07-23 | 1976-01-31 | Naonobu Shimomura | |
JPS52148227A (en) * | 1976-05-10 | 1977-12-09 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber from acrylic fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144550A1 (en) | 2011-04-19 | 2012-10-26 | 東海ゴム工業株式会社 | Capacitance-type sensor |
Also Published As
Publication number | Publication date |
---|---|
JPS54131032A (en) | 1979-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018145540A (en) | Method for production of carbon fiber bundle | |
JP6119168B2 (en) | Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle | |
KR100570592B1 (en) | Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof | |
JPH11241230A (en) | Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber | |
JP4228009B2 (en) | Method for producing acrylonitrile-based precursor fiber for carbon fiber | |
JP2006299439A (en) | Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same | |
JPS6052206B2 (en) | Method for manufacturing acrylic carbon fiber | |
JP4775928B2 (en) | Method for producing carbon fiber and acrylonitrile-based precursor fiber | |
JP3514780B2 (en) | Method for producing carbon fiber | |
JP2002302828A (en) | Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same | |
JP2011017100A (en) | Method for producing carbon fiber | |
JP4216873B2 (en) | Method for producing carbon fiber precursor fiber bundle | |
JP3969799B2 (en) | High-strength acrylic fiber and method for producing carbon fiber using the same | |
JP2017137602A (en) | Manufacturing method of polyacrylonitrile fiber bundle | |
JP2004060126A (en) | Carbon fiber and method for producing the same | |
JP2008280632A (en) | Method for producing precursor fiber bundle of carbon fiber | |
JPS58214518A (en) | Acrylic precursor yarn bundle | |
TW202033850A (en) | Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle | |
JP2016037689A (en) | Method for producing carbon fiber | |
JP2015183166A (en) | Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber | |
WO2023140212A1 (en) | Carbon fiber bundle | |
JP7408406B2 (en) | Method for manufacturing flame-resistant fiber bundle, method for manufacturing carbon fiber bundle, and connection device | |
KR102674488B1 (en) | Method for preparing acrylonitrile based fiber precursor | |
JP2023163084A (en) | Manufacturing method of polyacrylonitrile fiber and carbon fiber | |
JP2004076208A (en) | Method for producing carbon fiber precursor bundle |