JP2018084002A - Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber - Google Patents

Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber Download PDF

Info

Publication number
JP2018084002A
JP2018084002A JP2016227607A JP2016227607A JP2018084002A JP 2018084002 A JP2018084002 A JP 2018084002A JP 2016227607 A JP2016227607 A JP 2016227607A JP 2016227607 A JP2016227607 A JP 2016227607A JP 2018084002 A JP2018084002 A JP 2018084002A
Authority
JP
Japan
Prior art keywords
polyacrylonitrile
producing
fiber
acrylonitrile
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227607A
Other languages
Japanese (ja)
Inventor
大志 岸本
Hiroshi Kishimoto
大志 岸本
一貴 宝得
Kazutaka Hoe
一貴 宝得
弘之 小西
Hiroyuki Konishi
弘之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016227607A priority Critical patent/JP2018084002A/en
Publication of JP2018084002A publication Critical patent/JP2018084002A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polyacrylonitrile precursor fiber that supplies an acrylonitrile copolymer with its gels inhibited from occurring or increasing and thereby is superior in process stability, quality stability, operability and productivity, and also provide a method for producing a carbon fiber.SOLUTION: A method for producing a polyacrylonitrile precursor fiber is provided which comprises spinning a spinning raw material liquid comprising an acrylonitrile copolymer obtained by copolymerizing acrylonitrile with a carboxyl group-having vinyl monomer. In the method, the number of gels in the spinning raw material liquid measured by a method defined in the description is regulated to be 10/g or less.SELECTED DRAWING: None

Description

本発明は、高品位なポリアクリロニトリル系前駆体繊維の製造方法および炭素繊維の製造方法に関する。さらに詳細には、ポリアクリロニトリル高次構造体であるゲルなどの異物の発生や増加を抑制した紡糸原液を得た後、工程安定性、品位安定性、操業性、生産性の良いポリアクリロニトリル系前駆体繊維の製造方法ならびに炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing a high-quality polyacrylonitrile-based precursor fiber and a method for producing a carbon fiber. More specifically, after obtaining a spinning dope that suppresses the generation and increase of foreign substances such as gel, which is a polyacrylonitrile higher-order structure, a polyacrylonitrile-based precursor with good process stability, quality stability, operability, and productivity is obtained. The present invention relates to a method for producing body fibers and a method for producing carbon fibers.

炭素繊維は、他の繊維に比べて高い比強度および比弾性率を有する。このため、複合材料用補強繊維として、従来からのスポーツ用途や航空・宇宙用途に加え、自動車や土木・建築、圧力容器および風車ブレードなどの一般産業用途にも幅広く展開されつつあり、さらなる品質および品位安定化の要請が強い。   Carbon fiber has high specific strength and specific elastic modulus compared to other fibers. For this reason, as a reinforcing fiber for composite materials, in addition to conventional sports and aerospace applications, it is also widely deployed in general industrial applications such as automobiles, civil engineering / architecture, pressure vessels and windmill blades. There is a strong demand for quality stabilization.

炭素繊維の中で、最も広く利用されているポリアクリロニトリル系炭素繊維は、その前駆体となるアクリロニトリル系共重合体を湿式紡糸、乾式紡糸または乾湿式紡糸して炭素繊維前駆体繊維を得た後、それを200〜400℃の温度の酸化性雰囲気下で加熱して耐炎化繊維へ転換し、少なくとも1000℃の温度の不活性雰囲気下で加熱して炭素化することによって工業的に製造されている。   Among the carbon fibers, the most widely used polyacrylonitrile-based carbon fiber is obtained by wet-spinning, dry-spinning, or dry-wet spinning of the acrylonitrile-based copolymer as a precursor to obtain a carbon fiber precursor fiber. It is industrially produced by heating it in an oxidizing atmosphere at a temperature of 200-400 ° C. to convert it to flame-resistant fiber and heating it in an inert atmosphere at a temperature of at least 1000 ° C. for carbonization. Yes.

ポリアクリロニトリル系炭素繊維の品位および品質向上は、炭素繊維前駆体繊維の紡糸、耐炎化あるいは炭素化のいずれの観点からも行われており、脆性材料であることからわずかな表面欠陥、内在欠陥により大きな影響を受けるため、欠陥の生成に関しては繊細な注意が払われてきた。   The quality and quality of polyacrylonitrile-based carbon fibers are improved from the viewpoints of spinning, flame resistance, and carbonization of carbon fiber precursor fibers, and because they are brittle materials, there are few surface defects and inherent defects. Due to the great influence, delicate attention has been paid to the generation of defects.

しかしながら、一般にアクリロニトリル系共重合体の紡糸原液自体の劣化によってポリアクリロニトリル高次構造体であるゲルなどの異物が生成し、炭素繊維用前駆体繊維の製造工程において、紡糸ノズル孔より吐出不良を発生させ、吐出直後の糸切れにつながることが知られている。   However, in general, deterioration of the acrylonitrile-based copolymer spinning solution itself generates foreign substances such as gel, which is a polyacrylonitrile higher-order structure, and in the manufacturing process of precursor fibers for carbon fibers, discharge failure occurs from the spinning nozzle holes. It is known that the thread breaks immediately after discharge.

アクリロニトリル系共重合体のゲル生成や増加を抑制する技術としては、特許文献1に開示されるようにラジカル重合禁止剤を添加する方法や、特許文献2に開示されるようにエチレン性二重結合を含む化合物を一定量含有させる方法が提案されている。これらの方法では確かにゲル生成や増加は抑制できるものの、製造コストアップにつながり、かつ、ラジカル重合禁止剤やエチレン性二重結合を含む化合物が紡糸以降の製造工程において異物として作用し、操業性や力学的特性を低下させることがある。また、特許文献3には紡糸原液の保持温度および通過時間を制御してゲルの生成や増加を抑制し、炭素繊維用前駆体繊維を安定して製造する方法が提案されているが、特許文献4に開示されるように未反応アクリロニトリル残存比率もゲル生成や増加の要因の一つとなっていることが知られており、ゲル生成や増加の抑制方法として十分とは言えない。   As a technique for suppressing gel formation and increase of acrylonitrile copolymer, there are a method of adding a radical polymerization inhibitor as disclosed in Patent Document 1, and an ethylenic double bond as disclosed in Patent Document 2. There has been proposed a method of containing a certain amount of a compound containing. Although these methods can certainly suppress gel formation and increase, they lead to increased production costs, and radical polymerization inhibitors and compounds containing ethylenic double bonds act as foreign substances in the manufacturing process after spinning, thus improving operability. And mechanical properties may be reduced. Further, Patent Document 3 proposes a method for stably producing precursor fibers for carbon fibers by controlling the holding temperature and passage time of the spinning dope to suppress the formation and increase of gels. 4, it is known that the unreacted acrylonitrile residual ratio is one of the factors of gel formation and increase, and is not sufficient as a method for suppressing gel formation and increase.

アクリロニトリル系共重合体のゲルを管理する技術は特許文献5でも開示されているが、特許文献5に開示されたゲルの数の測定方法は、光学顕微鏡を用いた可視光領域での測定であり、製糸操業性や品位安定化に影響を及ぼすゲルの数を正確に捉えることができないことから、この方法で紡糸原液中のゲルの数を管理するだけでは十分とは言えない。   The technique for managing the gel of acrylonitrile copolymer is also disclosed in Patent Document 5, but the method for measuring the number of gels disclosed in Patent Document 5 is measurement in the visible light region using an optical microscope. Since it is impossible to accurately grasp the number of gels that affect the spinning operability and the quality stabilization, it is not sufficient to manage the number of gels in the spinning dope by this method.

これらのことから、紡糸原液中のゲル生成や増加を抑制し、品位および品質を向上させたポリアクリロニトリル系前駆体繊維の製造方法および炭素繊維の製造方法が望まれている。   For these reasons, there is a demand for a method for producing polyacrylonitrile-based precursor fibers and a method for producing carbon fibers that suppress the gel formation and increase in the spinning dope and improve the quality and quality.

特開平1−168750号公報JP-A-1-168750 特開2002−249924号公報JP 2002-249924 A 特開2015−71844号公報Japanese Patent Laying-Open No. 2015-71844 特開2004−91943号公報JP 2004-91943 A 韓国公開特許第10−2011−0078249号公報Korean Published Patent No. 10-2011-0078249

そこで、かかる従来技術の背景に鑑み、ゲルの生成や増加を抑制したアクリロニトリル系共重合体を含む紡糸原液を供給し、工程安定性、品位安定性、操業性、生産性の良いポリアクリロニトリル系前駆体繊維の製造方法および炭素繊維の製造方法を提供することを課題とする。   Accordingly, in view of the background of such conventional technology, a spinning stock solution containing an acrylonitrile-based copolymer that suppresses the formation and increase of gel is supplied, and a polyacrylonitrile-based precursor with good process stability, quality stability, operational efficiency, and productivity is provided. It is an object of the present invention to provide a body fiber manufacturing method and a carbon fiber manufacturing method.

かかる課題を解決するための本発明は、以下の構成を有する。すなわち、本発明のポリアクリロニトリル系前駆体繊維の製造方法は、アクリロニトリルとカルボキシル基を有するビニル系モノマーを共重合して得たアクリロニトリル系共重合体を含む紡糸原液を紡糸してポリアクリロニトリル系前駆体繊維を得るポリアクリロニトリル系前駆体繊維の製造方法であって、明細書記載の方法で測定した紡糸原液中のゲルの数を10個/g以下で管理することを特徴とする。   The present invention for solving this problem has the following configuration. That is, the method for producing a polyacrylonitrile-based precursor fiber according to the present invention comprises spinning a spinning stock solution containing an acrylonitrile-based copolymer obtained by copolymerizing acrylonitrile and a vinyl-based monomer having a carboxyl group, into a polyacrylonitrile-based precursor. A method for producing a polyacrylonitrile-based precursor fiber for obtaining a fiber, characterized in that the number of gels in a spinning dope measured by the method described in the specification is controlled at 10 / g or less.

なお、本発明において紡糸原液中のゲルの数は、以下の測定方法により求められるものとする。   In the present invention, the number of gels in the spinning dope is determined by the following measuring method.

<紡糸原液中のゲルの数の測定方法>
紡糸原液50gを紡糸原液に用いた溶媒にて20倍に希釈した後、PTFEメンブレンフィルターJHWP(孔径0.45μm)を通過させ、メンブレンフィルター表面全体を観察し、輝点の個数をカウントして紡糸原液1gあたりのゲルの数(単位;個/g)を求めた。光源については、不可視光線を用い、例えば波長365〜405nmの範囲から選択できるが、必ずしもこれに限定されるものではない。
<Method for measuring the number of gels in the spinning dope>
After diluting 50 g of the spinning stock solution 20 times with the solvent used in the spinning stock solution, the solution was passed through a PTFE membrane filter JHWP (pore diameter 0.45 μm), the entire membrane filter surface was observed, the number of bright spots was counted, and spinning was performed. The number of gels per gram of stock solution (unit: pieces / g) was determined. The light source can be selected from, for example, a wavelength range of 365 to 405 nm using invisible light, but is not necessarily limited thereto.

また、本発明の炭素繊維の製造方法は、上記のポリアクリロニトリル系前駆体繊維の製造方法によりポリアクリロニトリル系前駆体繊維を得た後、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を行う炭素繊維の製造方法、である。   In addition, the carbon fiber production method of the present invention is a flame resistance method in which a polyacrylonitrile-based precursor fiber is obtained by the above-described polyacrylonitrile-based precursor fiber production method and then flame-resistant in air at a temperature of 200 to 300 ° C. A pre-carbonization step of pre-carbonizing the fiber obtained in the step and the flameproofing step in an inert atmosphere at a temperature of 300 to 800 ° C., and a fiber obtained in the pre-carbonization step of 1,000 to 3,000 ° C. The carbon fiber manufacturing method which performs the carbonization process which carbonizes in the inert atmosphere of this temperature.

本発明によれば、製糸工程へのゲルの流出を抑制でき、工程安定性、品位安定性、操業性、生産性の良いポリアクリロニトリル系前駆体繊維の製造方法および炭素繊維の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing a polyacrylonitrile-based precursor fiber and a method for producing a carbon fiber, which can suppress the outflow of gel to the yarn production process and have good process stability, quality stability, operability, and productivity. be able to.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[重合方法と重合原料の組成]
本発明のアクリロニトリル系共重合体の製造方法において、塊状重合、溶液重合、懸濁重合などの公知の重合方法から選択することができ、生産性、品質安定性の観点から溶液重合であることが好ましい。溶液重合で行う場合の溶液としては、ジメチルスルホキシド、ジメチルフォルムアムド、ジメチルアセトアミドなどのアクリロニトリル系共重合体が可溶な有機溶媒を用いることができる。
[Polymerization method and composition of polymerization raw materials]
In the method for producing an acrylonitrile-based copolymer of the present invention, it can be selected from known polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization and the like, and it should be solution polymerization from the viewpoint of productivity and quality stability. preferable. As a solution in the case of solution polymerization, an organic solvent in which an acrylonitrile copolymer such as dimethyl sulfoxide, dimethyl formamide, dimethylacetamide or the like is soluble can be used.

本発明においてアクリロニトリル系共重合体とは、アクリロニトリル及びそれと共重合可能なカルボキシル基を有するビニル系モノマーを共重合してなる共重合体である。ここで、アクリロニトリル系共重合体の原料となるモノマーについて、アクリロニトリルを90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上含有し、耐炎化促進成分として、カルボキシル基を有するビニル系モノマーを0.1質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下、より好ましくは0.1質量%以上2質量%以下含有する。   In the present invention, the acrylonitrile copolymer is a copolymer obtained by copolymerizing acrylonitrile and a vinyl monomer having a carboxyl group copolymerizable therewith. Here, the monomer used as the raw material of the acrylonitrile-based copolymer contains acrylonitrile in an amount of 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more, and a vinyl having a carboxyl group as a flameproofing promoting component. The system monomer is contained in an amount of 0.1 to 10% by mass, preferably 0.1 to 5% by mass, more preferably 0.1 to 2% by mass.

アクリロニトリルが90質量%より少ないと、炭素繊維を製造する際に、脱離する成分が多くなるために強度および生産性が低下することがある。カルボキシル基を有するビニル系モノマーの含有量が0.1質量部未満であると耐炎化促進効果が期待できず、また10質量部を超えると耐炎化が促進されすぎるため反応を制御できなくなることがある。   If the amount of acrylonitrile is less than 90% by mass, the strength and productivity may be lowered due to an increase in the amount of components that are eliminated when producing carbon fibers. When the content of the vinyl monomer having a carboxyl group is less than 0.1 parts by mass, the effect of promoting flame resistance cannot be expected, and when it exceeds 10 parts by mass, the reaction cannot be controlled because the flame resistance is excessively promoted. is there.

カルボキシル基を有するビニル系モノマーとしては、例えば、酢酸ビニル等のビニルエステル、アクリル酸、メタクリル酸、イタコン酸やこれらのエステルや塩であるアクリル酸メチル、メタクリル酸ナトリウム等、あるいはアクリルアミド等を使用することができるが、本発明では耐炎化を促進する意味で、アクリル酸、メタクリル酸、イタコン酸からなる群より選ばれる少なくとも一種の酸モノマーを用いることが好ましい。   Examples of the vinyl monomer having a carboxyl group include vinyl esters such as vinyl acetate, acrylic acid, methacrylic acid, itaconic acid, and esters and salts thereof such as methyl acrylate, sodium methacrylate, and acrylamide. However, in the present invention, it is preferable to use at least one acid monomer selected from the group consisting of acrylic acid, methacrylic acid, and itaconic acid in order to promote flame resistance.

本発明における紡糸原液は前記アクリロニトリル系共重合体が15〜25質量%となるように溶媒に溶解されてなる溶液が好ましく、17〜25質量%であることがより好ましい。アクリロニトリル系共重合体含有率が15%未満の場合、紡糸原液を紡糸してポリアクリロニトリル系前駆体繊維を製造する際、形成される凝固構造が疎になり、ポリアクリロニトリル系前駆体繊維および炭素繊維の強度が低下することがある。またアクリロニトリル系共重合体含有率が25質量%を超える場合、紡糸原液の粘度が高くなりすぎ、設備の耐圧性を高める必要があるため経済的に不利である。   The spinning dope in the present invention is preferably a solution in which the acrylonitrile copolymer is dissolved in a solvent such that the acrylonitrile copolymer is 15 to 25% by mass, and more preferably 17 to 25% by mass. When the content of the acrylonitrile copolymer is less than 15%, when the polyacrylonitrile precursor fiber is produced by spinning the spinning dope, the solidified structure formed becomes sparse, and the polyacrylonitrile precursor fiber and the carbon fiber The strength of the may decrease. On the other hand, if the acrylonitrile copolymer content exceeds 25% by mass, the viscosity of the spinning dope becomes too high, and it is necessary to increase the pressure resistance of the equipment, which is economically disadvantageous.

紡糸原液中の未反応アクリロニトリル残存比率を減少させる方法は特に限定されず、公知の技術を用いることができるが、減圧した脱気槽の内壁に薄膜にして供給し、除去する方法が一般的である。また、未反応アクリロニトリル残存比率をより減少させる方法としては、減圧せしめた充填塔上部からアクリロニトリル系共重合体溶液を供給するとともに、充填塔下部からアクリロニトリル系共重合体溶液の溶媒蒸気をアクリロニトリル系共重合体溶液と向流接触させることが挙げられる。本発明において紡糸原液中の未反応アクリロニトリル残存比率を0.001〜3質量%とすることが好ましく、0.001〜1.5質量%に調整することがより好ましい。未反応アクリロニトリル残存比率を0.001質量%未満にしようとすると装置の設備費が高くなり経済的に不利である。一方、未反応アクリロニトリル残存比率が3質量%を超える場合は、紡糸原液の収率が低下するため経済的に不利である。   The method for reducing the unreacted acrylonitrile residual ratio in the spinning dope is not particularly limited, and a known technique can be used. However, a method of supplying and removing a thin film on the inner wall of the degassed tank is common. is there. In order to further reduce the residual ratio of unreacted acrylonitrile, the acrylonitrile copolymer solution is supplied from the upper part of the packed tower that has been decompressed, and the solvent vapor of the acrylonitrile copolymer solution is supplied from the lower part of the packed tower to the acrylonitrile copolymer. For example, a counter current contact with the polymer solution may be mentioned. In the present invention, the unreacted acrylonitrile residual ratio in the spinning dope is preferably 0.001 to 3% by mass, and more preferably 0.001 to 1.5% by mass. If an unreacted acrylonitrile residual ratio is to be made less than 0.001% by mass, the equipment cost of the apparatus becomes high, which is economically disadvantageous. On the other hand, when the unreacted acrylonitrile remaining ratio exceeds 3% by mass, the yield of the spinning dope is lowered, which is economically disadvantageous.

本発明では、アクリロニトリル系共重合体中のカルボキシル基部分をイオン化するために、共重合に用いたカルボキシル基を有するビニル系モノマーのカルボキシル基に対して塩基を0.2モル当量以上添加することが好ましい。すなわち、アクリル酸のように1分子中にカルボキシル基が1つある場合は、アクリル酸1モルに対して0.2モル当量以上、イタコン酸のように1分子中にカルボキシル基が2つある場合はイタコン酸1モルに対して0.4モル当量以上添加することが好ましい。塩基としてはアンモニア、アミン化合物、アンモニウム塩が好ましく例示でき、安価かつ汎用性があることからアンモニアが特に好ましい。これによりアクリロニトリル系共重合体の親水性を向上することができ、湿式紡糸または乾湿式紡糸でポリアクリロニトリル系前駆体繊維を製造する際の凝固浴中での凝固におけるボイド発生を抑制することができる。   In the present invention, in order to ionize the carboxyl group portion in the acrylonitrile-based copolymer, a base may be added in an amount of 0.2 molar equivalent or more with respect to the carboxyl group of the vinyl monomer having a carboxyl group used for the copolymerization. preferable. That is, when there is one carboxyl group in one molecule as in acrylic acid, 0.2 mole equivalent or more per mole of acrylic acid, and when there are two carboxyl groups in one molecule as itaconic acid Is preferably added in an amount of 0.4 mole equivalent or more per mole of itaconic acid. Preferred examples of the base include ammonia, amine compounds, and ammonium salts. Ammonia is particularly preferred because it is inexpensive and versatile. As a result, the hydrophilicity of the acrylonitrile copolymer can be improved, and the generation of voids during coagulation in a coagulation bath when producing polyacrylonitrile precursor fibers by wet spinning or dry wet spinning can be suppressed. .

カルボキシル基を有するビニル系モノマーのカルボキシル基に対して添加する塩基のモル当量が0.2未満の場合、アクリロニトリル系共重合体の親水性の向上効果が発現せず、製糸工程における糸切れによって操業性が悪化する。また、1.2を超える場合、塩基が紡糸原液中で過剰となり製糸工程を汚染し、紡糸原液のゲル化がより促進されやすい状態となるため、0.2〜1.2の範囲であることが好ましく、更に0.3〜0.8の範囲であることが好ましい。   When the molar equivalent of the base added to the carboxyl group of the vinyl monomer having a carboxyl group is less than 0.2, the hydrophilicity-improving effect of the acrylonitrile copolymer does not appear, and the operation is caused by yarn breakage in the yarn making process. Sex worsens. When the ratio exceeds 1.2, the base is excessive in the spinning dope, contaminates the spinning process, and gelation of the spinning dope tends to be promoted more easily. Is preferable, and the range of 0.3 to 0.8 is more preferable.

本発明において、上記の方法で測定した紡糸原液中のゲルの数は10個/g以下で管理することが必須である。さらには4個/g以下となるのが好ましい。   In the present invention, it is essential to manage the number of gels in the spinning dope measured by the above method at 10 pieces / g or less. Further, it is preferably 4 pieces / g or less.

このゲルの数は、紡糸原液を製造する装置を長時間操業すると増加する傾向にあり、ゲルの数が10個/gを超えると製糸工程に流出する頻度が大きくなり、工程安定性、品位安定性、操業性、生産性が低下するが、紡糸原液を製造する装置を部分的にもしくは全体を洗浄することによって、ゲルを洗浄除去することが出来き、紡糸原液のゲルの数を10個/g以下に管理することが可能である。   The number of gels tends to increase when the apparatus for producing the spinning dope is operated for a long time. If the number of gels exceeds 10 / g, the frequency of outflow into the spinning process will increase, and process stability and quality will be stable. Although the performance, operability and productivity are lowered, the gel can be washed and removed by partially or entirely washing the apparatus for producing the spinning dope, and the number of gels in the spinning dope is 10 / g or less can be managed.

なお、本発明における紡糸原液を製造する装置とは、アクリロニトリル系共重合体を得るための原料投入ライン、重合反応させる槽、脱気槽といった原料から紡糸原液を工程および製糸工程の紡糸ノズルから吐出されるまでの工程の装置をいう。   The apparatus for producing the spinning dope in the present invention means that the spinning dope is discharged from the spinning nozzle in the process and the spinning process from the raw material input line for obtaining the acrylonitrile copolymer, the tank for the polymerization reaction, the deaeration tank, and the like. It means the process equipment until it is done.

紡糸原液を製造する装置のゲルを洗浄除去する方法は、物理的に剥ぎ取る方法、アクリロニトリル系共重合体の溶媒として使用するジメチルスルホキシド、ジメチルフォルムアムド、ジメチルアセトアミドなどのアクリロニトリル共重合体が可溶な有機溶媒による洗浄、アクリロニトリル共重合体が可溶な有機溶媒に少量の塩酸や硫酸を混合した酸洗浄、水酸化ナトリウムや水酸化カリウムを混合したアルカリ洗浄、および中性洗浄剤による洗浄などが挙げられるがこれらの方法に限定されるものではない。また単独の方法でもよく、複数を組み合わせてもよい。組み合わせによる洗浄が効果的である。   The method of washing and removing the gel of the apparatus for producing the spinning dope is physically stripped off, and acrylonitrile copolymers such as dimethylsulfoxide, dimethylformamide, and dimethylacetamide used as solvents for acrylonitrile copolymers are soluble. Washing with an organic solvent, acid washing with a small amount of hydrochloric acid or sulfuric acid mixed with an organic solvent in which acrylonitrile copolymer is soluble, alkali washing with sodium hydroxide or potassium hydroxide, washing with a neutral detergent, etc. Although it is mentioned, it is not limited to these methods. Moreover, an independent method may be sufficient and multiple may be combined. Cleaning by combination is effective.

[ポリアクリロニトリル系前駆体繊維の製造方法]
次に、本発明の製造方法で得られたアクリロニトリル系共重合体を用いたポリアクリロニトリル系前駆体繊維の製造方法の好ましい一例について説明する。
[Production method of polyacrylonitrile-based precursor fiber]
Next, a preferred example of a method for producing a polyacrylonitrile precursor fiber using the acrylonitrile copolymer obtained by the production method of the present invention will be described.

本発明の製造方法で得られたアクリロニトリル系共重合体溶液を紡糸し、凝固浴中に導入して凝固させ、凝固糸を形成した後、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を経て、ポリアクリロニトリル系前駆体繊維が得られる。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。凝固後の糸条は、水洗工程を省略して直接浴中延伸を行っても良いし、溶媒を水洗工程により除去した後に浴中延伸を行っても良い。浴中延伸は、通常、30〜98℃の温度に温調された単一または複数の延伸浴中で行うことが好ましい。そのときの延伸倍率は、1〜5倍であることが好ましく、1〜3倍であることがより好ましい。   The acrylonitrile-based copolymer solution obtained by the production method of the present invention is spun, introduced into a coagulation bath and solidified to form a coagulated yarn, followed by a water washing step, a drawing step in the bath, an oil agent application step, and a drying step. Through this, a polyacrylonitrile-based precursor fiber is obtained. Moreover, you may add a dry heat extending process and a steam extending process to said process. The solidified yarn may be directly stretched in the bath without the water washing step, or may be stretched in the bath after removing the solvent by the water washing step. Usually, the stretching in the bath is preferably performed in a single or a plurality of stretching baths adjusted to a temperature of 30 to 98 ° C. The draw ratio at that time is preferably 1 to 5 times, and more preferably 1 to 3 times.

浴中延伸工程の後、単繊維同士の接着を防止する目的から、延伸された繊維糸条にシリコーン等からなる油剤を付与することが好ましい。シリコーン油剤は、耐熱性の高いアミノ変性シリコーン等の変性されたシリコーンを含有するものを用いることが好ましい。   After the stretching step in the bath, it is preferable to apply an oil agent made of silicone or the like to the stretched fiber yarn for the purpose of preventing adhesion between single fibers. As the silicone oil, it is preferable to use a silicone oil containing a modified silicone such as amino-modified silicone having high heat resistance.

乾燥工程としては、例えば、乾燥温度が70〜200℃で乾燥時間が10秒から200秒の乾燥条件が好ましい結果を与える。生産性の向上や結晶配向度の向上として、乾燥工程後に加熱熱媒中で延伸することが好ましい。加熱熱媒としては、例えば、加圧水蒸気あるいは過熱水蒸気が操業安定性やコストの面で好適に用いられ、延伸倍率は通常1.5〜10倍である。   As the drying step, for example, a drying condition in which a drying temperature is 70 to 200 ° C. and a drying time is 10 seconds to 200 seconds gives preferable results. As an improvement in productivity and an improvement in the degree of crystal orientation, it is preferable to stretch in a heating heat medium after the drying step. As the heating heat medium, for example, pressurized steam or superheated steam is suitably used in terms of operational stability and cost, and the draw ratio is usually 1.5 to 10 times.

[炭素繊維の製造方法]
次に、本発明の炭素繊維の製造方法の好ましい一例について説明する。
[Method for producing carbon fiber]
Next, a preferred example of the carbon fiber production method of the present invention will be described.

本発明では、前記のようにして得られたポリアクリロニトリル系前駆体繊維を200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を順次経て炭素繊維を得ることができる。   In the present invention, the polyacrylonitrile-based precursor fiber obtained as described above is flameproofed in the air at a temperature of 200 to 300 ° C., and the fiber obtained in the flameproofing process is 300 to 800. Carbon through a pre-carbonization step of pre-carbonizing in an inert atmosphere at a temperature of ° C and a carbonization step of carbonizing the fiber obtained in the pre-carbonization step in an inert atmosphere at a temperature of 1,000-3,000 ° C. Fiber can be obtained.

本発明により得られる炭素繊維は、プリプレグとしてオートクレーブ成形、織物などのプリフォームとしてレジントランスファーモールディングで成形するなど種々の成形法により、衝撃後圧縮強度など様々な機械特性に優れた炭素繊維強化複合材料を与えることから、航空機用構造材料、自動車用途、船舶用途、スポーツ用途およびその他一般産業用途に衝撃後圧縮強度に優れる炭素繊維強化複合材料として好適に用いることができる。   The carbon fiber obtained by the present invention is a carbon fiber reinforced composite material excellent in various mechanical properties such as post-impact compressive strength by various molding methods such as autoclave molding as a prepreg and molding by resin transfer molding as a preform such as a woven fabric. Therefore, it can be suitably used as a carbon fiber reinforced composite material having excellent post-impact compressive strength for aircraft structural materials, automotive applications, marine applications, sports applications and other general industrial applications.

以下、実施例により本発明をさらに具体的に説明する。本実施例で用いた測定方法を次に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples. The measurement method used in this example will be described next.

<未反応アクリロニトリル残存比率>
紡糸原液1.0gに4.0gのメタノールを加え、紡糸原液中のモノマー成分を抽出した。得られたメタノール溶液からガスクロマトグラフィーによる分析によってアクリロニトリル濃度を測定した。
<Remaining ratio of unreacted acrylonitrile>
4.0 g of methanol was added to 1.0 g of the spinning dope to extract monomer components in the spinning dope. The acrylonitrile concentration was measured from the obtained methanol solution by gas chromatography analysis.

(ガスクロマトグラフィー条件)
装置:GC−2014(島津製作所製)
カラム:キャピラリーカラムDB−1(島津GLC製)
サンプル注入量:0.4μL。
(Gas chromatography conditions)
Device: GC-2014 (manufactured by Shimadzu Corporation)
Column: Capillary column DB-1 (manufactured by Shimadzu GLC)
Sample injection volume: 0.4 μL.

<紡糸原液中のゲルの数の測定方法>
紡糸原液50gを紡糸原液に用いた溶媒にて20倍に希釈した後、PTFEメンブレンフィルターJHWP(孔径0.45μm)を通過させ、メンブレンフィルター表面全体を観察し、輝点の個数をカウントして紡糸原液1gあたりのゲルの数(単位;個/g)を求めた。光源については、不可視光線を用い、波長365〜405nmの範囲から選択した。
<Method for measuring the number of gels in the spinning dope>
After diluting 50 g of the spinning stock solution 20 times with the solvent used in the spinning stock solution, the solution was passed through a PTFE membrane filter JHWP (pore diameter 0.45 μm), the entire membrane filter surface was observed, the number of bright spots was counted, and spinning was performed. The number of gels per gram of stock solution (unit: pieces / g) was determined. The light source was selected from a wavelength range of 365 to 405 nm using invisible light.

<ポリアクリロニトリル系前駆体繊維の品位等級の基準>
検査項目は、ポリアクリロニトリル系前駆体繊維を1m/分の速度で走行させながら1cm以上の毛玉・毛羽の個数を目視で数え、三段階評価した。評価基準は、下記のとおりである。
・等級1:繊維300m中、1個以内
・等級2:繊維300m中、2〜15個
・等級3:繊維300m中、16個以上。
<Standard of grade of polyacrylonitrile precursor fiber grade>
The inspection items were evaluated in three stages by visually counting the number of fluff and fluff of 1 cm or more while running the polyacrylonitrile-based precursor fiber at a speed of 1 m / min. The evaluation criteria are as follows.
-Grade 1: within 1 fiber 300m-Grade 2: 2-15 in 300m fiber-Grade 3: 16 or more in 300m fiber

実施例1
紡糸原液を製造する装置を洗浄し、ゲルを除去した後、アクリロニトリル99.5質量%、イタコン酸0.5質量%をジメチルスルホキシド中でアゾビスイソブチロニトリルを重合開始剤として加えて重合し、アクリロニトリル系共重合体溶液を得た。次に得られたアクリロニトリル系共重合体溶液を減圧せしめた充填塔上部から供給するとともに、充填塔の下部からジメチルスルホキシドの蒸気をアクリロニトリル系共重合体溶液と向流接触させるように供給して未反応アクリロニトリル残存比率を減少させ、未反応アクリロニトリル残存比率を0.001質量%とした。次にアンモニアガスを、共重合に用いたイタコン酸の総カルボキシル基に対して0.5モル当量になるように吹き込み中和して、アクリロニトリル系共重合体濃度20質量%の紡糸原液を得た。この紡糸原液を紡糸ノズルから凝固浴に吐出して凝固糸条を得た。この凝固糸条を水洗した後、温水中で延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与した。この浴中延伸糸を、170℃の温度に加熱したローラーを用いて乾燥熱処理を行い、次に150〜190℃の温度の加圧スチーム中で延伸し、単繊維繊度1.1dtex、フィラメント数12,000のポリアクリロニトリル系前駆体繊維を得た。紡糸ノズルからの吐出不良や吐出直後の糸切れもなく、得られたポリアクリロニトリル系前駆体繊維の品位等級は1であり、紡糸ノズルから採取した紡糸原液中のゲルの数は4個/gであった。連続運転中に定期的に紡糸原液中のゲルの数を測定し、紡糸ノズルから採取した紡糸原液のゲルの数が10個/gまで増加した時点で紡糸原液を製造する装置の一部を洗浄した。洗浄後に紡糸ノズルから採取した紡糸原液中のゲルの数は5個/gであった。
Example 1
The apparatus for producing the spinning dope is washed and the gel is removed. Then, 99.5% by mass of acrylonitrile and 0.5% by mass of itaconic acid are added in dimethyl sulfoxide and polymerized by adding azobisisobutyronitrile as a polymerization initiator. An acrylonitrile copolymer solution was obtained. Next, the obtained acrylonitrile copolymer solution is supplied from the upper part of the packed tower whose pressure has been reduced, and dimethyl sulfoxide vapor is supplied from the lower part of the packed tower so as to be in countercurrent contact with the acrylonitrile copolymer solution. The residual ratio of residual acrylonitrile was decreased, and the residual ratio of unreacted acrylonitrile was 0.001% by mass. Next, ammonia gas was neutralized by blowing at 0.5 molar equivalents relative to the total carboxyl groups of itaconic acid used in the copolymerization to obtain a spinning dope having an acrylonitrile copolymer concentration of 20% by mass. . This spinning dope was discharged from a spinning nozzle into a coagulation bath to obtain a coagulated yarn. The coagulated yarn was washed with water and then stretched in warm water, and further an amino-modified silicone silicone oil was applied. The drawn yarn in the bath is subjected to a drying heat treatment using a roller heated to a temperature of 170 ° C., and then drawn in a pressurized steam at a temperature of 150 to 190 ° C. to obtain a single fiber fineness of 1.1 dtex and a filament count of 12 1,000 polyacrylonitrile-based precursor fibers were obtained. There was no discharge failure from the spinning nozzle or yarn breakage immediately after discharge, and the resulting polyacrylonitrile-based precursor fiber had a grade of 1, and the number of gels in the spinning dope collected from the spinning nozzle was 4 / g. there were. During continuous operation, the number of gels in the spinning dope is periodically measured, and when the number of spinning dope gels collected from the spinning nozzle increases to 10 / g, a part of the apparatus for producing the spinning dope is washed. did. The number of gels in the spinning dope collected from the spinning nozzle after washing was 5 / g.

得られたポリアクリロニトリル系前駆体繊維を空気中240〜280℃の耐炎化炉内を駆動ロールで搬送しながら焼成し耐炎化繊維に転換した。さらに不活性雰囲気中300〜800℃の前炭化炉内を駆動ロールで搬送して予備炭化した後、不活性雰囲気中1500℃の炭化炉内を駆動ロールで搬送しながら焼成をおこない炭素繊維を得た。このときの炭素繊維製造工程の操業性は安定しており、連続運転が可能であった。   The obtained polyacrylonitrile-based precursor fiber was baked while being conveyed in a flame-resistant furnace at 240 to 280 ° C. in air with a driving roll, and converted into flame-resistant fibers. Furthermore, after carrying out preliminary carbonization by conveying the inside of a pre-carbonization furnace at 300 to 800 ° C. in an inert atmosphere with a driving roll, firing is performed while conveying the inside of a carbonizing furnace in an inert atmosphere at 1500 ° C. with a driving roll to obtain carbon fibers. It was. The operability of the carbon fiber production process at this time was stable, and continuous operation was possible.

比較例1
紡糸原液中のゲルの数が10個/gまで増加した後も紡糸原液を製造する装置を洗浄せずに連続運転を継続した以外は、実施例1と同様の方法でポリアクリロニトリル系前駆体繊維の製造を試みた。しかし、製糸工程での糸切れが頻発して操業性は安定せず、連続運転が困難となり、ポリアクリロニトリル系前駆体繊維を得ることができなかった。このとき紡糸ノズルから採取した紡糸原液中のゲルの数は12個/gであった。
Comparative Example 1
Even after the number of gels in the spinning dope increased to 10 / g, the polyacrylonitrile-based precursor fiber was processed in the same manner as in Example 1 except that the continuous operation was continued without washing the apparatus for producing the spinning dope. Tried to manufacture. However, yarn breakage frequently occurred in the yarn making process, the operability was not stable, continuous operation became difficult, and polyacrylonitrile-based precursor fibers could not be obtained. At this time, the number of gels in the spinning dope collected from the spinning nozzle was 12 / g.

Claims (5)

アクリロニトリルとカルボキシル基を有するビニル系モノマーを共重合して得たアクリロニトリル系共重合体を含む紡糸原液を紡糸してポリアクリロニトリル系前駆体繊維を得るポリアクリロニトリル系前駆体繊維の製造方法であって、明細書記載の方法で測定した紡糸原液中のゲルの数を10個/g以下で管理することを特徴とするポリアクリロニトリル系前駆体繊維の製造方法。 A method for producing a polyacrylonitrile-based precursor fiber, in which a spinning solution containing an acrylonitrile-based copolymer obtained by copolymerizing acrylonitrile and a vinyl-based monomer having a carboxyl group is spun to obtain a polyacrylonitrile-based precursor fiber, A method for producing a polyacrylonitrile-based precursor fiber, characterized in that the number of gels in a spinning dope measured by the method described in the specification is controlled at 10 pieces / g or less. さらに、紡糸原液中の未反応アクリロニトリル残存比率を0.001〜3質量%で管理することを特徴とする請求項1に記載のポリアクリロニトリル系前駆体繊維の製造方法。 Furthermore, the unreacted acrylonitrile residual ratio in a spinning undiluted | stock solution is managed by 0.001-3 mass%, The manufacturing method of the polyacrylonitrile-type precursor fiber of Claim 1 characterized by the above-mentioned. アクリロニトリル系共重合体は、90質量%以上のアクリロニトリルと、0.1〜10質量%のカルボキシル基を有するビニル系モノマーを共重合して得られたものである、請求項1または2に記載のポリアクリロニトリル系前駆体繊維の製造方法。 The acrylonitrile-based copolymer is obtained by copolymerizing 90% by mass or more of acrylonitrile and a vinyl monomer having 0.1 to 10% by mass of a carboxyl group. A method for producing a polyacrylonitrile-based precursor fiber. カルボキシル基を有するビニル系モノマーのカルボキシル基に対して0.2〜1.2モル当量の塩基を紡糸原液中に添加することを特徴とする、請求項1〜3のいずれかに記載のポリアクリロニトリル系前駆体繊維の製造方法。 The polyacrylonitrile according to any one of claims 1 to 3, wherein 0.2 to 1.2 molar equivalent of a base is added to the spinning stock solution with respect to the carboxyl group of the vinyl monomer having a carboxyl group. Manufacturing method of system precursor fiber. 請求項1〜4のいずれかに記載のポリアクリロニトリル系前駆体繊維の製造方法によりポリアクリロニトリル系前駆体繊維を得た後、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を行う炭素繊維の製造方法。 After obtaining a polyacrylonitrile-based precursor fiber by the method for producing a polyacrylonitrile-based precursor fiber according to any one of claims 1 to 4, a flameproofing step of flameproofing in air at a temperature of 200 to 300 ° C, A preliminary carbonization step of precarbonizing the fiber obtained in the flameproofing step in an inert atmosphere at a temperature of 300 to 800 ° C, and a fiber obtained in the preliminary carbonization step at a temperature of 1,000 to 3,000 ° C. A method for producing carbon fiber, which performs a carbonization step of carbonizing in an inert atmosphere.
JP2016227607A 2016-11-24 2016-11-24 Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber Pending JP2018084002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227607A JP2018084002A (en) 2016-11-24 2016-11-24 Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227607A JP2018084002A (en) 2016-11-24 2016-11-24 Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2018084002A true JP2018084002A (en) 2018-05-31

Family

ID=62237103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227607A Pending JP2018084002A (en) 2016-11-24 2016-11-24 Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2018084002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100014159A1 (en) 2021-05-31 2022-12-01 Montefibre Mae Tech S R L One-stage process for the production of carbon fiber precursor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100014159A1 (en) 2021-05-31 2022-12-01 Montefibre Mae Tech S R L One-stage process for the production of carbon fiber precursor
EP4098784A1 (en) 2021-05-31 2022-12-07 Montefibre Mae Technologies S.R.L. Single-step process for the production of a carbon fiber precursor

Similar Documents

Publication Publication Date Title
JP5691366B2 (en) Carbon fiber manufacturing method
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP2012188781A (en) Carbon fiber and method for manufacturing the same
JP2010100970A (en) Method for producing carbon fiber
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
JP2012201727A (en) Method for producing polyacrylonitrile copolymer, method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP2011017100A (en) Method for producing carbon fiber
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JP5066952B2 (en) Method for producing polyacrylonitrile-based polymer composition, and method for producing carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2009256859A (en) Acrylonitrile-based copolymer solution and polyacrylonitrile-based precursor fiber for carbon fiber
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
JP2017186682A (en) Manufacturing method of precursor fiber bundle for carbon fiber and manufacturing method of carbon fiber
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2012193468A (en) Carbon fiber precursor fiber and method of manufacturing the same
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JP2015183165A (en) Acrylonitrile-based copolymer, polyacrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber