JP2015183166A - Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber - Google Patents

Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber Download PDF

Info

Publication number
JP2015183166A
JP2015183166A JP2014063396A JP2014063396A JP2015183166A JP 2015183166 A JP2015183166 A JP 2015183166A JP 2014063396 A JP2014063396 A JP 2014063396A JP 2014063396 A JP2014063396 A JP 2014063396A JP 2015183166 A JP2015183166 A JP 2015183166A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
acrylonitrile
spinning
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014063396A
Other languages
Japanese (ja)
Inventor
直浩 松本
Naohiro Matsumoto
直浩 松本
祐貴 佐道
Yuki Sado
祐貴 佐道
史宜 渡邉
Fumiyoshi Watanabe
史宜 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014063396A priority Critical patent/JP2015183166A/en
Publication of JP2015183166A publication Critical patent/JP2015183166A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of improving a carbonization yield without damaging productivity and process properties in a carbon fiber production process.SOLUTION: Provided is an acrylonitrile-based copolymer in which the copolymerization ratio of acrylonitrile is 95 to 99.5 mol% or higher, and the copolymerization ratio of styrene is 0.5 to 1.5 mol%. Also provided is a method for producing a polyacrylonitrile-based carbon fiber precursor fiber comprising: a spinning step where the copolymer is spun by a wet spinning method or a dry-wet typ spinning method; a dry heat treatment step where the fiber obtained in the spinning step is subjected to dry heat treatment; and a drawing step where the fiber obtained by the dry heat treatment step is drawn. Also provided is a method for producing carbon fiber comprising: a flame-resistance imparting step where the polyacrylonitrile-based carbon fiber precursor fiber is imparted with flame resistance in the air at 200 to 300°C; a pre-carbonization step where teh fiber obtained in the flame-resistance imparting step is carbonized in an inert atmosphere heated at 900 to 3,000°C.

Description

本発明は、炭化収率を低下させることなく、効率的に炭素繊維を製造する方法に関する。   The present invention relates to a method for efficiently producing carbon fibers without reducing the carbonization yield.

炭素繊維は、環境問題の高まりから複合材料の強化繊維として、益々その用途が各種方面に拡がり、重要性が高まっている。最も広く利用されているポリアクリロニトリル系炭素繊維は、ポリアクリロニトリル系前駆体繊維束を200〜300℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、300〜3000℃の不活性雰囲気下で炭素化する炭化工程を経て、工業的に製造される。   Carbon fiber is increasingly used as a reinforced fiber for composite materials due to increasing environmental problems, and its use is expanding in various fields. The most widely used polyacrylonitrile-based carbon fiber is a flame-proofing process in which a polyacrylonitrile-based precursor fiber bundle is converted to a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C., under an inert atmosphere at 300 to 3000 ° C. It is manufactured industrially through a carbonization step that is carbonized in the process.

炭素繊維前駆体の耐炎化繊維を炭素化すると、耐炎化繊維中に含まれる窒素原子、酸素原子、水素原子と炭素原子の一部が熱分解して、多量のガス成分として排出され、炭素繊維として得られる収率はポリアクリロニトリル繊維に対して50%程度となる。低い炭化収率は炭素繊維の生産コストに大きく影響するため、炭化収率を向上させることが重要である。   When the flame-resistant fiber of the carbon fiber precursor is carbonized, nitrogen atoms, oxygen atoms, hydrogen atoms and some of the carbon atoms contained in the flame-resistant fiber are thermally decomposed and discharged as a large amount of gas components. The yield obtained is about 50% with respect to the polyacrylonitrile fiber. Since a low carbonization yield greatly affects the production cost of carbon fiber, it is important to improve the carbonization yield.

炭化収率を向上させる方法として、いくつかの方法が提案されている。特許文献1〜5では、耐炎化繊維を不活性雰囲気下400℃前後の比較的低い温度で熱処理することで、炭化収率を向上させる方法が提案されている。この方法では、炭素繊維製造工程の中で連続的に炭化収率の高い炭素繊維が得られるものの、該熱処理を行うための設備が新たに必要となり、設備コストが高くなってしまう。   Several methods have been proposed as methods for improving the carbonization yield. Patent Documents 1 to 5 propose a method of improving the carbonization yield by heat-treating the flame-resistant fiber at a relatively low temperature of about 400 ° C. in an inert atmosphere. In this method, carbon fibers having a high carbonization yield can be obtained continuously in the carbon fiber production process, but equipment for performing the heat treatment is newly required, and the equipment cost is increased.

特許文献6〜9では、化学的な作用によって炭化収率を高める方法が提案されている。この方法では、通常の炭素繊維製造工程では使用しない種類のガス(硫黄化合物やヨウ素)や酸化剤などの薬品を用いてポリアクリロニトリル繊維を処理するため、密閉された反応容器の中での処理となり連続的な処理ができなかったり、排ガスや廃棄物を処理するための設備が新たに必要になったりするなど、工業的に適用する技術としては課題があった。   Patent Documents 6 to 9 propose methods for increasing the carbonization yield by chemical action. In this method, polyacrylonitrile fibers are treated with chemicals such as gases (sulfur compounds and iodine) and oxidizing agents that are not used in the normal carbon fiber manufacturing process, so the treatment is performed in a sealed reaction vessel. There have been problems as industrially applied technologies, such as the inability to perform continuous treatment and the need for new equipment for treating exhaust gas and waste.

特開昭51−75124号公報JP 51-75124 A 特開昭58−174630号公報JP 58-174630 A 特開昭58−214535号公報JP 58-214535 A 特開2012−117161号公報JP 2012-117161 A 特開2013−23801号公報JP 2013-23801 A 特開昭58−109625号公報JP 58-109625 A 特開2002−160912号公報JP 2002-160912 A 特開2001−248025号公報JP 2001-2448025 A 特開2005−113305号公報JP 2005-113305 A

本発明の目的は、炭素繊維製造工程において生産性およびプロセス性を損なうことなく炭化収率を向上する方法を提供することにある。   An object of the present invention is to provide a method for improving carbonization yield without impairing productivity and processability in a carbon fiber production process.

上記目的を達成するための本発明に用いるポリアクリロニトリル共重合体は、アクリロニトリルの共重合比が95〜99.5mol%、スチレンの共重合比が0.5〜1.5mol%であるアクリロニトリル系共重合体である。   In order to achieve the above object, the polyacrylonitrile copolymer used in the present invention comprises an acrylonitrile copolymer having an acrylonitrile copolymer ratio of 95 to 99.5 mol% and a styrene copolymer ratio of 0.5 to 1.5 mol%. It is a polymer.

また、本発明においてアクリロニトリル系共重合体からポリアクリロニトリル系炭素繊維前駆体繊維を製造する方法は、湿式紡糸法または乾湿式紡糸法により、紡糸口金から吐出させ紡糸する紡糸工程と、該紡糸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程と、該乾燥熱処理工程で得られた繊維を延伸する工程とを備えることを特徴とする。   In the present invention, a method for producing a polyacrylonitrile-based carbon fiber precursor fiber from an acrylonitrile-based copolymer includes a spinning process in which spinning is performed by discharging from a spinneret by a wet spinning method or a dry-wet spinning method, and the spinning step. It is characterized by comprising a drying heat treatment step for drying and heat treating the obtained fiber, and a step for stretching the fiber obtained in the drying heat treatment step.

さらに、本発明においてポリアクリロニトリル系炭素繊維前駆体繊維から炭素繊維を製造する方法は、200〜300℃の空気中において耐炎化する耐炎化工程と、該耐炎化工程で得られた繊維を、300〜900℃の不活性雰囲気中において予備炭化する予備炭化工程と、該予備炭化工程で得られた繊維を、900〜3,000℃の不活性雰囲気中において炭化する炭化工程とを備えることを特徴とする。   Furthermore, in the present invention, a method for producing carbon fiber from a polyacrylonitrile-based carbon fiber precursor fiber includes a flameproofing step in which flameproofing is performed in air at 200 to 300 ° C., and a fiber obtained in the flameproofing step. A pre-carbonization step of pre-carbonizing in an inert atmosphere of ˜900 ° C., and a carbonization step of carbonizing the fiber obtained in the pre-carbonization step in an inert atmosphere of 900-3,000 ° C. And

本発明を用いることで、炭素繊維製造工程における生産性およびプロセス性を損なうことなく炭化収率を向上することができる。   By using the present invention, the carbonization yield can be improved without impairing the productivity and processability in the carbon fiber production process.

本発明者らは、炭素繊維の炭化収率を、生産性およびプロセス性を損なうことなく向上させる課題に対して、特定の量のスチレンをアクリロニトリルに共重合させることで達成できることを見出し、本発明に到達した。   The present inventors have found that the carbon fiber carbonization yield can be achieved by copolymerizing a specific amount of styrene with acrylonitrile in order to improve the carbonization yield without impairing productivity and processability. Reached.

すなわち、アクリロニトリルに共重合するスチレンの範囲を0.5〜1.5mol%とするのが本発明の特徴であり、好ましくは0.7〜1.3mol%である。スチレンの共重合比が0.5mol%より少ない場合は、炭素繊維の炭化収率を向上させる効果が小さくなり、1.5mol%より多い場合は、共重合したスチレン自体が熱分解して、炭化収率が逆に減少してしまう。   That is, the feature of the present invention is that the range of styrene copolymerized with acrylonitrile is 0.5 to 1.5 mol%, preferably 0.7 to 1.3 mol%. When the copolymerization ratio of styrene is less than 0.5 mol%, the effect of improving the carbon fiber carbonization yield is reduced. When the copolymerization ratio is more than 1.5 mol%, the copolymerized styrene itself is thermally decomposed and carbonized. On the contrary, the yield decreases.

また、本発明においては、アクリロニトリル共重合体中のアクリロニトリルの共重合比は95〜99.5mol%であることを特徴とし、97mol%以上が好ましい。95mol%未満であると紡糸工程で糸切れしやすく、また、耐炎化工程で単繊維同士が接着しやすくなる。   Moreover, in this invention, the copolymerization ratio of acrylonitrile in an acrylonitrile copolymer is 95-99.5 mol%, and 97 mol% or more is preferable. If it is less than 95 mol%, yarn breakage tends to occur in the spinning process, and single fibers easily adhere to each other in the flameproofing process.

本発明におけるアクリロニトリル系共重合体は、製糸性の向上や耐炎化促進の目的からスチレン以外の共重合成分を共重合させてもよく、耐炎化促進を目的として共重合される耐炎化促進成分の具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸、アクリルアミドおよびメタクリルアミドがある。また、単繊維同士の接着を防止する目的からは、耐炎化促進効果の高いモノマーを少量用いることが好ましく、アミド基よりもカルボキシル基を有する耐炎化促進成分を用いることが好ましい。   The acrylonitrile-based copolymer in the present invention may be copolymerized with a copolymer component other than styrene for the purpose of improving yarn production and promoting flame resistance, and is a flame resistance promoting component copolymerized for the purpose of promoting flame resistance. Specific examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, acrylamide and methacrylamide. Further, for the purpose of preventing adhesion between single fibers, it is preferable to use a small amount of a monomer having a high flame resistance promoting effect, and it is preferable to use a flame resistance promoting component having a carboxyl group rather than an amide group.

また、耐炎化促進成分に含有されるアミド基とカルボキシル基の数は、1つよりも2つ以上であることがより好ましく、その観点からは、共重合成分である耐炎化促進成分としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸およびメサコン酸が好ましく、イタコン酸、マレイン酸およびメサコン酸がより好ましく、中でも、イタコン酸が最も好ましい。   Further, the number of amide groups and carboxyl groups contained in the flameproofing promoting component is more preferably two or more than one, and from that viewpoint, as the flameproofing promoting component that is a copolymer component, Acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid and mesaconic acid are preferred, itaconic acid, maleic acid and mesaconic acid are more preferred, and itaconic acid is most preferred.

本発明におけるアクリロニトリル系共重合体は、溶液重合、懸濁重合、および、乳化重合など公知の重合方式により得ることができるが、製糸延伸時の安定性を高める目的からは、溶液重合を用いることが好ましい。溶液重合は、重合開始から終了まで、また、紡糸原液となり紡糸に供する段階まで、アクリロニトリル系共重合体を単離する必要がなく、アクリロニトリル系共重合体溶液の状態における溶媒中のアクリロニトリル系共重合体の分子鎖の絡み合い状態が均一となることから、他の重合方法に比べて好ましい。   The acrylonitrile-based copolymer in the present invention can be obtained by a known polymerization method such as solution polymerization, suspension polymerization, and emulsion polymerization, but for the purpose of improving the stability during yarn drawing and stretching, solution polymerization is used. Is preferred. In solution polymerization, it is not necessary to isolate the acrylonitrile copolymer from the start to the end of polymerization, or until the spinning solution becomes a spinning solution, and the acrylonitrile copolymer in the solvent in the state of the acrylonitrile copolymer solution. Since the entangled state of the molecular chain of the coalescence becomes uniform, it is preferable compared to other polymerization methods.

本発明におけるアクリロニトリル系共重合体は、ラジカル重合、アニオン重合など公知の重合方法により得ることができるが、工業的な観点からはラジカル重合を用いることが好ましい。   The acrylonitrile-based copolymer in the present invention can be obtained by a known polymerization method such as radical polymerization or anionic polymerization, but radical polymerization is preferably used from an industrial viewpoint.

本発明のアクリロニトリル系共重合体溶液に用いる溶媒は、アクリロニトリル系共重合体を溶解できるものであれば特に限定されないが、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどが好ましく例示できる。中でも、溶解性の観点から、ジメチルスルホキシドがより好ましく用いられる。溶液重合を用いる場合、重合に用いられる溶媒と紡糸に用いられる溶媒とを同じものにしておくと、得られたアクリロニトリル系共重合体を分離し再溶解する工程が不要となり好ましい。   The solvent used in the acrylonitrile-based copolymer solution of the present invention is not particularly limited as long as it can dissolve the acrylonitrile-based copolymer, but dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and the like can be preferably exemplified. Among these, dimethyl sulfoxide is more preferably used from the viewpoint of solubility. When using solution polymerization, it is preferable that the solvent used for polymerization and the solvent used for spinning be the same, because the step of separating and re-dissolving the obtained acrylonitrile copolymer is unnecessary.

次に、本発明のポリアクリロニトリル系炭素繊維前駆体繊維の製造方法について説明する。   Next, the manufacturing method of the polyacrylonitrile-type carbon fiber precursor fiber of this invention is demonstrated.

本発明において、ポリアクリロニトリル系炭素繊維前駆体繊維は、前記した本発明のアクリロニトリル系共重合体溶液を湿式紡糸法または乾湿式紡糸法により、紡糸口金から吐出させ紡糸する紡糸工程を経た後、該紡糸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程を実施し、該乾燥熱処理工程で得られた繊維を延伸する延伸工程を経ることにより製造することができる。   In the present invention, the polyacrylonitrile-based carbon fiber precursor fiber is subjected to a spinning process in which the acrylonitrile-based copolymer solution of the present invention is spun by spinning from a spinneret by a wet spinning method or a dry-wet spinning method. The fiber obtained in the spinning process can be manufactured by performing a dry heat treatment process in which the fiber obtained in the dry heat treatment process is subjected to a dry heat treatment process and then drawing the fiber obtained in the dry heat treatment process.

紡糸原液は、湿式紡糸法または乾湿式紡糸法により紡糸口金から吐出され、凝固浴に導入されて凝固し、ポリアクリロニトリル系炭素繊維前駆体繊維を形成する。得られるポリアクリロニトリル系炭素繊維前駆体繊維の緻密性を高め、また、得られる炭素繊維の力学物性を高める目的からは、凝固浴に紡糸原液を直接吐出する湿式紡糸法よりも、紡糸原液を、一旦、空気中に吐出した後、凝固浴中に導入する乾湿式紡糸法を用いることが、より好ましい。   The spinning solution is discharged from the spinneret by a wet spinning method or a dry-wet spinning method, introduced into a coagulation bath, and solidified to form a polyacrylonitrile-based carbon fiber precursor fiber. For the purpose of improving the denseness of the resulting polyacrylonitrile-based carbon fiber precursor fiber and enhancing the mechanical properties of the resulting carbon fiber, the spinning dope is more effective than the wet spinning method in which the spinning dope is directly discharged into a coagulation bath. It is more preferable to use a dry-wet spinning method that is once discharged into the air and then introduced into the coagulation bath.

本発明において、紡糸工程において用いられる凝固浴には、紡糸原液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、アクリロニトリル系共重合体を溶解せず、かつ、紡糸原液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。   In the present invention, the coagulation bath used in the spinning step preferably contains a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the spinning dope and a so-called coagulation promoting component. As the coagulation accelerating component, a component that does not dissolve the acrylonitrile copolymer and is compatible with the solvent used for the spinning dope can be used. Specifically, it is preferable to use water as a coagulation promoting component.

紡糸口金から紡糸された多数本のフィラメントからなる繊維束を凝固浴中に導入して各フィラメントを凝固せしめた後、浴中延伸工程、水洗工程、油剤付与工程、乾燥熱処理工程、および、延伸工程を経て、炭素繊維製造用ポリアクリロニトリル系前駆体繊維が得られる。   After a fiber bundle consisting of a large number of filaments spun from the spinneret is introduced into a coagulation bath to coagulate each filament, an in-bath drawing process, a water washing process, an oil agent application process, a drying heat treatment process, and a drawing process Through this, a polyacrylonitrile-based precursor fiber for carbon fiber production is obtained.

ただし、凝固浴から導出された繊維束を、水洗工程を省略して、直接浴中延伸工程に導入しても良いし、溶媒を水洗工程において除去した後に浴中延伸工程に導入しても良い。かかる浴中延伸は、通常、30〜98℃の温度に維持された単一または複数の延伸浴中で行うことが好ましい。延伸倍率は、2〜6倍であることが好ましい。   However, the fiber bundle derived from the coagulation bath may be directly introduced into the in-bath drawing step by omitting the washing step, or may be introduced into the in-bath drawing step after removing the solvent in the washing step. . Such stretching in the bath is usually preferably performed in one or more stretching baths maintained at a temperature of 30 to 98 ° C. The draw ratio is preferably 2 to 6 times.

浴中延伸工程の後、単繊維同士の接着を防止する目的から、繊維束にシリコーン等からなる油剤を付与することが好ましい。かかるシリコーン油剤は、変性されたシリコーンを用いることが好ましい。シリコーン油剤として、耐熱性の高いアミノ変性シリコーンを含有する油剤を用いることができる。   For the purpose of preventing adhesion between single fibers after the stretching step in the bath, it is preferable to apply an oil agent made of silicone or the like to the fiber bundle. As such a silicone oil agent, it is preferable to use a modified silicone. As the silicone oil agent, an oil agent containing amino-modified silicone having high heat resistance can be used.

乾燥熱処理の温度は、100〜200℃であることが好ましく、乾燥熱処理後の延伸は、加圧スチーム中において、繊維束を、2〜6倍延伸することにより行われる。 本発明において、ポリアクリロニトリル系炭素繊維前駆体繊維の単繊維繊度は、0.5から1.5dtexであることが好ましい。単繊維繊度が0.5dtexを下回ると、製糸工程における可紡性低下により操業性が低下したり、吐出孔数当たりの生産性が低下したりして、コストアップが顕著となることがある。一方、単繊維繊度が1.5dtexを超えると、得られる耐炎化繊維束を形成している各フィラメントおける内外構造差が顕著となり、得られる炭素繊維の引張強度とストランド引張弾性率が低下することがある。   The temperature of the drying heat treatment is preferably 100 to 200 ° C., and the stretching after the drying heat treatment is performed by stretching the fiber bundle 2 to 6 times in a pressurized steam. In the present invention, the single fiber fineness of the polyacrylonitrile-based carbon fiber precursor fiber is preferably 0.5 to 1.5 dtex. If the single fiber fineness is less than 0.5 dtex, the operability may be reduced due to a decrease in spinnability in the spinning process, or the productivity per number of discharge holes may be reduced, leading to a significant increase in cost. On the other hand, when the single fiber fineness exceeds 1.5 dtex, the difference between the inner and outer structures of each filament forming the obtained flame-resistant fiber bundle becomes remarkable, and the tensile strength and strand tensile elastic modulus of the obtained carbon fiber decrease. There is.

ポリアクリロニトリル系炭素繊維前駆体繊維束を形成するフィラメントの本数は、好ましくは1,000〜3,000,000、より好ましくは6,000〜3,000,000、更に好ましくは12,000〜2,500,000、最も好ましくは24,000〜2,000,000である。フィラメントの本数は、生産性の向上の目的からは、1,000以上で多い方が好ましいが、3,000,000を超えるとポリアクリロニトリル系炭素繊維前駆体繊維束の内部まで均一に耐炎化処理できないことがある。   The number of filaments forming the polyacrylonitrile-based carbon fiber precursor fiber bundle is preferably 1,000 to 3,000,000, more preferably 6,000 to 3,000,000, and still more preferably 12,000 to 2. 500,000, most preferably 24,000 to 2,000,000. The number of filaments is preferably 1,000 or more for the purpose of improving productivity. However, when the number exceeds 3,000,000, the inside of the polyacrylonitrile-based carbon fiber precursor fiber bundle is uniformly flameproofed. There are things that cannot be done.

次に、本発明の炭素繊維の製造方法について説明する。本発明では、ポリアクリロニトリル系炭素繊維前駆体繊維を200〜300℃の空気中において耐炎化する耐炎化工程を経て、耐炎化工程で得られた繊維を300〜900℃の温度の不活性雰囲気中において予備炭化する予備炭化工程を実施し、予備炭化工程で得られた繊維を900〜3,000℃の不活性雰囲気中において炭化する炭化工程を経ることにより製造することができる。
予備炭化工程、および、炭化工程は、不活性雰囲気中で行なわれるが、用いられる不活性ガスとしては、例えば、窒素、アルゴン、および、キセノンなどが用いられる。経済的な観点からは、窒素が好ましく用いられる。
Next, the manufacturing method of the carbon fiber of this invention is demonstrated. In the present invention, the polyacrylonitrile-based carbon fiber precursor fiber is subjected to a flameproofing process for flameproofing in air at 200 to 300 ° C, and the fiber obtained in the flameproofing process is subjected to an inert atmosphere at a temperature of 300 to 900 ° C. It can manufacture by performing the pre-carbonization process which pre-carbonizes in, and passing through the carbonization process which carbonizes the fiber obtained at the pre-carbonization process in 900-3000 degreeC inert atmosphere.
The preliminary carbonization step and the carbonization step are performed in an inert atmosphere, and examples of the inert gas used include nitrogen, argon, and xenon. Nitrogen is preferably used from an economical viewpoint.

得られた炭素繊維は、その表面を改質するために、電解処理されても良い。電解処理に用いられる電解液としては、硫酸、硝酸および塩酸等の酸性溶液や、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド、炭酸アンモニウムおよび重炭酸アンモニウムのようなアルカリまたはそれらの塩の水溶液を使用することができる。電解処理に要する電気量は、適用する炭素繊維の炭化度に応じて、適宜選択することができる。   The obtained carbon fiber may be subjected to electrolytic treatment in order to modify its surface. Examples of the electrolytic solution used for the electrolytic treatment include acidic solutions such as sulfuric acid, nitric acid and hydrochloric acid, and aqueous solutions of alkalis or salts thereof such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, ammonium carbonate and ammonium bicarbonate. Can be used. The amount of electricity required for the electrolytic treatment can be appropriately selected according to the carbonization degree of the applied carbon fiber.

かかる電解処理により、得られる複合材料において、炭素繊維とマトリックス樹脂との接着性が適正化でき、接着が強すぎることによる複合材料のブリトルな破壊や、繊維方向の引張強度が低下する問題や、繊維方向における引張強度は高いものの、樹脂との接着性に劣り、非繊維方向における強度特性が発現しないと云うような問題が解消され、得られる複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。   By such electrolytic treatment, in the obtained composite material, the adhesion between the carbon fiber and the matrix resin can be optimized, the brittle breakage of the composite material due to too strong adhesion, the problem that the tensile strength in the fiber direction decreases, Although the tensile strength in the fiber direction is high, the problem that the adhesive property with the resin is inferior and the strength property in the non-fiber direction is not solved is solved, and in the resulting composite material, both the fiber direction and the non-fiber direction are solved. A balanced strength characteristic is developed.

かかる電解処理の後、得られた炭素繊維に集束性を付与するため、サイジング処理をすることができる。サイジング剤としては、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。   After the electrolytic treatment, a sizing treatment can be performed in order to give the obtained carbon fiber a focusing property. As the sizing agent, a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of the matrix resin used in the composite material.

<炭化収率の測定法>
炭化収率は、炭素繊維前駆体繊維束の総繊度と炭素繊維束の総繊度から、焼成工程の延伸比を用いて、下式(1)より求めた。
炭化収率(%)=(炭素繊維束の総繊度)/(炭素繊維前駆体繊維束の総繊度×耐炎化工程の延伸比×予備炭化工程の延伸比×炭化工程の延伸比)×100・・・式(1)
<Measurement method of carbonization yield>
The carbonization yield was obtained from the following formula (1) using the stretch ratio of the firing step from the total fineness of the carbon fiber precursor fiber bundle and the total fineness of the carbon fiber bundle.
Carbonization yield (%) = (total fineness of carbon fiber bundle) / (total fineness of carbon fiber precursor fiber bundle × stretch ratio of flameproofing process × stretch ratio of preliminary carbonization process × stretch ratio of carbonization process) × 100 · ..Formula (1)

(参考例)
アクリロニトリル99.5mol%に耐炎化促進成分としてイタコン酸0.5mol%を加え、ジメチルスルホキシドを溶媒とし、窒素雰囲気下で溶液重合法により重合をおこない、アクリロニトリル系共重合体溶液を得た。
(Reference example)
Itaconic acid 0.5 mol% was added to 99.5 mol% of acrylonitrile as a flameproofing promoting component, and polymerization was carried out by a solution polymerization method in a nitrogen atmosphere using dimethylsulfoxide as a solvent to obtain an acrylonitrile copolymer solution.

該紡糸原液を、孔数3,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条とした。この凝固糸条を水洗した後、温水槽を用い3倍の延伸を行い、水浴延伸糸を得た。さらにアミノ変性シリコーン系シリコーン油剤を付与した後、水浴延伸糸に、160℃の加熱ローラーを用いて、乾燥緻密化処理を行った。該乾燥緻密化糸を加圧スチーム中で5倍延伸することにより、製糸全延伸倍率を13倍とし、単繊維繊度1.1dtex、単繊維本数3,000本のアクリロニトリル系共重合体繊維として得た。   The spinning dope was discharged into the air once using a spinneret with a hole number of 3,000, passed through a space of about 4 mm, and then introduced into a coagulation bath consisting of an aqueous solution of 35% dimethyl sulfoxide controlled at 3 ° C. Coagulated yarn was obtained by the dry and wet spinning method. After the coagulated yarn was washed with water, it was stretched 3 times using a warm water tank to obtain a water bath stretched yarn. Further, after applying an amino-modified silicone-based silicone oil, a dry densification treatment was performed on the water bath drawn yarn using a 160 ° C. heating roller. The dried densified yarn is stretched 5 times in pressurized steam to obtain a yarn drawing total draw ratio of 13 times, a single fiber fineness of 1.1 dtex, and a single fiber of 3,000 acrylonitrile copolymer fibers. It was.

次に、得られたアクリル系繊維を220〜270℃の温度勾配をつけた空気中において耐炎化処理し、耐炎化繊維束を得た。得られた耐炎化繊維束を、温度300〜900℃の窒素雰囲気中において、予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1500℃で炭素化処理を行った。焼成における全延伸倍率は0.95であった。引き続いて希硫酸水溶液を電解液として電解表面処理し、乾燥した後、サイジング剤を付与し、炭素繊維を得た。   Next, the obtained acrylic fiber was flameproofed in air with a temperature gradient of 220 to 270 ° C. to obtain a flameproof fiber bundle. The obtained flame-resistant fiber bundle was subjected to a pre-carbonization treatment in a nitrogen atmosphere at a temperature of 300 to 900 ° C. to obtain a pre-carbonized fiber bundle. The obtained pre-carbonized fiber bundle was carbonized at a maximum temperature of 1500 ° C. in a nitrogen atmosphere. The total draw ratio during firing was 0.95. Subsequently, an electrolytic surface treatment was performed using a dilute sulfuric acid aqueous solution as an electrolytic solution, and after drying, a sizing agent was applied to obtain carbon fibers.

得られた炭素繊維の炭化収率を測定したところ49.8%であった。結果を表1に示す。   The carbonization yield of the obtained carbon fiber was measured and found to be 49.8%. The results are shown in Table 1.

Figure 2015183166
Figure 2015183166

(実施例1)
アクリロニトリル系共重合体原料としてアクリロニトリル(AN)98.5mol%とスチレン(ST)1.0mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ54.6%であった。結果を表1に示す。
Example 1
Carbon fibers were produced in the same manner as in the Reference Example except that 98.5 mol% of acrylonitrile (AN) and 1.0 mol% of styrene (ST) were used as the acrylonitrile-based copolymer raw material. The carbonization yield of the obtained carbon fiber was measured and found to be 54.6%. The results are shown in Table 1.

(実施例2)
アクリロニトリル系共重合体原料としてAN98.8mol%とST0.7mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ53.8%であった。結果を表1に示す。
(Example 2)
Carbon fibers were produced in the same manner as in the Reference Example, except that AN 98.8 mol% and ST 0.7 mol% were used as the acrylonitrile copolymer raw material. The carbonization yield of the obtained carbon fiber was measured and found to be 53.8%. The results are shown in Table 1.

(実施例3)
アクリロニトリル系共重合体原料としてAN98.0mol%とST1.5mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ53.1%であった。結果を表1に示す。
(Example 3)
Carbon fibers were produced in the same manner as in the Reference Example except that AN 98.0 mol% and ST 1.5 mol% were used as acrylonitrile-based copolymer raw materials. The carbonization yield of the obtained carbon fiber was measured and found to be 53.1%. The results are shown in Table 1.

(比較例1)
アクリロニトリル系共重合体原料としてAN97.8mol%とST1.7mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ49.6%となり炭化収率は向上しなかった。結果を表1に示す。
(Comparative Example 1)
A carbon fiber was produced in the same manner as in the Reference Example, except that AN 97.8 mol% and ST 1.7 mol% were used as the acrylonitrile copolymer raw material. When the carbonization yield of the obtained carbon fiber was measured, it was 49.6%, and the carbonization yield was not improved. The results are shown in Table 1.

(比較例2)
アクリロニトリル系共重合体原料としてAN99.2mol%とST0.3mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ49.6%となり炭化収率は向上しなかった。結果を表1に示す。
(Comparative Example 2)
Carbon fibers were produced in the same manner as in the Reference Example, except that AN 99.2 mol% and ST 0.3 mol% were used as the acrylonitrile copolymer raw material. When the carbonization yield of the obtained carbon fiber was measured, it was 49.6%, and the carbonization yield was not improved. The results are shown in Table 1.

(比較例3)
アクリロニトリル系共重合体原料としてAN97.5mol%とST2.0mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ47.8%となり炭化収率が低下した。結果を表1に示す。
(Comparative Example 3)
Carbon fibers were produced in the same manner as in the Reference Example, except that AN 97.5 mol% and ST 2.0 mol% were used as the acrylonitrile copolymer raw material. When the carbonization yield of the obtained carbon fiber was measured, it was 47.8%, and the carbonization yield was lowered. The results are shown in Table 1.

(比較例4)
アクリロニトリル系共重合体原料としてAN95.5mol%とST4.0mol%を用いた以外は、参考例と同様に炭素繊維の製造を行った。得られた炭素繊維の炭化収率を測定したところ42.7%となり炭化収率は大幅に低下した。結果を表1に示す。
(Comparative Example 4)
Carbon fibers were produced in the same manner as in the Reference Example except that AN 95.5 mol% and ST 4.0 mol% were used as the acrylonitrile copolymer raw material. When the carbonization yield of the obtained carbon fiber was measured, it was 42.7%, and the carbonization yield was greatly reduced. The results are shown in Table 1.

Claims (3)

アクリロニトリルの共重合比が95〜99.5mol%、スチレンの共重合比が0.5〜1.5mol%であるアクリロニトリル系共重合体。 An acrylonitrile copolymer having a copolymerization ratio of acrylonitrile of 95 to 99.5 mol% and a copolymerization ratio of styrene of 0.5 to 1.5 mol%. 請求項1に記載のアクリロニトリル系共重合体を湿式紡糸法または乾湿式紡糸法により紡糸する紡糸工程と、該紡糸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程と、該乾燥熱処理工程で得られた繊維を延伸する延伸工程とを備えたポリアクリロニトリル系炭素繊維前駆体繊維の製造方法。 A spinning step of spinning the acrylonitrile-based copolymer according to claim 1 by a wet spinning method or a dry-wet spinning method, a drying heat treatment step of drying and heat-treating fibers obtained in the spinning step, and a drying heat treatment step. A method for producing a polyacrylonitrile-based carbon fiber precursor fiber comprising a drawing step of drawing the obtained fiber. 請求項2に記載のポリアクリロニトリル系炭素繊維前駆体繊維を200〜300℃の空気中において耐炎化する耐炎化工程と、該耐炎化工程で得られた繊維を、300〜900℃の不活性雰囲気中において予備炭化する予備炭化工程と、該予備炭化工程で得られた繊維を、900〜3,000℃の不活性雰囲気中において炭化する炭化工程とを備えた炭素繊維の製造方法。
A flameproofing step for flameproofing the polyacrylonitrile-based carbon fiber precursor fiber according to claim 2 in air at 200 to 300 ° C, and an inert atmosphere at 300 to 900 ° C for the fiber obtained in the flameproofing step The carbon fiber manufacturing method provided with the pre-carbonization process which pre-carbonizes inside, and the carbonization process which carbonizes the fiber obtained by this pre-carbonization process in 900-3,000 degreeC inert atmosphere.
JP2014063396A 2014-03-26 2014-03-26 Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber Pending JP2015183166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063396A JP2015183166A (en) 2014-03-26 2014-03-26 Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063396A JP2015183166A (en) 2014-03-26 2014-03-26 Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2015183166A true JP2015183166A (en) 2015-10-22

Family

ID=54350076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063396A Pending JP2015183166A (en) 2014-03-26 2014-03-26 Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2015183166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938487B1 (en) * 2017-07-31 2019-01-14 서울대학교산학협력단 Electrical parameters-assisted wet-spinning method
US10470319B2 (en) 2016-06-24 2019-11-05 Samsung Display Co., Ltd. Window and a display apparatus including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10470319B2 (en) 2016-06-24 2019-11-05 Samsung Display Co., Ltd. Window and a display apparatus including the same
KR101938487B1 (en) * 2017-07-31 2019-01-14 서울대학교산학협력단 Electrical parameters-assisted wet-spinning method

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5722991B2 (en) Carbon fiber manufacturing method and carbon fiber precursor fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
JP2016113726A (en) Polyacrylonitrile-based carbon fiber precursor fiber and carbon fiber production method
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2015183165A (en) Acrylonitrile-based copolymer, polyacrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2013023801A (en) Method for producing carbon fiber bundle
JP2021139062A (en) Production method of carbon fiber bundle
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JP4919410B2 (en) Carbon fiber manufacturing method
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
KR20120007183A (en) Manufacturing method of carbon fiber
JP6191182B2 (en) Carbon fiber bundle and manufacturing method thereof
JP2007332498A (en) Method for producing carbon fiber bundle
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
JP2007182645A (en) Method for producing acrylic fiber
JP2014167038A (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber