JP5504678B2 - Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber - Google Patents

Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber Download PDF

Info

Publication number
JP5504678B2
JP5504678B2 JP2009085796A JP2009085796A JP5504678B2 JP 5504678 B2 JP5504678 B2 JP 5504678B2 JP 2009085796 A JP2009085796 A JP 2009085796A JP 2009085796 A JP2009085796 A JP 2009085796A JP 5504678 B2 JP5504678 B2 JP 5504678B2
Authority
JP
Japan
Prior art keywords
amount
polymerization
polymerization initiator
polymer solution
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009085796A
Other languages
Japanese (ja)
Other versions
JP2010235794A (en
Inventor
知久 野口
治己 奥田
文彦 田中
大輔 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009085796A priority Critical patent/JP5504678B2/en
Publication of JP2010235794A publication Critical patent/JP2010235794A/en
Application granted granted Critical
Publication of JP5504678B2 publication Critical patent/JP5504678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、炭素繊維前駆体繊維の製造工程において、乾湿式紡糸法で優れた可紡性を与えるポリアクリロニトリル系重合体溶液の製造方法とそれを用いた炭素繊維前駆体繊維および炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing a polyacrylonitrile-based polymer solution which gives excellent spinnability by a dry and wet spinning method in the production process of carbon fiber precursor fibers, and the production of carbon fiber precursor fibers and carbon fibers using the same. It is about the method.

炭素繊維は、その優れた力学特性および電気特性から、さまざまな用途に利用されている。近年では、従来のゴルフクラブや釣竿などのスポーツ用途や航空機用途に加え、自動車部材、圧縮天然ガス(CNG)用タンク、建造物の耐震補強部材および船舶部材などいわゆる一般産業用途への展開が進みつつある。それに伴い、低コスト化および大量供給の要請が強い。   Carbon fibers are used in various applications because of their excellent mechanical and electrical properties. In recent years, in addition to conventional golf clubs, fishing rods and other sports and aircraft applications, the development of so-called general industrial applications such as automobile members, compressed natural gas (CNG) tanks, building seismic reinforcement members and ship members has progressed. It's getting on. Accordingly, there are strong demands for cost reduction and mass supply.

炭素繊維の中で、最も広く利用されているポリアクリロニトリル(以下、PANと略記することがある。)系炭素繊維は、その前駆体となるPAN系重合体からなる紡糸溶液を湿式紡糸または乾湿式紡糸して炭素繊維前駆体繊維を得た後、それを200〜400℃の温度の酸化性雰囲気下で加熱して耐炎化繊維へと転換し、それを少なくとも1000℃の温度の不活性雰囲気下で加熱して炭素化することによって工業的に製造されている。   Among the carbon fibers, the most widely used polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber is a spinning solution composed of a PAN polymer that is a precursor thereof. After spinning to obtain a carbon fiber precursor fiber, it is heated in an oxidizing atmosphere at a temperature of 200 to 400 ° C. to convert it into a flame resistant fiber, which is at least in an inert atmosphere at a temperature of 1000 ° C. It is manufactured industrially by heating and carbonizing at

PAN系炭素繊維の生産性向上は、炭素繊維前駆体繊維の製糸、耐炎化あるいは炭素化のいずれの観点からも行われている。中でも炭素繊維前駆体繊維の生産性向上については、従来技術には次に示す問題があった。すなわち、炭素繊維前駆体繊維を得る際の紡糸においては、紡糸口金孔数とPAN系重合体溶液の特性に伴う凝固糸を引き取る限界速度(以下、可紡性とも記述することがある。)と、その凝固構造に伴う限界延伸倍率によって生産性が決定されている。すなわち、多フィラメントの炭素繊維前駆体繊維を得るに際し、引き取り速度と延伸倍率の積で決まる最終的な製糸速度がどれほど高められるかで、その生産性が制限されている。生産性を向上させるために製糸速度を高めると延伸性低下が起こり、生産工程が不安定化しやすく、一方、製糸速度を下げると生産工程は安定化するものの生産性は低下するため、生産性の向上と生産工程の安定化の両立が困難であるという問題があった。   The improvement in the productivity of PAN-based carbon fibers is performed from the viewpoints of yarn production, flame resistance or carbonization of carbon fiber precursor fibers. Above all, with respect to the improvement of the productivity of the carbon fiber precursor fiber, the prior art has the following problems. That is, in spinning to obtain a carbon fiber precursor fiber, the number of spinneret holes and the critical speed (hereinafter also referred to as “spinnability”) for pulling the coagulated yarn associated with the characteristics of the PAN-based polymer solution. The productivity is determined by the limit draw ratio associated with the solidified structure. That is, in obtaining a multifilament carbon fiber precursor fiber, the productivity is limited by how much the final yarn forming speed determined by the product of the take-up speed and the draw ratio is increased. If the spinning speed is increased to improve productivity, the stretchability is reduced, and the production process tends to become unstable.On the other hand, decreasing the spinning speed stabilizes the production process, but the productivity decreases. There is a problem that it is difficult to achieve both improvement and stabilization of the production process.

これに対し、本発明者らは特定の分子量分布を有するPAN系重合体を用いることによって、乾湿式紡糸法で優れた可紡性を与える炭素繊維前駆体繊維の製造技術を既に提案している(特許文献1参照。)。また、このような特定の分子量分布を有するPAN系重合体の重合方法として、アクリロニトリル(以下、ANと略記することがある。)を主成分とする単量体を含む液体に重合開始剤を導入し重合させる工程とその重合終了までの間に別途重合開始剤を追加導入し残存する未反応単量体を重合する工程を含む重合方法(以下、多段重合法と略記することがある。)を提案している。しかしながら、かかる重合方法を用いてバッチ重合によって当該PAN系重合体を連続的に生産しようとした際には、品質とコストがトレードオフの関係になってしまう。すなわち、洗浄を行わずに同一重合槽を用いて多段重合法による重合を行うと、重合体溶液を抜き出した後に重合槽内に残存する未反応の重合開始剤(以下、残存重合開始剤と略記することがある。)や未反応の連鎖移動剤(以下、残存連鎖移動剤と略記することがある。)の影響によって、一回目の重合開始剤投入によって得られる重合体の分子量が小さくなってしまうなどの品質変動が起きてしまう。一方、このような残存重合開始剤や残存連鎖移動剤の影響を無くすために一回の重合終了ごとに重合槽を洗浄すると、バッチの仕込みから次のバッチの仕込みまでの時間(以下、バッチサイクルと略称することがある。)の長期化や洗浄液の使用等によるコストの上昇が起こってしまう。   On the other hand, the present inventors have already proposed a technique for producing a carbon fiber precursor fiber that gives excellent spinnability by a dry-wet spinning method by using a PAN-based polymer having a specific molecular weight distribution. (See Patent Document 1). As a method for polymerizing a PAN polymer having such a specific molecular weight distribution, a polymerization initiator is introduced into a liquid containing a monomer mainly composed of acrylonitrile (hereinafter sometimes abbreviated as AN). And a polymerization method including a step of polymerizing the remaining unreacted monomer by additionally introducing a polymerization initiator separately between the step of polymerization and the completion of the polymerization (hereinafter sometimes abbreviated as multistage polymerization method). is suggesting. However, when trying to continuously produce the PAN-based polymer by batch polymerization using such a polymerization method, the quality and cost are in a trade-off relationship. That is, when polymerization is performed by the multistage polymerization method using the same polymerization tank without washing, an unreacted polymerization initiator remaining in the polymerization tank after the polymer solution is extracted (hereinafter abbreviated as residual polymerization initiator). ) And unreacted chain transfer agent (hereinafter sometimes abbreviated as “remaining chain transfer agent”), the molecular weight of the polymer obtained by the first introduction of the polymerization initiator is reduced. Quality fluctuations such as end. On the other hand, in order to eliminate the influence of such residual polymerization initiator and residual chain transfer agent, if the polymerization tank is washed at the end of each polymerization, the time from the preparation of the batch to the preparation of the next batch (hereinafter referred to as the batch cycle). The cost may increase due to a prolonged period of time and the use of a cleaning solution.

また、特許文献1と同様な特定の分子量分布を有するPAN系重合体溶液の製造方法についても知られている(特許文献2参照。)が、同様に重合体を高品質かつ低コストで得る手法については記載されていない。   Moreover, although the manufacturing method of the PAN-type polymer solution which has the specific molecular weight distribution similar to patent document 1 is also known (refer patent document 2), the method of obtaining a polymer with high quality and low cost similarly. Is not described.

PAN以外の重合体においても、重合温度や重合開始剤を変える、もしくは、多段重合法によって特定の分子量分布を有する重合体を得る手法が知られている(特許文献3、特許文献4参照。)が、これらの文献においても、同様に特定の分子量分布を有するPAN系重合体溶液を高品質かつ低コストで得る手法については記載されていない。   For polymers other than PAN, a technique for changing the polymerization temperature and polymerization initiator or obtaining a polymer having a specific molecular weight distribution by a multistage polymerization method is known (see Patent Documents 3 and 4). However, these documents do not describe a technique for obtaining a PAN-based polymer solution having a specific molecular weight distribution at a high quality and at a low cost.

以上のように、従来技術では、製糸工程における生産性を高めることが可能となる特定の分子量分布を持つPAN系重合体を重合工程の生産性を低下させずに高品質かつ低コストで得ることは出来なかった。   As described above, in the prior art, it is possible to obtain a PAN polymer having a specific molecular weight distribution that can increase the productivity in the yarn production process with high quality and low cost without reducing the productivity of the polymerization process. I couldn't.

特開2008―248219号公報JP 2008-248219 A 特開2008―214816号公報JP 2008-214816 A 昭49―20627号公報Sho 49-20627 特表2001―514311号公報JP-T-2001-514111

そこで本発明の目的は、乾湿式紡糸法で優れた可紡性を与える炭素繊維前駆体繊維を製造するに際して必要となる特定の分子量分布を有するPAN系重合体を多段重合法によって高品質かつ低コストで得るため、重合体溶液抜き出し後の重合槽内の残存開始剤量ならびに残存連鎖移動剤量を低減させる方法を提供することにある。   Therefore, an object of the present invention is to produce a high-quality, low-quality PAN-based polymer having a specific molecular weight distribution necessary for producing a carbon fiber precursor fiber that gives excellent spinnability by a dry-wet spinning method by a multistage polymerization method. An object of the present invention is to provide a method for reducing the amount of residual initiator and residual chain transfer agent in the polymerization tank after the polymer solution is extracted.

上記の目的を達成するために、本発明の炭素繊維用前駆体繊維の製造方法は次の構成を有するものである。   In order to achieve the above object, the method for producing a precursor fiber for carbon fiber of the present invention has the following configuration.

すなわち、本発明のポリアクリロニトリル系重合体溶液の製造方法は、アクリロニトリルと0.01〜0.8mmol/Lの重合開始剤を含む溶液を加熱し、重合することで、重量平均分子量Mwが80万〜800万であるポリアクリロニトリルと未反応のアクリロニトリルを含む重合体溶液を得るA工程と、A工程と同一重合槽内で、前記A工程で得られた未反応のアクリロニトリルとポリアクリロニトリルを含む重合体溶液にA工程における重合開始剤の使用量とB工程における重合開始剤の比(A/B)が0.001〜0.2となる量の重合開始剤と、連鎖移動剤を添加し加熱することで、前記重合体溶液中のポリアクリロニトリルの重量平均分子量Mwを10万〜70万とするB工程の2工程で重合するポリアクリロニトリル系重合体溶液の製造方法であって、B工程終了時における重合槽内の残存重合開始剤量がA工程で加える重合開始剤量の0〜50%となるよう、B工程の加熱温度および/または加熱時間を調整するものである。 That is, in the method for producing a polyacrylonitrile-based polymer solution of the present invention, a solution containing acrylonitrile and a polymerization initiator of 0.01 to 0.8 mmol / L is heated and polymerized to obtain a weight average molecular weight Mw of 80. A process for obtaining a polymer solution containing polyacrylonitrile and unreacted acrylonitrile in the range of 8 to 8 million, and a weight containing unreacted acrylonitrile and polyacrylonitrile obtained in the process A in the same polymerization tank as process A Add the polymerization initiator in such an amount that the ratio (A / B) of the polymerization initiator used in step A and the polymerization initiator in step B (A / B) is 0.001 to 0.2 and the chain transfer agent and heat the combined solution. By doing so, polyacrylonitrile-based polymerization is carried out in two steps of the B step in which the weight average molecular weight Mw of the polyacrylonitrile in the polymer solution is 100,000 to 700,000. A method for producing a body solution, wherein the heating temperature and / or heating in step B is such that the amount of residual polymerization initiator in the polymerization tank at the end of step B is 0 to 50% of the amount of polymerization initiator added in step A The time is adjusted.

さらに、上記の目的を達成するために、本発明の炭素繊維前駆体繊維の製造方法は、前記製造方法より得られたポリアクリロニトリル系重合体溶液を乾湿式紡糸するものである。
さらに、上記の目的を達成するために、本発明の炭素繊維の製造方法は次の構成を有するものである。すなわち、本発明の炭素繊維の製造方法は、前記製造方法によって得られた炭素繊維前駆体繊維を、200〜300℃の温度の空気中において耐炎化する耐炎化工程と、耐炎化工程で得られた繊維を、300〜800℃の温度の不活性雰囲気中において予備炭化する予備炭化工程と、予備炭化工程で得られた繊維を1,000〜3,000℃の温度の不活性雰囲気中において炭化する炭化工程を順次経て炭素繊維を得る炭素繊維の製造方法である。
Furthermore, in order to achieve said objective, the manufacturing method of the carbon fiber precursor fiber of this invention spin-drys the polyacrylonitrile-type polymer solution obtained by the said manufacturing method.
Furthermore, in order to achieve said objective, the manufacturing method of the carbon fiber of this invention has the following structure. That is, the carbon fiber manufacturing method of the present invention is obtained by a flameproofing step in which the carbon fiber precursor fiber obtained by the above manufacturing method is flameproofed in air at a temperature of 200 to 300 ° C., and a flameproofing step. A pre-carbonization step of pre-carbonizing the obtained fiber in an inert atmosphere at a temperature of 300 to 800 ° C., and carbonizing the fiber obtained in the pre-carbonization step in an inert atmosphere at a temperature of 1,000 to 3,000 ° C. It is a manufacturing method of carbon fiber which obtains carbon fiber sequentially through the carbonization process.

本発明によれば、多段重合法により特定の分子量分布を持つPAN系重合体を製造するときに、バッチ重合を連続して行う際に、特定の重合条件を採用することによって、バッチ毎の分子量分布の変動が極めて少ない高品質なPAN系重合体を低コストで得ることが可能となり、品質の安定した炭素繊維を高い生産性で得ることができる。   According to the present invention, when a PAN-based polymer having a specific molecular weight distribution is produced by a multistage polymerization method, when batch polymerization is continuously performed, a specific polymerization condition is adopted, whereby a molecular weight for each batch. It becomes possible to obtain a high-quality PAN-based polymer with very little distribution fluctuation at low cost, and to obtain a carbon fiber with stable quality with high productivity.

本発明者らは、乾湿式紡糸法での高速製糸が可能となる特定の分子量分布を有するPAN系重合体を多段重合法によってバッチ重合するにあたり、重合終了時の重合槽内の残存開始剤量を一回目の重合開始剤導入量の0〜50%となるように重合工程の加熱温度および/または加熱時間を調整することにより、一回目の重合開始剤導入によって得られるPAN系重合体の重量平均分子量(以下、Mwと略記する)を精密に制御し、当該PAN系重合体を高品質かつ低コストで得ることができることを見出した。   The present inventors batch-polymerize a PAN-based polymer having a specific molecular weight distribution that enables high-speed spinning by a dry-wet spinning method by a multistage polymerization method, and the amount of remaining initiator in the polymerization tank at the end of the polymerization The weight of the PAN-based polymer obtained by the first introduction of the polymerization initiator by adjusting the heating temperature and / or the heating time in the polymerization step so that the amount of the polymerization initiator is 0 to 50% of the first introduction amount of the polymerization initiator. It has been found that the average molecular weight (hereinafter abbreviated as Mw) is precisely controlled, and the PAN-based polymer can be obtained with high quality and low cost.

本発明において、重合するPAN系重合体のMwは、一回目の重合開始剤による重合で得られる微量のMwの大きいPAN系重合体をA成分とし、二回目以降の重合開始剤による重合で得られるMwの小さいPAN系重合体をB成分とする。なお、B成分はA成分を含む全重合体成分を指す。A成分のMwは80万〜800万であり、好ましくは100万〜500万である。A成分のMwが800万より大きいときはA成分の生産性が低下し、Mwが80万より小さいときは得られるポリアクリロニトリル系重合体溶液を用いた製糸時の可紡性が向上しない。一方、B成分のMwは10万〜70万であり、好ましくは、20万〜50万である。また、B成分のMwが10万未満のときは得られるポリアクリロニトリル系重合体溶液を用いた製糸により製造される前駆体繊維の強度が不足し、70万より大きい場合は粘度低減のために紡糸溶液中の重合体濃度を低減させる必要があるために使用溶媒量が増加しコスト面で不利である。   In the present invention, the Mw of the PAN polymer to be polymerized is obtained by polymerization with the polymerization initiator for the second and subsequent times, with the PAN polymer having a small amount of Mw obtained by the polymerization with the first polymerization initiator as the A component. A PAN-based polymer having a small Mw is used as the B component. In addition, B component points out all the polymer components containing A component. Mw of A component is 800,000-8 million, Preferably it is 1,000,000-5 million. When the Mw of the A component is larger than 8 million, the productivity of the A component is lowered, and when the Mw is smaller than 800,000, the spinnability at the time of spinning using the obtained polyacrylonitrile polymer solution is not improved. On the other hand, the Mw of the B component is 100,000 to 700,000, preferably 200,000 to 500,000. Further, when the Mw of the B component is less than 100,000, the strength of the precursor fiber produced by spinning using the obtained polyacrylonitrile-based polymer solution is insufficient, and when it is greater than 700,000, spinning is performed to reduce the viscosity. Since it is necessary to reduce the polymer concentration in the solution, the amount of solvent used increases, which is disadvantageous in terms of cost.

本発明において、上記各種平均分子量は、ゲルパーミエーションクロマトグラフ(以下、GPCと略記する。)法で測定され、ポリスチレン換算値として得られるものである。   In the present invention, the various average molecular weights are measured by a gel permeation chromatograph (hereinafter abbreviated as GPC) method, and are obtained as polystyrene converted values.

また、B成分からA成分を除いた成分をC成分と呼ぶと、A成分のMwとC成分のMwの比は2〜45であることが好ましく、4〜45であることがより好ましく、4〜30であることが更に好ましい。Mwは主に反応溶液中の重合開始剤と連鎖移動剤の濃度を調整することによって制御でき、いずれも少ないほどMwは大きくなりやすい。A工程におけるA成分の重合およびB工程におけるC成分の重合それぞれにおいて、反応溶液中の重合開始剤(及び、連鎖移動剤)の濃度を後述のように設定することによりMwを調整することでA成分のMwとC成分のMwを制御することができる。また、A成分とC成分の重量比は0.001〜0.3であることが好ましく、0.005〜0.2であることがより好ましく、0.01〜0.1であることが更に好ましい。Mw比および重量比を前記の範囲とすることによってより効果的に可紡性が向上する。A成分とC成分の重量比はA成分の重合およびC成分の重合それぞれで重合率を調整することで制御することができる。   Moreover, when the component which remove | excluded A component from B component is called C component, it is preferable that the ratio of Mw of A component and Mw of C component is 2-45, and it is more preferable that it is 4-45. More preferably, it is -30. Mw can be controlled mainly by adjusting the concentrations of the polymerization initiator and the chain transfer agent in the reaction solution, and the smaller Mw is, the larger Mw tends to be. In each of the polymerization of the A component in the A step and the polymerization of the C component in the B step, the Mw is adjusted by adjusting the Mw by setting the concentration of the polymerization initiator (and the chain transfer agent) in the reaction solution as described below. The Mw of the component and the Mw of the C component can be controlled. The weight ratio of the A component and the C component is preferably 0.001 to 0.3, more preferably 0.005 to 0.2, and further preferably 0.01 to 0.1. preferable. By making the Mw ratio and the weight ratio within the above ranges, the spinnability is more effectively improved. The weight ratio of the A component and the C component can be controlled by adjusting the polymerization rate in each of the polymerization of the A component and the polymerization of the C component.

本発明のPAN系重合体の製造方法は、ANと0.01〜0.8mmol/Lの重合開始剤を含む溶液を加熱し、重合することで、Mwが80万〜800万であるPANと未反応のANを含む重合体溶液を得るA工程と、A工程と同一重合槽内で、前記A工程で得られた未反応のANとPANを含む重合体溶液に重合開始剤と、連鎖移動剤を添加し加熱することで、前記重合体溶液中のPANのMwを10万〜70万とするB工程の2工程で重合するものである。A工程で用いる重合開始剤を重合反応溶液に対して0.01〜0.8mmol/Lとすることにより、A工程で得られるMwを80万〜800万に制御することができる。 The method for producing a PAN-based polymer of the present invention is a PAN having an Mw of 800,000 to 8 million by heating and polymerizing a solution containing AN and 0.01 to 0.8 mmol / L of a polymerization initiator. And a step A for obtaining a polymer solution containing unreacted AN, a polymerization initiator and a chain in the polymer solution containing the unreacted AN and PAN obtained in step A in the same polymerization vessel as the step A. By adding a transfer agent and heating, polymerization is carried out in two steps, Step B, in which the Mw of PAN in the polymer solution is 100,000 to 700,000. By setting the polymerization initiator used in Step A to 0.01 to 0.8 mmol / L with respect to the polymerization reaction solution, Mw obtained in Step A can be controlled to 800,000 to 8 million.

さらに、B工程終了時における重合槽内の残存重合開始剤量がA工程で加える重合開始剤量の0〜50%、好ましくは0〜40%、より好ましくは0〜20%となるよう、B工程の加熱温度および/または加熱時間を調整することが重要である。なお、B工程終了時とは、重合槽から重合体溶液を抜き出す直前の時点を指す。B工程終了時における重合槽内の残存重合開始剤量がA工程で加える重合開始剤量の50%を超えると、ラジカル発生量の増加によるA成分のMwの低下や重合率の上昇が起き、A成分のバッチ間のばらつきが大きくなるため、A工程での分子量制御を精密に行うことが困難となる。B工程終了時における重合槽内の残存重合開始剤量を前記範囲に制御することでA工程への影響が小さくなり、A工程での分子量制御を精密に行うことができる。   Further, the amount of the residual polymerization initiator in the polymerization tank at the end of the step B is 0 to 50%, preferably 0 to 40%, more preferably 0 to 20% of the amount of the polymerization initiator added in the step A. It is important to adjust the heating temperature and / or heating time of the process. In addition, the time of completion | finish of B process points out the time just before extracting a polymer solution from a polymerization tank. When the amount of residual polymerization initiator in the polymerization tank at the end of step B exceeds 50% of the amount of polymerization initiator added in step A, a decrease in Mw of component A due to an increase in the amount of radicals generated and an increase in polymerization rate occur. Since the variation between batches of the component A increases, it becomes difficult to precisely control the molecular weight in the step A. By controlling the amount of the remaining polymerization initiator in the polymerization tank at the end of the B process within the above range, the influence on the A process is reduced, and the molecular weight control in the A process can be precisely performed.

ここで、B工程で添加する重合開始剤は、A工程における重合開始剤の使用量とB工程における重合開始剤の使用量の比(A/B)が0.001〜0.2となる量の重合開始剤を用いる。かかるA/Bが0.001未満では、B工程終了後の残存開始剤の影響を次に行うA工程に強く及ぼし、A工程で得られるMwを制御することが困難である。一方、A/Bが0.2を超えると、B工程で未反応ANが残存し、収率が低下するためコストが増加する。   Here, the polymerization initiator added in the B step is an amount such that the ratio (A / B) of the used amount of the polymerization initiator in the A step to the used amount of the polymerization initiator in the B step is 0.001 to 0.2. The polymerization initiator is used. When the A / B is less than 0.001, it is difficult to control the Mw obtained in the A process because the remaining initiator after the completion of the B process has a strong influence on the A process to be performed next. On the other hand, if A / B exceeds 0.2, unreacted AN remains in the B step, and the yield decreases, resulting in an increase in cost.

さらに、A/Bを大きくすれば、残存重合開始剤によるラジカル発生の相対的な影響を低下させることができるので、残存重合開始剤量をA工程で加える重合開始剤量の50%以下とすることが容易となる。そのため、好ましくは、A/Bが0.03〜0.1とし、より好ましくは、0.04〜0.08とする。A/Bが0.03より小さい場合は、残存重合開始剤によるラジカル発生の相対的な影響を低下させる効果が相対的に小さく、A/Bが0.1より大きい場合は、ラジカル発生量を制御するために、A工程での重合温度とB工程での重合温度の差を大きくする必要が生じ、温度制御が困難となる場合がある。   Furthermore, if A / B is increased, the relative influence of radical generation by the residual polymerization initiator can be reduced, so the amount of residual polymerization initiator is 50% or less of the amount of polymerization initiator added in step A. It becomes easy. Therefore, A / B is preferably 0.03 to 0.1, and more preferably 0.04 to 0.08. When A / B is smaller than 0.03, the effect of lowering the relative influence of radical generation by the residual polymerization initiator is relatively small. When A / B is larger than 0.1, the amount of radical generation is reduced. In order to control, it is necessary to increase the difference between the polymerization temperature in the step A and the polymerization temperature in the step B, which may make it difficult to control the temperature.

重合開始剤としては、油溶性あるいは水溶性アゾ系化合物、過酸化物などが好ましく、安全面からの取り扱い性および工業的に効率よく重合を行うという観点から、10時間で重合開始剤が半減する温度(以下、ラジカル発生温度と略称することがある)が好ましくは30〜150℃、より好ましくは40〜100℃の範囲のものを用いる。中でも、分解時に重合を阻害する酸素発生の懸念がないアゾ系化合物が好ましく用いられ、溶液重合で重合する場合には、溶解性の観点から油溶性アゾ化合物が好ましく用いられる。その具体例としては、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(ラジカル発生温度30℃)、2,2'-アゾビス (2,4-ジメチルバレロニトリル) (ラジカル発生温度51℃)、2,2'-アゾビスイソブチロニトリル(ラジカル発生温度65℃)などが挙げられる。また、過酸化物を用いる場合、還元剤を共存させラジカル発生を促進させてもよい。   The polymerization initiator is preferably an oil-soluble or water-soluble azo compound, a peroxide, etc., and the polymerization initiator is halved in 10 hours from the viewpoint of easy handling from the safety aspect and industrially efficient polymerization. The temperature (hereinafter sometimes abbreviated as the radical generation temperature) is preferably 30 to 150 ° C., more preferably 40 to 100 ° C. Among them, an azo compound that does not cause the generation of oxygen that inhibits polymerization at the time of decomposition is preferably used, and in the case of polymerization by solution polymerization, an oil-soluble azo compound is preferably used from the viewpoint of solubility. Specific examples thereof include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (radical generation temperature 30 ° C.), 2,2′-azobis (2,4-dimethylvaleronitrile) (radical). Generation temperature 51 ° C.) and 2,2′-azobisisobutyronitrile (radical generation temperature 65 ° C.). Moreover, when using a peroxide, you may coexist a reducing agent and promote radical generation.

なお、重合中の残存開始剤量については、実験値と下記の式を用いて得られる計算値が良い一致を見せるため、ここでは下記の式によって、0.1時間毎の値を逐次的に調べて得られる計算値を使用する。   As for the amount of the remaining initiator during the polymerization, the experimental value and the calculated value obtained using the following formula show a good agreement. Use the calculated value obtained by examination.

Cn+0.1 = Cn × exp(−K×0.1)
(Cn:n時間後の開始剤量、Cn:n+0.1時間後の開始剤量、K:開始剤分解速度係数)
K= A × exp(−Ea/(8.31447×T))
(A:定数、Ea:活性化エネルギー(J/mol)、8.31447:気体定数(J/K・mol)、T:温度(K))
AやEaについては、カタログ等の文献値を用いる。代表例として、今回使用した開始剤の値を以下に示す。
C n + 0.1 = C n × exp (−K d × 0.1)
(C n : initiator amount after n hours, C n : initiator amount after n + 0.1 hours, K d : initiator decomposition rate coefficient)
K d = A × exp (−Ea / (8.31447 × T))
(A: constant, Ea: activation energy (J / mol), 8.31447: gas constant (J / K · mol), T: temperature (K))
For A and Ea, literature values such as catalogs are used. As a representative example, the values of the initiator used this time are shown below.

2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)
[ A=4.527×1018、Ea=1.15×105
2,2'-アゾビス (2,4-ジメチルバレロニトリル)
[ A=2.217×1018、Ea=1.21×105
2,2'-アゾビスイソブチロニトリル
[ A=1.212×1019、Ea=1.31×105
B工程終了時における重合槽内の残存重合開始剤量がA工程で加える重合開始剤量の0〜50%となるよう、B工程の加熱温度および/または加熱時間を調整するが、その条件目安としては、B工程終了後における残存重合開始剤量をA工程とB工程で加えた重合開始剤合計量の0〜5%とすることが好ましい。B工程終了後における残存重合開始剤量がA工程とB工程で加えた重合開始剤量の5%を超える場合は、A/Bを0.001〜0.2の範囲に制御していても、B工程終了後における残存重合剤量が、A工程で加えた重合開始剤量の50%を超える場合がある。
2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile)
[A = 4.527 × 10 18 , Ea = 1.15 × 10 5 ]
2,2'-azobis (2,4-dimethylvaleronitrile)
[A = 2.217 × 10 18 , Ea = 1.21 × 10 5 ]
2,2'-Azobisisobutyronitrile [A = 1.212 × 10 19 , Ea = 1.31 × 10 5 ]
The heating temperature and / or heating time in the B step is adjusted so that the amount of the remaining polymerization initiator in the polymerization tank at the end of the B step is 0 to 50% of the amount of polymerization initiator added in the A step. The amount of the residual polymerization initiator after completion of the B step is preferably 0 to 5% of the total amount of the polymerization initiator added in the A step and the B step. If the amount of residual polymerization initiator after the end of step B exceeds 5% of the amount of polymerization initiator added in step A and step B, A / B may be controlled in the range of 0.001 to 0.2. In some cases, the amount of the remaining polymerization agent after completion of the step B exceeds 50% of the amount of the polymerization initiator added in the step A.

B工程の加熱温度を調整して重合開始剤の消費速度を速める手段としては、重合槽温度TPから重合開始剤のラジカル発生温度TRを引いた温度ΔT[ΔT=TP−TR]が15℃以上になるように設定する方法がある。なお、ΔTを15℃以上にする方法としては、重合槽温度を高める方法と、ラジカル発生温度の低い重合開始剤を用いる方法があり、そのいずれを用いても良い。 As a means for adjusting the heating temperature in the B step to increase the consumption rate of the polymerization initiator, a temperature ΔT [ΔT = T P −T R ] obtained by subtracting the radical generation temperature T R of the polymerization initiator from the polymerization tank temperature T P. Is set to be 15 ° C. or higher. In addition, as a method of making ΔT 15 ° C. or higher, there are a method of increasing the polymerization tank temperature and a method of using a polymerization initiator having a low radical generation temperature, either of which may be used.

また、加熱時間を調整する手段としては、重合時間を2倍以上とすることで残存重合開始剤量を低下させる手段がある。B工程の加熱時間を調整する手段は、バッチサイクルが長期化するという問題があるため、B工程の加熱温度を調整する手段の補助的に用いることが好ましい。   Further, as a means for adjusting the heating time, there is a means for reducing the amount of the residual polymerization initiator by setting the polymerization time to be twice or more. The means for adjusting the heating time in the B process has a problem that the batch cycle becomes longer, and therefore, it is preferable to use it as an auxiliary means for adjusting the heating temperature in the B process.

通常、重合開始剤のラジカル発生が進行し、残存している重合開始剤量が少なくなると重合速度が大幅に低下し、重合効率が悪くなるため重合開始剤を完全に使用しきる重合方法を採用することは少ないが、本発明においては、重合開始剤を使い切ることによって残存重合開始剤量を低減させることが重要である。   Usually, the radical generation of the polymerization initiator proceeds, and when the amount of the remaining polymerization initiator is reduced, the polymerization rate is greatly reduced, and the polymerization efficiency is deteriorated. Therefore, a polymerization method in which the polymerization initiator is completely used is adopted. In the present invention, however, it is important to reduce the amount of residual polymerization initiator by using up the polymerization initiator.

また、A工程で得られるMwを調整することを容易にするためにA工程のアクリロニトリルと0.01〜0.8mmol/Lの重合開始剤を含む溶液が連鎖移動剤を含むことが好ましい。かかるA工程において連鎖移動剤を適用する場合においては、A工程およびB工程にて使用する連鎖移動剤の合計が反応溶液に対して0.1〜5mmol/Lであることが好ましい。前記範囲に制御することでB成分のMwが10万〜70万に制御することがより容易となる。また、A工程における連鎖移動剤の使用量とB工程における連鎖移動剤の使用量の比(A/B)が0.04〜0.8であることが好ましく、より好ましくは0.1〜0.6である。かかるA/Bが0.04未満では、B工程終了後の残存連鎖移動剤の影響を次のバッチの重合におけるA工程に強く及ぼし、次のバッチの重合においてA工程で得られるMwを制御することが困難となる場合がある。一方、A/Bが0.8を超えると、同じバッチのB工程でMwが低下しやすい。 Moreover, in order to make it easy to adjust Mw obtained in A process, it is preferable that the solution containing the acrylonitrile of A process and 0.01-0.8 mmol / L polymerization initiator contains a chain transfer agent. When applying a chain transfer agent in such A process, it is preferable that the sum total of the chain transfer agent used at A process and B process is 0.1-5 mmol / L with respect to the reaction solution. By controlling to the said range, it becomes easier to control Mw of B component to 100,000-700,000. Moreover, it is preferable that ratio (A / B) of the usage-amount of the chain transfer agent in A process and the usage-amount of the chain transfer agent in B process is 0.04-0.8, More preferably, it is 0.1-0. .6. When the A / B is less than 0.04, the influence of the residual chain transfer agent after completion of the B step is strongly exerted on the A step in the polymerization of the next batch, and the Mw obtained in the A step is controlled in the polymerization of the next batch. May be difficult. On the other hand, when A / B exceeds 0.8, Mw tends to decrease in the B process of the same batch.

また、B工程終了時における重合槽内に残存する連鎖移動剤量をA工程で使用する連鎖移動剤量の0〜25%とすることが好ましい。ここで使用するとは、A工程で添加した連鎖移動剤全てを指す。B工程終了時における重合槽内に残存する連鎖移動剤量が25%を超えると、残存する重合開始剤量が50%以下であっても、次のバッチの重合においてA成分のMwが低下するためにA成分のバッチ間のばらつきが大きくなることが多く、A工程での分子量制御を精密に行うことが困難となることが多い。B工程終了時の残存連鎖移動剤量をA工程で使用する連鎖移動剤量の0〜25%に制御する方法としては、(1)連鎖移動剤の消費速度を速める、(2)重合時間を延ばす等の手法が考えられる。(1)の具体的手段としては、重合槽温度TPから重合開始剤のラジカル発生温度TRを引いた温度ΔT[ΔT=TP−TR]が15℃以上になるように設定することでラジカル発生量を増やし、それによって連鎖移動剤の消費速度を速める手段がある。なお、ΔTを15℃以上にする方法としては、重合槽温度を高める方法と、ラジカル発生温度の低い重合開始剤を用いる方法があり、そのいずれを用いても良い。(2)の具体的手段としては、重合時間を2倍以上とすることで残存連鎖移動剤量を低下させる手段がある。ただし、バッチサイクルが長期化するという問題があるため、(1)の手法を用いることが好ましい。 Further, the amount of chain transfer agent remaining in the polymerization tank at the end of the step B is preferably 0 to 25% of the amount of chain transfer agent used in the step A. As used herein, it refers to all chain transfer agents added in step A. When the amount of the chain transfer agent remaining in the polymerization tank at the end of the process B exceeds 25%, the Mw of the A component is reduced in the polymerization of the next batch even if the amount of the remaining polymerization initiator is 50% or less. For this reason, variation among batches of the component A often increases, and it is often difficult to precisely control the molecular weight in the step A. As a method for controlling the amount of residual chain transfer agent at the end of step B to 0 to 25% of the amount of chain transfer agent used in step A, (1) increase the consumption rate of the chain transfer agent, (2) increase the polymerization time. A method such as extension is conceivable. As a specific means of (1), the temperature ΔT [ΔT = T P −T R ] obtained by subtracting the radical generation temperature T R of the polymerization initiator from the polymerization tank temperature T P should be set to 15 ° C. or higher. There is a means to increase the amount of radical generation and thereby increase the consumption rate of the chain transfer agent. In addition, as a method of making ΔT 15 ° C. or higher, there are a method of increasing the polymerization tank temperature and a method of using a polymerization initiator having a low radical generation temperature, either of which may be used. As a specific means of (2), there is a means for reducing the amount of residual chain transfer agent by setting the polymerization time to twice or more. However, since there is a problem that the batch cycle becomes longer, it is preferable to use the method (1).

本発明で好適に用いられるPAN系重合体の組成としては、アクリロニトリル(AN)が好ましくは93〜100モル%であり、ANと共重合可能な単量体を7モル%以下なら共重合させてもよい。   As a composition of the PAN polymer suitably used in the present invention, acrylonitrile (AN) is preferably 93 to 100 mol%, and a monomer copolymerizable with AN is copolymerized if it is 7 mol% or less. Also good.

ANと共重合可能な単量体としては、耐炎化を促進する成分が共重合されることが好ましい。耐炎化を促進する成分としては、例えば、カルボキシル基またはアミド基を一つ以上有する化合物が好ましく用いられる。この成分の共重合量を多くするほど、耐炎化反応が促進され、短時間で耐炎化処理することができ、生産性を高めることができる。   As the monomer copolymerizable with AN, it is preferable that a component that promotes flame resistance is copolymerized. As a component that promotes flame resistance, for example, a compound having at least one carboxyl group or amide group is preferably used. As the amount of copolymerization of this component increases, the flameproofing reaction is promoted, the flameproofing treatment can be performed in a short time, and the productivity can be increased.

耐炎化を促進する成分の具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸、アクリルアミドおよびメタクリルアミドが挙げられる。含有されるアミド基とカルボキシル基の数は、1つよりも2つ以上であることがより好ましく、その観点からは、耐炎化を促進するための共重合可能な成分としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸およびメサコン酸が好ましく、イタコン酸およびメタクリル酸がより好ましい。   Specific examples of components that promote flame resistance include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, acrylamide and methacrylamide. The number of amide groups and carboxyl groups contained is more preferably two or more than one. From that viewpoint, the copolymerizable components for promoting flame resistance include acrylic acid and methacrylic acid. Acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid and mesaconic acid are preferred, and itaconic acid and methacrylic acid are more preferred.

上記の耐炎化促進成分の割合は、0.2〜2モル%の範囲であることが好ましく、より好ましくは0.3〜1モル%である。耐炎化促進成分の割合が0.2モル%未満では耐炎化が不十分となり、炭化工程において得られる炭素繊維の炭化収率および引張強度が低下する傾向を示す。また、耐炎化促進成分の割合が2%を超えると耐炎化工程での熱分解による分子断裂が顕著となり、得られる炭素繊維の引張強度が低下することがある。   The ratio of the above-mentioned flame resistance promoting component is preferably in the range of 0.2 to 2 mol%, more preferably 0.3 to 1 mol%. When the proportion of the flame retardant promoting component is less than 0.2 mol%, the flame resistance is insufficient, and the carbonization yield and tensile strength of the carbon fiber obtained in the carbonization step tend to be reduced. On the other hand, when the proportion of the flame resistance promoting component exceeds 2%, molecular fracture due to thermal decomposition in the flame resistance process becomes remarkable, and the tensile strength of the obtained carbon fiber may be lowered.

前記したPAN系重合体を重合する際の溶媒としては、塩化亜鉛水溶液、チオ硫酸ナトリウム水溶液、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどが使用可能であるが、目的の分子量分布を持つPAN系重合体を得るためにはジメチルホルムアミドもしくはジメチルスルホキシドが好ましく、特にジメチルスルホキシドが好ましく用いられる。   As a solvent for polymerizing the above PAN-based polymer, an aqueous solution of zinc chloride, an aqueous solution of sodium thiosulfate, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, etc. can be used, but a PAN-based polymer having a desired molecular weight distribution. In order to obtain dimethylformamide or dimethyl sulfoxide, dimethyl sulfoxide is particularly preferred.

次に、本発明の炭素繊維前駆体繊維の製造方法について説明する。まず、前記したPAN系重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどPAN系重合体が可溶な溶媒に溶解し、紡糸溶液とする。溶液重合を用いる場合、重合に用いられる溶媒と紡糸溶媒を同じものにしておくと、得られたポリアクリロニトリルを分離し紡糸溶媒に再溶解する工程が不要となる。また、PAN系重合体溶液には、水、メタノール、エタノールなどPAN系重合体が凝固する溶媒(いわゆる、凝固剤)をPAN系重合体が凝固しない範囲で含んでも構わないし、酸化防止剤、重合禁止剤などの成分をPAN系重合体に対して5重量%までは含んでも構わない。   Next, the manufacturing method of the carbon fiber precursor fiber of this invention is demonstrated. First, the above-mentioned PAN-based polymer is dissolved in a solvent in which the PAN-based polymer is soluble, such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide, to obtain a spinning solution. In the case of using solution polymerization, if the solvent used for the polymerization and the spinning solvent are the same, a step of separating the obtained polyacrylonitrile and re-dissolving in the spinning solvent becomes unnecessary. Further, the PAN polymer solution may contain a solvent (so-called coagulant) that solidifies the PAN polymer such as water, methanol, ethanol, etc. as long as the PAN polymer does not coagulate. Components such as inhibitors may be included up to 5% by weight based on the PAN polymer.

PAN系重合体溶液の重合体濃度は、15〜30重量%の範囲であることが好ましく、より好ましくは17〜25重量%であり、最も好ましくは19〜23重量%である。重合体濃度が15重量%未満では溶剤使用量が多くなり経済的でなく、凝固浴内での凝固速度を低下させ内部にボイドが生じて緻密な構造が得られないことがある。一方、重合体濃度が30重量%を超えると粘度が上昇し、紡糸が困難となる場合がある。紡糸溶液の重合体濃度は、使用する溶媒量により調製することができる。   The polymer concentration of the PAN-based polymer solution is preferably in the range of 15 to 30% by weight, more preferably 17 to 25% by weight, and most preferably 19 to 23% by weight. If the polymer concentration is less than 15% by weight, the amount of solvent used is increased, which is not economical, and the coagulation rate in the coagulation bath is lowered, voids are generated inside, and a dense structure may not be obtained. On the other hand, when the polymer concentration exceeds 30% by weight, the viscosity increases and spinning may be difficult. The polymer concentration of the spinning solution can be adjusted according to the amount of solvent used.

本発明において重合体濃度とは、PAN系共重合体の溶液中に含まれるPAN系重合体の重量%である。具体的には、PAN系共重合体の溶液を計量した後、PAN系共重合体を溶解せずかつPAN系共重合体溶液に用いる溶媒と相溶性のある溶媒中に、計量したPAN系共重合体溶液を混合して、PAN系共重合体溶液を脱溶媒させた後、PAN系共重合体を計量する。重合体濃度は、脱溶媒後のPAN系共重合体の重量を、脱溶媒する前のPAN系共重合体の溶液の重量で割ることにより算出する。   In the present invention, the polymer concentration is the weight percent of the PAN polymer contained in the PAN copolymer solution. Specifically, after the PAN copolymer solution is weighed, the weighed PAN copolymer in a solvent that does not dissolve the PAN copolymer and is compatible with the solvent used for the PAN copolymer solution. After the polymer solution is mixed and the PAN copolymer solution is desolvated, the PAN copolymer is weighed. The polymer concentration is calculated by dividing the weight of the PAN copolymer after desolvation by the weight of the solution of the PAN copolymer before desolvation.

また、45℃の温度におけるPAN系重合体溶液の粘度は、150〜2,000ポイズの範囲であることが好ましく、より好ましくは200〜1,500ポイズであり、さらに好ましくは300〜1,000ポイズである。溶液粘度が150ポイズ未満では、紡糸糸条の賦形性が低下するため、口金から出た糸条を引き取る速度、すなわち可紡性が低下する傾向を示す。また、溶液粘度は2,000ポイズを超えるとゲル化し易くなり、安定した紡糸が困難になる傾向を示す。紡糸溶液の粘度は、重合開始剤や連鎖移動剤の量などにより制御することができる。   The viscosity of the PAN polymer solution at a temperature of 45 ° C. is preferably in the range of 150 to 2,000 poise, more preferably 200 to 1,500 poise, and still more preferably 300 to 1,000 poise. It is a poise. When the solution viscosity is less than 150 poise, the formability of the spun yarn is lowered, and therefore the speed at which the yarn taken out from the die is taken, that is, the spinnability tends to be lowered. Further, when the solution viscosity exceeds 2,000 poise, gelation tends to occur and stable spinning tends to be difficult. The viscosity of the spinning solution can be controlled by the amount of polymerization initiator or chain transfer agent.

本発明において45℃の温度におけるPAN系重合体溶液の粘度は、B型粘度計により測定することができる。具体的には、ビーカーに入れたPAN系重合体溶液を、45℃の温度に温度調節された温水浴に浸して調温した後、B型粘度計として、例えば、(株)東京計器製B8L型粘度計を用い、ローターNo.4を使用し、PAN系重合体溶液の粘度が0〜1,000ポイズの範囲はローター回転数6r.p.m.で測定し、またその紡糸溶液の粘度が1,000〜10,000ポイズの範囲はローター回転数0.6r.p.m.で測定する。   In the present invention, the viscosity of the PAN-based polymer solution at a temperature of 45 ° C. can be measured with a B-type viscometer. Specifically, the PAN-based polymer solution placed in a beaker is immersed in a hot water bath adjusted to a temperature of 45 ° C. to adjust the temperature, and as a B-type viscometer, for example, B8L manufactured by Tokyo Keiki Co., Ltd. Using a viscometer, rotor No. 4 is used, and the viscosity of the PAN-based polymer solution is in the range of 0 to 1,000 poises when the rotor rotational speed is 6 r. p. m. The viscosity of the spinning solution is in the range of 1,000 to 10,000 poise. p. m. Measure with

PAN系重合体溶液を紡糸する前に、高強度な炭素繊維を得る観点から、その溶液を、例えば、目開き1μm以下のフィルターに通し、重合体原料および各工程において混入した不純物を除去することが好ましい。   Before spinning the PAN-based polymer solution, from the viewpoint of obtaining high-strength carbon fibers, the solution is passed, for example, through a filter having an opening of 1 μm or less to remove the polymer raw material and impurities mixed in each step. Is preferred.

本発明では、前記したPAN系重合体溶液を、湿式紡糸、乾式紡糸または乾湿式紡糸のいずれの紡糸法でも毛羽の発生を抑制でき、好ましいが、特に、乾湿式紡糸法により紡糸することにより炭素繊維前駆体繊維を製造することが紡糸速度を高め、かつ、紡糸ドラフト率を高めるために好ましい。乾湿式紡糸法は、紡糸溶液を口金から一旦空気中に吐出した後、凝固浴中に導入して凝固させる紡糸方法である。   In the present invention, the above-mentioned PAN-based polymer solution can suppress the generation of fluff by any spinning method of wet spinning, dry spinning or dry wet spinning, and it is preferable. It is preferable to produce a fiber precursor fiber in order to increase the spinning speed and increase the spinning draft rate. The dry-wet spinning method is a spinning method in which a spinning solution is once discharged into the air from a die and then introduced into a coagulation bath to coagulate.

PAN系重合体溶液の紡糸ドラフト率は12〜100倍の範囲内であることが好ましく、紡糸ドラフト率はより好ましくは13〜50倍の範囲内であり、さらに好ましくは13〜35倍の範囲内である。ここで紡糸ドラフト率とは、紡糸糸条(フィラメント)が口金を離れて最初に接触する駆動源を持ったローラー(第一ローラー)の表面速度(凝固糸の巻き取り速度)を、口金孔内のPAN系重合体溶液の線速度(吐出線速度)で割った値をいう。この吐出線速度とは、単位時間当たりに吐出される重合体溶液の体積を口金孔面積で割った値をいう。したがって、吐出線速度は、溶液吐出量と口金孔径の関係で決まる。PAN系重合体溶液は、口金孔を出て凝固溶液に接して次第に凝固してフィラメントとなる。このとき第一ローラーによりフィラメントは引っ張られているが、フィラメントよりも未凝固紡糸溶液の方が伸び易いので、紡糸ドラフト率とは、紡糸溶液が固化するまでに引き伸ばされる倍率を示すことになる。すなわち、紡糸ドラフト率は次式で表されるものである。
・紡糸ドラフト率=(凝固糸の引き取り速度)/(吐出線速度)
上記の紡糸ドラフト率を高めることは、繊維の細径化への寄与も大きい。本発明のポリアクリロニトリル系重合体溶液を紡糸溶液として用い、紡糸ドラフト率が12倍を超えない場合、PAN系繊維の単繊維繊度を0.2dtex以下にすることが困難であり、単繊維繊度を低下させる際には、紡糸ドラフト率を高めることが好ましい。また、生産性向上の観点から紡糸ドラフト率は高ければ高いほど好ましいが、口金面で糸切れが発生することが多くなるため、現実的には100以下である。吐出線速度は、0.1〜30m/分であることが好ましい。吐出線速度が0.1m/分を下回ると、生産性が落ちる。一方、吐出線速度が30m/分を超えると、凝固浴の液面揺れが顕著になり、得られる繊度にムラが生じる場合がある。
The spinning draft rate of the PAN-based polymer solution is preferably in the range of 12 to 100 times, the spinning draft rate is more preferably in the range of 13 to 50 times, and further preferably in the range of 13 to 35 times. It is. Here, the spinning draft rate refers to the surface speed of the roller (first roller) with the drive source that the spinning yarn (filament) first contacts after leaving the die (winding speed of the coagulated yarn), in the die hole. The value divided by the linear velocity (discharge linear velocity) of the PAN-based polymer solution. The discharge linear velocity is a value obtained by dividing the volume of the polymer solution discharged per unit time by the die hole area. Therefore, the discharge linear velocity is determined by the relationship between the solution discharge amount and the nozzle hole diameter. The PAN-based polymer solution exits from the die hole and comes into contact with the coagulation solution and gradually solidifies into a filament. At this time, although the filament is pulled by the first roller, the uncoagulated spinning solution is more easily stretched than the filament, and therefore the spinning draft rate indicates the magnification at which the spinning solution is stretched until it is solidified. That is, the spinning draft rate is expressed by the following formula.
・ Spinning draft rate = (coagulated yarn take-up speed) / (discharge line speed)
Increasing the spinning draft rate also greatly contributes to fiber diameter reduction. When the polyacrylonitrile-based polymer solution of the present invention is used as a spinning solution and the spinning draft rate does not exceed 12 times, it is difficult to reduce the single fiber fineness of the PAN-based fiber to 0.2 dtex or less. When decreasing, it is preferable to increase the spinning draft rate. Further, from the viewpoint of improving productivity, the higher the spinning draft rate, the better. However, since yarn breakage often occurs on the die surface, it is practically 100 or less. The discharge linear velocity is preferably 0.1 to 30 m / min. When the discharge linear velocity is less than 0.1 m / min, productivity decreases. On the other hand, when the discharge linear velocity exceeds 30 m / min, the liquid level fluctuation of the coagulation bath becomes remarkable, and the obtained fineness may be uneven.

吐出線速度と紡糸ドラフト率により決定される凝固糸の引き取り速度は、50〜500m/分であることが好ましい。その引き取り速度が50m/分未満では生産性が落ち、また引き取り速度が500m/分を超えると凝固浴の液面揺れが顕著になり、得られる繊度にムラが生じる傾向がある。   The take-up speed of the coagulated yarn determined by the discharge linear speed and the spinning draft rate is preferably 50 to 500 m / min. When the take-up speed is less than 50 m / min, the productivity is lowered, and when the take-up speed exceeds 500 m / min, the liquid level fluctuation of the coagulation bath becomes remarkable and the resulting fineness tends to be uneven.

紡糸口金孔径は、0.05mm〜0.3mmであることが好ましく、より好ましくは0.2〜0.3mmである。口金孔径が0.05mmより小さい場合、紡糸溶液を高圧で口金から吐出する必要があり、紡糸装置の耐久性が低下し、更にノズルからの紡出が困難となる。一方、口金孔径が0.3mmを超えると1.5dtex以下の単繊維繊度の繊維を得ることが困難となる場合がある。   The spinneret hole diameter is preferably 0.05 mm to 0.3 mm, more preferably 0.2 to 0.3 mm. When the diameter of the nozzle hole is smaller than 0.05 mm, it is necessary to discharge the spinning solution from the nozzle at a high pressure, the durability of the spinning device is lowered, and spinning from the nozzle becomes difficult. On the other hand, if the diameter of the die hole exceeds 0.3 mm, it may be difficult to obtain a fiber having a single fiber fineness of 1.5 dtex or less.

本発明において、凝固浴には、PAN系重合体溶液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶剤と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、前記のPAN系重合体を溶解せず、かつPAN系重合体溶液に用いた溶媒と相溶性があるものが好ましく、具体的には、水を使用することが好ましい。凝固浴としての条件は、凝固糸(単繊維)の断面が真円状となるように制御ことが好ましく、有機溶剤の濃度は、臨界浴濃度といわれる濃度の7割以下であることが好ましい。有機溶剤の濃度が高いとその後の溶剤洗浄工程が長くなり、生産性が低下する。例えば、溶剤にジメチルスルホキシドを用いた場合は、ジメチルスルホキシド水溶液の濃度を5〜85重量%とし、更に好ましくは、65〜80重量%とすることが好ましい。凝固浴の温度は、繊維側面が平滑となるように制御ことが好ましく、−10〜30℃とし、更に好ましくは5〜15℃とすることが好ましい。   In the present invention, the coagulation bath preferably contains a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the PAN polymer solution and a so-called coagulation promoting component. As the coagulation accelerating component, a component that does not dissolve the PAN-based polymer and is compatible with the solvent used in the PAN-based polymer solution is preferable. Specifically, it is preferable to use water. The conditions for the coagulation bath are preferably controlled so that the cross section of the coagulated yarn (single fiber) becomes a perfect circle, and the concentration of the organic solvent is preferably 70% or less of the concentration called the critical bath concentration. If the concentration of the organic solvent is high, the subsequent solvent cleaning step becomes long and the productivity is lowered. For example, when dimethyl sulfoxide is used as the solvent, the concentration of the aqueous dimethyl sulfoxide solution is preferably 5 to 85% by weight, more preferably 65 to 80% by weight. The temperature of the coagulation bath is preferably controlled so that the fiber side surface becomes smooth, and is preferably −10 to 30 ° C., more preferably 5 to 15 ° C.

PAN系重合体溶液を凝固浴中に導入して凝固させ糸条を形成した後、水洗工程、浴中延伸工程、油剤付与工程および乾燥工程を経て、炭素繊維前駆体繊維が得られる。また、上記の工程に乾熱延伸工程や蒸気延伸工程を加えてもよい。凝固後の糸条は、水洗工程を省略して直接浴中延伸を行っても良いし、溶媒を水洗工程により除去した後に浴中延伸を行っても良い。浴中延伸は、通常、30〜98℃の温度に温調された単一または複数の延伸浴中で行うことが好ましい。そのときの延伸倍率は、1〜5倍であることが好ましく、より好ましくは1〜3倍である。   A PAN-based polymer solution is introduced into a coagulation bath and solidified to form a yarn, and then a carbon fiber precursor fiber is obtained through a water washing step, an in-bath drawing step, an oil agent application step, and a drying step. Moreover, you may add a dry heat extending process and a steam extending process to said process. The solidified yarn may be directly stretched in the bath without the water washing step, or may be stretched in the bath after removing the solvent by the water washing step. Usually, the stretching in the bath is preferably performed in a single or a plurality of stretching baths adjusted to a temperature of 30 to 98 ° C. The draw ratio at that time is preferably 1 to 5 times, more preferably 1 to 3 times.

浴中延伸工程の後、単繊維同士の接着を防止する目的から、延伸された繊維糸条にシリコーン等からなる油剤を付与することが好ましい。シリコーン油剤は、耐熱性の高いアミノ変性シリコーン等の変性されたシリコーンを含有するものを用いることが好ましい。   After the stretching step in the bath, it is preferable to apply an oil agent made of silicone or the like to the stretched fiber yarn for the purpose of preventing adhesion between single fibers. As the silicone oil, it is preferable to use a silicone oil containing a modified silicone such as amino-modified silicone having high heat resistance.

乾燥工程は、公知の方法を利用することができる。例えば、乾燥温度が70〜200℃で乾燥時間が10秒から200秒の乾燥条件が好ましい結果を与える。生産性の向上や結晶配向度の向上として、乾燥工程後に加熱熱媒中で延伸することが好ましい。加熱熱媒としては、例えば、加圧水蒸気あるいは過熱水蒸気が操業安定性やコストの面で好適に用いられ、延伸倍率は1.5〜10倍であることが好ましい。   A known method can be used for the drying step. For example, a drying condition in which the drying temperature is 70 to 200 ° C. and the drying time is 10 seconds to 200 seconds gives preferable results. As an improvement in productivity and an improvement in the degree of crystal orientation, it is preferable to stretch in a heating heat medium after the drying step. As the heating heat medium, for example, pressurized steam or superheated steam is preferably used in terms of operational stability and cost, and the draw ratio is preferably 1.5 to 10 times.

このようにして得られた炭素繊維前駆体繊維の単繊維繊度は、0.01〜1.5dtexであることが好ましく、より好ましくは0.05〜1.0dtexであり、さらに好ましくは0.1〜0.8dtexである。単繊維繊度が小さすぎると、ローラーやガイドとの接触による糸切れ発生などにより、製糸工程および炭素繊維の焼成工程のプロセス安定性が低下することがある。一方、単繊維繊度が大きすぎると、耐炎化後の各単繊維における内外構造差が大きくなり、続く炭化工程でのプロセス性低下や、得られる炭素繊維の引張強度および引張弾性率が低下することがある。本発明における単繊維繊度(dtex)とは、単繊維10,000mあたりの重量(g)である。   The single fiber fineness of the carbon fiber precursor fiber thus obtained is preferably 0.01 to 1.5 dtex, more preferably 0.05 to 1.0 dtex, still more preferably 0.1. ~ 0.8 dtex. If the single fiber fineness is too small, the process stability of the yarn making process and the carbon fiber firing process may decrease due to the occurrence of yarn breakage due to contact with a roller or a guide. On the other hand, if the single fiber fineness is too large, the difference between the inner and outer structures of each single fiber after flame resistance will increase, and the processability in the subsequent carbonization process and the tensile strength and tensile modulus of the resulting carbon fiber will decrease. There is. The single fiber fineness (dtex) in the present invention is a weight (g) per 10,000 m of single fibers.

本発明の炭素繊維前駆体繊維の結晶配向度は、85%以上であることが好ましく、より好ましくは90%以上である。結晶配向度が85%を下回ると、得られる前駆体繊維の強度が低くなることがある。   The degree of crystal orientation of the carbon fiber precursor fiber of the present invention is preferably 85% or more, more preferably 90% or more. When the degree of crystal orientation is less than 85%, the strength of the obtained precursor fiber may be lowered.

得られる炭素繊維前駆体繊維は、通常、連続繊維(フィラメント)の形状である。また、その1糸条(マルチフィラメント)当たりのフィラメント数は、好ましくは1,000〜3,000,000本であり、より好ましくは12,000〜3,000,000本であり、さらに好ましくは24,000〜2,500,000本であり、最も好ましくは24,000〜2,000,000本である。得られる炭素繊維前駆体繊維は、延伸性が高いことから、単繊維繊度が小さいため、1糸条あたりのフィラメント数は、生産性の向上の目的からは多い方が好ましいが、あまりに多すぎると、束内部まで均一に耐炎化処理できないことがある。   The obtained carbon fiber precursor fiber is usually in the form of a continuous fiber (filament). The number of filaments per one yarn (multifilament) is preferably 1,000 to 3,000,000, more preferably 12,000 to 3,000,000, and still more preferably. The number is 24,000 to 2,500,000, and most preferably 24,000 to 2,000,000. Since the obtained carbon fiber precursor fiber has high drawability, and the single fiber fineness is small, the number of filaments per yarn is preferably larger for the purpose of improving productivity, but too much In some cases, the flameproofing treatment cannot be uniformly applied to the inside of the bundle.

次に、本発明の炭素繊維の製造方法について説明する。   Next, the manufacturing method of the carbon fiber of this invention is demonstrated.

前記した方法により製造された炭素繊維前駆体繊維を、200〜300℃の温度の空気中において、好ましくは延伸比0.8〜2.5で延伸しながら、耐炎化処理した後、300〜800℃の温度の不活性雰囲気中において、好ましくは延伸比0.9〜1.5で延伸しながら予備炭化処理し、1,000〜3,000℃の最高温度の不活性雰囲気中において、好ましくは延伸比0.9〜1.1で延伸しながら、炭化処理して炭素繊維を製造する。   The carbon fiber precursor fiber produced by the above-described method is subjected to a flame resistance treatment in air at a temperature of 200 to 300 ° C., preferably with a draw ratio of 0.8 to 2.5, and then 300 to 800. In an inert atmosphere at a temperature of ° C., preferably pre-carbonized while stretching at a stretch ratio of 0.9 to 1.5, preferably in an inert atmosphere at a maximum temperature of 1,000 to 3,000 ° C. Carbon fiber is produced by carbonizing while drawing at a draw ratio of 0.9 to 1.1.

ここで、炭化工程における張力とは炭化炉出側のロール手前で測定した張力(mN)を単繊維当たりに換算し、炭素繊維前駆体繊維の絶乾時の繊度(dTex)で割った値で示すものとする。   Here, the tension in the carbonization step is a value obtained by converting the tension (mN) measured before the roll on the exit side of the carbonization furnace into a single fiber and dividing by the fineness (dTex) of the carbon fiber precursor fiber at the time of absolute drying. Shall be shown.

本発明において、予備炭化処理や炭化処理は不活性雰囲気中で行われるが、不活性雰囲気に用いられるガスとしては、窒素、アルゴンおよびキセノンなどを例示することができ、経済的な観点からは窒素が好ましく用いられる。また、予備炭化処理では、その温度範囲における昇温速度を500℃/分以下に設定することが好ましい。また、炭化処理における最高温度は、所望する炭素繊維の力学物性に応じて1,200〜3,000℃とすることができるが、一般に炭化処理の最高温度が高いほど、得られる炭素繊維の引張弾性率が高くなるものの、引張強度は1,500℃付近で極大となるため、引張強度と引張弾性率の両方を高めるという目的からは、炭化処理の最高温度は1,200〜1,700℃であることが好ましく、より好ましくは1,300〜1,600℃である。   In the present invention, preliminary carbonization treatment and carbonization treatment are performed in an inert atmosphere. Examples of gases used in the inert atmosphere include nitrogen, argon, and xenon. Is preferably used. In the preliminary carbonization treatment, it is preferable to set the rate of temperature rise in the temperature range to 500 ° C./min or less. The maximum temperature in the carbonization treatment can be set to 1,200 to 3,000 ° C. according to the desired mechanical properties of the carbon fiber. Generally, the higher the maximum temperature in the carbonization treatment, the higher the tensile strength of the carbon fiber obtained. Although the modulus of elasticity increases, the tensile strength reaches a maximum in the vicinity of 1,500 ° C. Therefore, for the purpose of increasing both the tensile strength and the tensile modulus of elasticity, the maximum carbonization temperature is 1,200-1,700 ° C. It is preferable that it is 1,300-1,600 degreeC.

本発明の炭素繊維の平均単繊維径は、1.5〜7.5μmであることが好ましく、更に好ましくは1.5〜3.9μmである。平均単繊維径が1.5μmより小さいと、生産性が悪化するという問題が生じることがある。また、平均単繊維径が7.5μmより大きいと、単繊維内部の耐炎化処理が不十分となるため、ストランド引張弾性率が向上しないという問題が生じることがある。   The average single fiber diameter of the carbon fiber of the present invention is preferably 1.5 to 7.5 μm, more preferably 1.5 to 3.9 μm. When the average single fiber diameter is smaller than 1.5 μm, there may be a problem that productivity is deteriorated. On the other hand, if the average single fiber diameter is larger than 7.5 μm, the flameproofing treatment inside the single fiber becomes insufficient, which may cause a problem that the strand tensile elastic modulus is not improved.

得られた炭素繊維はその表面改質のため、電解処理することができる。電解処理に用いられる電解液には、硫酸、硝酸および塩酸等の酸性溶液や、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシド、炭酸アンモニウムおよび重炭酸アンモニウムのようなアルカリまたはそれらの塩を水溶液として使用することができる。ここで、電解処理に要する電気量は、適用する炭素繊維の炭化度に応じて適宜選択することができる。   The obtained carbon fiber can be subjected to electrolytic treatment for its surface modification. The electrolytic solution used for the electrolytic treatment includes an acidic solution such as sulfuric acid, nitric acid and hydrochloric acid, an alkali solution such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, ammonium carbonate and ammonium bicarbonate, or a salt thereof as an aqueous solution. Can be used as Here, the amount of electricity required for the electrolytic treatment can be appropriately selected according to the carbonization degree of the carbon fiber to be applied.

電解処理により、得られる繊維強化複合材料において炭素繊維マトリックスとの接着性が適正化することができ、接着が強すぎることによる複合材料の脆性的な破壊や、繊維方向の引張強度が低下する問題や、繊維方向における引張強度は高いものの樹脂との接着性に劣り、非繊維方向における強度特性が発現しないという問題が解消され、得られる繊維強化複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。   Electrolytic treatment can optimize the adhesion to the carbon fiber matrix in the resulting fiber reinforced composite material, causing brittle fracture of the composite material due to too strong adhesion and lowering the tensile strength in the fiber direction In addition, although the tensile strength in the fiber direction is high, the adhesive property with the resin is poor, and the problem that the strength characteristics in the non-fiber direction are not expressed is solved, and in the obtained fiber reinforced composite material, in both the fiber direction and the non-fiber direction A balanced strength characteristic is developed.

電解処理の後、炭素繊維に集束性を付与するため、サイジング処理を施すこともできる。サイジング剤には、使用する樹脂の種類に応じて、マトリックス樹脂等との相溶性の良いサイジング剤を適宜選択することができる。   After the electrolytic treatment, a sizing treatment can also be applied to give the carbon fiber a bundling property. As the sizing agent, a sizing agent having good compatibility with the matrix resin or the like can be appropriately selected according to the type of resin used.

本発明において得られるPAN系重合体を紡糸後に焼成して製造された炭素繊維は、プリプレグとしてオートクレーブ成形、織物などのプリフォームとしてレジントランスファーモールディングで成形、およびフィラメントワインディングで成形するなど種々の成形法により、航空機部材、圧力容器部材、自動車部材、釣り竿およびゴルフシャフトなどのスポーツ部材として、好適に用いることができる。   The carbon fibers produced by spinning the PAN-based polymer obtained in the present invention after spinning are formed by various molding methods such as autoclave molding as a prepreg, molding by resin transfer molding as a preform of a woven fabric, and molding by filament winding. Therefore, it can be suitably used as sports members such as aircraft members, pressure vessel members, automobile members, fishing rods, and golf shafts.

以下、実施例により本発明をさらに具体的に説明する。実施例で用いた測定方法を、次に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples. The measurement method used in the examples will be described next.

<重量平均分子量(Mw)>
測定しようとする重合体が、濃度0.1重量%でジメチルホルムアミド(0.01N−臭化リチウム添加)に溶解した検体溶液を作製する。作製した検体溶液について、GPC装置を用いて、次の条件で測定したGPC曲線から分子量分布曲線を求め、重量平均分子量Mwを算出する。
・カラム :極性有機溶媒系GPC用カラム
・流速 :0.5ml/分
・温度 :75℃
・試料濾過:メンブレンフィルター(0.45μmカット)
・注入量 :200μl
・検出器 :示差屈折率検出器
重合体の分子量は、分子量が異なる分子量既知の単分散ポリスチレンを少なくとも6種類用いて、溶出時間―分子量の検量線を作成し、その検量線上において、該当する溶出時間に対応するポリスチレン換算の分子量を読み取ることにより求める。
<Weight average molecular weight (Mw)>
A sample solution is prepared in which the polymer to be measured is dissolved in dimethylformamide (with 0.01 N lithium bromide) at a concentration of 0.1% by weight. For the prepared sample solution, a molecular weight distribution curve is obtained from a GPC curve measured under the following conditions using a GPC apparatus, and a weight average molecular weight Mw is calculated.
-Column: Column for polar organic solvent GPC-Flow rate: 0.5 ml / min-Temperature: 75 ° C
・ Sample filtration: Membrane filter (0.45μm cut)
・ Injection volume: 200 μl
・ Detector: Differential refractive index detector For the molecular weight of the polymer, use at least six types of monodispersed polystyrenes with different molecular weights and known molecular weights to prepare an elution time-molecular weight calibration curve. It is determined by reading the molecular weight in terms of polystyrene corresponding to time.

実施例では、GPC装置として(株)島津製作所製CLASS−LC2010を、カラムとして東ソー(株)製TSK−GEL−α―M(×2)+東ソー(株)製TSK−guard Column αを、ジメチルホルムアミドおよび臭化リチウムとして和光純薬工業(株)製を、メンブレンフィルターとしてミリポアコーポレーション製0.45μm−FHLP FILTERを、示差屈折率検出器として(株)島津製作所製RID−10AVを、検量線作成用の単分散ポリスチレンとして、分子量184000、427000、791000、1300000、1810000、および4210000のものを、それぞれ用いた。   In Examples, CLASS-LC2010 manufactured by Shimadzu Corporation as a GPC apparatus, TSK-GEL-α-M (× 2) manufactured by Tosoh Corporation as a column, and TSK-guard Column α manufactured by Tosoh Corporation as dimethyl A calibration curve was prepared using Wako Pure Chemical Industries, Ltd. as formamide and lithium bromide, 0.45 μm-FHLP FILTER manufactured by Millipore Corporation as a membrane filter, and RID-10AV manufactured by Shimadzu Corporation as a differential refractive index detector. As the monodisperse polystyrene, those having molecular weights of 184000, 427000, 791000, 1300000, 1810000, and 4210000 were used, respectively.

<重合体溶液中の重合体濃度>
紡糸に用いる重合体溶液を秤量し、攪拌した水の中に約10g投入する。投入する際は、重合体溶液の太さが直径約2mmになるように投入の高さを調節する。重合体溶液を水に投入することにより生成した重合体を網に入れ、80〜90℃の熱湯で4時間脱溶媒した後、120℃の温度で4時間乾燥させ、デシケーターで30分以上冷却した。冷却した重合体の重量と投入した重合体溶液の重量を用いて、重合体濃度を求めた。
・重合体濃度(%)=100×(乾燥重合体の重量)/(投入した重合体溶液の重量)
<残存連鎖移動剤濃度>
重合体溶液を1gサンプル瓶に入れ、そこにメタノール4gを加え、室温で3時間抽出を行う。その後、抽出後のメタノールをメンブレンフィルターでろ過後、ガスクロマトグラフィーを用いて次の条件で残存連鎖移動剤量を測定した。
・カラム :キャピラリーカラム
・キャリアガス流速:30mL/min
・温度 :150℃
・試料濾過 :メンブレンフィルター(0.45μmカット)
・注入量 :1μl
・検出器 :FID検出器
残存連鎖移動剤濃度の定量は、濃度既知の連鎖移動剤の標準サンプルを用いて、ピーク面積―濃度の検量線を作成し、その検量線上において、該当するピーク面積に対応する連鎖移動剤の濃度を読み取ることにより求める。
<Polymer concentration in polymer solution>
The polymer solution used for spinning is weighed, and about 10 g is put into stirred water. When charging, the height of the charging is adjusted so that the thickness of the polymer solution is about 2 mm in diameter. The polymer produced by putting the polymer solution into water is put into a net, desolvated with hot water at 80 to 90 ° C. for 4 hours, dried at 120 ° C. for 4 hours, and cooled with a desiccator for 30 minutes or more. . The polymer concentration was determined by using the weight of the cooled polymer and the weight of the charged polymer solution.
Polymer concentration (%) = 100 × (weight of dry polymer) / (weight of charged polymer solution)
<Residual chain transfer agent concentration>
The polymer solution is placed in a 1 g sample bottle, 4 g of methanol is added thereto, and extraction is performed at room temperature for 3 hours. Thereafter, the extracted methanol was filtered through a membrane filter, and the amount of residual chain transfer agent was measured under the following conditions using gas chromatography.
Column: Capillary column Carrier gas flow rate: 30 mL / min
・ Temperature: 150 ℃
・ Sample filtration: Membrane filter (0.45μm cut)
・ Injection volume: 1μl
・ Detector: FID detector To determine the residual chain transfer agent concentration, create a calibration curve of peak area-concentration using a standard sample of chain transfer agent with a known concentration, and set the corresponding peak area on the calibration curve. It is determined by reading the concentration of the corresponding chain transfer agent.

実施例では、ガスクロマトグラフィー装置として(株)島津製作所製GC−2014を、キャピラリーカラムとしてAgilent Technologies製 J&W Scientific DB-1を、メンブレンフィルターとしてWhatman社製Syringe Filter 13mm Disposable Filter Device 0.45μm Pore Sizeを、それぞれ用いた。   In Examples, GC-2014 manufactured by Shimadzu Corporation as a gas chromatography device, J & W Scientific DB-1 manufactured by Agilent Technologies as a capillary column, and Syringe Filter 13 mm Disposable Filter Device 0.45 μm Pore Size manufactured by Whatman as a membrane filter are used. , Respectively.

<炭素繊維前駆体繊維の品位等級の基準>
検査項目は、6000フィラメントの繊維束を1m/分の速度で1ライン走行させながら毛玉・毛羽の個数を数え、三段階評価した。評価基準は、下記のとおりである。
・等級1:繊維束300m中、0.1個未満
・等級2:繊維束300m中、0.1〜1個
・等級3:繊維束300m中、1個以上。
<Standard of grade grade of carbon fiber precursor fiber>
Inspection items were evaluated in three stages by counting the number of fluff and fluff while running a fiber bundle of 6000 filaments for 1 line at a speed of 1 m / min. The evaluation criteria are as follows.
-Grade 1: Less than 0.1 in 300 m of fiber bundle-Grade 2: 0.1 to 1 in 300 m of fiber bundle-Grade 3: One or more in 300 m of fiber bundle

<炭素繊維の品位等級の基準>
検査項目は、焼成後、表面処理・サイジング処理前に24000フィラメントの繊維束を1m/分の速度で1ライン走行させながら、毛玉・毛羽の個数を数え、三段階評価した。評価基準は、下記のとおりである。
・等級1:繊維束30m中、0.1個未満
・等級2:繊維束30m中、0.1〜1個
・等級3:繊維束30m中、1個以上。
<Standards for carbon fiber grades>
The inspection items were evaluated in three stages by counting the number of fluff and fluff while running a fiber bundle of 24000 filaments at a speed of 1 m / min after firing and before surface treatment / sizing treatment. The evaluation criteria are as follows.
Grade 1: Less than 0.1 in 30 m of fiber bundle Grade 2: 0.1 to 1 in 30 m of fiber bundle Grade 3: One or more in 30 m of fiber bundle

<炭素繊維束の引張強度および弾性率>
JIS R7601(1986)「樹脂含浸ストランド試験法」に従って求めた。測定する炭素繊維の樹脂含浸ストランドは、3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキシル−カルボキシレート(100重量部)/3フッ化ホウ素モノエチルアミン(3重量部)/アセトン(4重量部)を、炭素繊維または黒鉛化繊維に含浸させ、130℃の温度で30分硬化させて作製した。また、炭素繊維のストランドの測定本数は6本とし、各測定結果の平均値を引張強度とした。本実施例では、3、4−エポキシシクロヘキシルメチル−3、4−エポキシ−シクロヘキシル−カルボキシレートとして、ユニオンカーバイド(株)製“ベークライト”(登録商標)ERL4221を用いた。
[比較例1]
撹拌翼を備えた反応容器にアクリロニトリル100重量部およびジメチルスルホキシド200重量部を入れた。反応容器内の空間部を窒素置換した後、撹拌しながら下記の条件(条件1)に従って薬剤添加および熱処理を行い、溶液重合法によりポリアクリロニトリル系重合体溶液を得た。
・ ラジカル開始剤として2,2’−アゾビスイソブチロニトリル(以下、AIBNと
略記することもある。)を0.010重量部(0.2mmol/L)、反応容器に添加する。
(2)30℃から70℃へ昇温(昇温速度120℃/時間)
(3)70℃の温度で40分間保持
(4)70℃から30℃へ降温(降温速度120℃/時間)
得られたPAN系重合体のMwは340.0万であった。得られたポリアクリロニトリル系重合体溶液中に残存する未反応アクリロニトリルを重合させるため、反応容器内にジメチルスルホキシド170重量部、イタコン酸1重量部を加えた後に、下記の条件(条件2)に従って薬剤添加および熱処理を行い、溶液重合法によりPAN系重合体溶液を得た。
(1)重合体溶液中にAIBN0.4重量部、連鎖移動剤としてオクチルメルカプタン(以下、OMと略記することもある。)0.1重量部(1.5mmol/L)添加する。
・ 30℃から60℃へ昇温(昇温速度10℃/時間)
・ 60℃の温度で4時間保持
・ 60℃から80℃へ昇温(昇温速度10℃/時間)
・ 80℃の温度で6時間保持
得られたPAN系重合体のMwは38万でポリマー濃度は20.1%であった。また、残存重合開始剤濃度は0.2mmol/L(0.015重量部、A工程で加えた重合開始剤の150%に相当)、残存連鎖移動剤濃度は0.04mmol/L(0.042重量部に相当)であった。反応終了後、得られたPAN系重合体溶液を一時間かけて抜き出したところ、全体の98%を抜き出すことが出来た。
<Tensile strength and elastic modulus of carbon fiber bundle>
It was determined according to JIS R7601 (1986) “Resin-impregnated strand test method”. The resin impregnated strand of carbon fiber to be measured was 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate (100 parts by weight) / 3 boron trifluoride monoethylamine (3 parts by weight) / acetone (4 weights). Part) was impregnated with carbon fiber or graphitized fiber and cured at a temperature of 130 ° C. for 30 minutes. The number of carbon fiber strands measured was 6, and the average value of each measurement result was taken as the tensile strength. In this example, “Bakelite” (registered trademark) ERL4221 manufactured by Union Carbide Co., Ltd. was used as 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate.
[Comparative Example 1]
In a reaction vessel equipped with a stirring blade, 100 parts by weight of acrylonitrile and 200 parts by weight of dimethyl sulfoxide were placed. After substituting the space in the reaction vessel with nitrogen, the chemical addition and heat treatment were performed in accordance with the following conditions (condition 1) while stirring, and a polyacrylonitrile-based polymer solution was obtained by a solution polymerization method.
-As a radical initiator, add 2,10'-azobisisobutyronitrile (hereinafter sometimes abbreviated as AIBN) 0.010 parts by weight (0.2 mmol / L) to the reaction vessel.
(2) Temperature increase from 30 ° C to 70 ° C (temperature increase rate 120 ° C / hour)
(3) Hold for 40 minutes at a temperature of 70 ° C. (4) Decrease in temperature from 70 ° C. to 30 ° C. (Cooling rate 120 ° C./hour)
Mw of the obtained PAN polymer was 340.0 million. In order to polymerize the unreacted acrylonitrile remaining in the obtained polyacrylonitrile-based polymer solution, 170 parts by weight of dimethyl sulfoxide and 1 part by weight of itaconic acid were added to the reaction vessel, and then the drug was added according to the following conditions (condition 2). Addition and heat treatment were performed, and a PAN polymer solution was obtained by a solution polymerization method.
(1) 0.4 part by weight of AIBN and 0.1 part by weight (1.5 mmol / L) of octyl mercaptan (hereinafter sometimes abbreviated as OM) as a chain transfer agent are added to the polymer solution.
・ Temperature rise from 30 ° C to 60 ° C (Temperature increase rate 10 ° C / hour)
-Hold for 4 hours at a temperature of 60 ° C-Increase the temperature from 60 ° C to 80 ° C (temperature increase rate 10 ° C / hour)
-Hold | maintained at the temperature of 80 degreeC for 6 hours Mw of the obtained PAN-type polymer was 380,000, and the polymer concentration was 20.1%. The residual polymerization initiator concentration was 0.2 mmol / L (0.015 parts by weight, corresponding to 150% of the polymerization initiator added in Step A), and the residual chain transfer agent concentration was 0.04 mmol / L (0.042). Equivalent to parts by weight). After completion of the reaction, the obtained PAN-based polymer solution was withdrawn over one hour, and 98% of the whole could be withdrawn.

その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、条件1での重合終了後のMwは二回目が330.1万、三回目が329.8万であった。   Thereafter, the main polymerization was continuously repeated without washing the reaction vessel. As a result, the Mw after the polymerization under the condition 1 was 330.10,000 for the second time and 329.8 million for the third time.


比較例1および以下の各実施例と各比較例の結果を、まとめて表1に示す。

[比較例2]
アクリロニトリル/イタコン酸混合物(アクリロニトリル:イタコン酸=99.7mol:0.3mol)を110重量部、ジメチルスルホキシドを390重量部の割合で混合した混合溶液を攪拌翼を備えた反応容器に入れ、反応容器内の空間部を窒素置換し、反応容器温度を60℃にした後、下記のA工程およびB工程の薬剤添加および熱処理を攪拌しながら行い、溶液重合法によりPAN系重合体を得た。

Table 1 summarizes the results of Comparative Example 1 and the following Examples and Comparative Examples.

[Comparative Example 2]
A mixed solution prepared by mixing 110 parts by weight of an acrylonitrile / itaconic acid mixture (acrylonitrile: itaconic acid = 99.7 mol: 0.3 mol) and 390 parts by weight of dimethyl sulfoxide is placed in a reaction vessel equipped with a stirring blade. The inside space was replaced with nitrogen, and the reaction vessel temperature was set to 60 ° C. Then, the chemical addition and heat treatment in the following Step A and Step B were performed with stirring, and a PAN polymer was obtained by a solution polymerization method.

[A工程]
(1)ラジカル開始剤としてAIBNを0.008重量部(0.1mmol/L)、連鎖移動剤としてOMを0.013重量部(0.18mmol/L)、それぞれ反応容器内へ添加
(2)60℃で2時間保持
[B工程]
(1)A工程終了後、AIBNを0.43重量部(5.2mmol/L)、OMを0.12重量部(1.67mmol/L)、それぞれ反応容器内へ追加
(2)60℃から75℃まで昇温(昇温速度 5℃/時間)
(3)75℃で8時間保持
B工程で得られたPAN系重合体のMwは38万でポリマー濃度は19.9%であった。また、B工程終了時の残存重合開始剤濃度は0.5mmol/L(0.04重量部、A工程で加えた重合開始剤量の500%に相当)、残存連鎖移動剤濃度は0.13mmol/L(0.009重量部、A工程で加えた連鎖移動剤量の69%に相当)であった。反応終了後、得られたPAN系重合体溶液を一時間かけて抜き出したところ、全体の98%を抜き出すことが出来た。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは二回目が300.0万、二回目が290.5万、三回目が291.2万であった。
[Step A]
(1) Add AIBN as a radical initiator 0.008 part by weight (0.1 mmol / L) and OM as a chain transfer agent 0.013 part by weight (0.18 mmol / L), respectively, into the reaction vessel (2) Hold at 60 ° C. for 2 hours [Step B]
(1) After completion of step A, 0.43 parts by weight of AIBN (5.2 mmol / L) and 0.12 parts by weight (1.67 mmol / L) of OM were added to the reaction vessel, respectively (2) from 60 ° C. Temperature rise to 75 ° C (temperature rise rate 5 ° C / hour)
(3) Hold at 75 ° C. for 8 hours
The Mw of the PAN polymer obtained in Step B was 380,000 and the polymer concentration was 19.9%. Further, the concentration of the residual polymerization initiator at the end of Step B was 0.5 mmol / L (0.04 parts by weight, corresponding to 500% of the amount of the polymerization initiator added in Step A), and the residual chain transfer agent concentration was 0.13 mmol. / L (0.009 parts by weight, corresponding to 69% of the amount of chain transfer agent added in step A). After completion of the reaction, the obtained PAN-based polymer solution was withdrawn over one hour, and 98% of the whole could be withdrawn. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after the polymerization in the step A was 300,000 for the second time, 2905,000 for the second time, and 291 for the third time. It was 20,000.

[実施例1]
B工程の75℃での反応時間を8時間から18時間へと変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の45%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の6%であった。PAN系重合体溶液の抜き出し終了後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.5万、三回目が299.4万であった。
[Example 1]
Polymerization was carried out in the same manner as in Comparative Example 2 except that the reaction time at 75 ° C. in Step B was changed from 8 hours to 18 hours. The amount of residual polymerization initiator at the end of Step B was 45% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 6% of the chain transfer agent added in Step A. After the completion of the extraction of the PAN-based polymer solution, the main polymerization was repeated continuously without washing the reaction vessel. As a result, the Mw after the completion of the polymerization in the step A was 300,000 for the first time and 299 for the second time. It was 50,000 and the third was 299.4 million.

[比較例3]
B工程での重合温度を75℃から80℃へと変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の68%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の8%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が298.6万、三回目が298.4万であった。
[Comparative Example 3]
Polymerization was carried out in the same manner as in Comparative Example 2 except that the polymerization temperature in Step B was changed from 75 ° C to 80 ° C. The amount of residual polymerization initiator at the end of Step B was 68% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 8% of the chain transfer agent added in Step A. Thereafter, the main polymerization was continuously repeated without washing the reaction vessel. As a result, the Mw after completion of the polymerization in Step A was 300,000 for the first time, 298.6 million for the second time, and 298 for the third time. It was 40,000.

[実施例2]
B工程での重合温度を75℃から85℃へと変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の2%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の1%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.9万、三回目が300.0万であった。
[Example 2]
Polymerization was performed in the same manner as in Comparative Example 2 except that the polymerization temperature in Step B was changed from 75 ° C to 85 ° C. The amount of residual polymerization initiator at the end of Step B was 2% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 1% of the chain transfer agent added in Step A. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after the polymerization in the step A was 300,000 for the first time, 299.9 million for the second time, and 300 for the third time. It was 0.0 million.

[実施例3]
A工程で添加するAIBNを0.008重量部(0.1mmol/L)から0.016重量部(0.2mmol/L)、OMを0.013重量部(0.18mmol/L)から0.008重量部(0.11mmol/L)、B工程で添加するAIBNを0.43重量部から0.42重量部、OMを0.12重量部から0.13重量部へと変更し、A工程で60℃での反応時間を2時間から1.4時間へ変更したこと以外は比較例3と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の34%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の15%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.5万、三回目が299.6万であった。
[Example 3]
The AIBN added in the step A is 0.008 part by weight (0.1 mmol / L) to 0.016 part by weight (0.2 mmol / L), and OM is 0.013 part by weight (0.18 mmol / L) to 0. 008 parts by weight (0.11 mmol / L), AIBN added in Step B was changed from 0.43 parts by weight to 0.42 parts by weight, and OM was changed from 0.12 parts by weight to 0.13 parts by weight. The polymerization was carried out in the same manner as in Comparative Example 3 except that the reaction time at 60 ° C. was changed from 2 hours to 1.4 hours. The amount of residual polymerization initiator at the end of Step B was 34% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 15% of the chain transfer agent added in Step A. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after the completion of the polymerization in the step A was 300,000 for the first time, 299.5 million for the second time, and 299 for the third time. It was 60,000.

[実施例4]
A工程で添加するAIBNを0.008重量部(0.1mmol/L)から0.032重量部(0.4mmol/L)、OMを0.013重量部(0.18mmol/L)から0.004重量部(0.06mmol/L)、B工程で添加するAIBNを0.43重量部から0.40重量部、OMを0.12重量部から0.13重量部へと変更し、A工程で60℃での反応時間を2時間から1時間へ変更したこと以外は比較例3と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の17%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の31%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.3万、三回目が299.5万であった。
[Example 4]
The AIBN added in step A is 0.008 parts by weight (0.1 mmol / L) to 0.032 parts by weight (0.4 mmol / L), and OM is 0.013 parts by weight (0.18 mmol / L) to 0. 004 parts by weight (0.06 mmol / L), AIBN added in Step B is changed from 0.43 parts by weight to 0.40 parts by weight, and OM is changed from 0.12 parts by weight to 0.13 parts by weight. The polymerization was carried out in the same manner as in Comparative Example 3 except that the reaction time at 60 ° C. was changed from 2 hours to 1 hour. The amount of residual polymerization initiator at the end of Step B was 17% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 31% of the chain transfer agent added in Step A. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after the completion of the polymerization in the step A was 300,000 for the first time, 299.3 million for the second time, and 299 for the third time. It was 50,000.

[実施例5]
A工程で添加するAIBNを0.008重量部(0.1mmol/L)から0.065重量部(0.8mmol/L)、OMを0.013重量部(0.18mmol/L)から0.001重量部(0.01mmol/L)、B工程で添加するAIBNを0.43重量部から0.37重量部、OMを0.12重量部から0.13重量部へと変更し、A工程で60℃での反応時間を2時間から0.7時間へ変更したこと以外は比較例3と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の8%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の123%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.0万、三回目が299.1万であった。
[Example 5]
The AIBN added in step A is 0.008 parts by weight (0.1 mmol / L) to 0.065 parts by weight (0.8 mmol / L), and OM is 0.013 parts by weight (0.18 mmol / L) to 0. 001 parts by weight (0.01 mmol / L), AIBN added in Step B is changed from 0.43 parts by weight to 0.37 parts by weight, and OM is changed from 0.12 parts by weight to 0.13 parts by weight. The polymerization was carried out in the same manner as in Comparative Example 3 except that the reaction time at 60 ° C. was changed from 2 hours to 0.7 hours. The amount of residual polymerization initiator at the end of Step B was 8% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 123% of the chain transfer agent added in Step A. Thereafter, the main polymerization was repeated continuously without washing the reaction vessel. As a result, the Mw after completion of the polymerization in the step A was 300,000 for the first time, 299,000 for the second time, and 299 for the third time. It was 10,000.

[比較例4]
A工程で添加するAIBNを0.008重量部(0.1mmol/L)から0.004重量部(0.05mmol/L)、OMを0.013重量部(0.18mmol/L)から0.019重量部(0.26mmol/L)、B工程で添加するOMを0.12重量部から0.11重量部へと変更し、A工程で60℃での反応時間を2時間から2.9時間へ変更したこと以外は比較例3と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の135%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の5%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が297.3万、三回目が297.1万であった。
[Comparative Example 4]
The AIBN added in step A is 0.008 parts by weight (0.1 mmol / L) to 0.004 parts by weight (0.05 mmol / L), and OM is 0.013 parts by weight (0.18 mmol / L) to 0. 019 parts by weight (0.26 mmol / L), OM added in Step B was changed from 0.12 parts by weight to 0.11 parts by weight, and in Step A, the reaction time at 60 ° C. was changed from 2 hours to 2.9. Polymerization was carried out in the same manner as in Comparative Example 3 except that the time was changed. The amount of residual polymerization initiator at the end of Step B was 135% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 5% of the chain transfer agent added in Step A. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after completion of the polymerization in the step A was 300,000 for the first time, 297.3 million for the second time, and 297 for the third time. It was 10,000.

[実施例6]
A工程で添加する重合開始剤をAIBN0.008重量部(0.1mmol/L)から2,2’−アゾビス−2,4−ジメチルバレロニトリル(以下、ADVNと略記することもある。)0.012重量部(0.1mmol/L)、OMを0.013重量部(0.18mmol/L)から0.012重量部(0.16mmol/L)、B工程で添加する重合開始剤をAIBN0.43重量部からADVN0.97重量部、OMを0.12重量部から0.11重量部へと変更し、A工程で60℃での反応時間を2時間から0.8時間へ変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の0%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の71%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.2万、三回目が299.1万であった。
[Example 6]
The polymerization initiator added in step A is 0.008 part by weight of AIBN (0.1 mmol / L) to 2,2′-azobis-2,4-dimethylvaleronitrile (hereinafter sometimes abbreviated as ADVN). 012 parts by weight (0.1 mmol / L), 0.013 parts by weight (0.18 mmol / L) to 0.012 parts by weight (0.16 mmol / L) of OM, and AIBN 0. Other than changing 43 parts by weight to ADVN 0.97 parts by weight, OM from 0.12 parts by weight to 0.11 parts by weight, and changing the reaction time at 60 ° C. from 2 hours to 0.8 hours in Step A Was polymerized in the same manner as in Comparative Example 2. The amount of residual polymerization initiator at the end of Step B was 0% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 71% of the chain transfer agent added in Step A. Thereafter, the main polymerization was continuously repeated without washing the reaction vessel. As a result, the Mw after completion of the polymerization in the step A was 300,000 for the first time, 299.2 million for the second time, and 299 for the third time. It was 10,000.

[実施例7]
A工程で添加するADVNを0.012重量部(0.1mmol/L)から0.002重量部(0.02mmol/L)、OMを0.012重量部(0.16mmol/L)から0.030重量部(0.42mmol/L)、B工程で添加するADVNを0.97重量部から0.98重量部、OMを0.11重量部から0.09重量部へと変更し、A工程で60℃での反応時間を0.8時間から2時間へ変更したこと以外は実施例6と同様にして重合を行った。
B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の0%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の23%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.7万、三回目が299.8万であった。
[Example 7]
The ADVN added in step A is 0.012 parts by weight (0.1 mmol / L) to 0.002 parts by weight (0.02 mmol / L), and OM is 0.012 parts by weight (0.16 mmol / L) to 0. 030 parts by weight (0.42 mmol / L), ADVN added in Step B is changed from 0.97 parts by weight to 0.98 parts by weight, and OM is changed from 0.11 parts by weight to 0.09 parts by weight. The polymerization was carried out in the same manner as in Example 6 except that the reaction time at 60 ° C. was changed from 0.8 hours to 2 hours.
The amount of residual polymerization initiator at the end of Step B was 0% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 23% of the chain transfer agent added in Step A. Thereafter, the main polymerization was continuously repeated without washing the reaction vessel. As a result, the Mw after completion of the polymerization in the step A was 300,000 for the first time, 297,000 for the second time, and 299 for the third time. It was 80,000.

[実施例8]
A工程で添加する重合開始剤をAIBN0.008重量部(0.1mmol/L)から2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル(以下、V−70と略記することもある。)0.002重量部(0.01mmol/L)、OMを0.013重量部(0.18mmol/L)から0.003重量部(0.04mmol/L)、B工程で添加する重合開始剤をAIBN0.43重量部からV−70 0.61重量部、OMを0.12重量部から0.03重量部へと変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の0%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の78%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.1万、三回目が299.2万であった。
[Example 8]
The polymerization initiator added in step A is abbreviated as AIBN 0.008 part by weight (0.1 mmol / L) to 2,2′-azobis-4-methoxy-2,4-dimethylvaleronitrile (hereinafter referred to as V-70). There are also 0.002 parts by weight (0.01 mmol / L) and 0.013 parts by weight (0.18 mmol / L) to 0.003 parts by weight (0.04 mmol / L) of OM. Polymerization was carried out in the same manner as in Comparative Example 2 except that the polymerization initiator was changed from 0.43 parts by weight of AIBN to 0.61 part by weight of V-70, and OM was changed from 0.12 parts by weight to 0.03 parts by weight. . The amount of residual polymerization initiator at the end of Step B was 0% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 78% of the chain transfer agent added in Step A. Thereafter, when the main polymerization was repeated continuously without washing the reaction vessel, the Mw after the completion of the polymerization in the step A was 300,000 for the first time, 291,000 for the second time, and 299 for the third time. It was 20,000.

[実施例9]
B工程で添加する重合開始剤をAIBN0.43重量部からV−70 0.59重量部、OMを0.12重量部から0.02重量部へと変更したこと以外は比較例2と同様にして重合を行った。B工程終了時の残存重合開始剤量はA工程で加えた重合開始剤の1%、残存連鎖移動剤量はA工程で加えた連鎖移動剤の12%であった。その後、反応容器の洗浄をせずに連続して本重合を繰り返したところ、A工程での重合終了後のMwは一回目が300.0万、二回目が299.9万、三回目が299.9万であった。
[Example 9]
In the same manner as in Comparative Example 2, except that the polymerization initiator added in Step B was changed from 0.43 parts by weight of AIBN to 0.59 parts by weight of V-70 and OM was changed from 0.12 parts by weight to 0.02 parts by weight. Polymerization was performed. The amount of residual polymerization initiator at the end of Step B was 1% of the polymerization initiator added in Step A, and the amount of residual chain transfer agent was 12% of the chain transfer agent added in Step A. Thereafter, the main polymerization was continuously repeated without washing the reaction vessel. As a result, the Mw after the polymerization in the step A was 300,000 for the first time, 299.9 million for the second time, and 299 for the third time. It was 90,000.

[実施例10]
実施例3の三回目の重合で得られたPAN系重合体溶液に、アンモニアガスをpHが8.5になるまで吹き込むことによりPAN系重合体に含まれるイタコン酸を中和し、紡糸溶液を作製した。得られたPAN系重合体溶液を、目開き0.5μmのフィルター通過後、40℃の温度で、孔数6,000、口金孔径0.15mmの紡糸口金を用い、一旦空気中に吐出し、約2mmの空間を通過させた後、3℃の温度にコントロールした20重量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により紡糸し凝固糸条とした。なお、凝固糸条は吐出線速度7m/分、紡糸ドラフト率24の条件で得た。このようにして得られた凝固糸条を、水洗した後、90℃の温水中で3倍の浴中延伸倍率で延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与して浴中延伸糸を得た。このようにして得られた浴中延伸糸を165℃の温度に加熱したローラーを用いて30秒間乾燥を行い、7本合糸し、トータルフィラメント数42000とした上で、5倍の水蒸気延伸倍率条件で加圧水蒸気延伸を行い、単繊維繊度0.1dtex、フィラメント数42000の炭素繊維前駆体繊維を得た。得られた炭素繊維前駆体繊維の品位は優れており、等級は1で、製糸工程通過性も安定していた。
[Example 10]
The itaconic acid contained in the PAN polymer was neutralized by blowing ammonia gas into the PAN polymer solution obtained in the third polymerization in Example 3 until the pH was 8.5, and the spinning solution was Produced. The obtained PAN-based polymer solution was passed through a filter having a mesh opening of 0.5 μm, and then discharged into the air at a temperature of 40 ° C. at a temperature of 40 ° C. using a spinneret having a number of holes of 6,000 and a diameter of the nozzle hole of 0.15 mm. After passing through a space of about 2 mm, spinning was performed by a dry-wet spinning method introduced into a coagulation bath composed of an aqueous solution of 20% by weight dimethyl sulfoxide controlled at a temperature of 3 ° C. to obtain a coagulated yarn. The solidified yarn was obtained under the conditions of a discharge linear velocity of 7 m / min and a spinning draft rate of 24. The coagulated yarn thus obtained is washed with water and then stretched at 90 ° C. in warm water at a stretch ratio of 3 times in a bath, and further an amino-modified silicone-based silicone oil agent is added to obtain a stretch yarn in the bath. It was. The thus obtained stretched yarn in the bath was dried for 30 seconds using a roller heated to a temperature of 165 ° C., and 7 yarns were combined to give a total filament number of 42,000. Under the conditions, pressurized steam drawing was performed to obtain a carbon fiber precursor fiber having a single fiber fineness of 0.1 dtex and a filament number of 42,000. The quality of the obtained carbon fiber precursor fiber was excellent, the grade was 1, and the yarn passing through process was stable.

得られた炭素繊維前駆体繊維を、240〜260℃の温度の温度分布を有する空気中において延伸比1.0で延伸しながらで90分間耐炎化処理し、耐炎化繊維を得た。続いて、得られた耐炎化繊維を300〜700℃の温度の温度分布を有する窒素雰囲気中において、延伸比1.2で延伸しながら予備炭化処理を行い、さらに最高温度1500℃の窒素雰囲気中において、延伸比を0.97に設定して炭化処理を行い、連続した炭素繊維を得た。このときの焼成工程通過性はいずれも良好であり、等級は1であった。   The obtained carbon fiber precursor fiber was flameproofed for 90 minutes while being stretched at a stretch ratio of 1.0 in air having a temperature distribution of 240 to 260 ° C. to obtain flameproofed fibers. Subsequently, in the nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., the obtained flame-resistant fiber is subjected to preliminary carbonization while being drawn at a draw ratio of 1.2, and further in a nitrogen atmosphere having a maximum temperature of 1500 ° C. , Carbonization was performed with the draw ratio set to 0.97 to obtain continuous carbon fibers. In this case, the firing process was all good and the grade was 1.

得られた炭素繊維束のストランド物性を測定したところ、強度は8.0GPaであり、弾性率は325GPaであった。   When the strand physical property of the obtained carbon fiber bundle was measured, the strength was 8.0 GPa and the elastic modulus was 325 GPa.

実施例10および比較例5における炭素繊維前駆体繊維と炭素繊維の各物性は、表2に示した。   The physical properties of the carbon fiber precursor fiber and the carbon fiber in Example 10 and Comparative Example 5 are shown in Table 2.

[比較例5]
比較例2の三回目の重合で得られたPAN系重合体溶液を用いて、実施例10と同様にして炭素繊維前駆体繊維および炭素繊維を得た。得られた炭素繊維前駆体繊維の等級は2であり、実施例10に比べて製糸工程通過性もやや不安定になっていた。
[Comparative Example 5]
Carbon fiber precursor fibers and carbon fibers were obtained in the same manner as in Example 10 using the PAN-based polymer solution obtained by the third polymerization in Comparative Example 2. The grade of the obtained carbon fiber precursor fiber was 2, and the yarn passing through the spinning process was slightly unstable as compared with Example 10.

得られた炭素繊維束のストランド物性は、強度・弾性率ともに実施例10とほぼ同等であったが、炭素繊維の等級は2であり、焼成工程通過性がやや不良であった。
The strand properties of the obtained carbon fiber bundle were almost the same as those of Example 10 in both strength and elastic modulus, but the grade of carbon fiber was 2, and the firing process passability was slightly poor.

Figure 0005504678
Figure 0005504678

Figure 0005504678
Figure 0005504678

Claims (7)

アクリロニトリルと0.01〜0.8mmol/Lの重合開始剤を含む溶液を加熱し、重合することで、重量平均分子量Mwが80万〜800万であるポリアクリロニトリルと未反応のアクリロニトリルを含む重合体溶液を得るA工程と、A工程と同一重合槽内で、前記A工程で得られた未反応のアクリロニトリルとポリアクリロニトリルを含む重合体溶液にA工程における重合開始剤の使用量とB工程における重合開始剤の使用量の比(A/B)が0.001〜0.2となる量の重合開始剤と、連鎖移動剤を添加し加熱することで、前記重合体溶液中のポリアクリロニトリルの重量平均分子量Mwを10万〜70万とするB工程の2工程で重合するポリアクリロニトリル系重合体溶液の製造方法であって、B工程終了時における重合槽内の残存重合開始剤量がA工程で加える重合開始剤量の0〜50%となるよう、B工程の加熱温度および/または加熱時間を調整するポリアクリロニトリル系重合体溶液の製造方法。 A solution containing acrylonitrile and 0.01 to 0.8 mmol / L polymerization initiator is heated and polymerized to polymerize polyacrylonitrile having a weight average molecular weight Mw of 800,000 to 8 million and unreacted acrylonitrile. A step for obtaining a coalescence solution, and in the same polymerization vessel as in step A, in the polymer solution containing unreacted acrylonitrile and polyacrylonitrile obtained in step A, the amount of polymerization initiator used in step A and in step B By adding and heating the polymerization initiator in an amount such that the ratio (A / B) of the amount of polymerization initiator used is 0.001 to 0.2, the polyacrylonitrile in the polymer solution is heated. A method for producing a polyacrylonitrile-based polymer solution that is polymerized in two steps of the B step with a weight average molecular weight Mw of 100,000 to 700,000, and in the polymerization tank at the end of the B step A method for producing a polyacrylonitrile-based polymer solution, wherein the heating temperature and / or the heating time in step B are adjusted so that the amount of residual polymerization initiator is 0 to 50% of the amount of polymerization initiator added in step A. A工程において、アクリロニトリルと0.01〜0.8mmol/Lの重合開始剤を含む溶液が、連鎖移動剤を含む請求項1記載のポリアクリロニトリル系重合体溶液の製造方法。 The method for producing a polyacrylonitrile-based polymer solution according to claim 1, wherein in step A, the solution containing acrylonitrile and 0.01 to 0.8 mmol / L polymerization initiator contains a chain transfer agent. A工程及びB工程にて使用する連鎖移動剤の合計が0.1〜5mmol/Lであり、かつ、A工程における連鎖移動剤の使用量とB工程における連鎖移動剤の使用量の比(A/B)が0.04〜0.8であり、B工程終了時における重合槽内の残存連鎖移動剤量がA工程で使用する連鎖移動剤量の0〜25%である請求項2記載のポリアクリロニトリル系重合体溶液の製造方法。 The total of the chain transfer agents used in the A step and the B step is 0.1 to 5 mmol / L, and the ratio of the amount of chain transfer agent used in the A step to the amount of chain transfer agent used in the B step (A / B) is 0.04 to 0.8, and the amount of residual chain transfer agent in the polymerization tank at the end of step B is 0 to 25% of the amount of chain transfer agent used in step A. A method for producing a polyacrylonitrile-based polymer solution. A工程における重合開始剤の使用量をB工程における重合開始剤の使用量で割った値(A/B)が0.03〜0.1である請求項1〜3のいずれかに記載のポリアクリロニトリル系重合体溶液の製造方法。 The value (A / B) which divided the usage-amount of the polymerization initiator in A process by the usage-amount of the polymerization initiator in B process is 0.03-0.1, The poly in any one of Claims 1-3 A method for producing an acrylonitrile-based polymer solution. B工程の終了時における残存重合体開始剤量がA工程とB工程で加えた重合体開始剤の合計投入量の0〜5%である請求項1〜4のいずれかに記載のポリアクリロニトリル系重合体溶液の製造方法。 The polyacrylonitrile system according to any one of claims 1 to 4, wherein the amount of residual polymer initiator at the end of step B is 0 to 5% of the total amount of polymer initiator added in step A and step B. A method for producing a polymer solution. 請求項1〜5のいずれかに記載の方法で得られたポリアクリロニトリル系重合体溶液を乾湿式紡糸する炭素繊維前駆体繊維の製造方法。 The manufacturing method of the carbon fiber precursor fiber which carries out dry-wet spinning of the polyacrylonitrile-type polymer solution obtained by the method in any one of Claims 1-5. 請求項6に記載の方法で得られた炭素繊維前駆体繊維を、200〜300℃の温度の空気中において耐炎化処理した後、300〜800℃の温度の不活性雰囲気中において予備炭化処理し、次いで1,000〜3,000℃の温度の不活性雰囲気中において炭化処理する炭素繊維の製造方法。 The carbon fiber precursor fiber obtained by the method according to claim 6 is subjected to flame resistance treatment in air at a temperature of 200 to 300 ° C, and then pre-carbonized in an inert atmosphere at a temperature of 300 to 800 ° C. Then, a carbon fiber production method in which carbonization is performed in an inert atmosphere at a temperature of 1,000 to 3,000 ° C.
JP2009085796A 2009-03-31 2009-03-31 Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber Expired - Fee Related JP5504678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085796A JP5504678B2 (en) 2009-03-31 2009-03-31 Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085796A JP5504678B2 (en) 2009-03-31 2009-03-31 Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber

Publications (2)

Publication Number Publication Date
JP2010235794A JP2010235794A (en) 2010-10-21
JP5504678B2 true JP5504678B2 (en) 2014-05-28

Family

ID=43090431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085796A Expired - Fee Related JP5504678B2 (en) 2009-03-31 2009-03-31 Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP5504678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040706B (en) * 2010-12-20 2012-11-14 金发科技股份有限公司 Method for preparing polyacrylonitrile spinning solution
KR102156109B1 (en) * 2017-09-29 2020-09-15 주식회사 엘지화학 Method for preparing acrylonitrile based polymer for preparing carbon fiber
CN115584573A (en) * 2022-10-09 2023-01-10 江苏恒神股份有限公司 T700-grade wet large-tow carbon fiber and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182317A (en) * 1987-01-22 1988-07-27 Toray Ind Inc Ultrahigh molecular weight acrylonitrile polymer and its production
US20040092409A1 (en) * 2002-11-11 2004-05-13 Liesen Gregory Peter Alkyl (meth) acrylate copolymers
JP2007197672A (en) * 2005-12-27 2007-08-09 Toray Ind Inc Manufacturing method of polyacrylonitrile
BRPI0715985A2 (en) * 2006-10-18 2013-08-06 Toray Industries polyacrylonitrile-based polymer, production method of polyacrylonitrile-based polymer, polyacrylonitrile-based polymer solution, production method of a precursor fiber of cabaret, method of production of cabaret fiber and cabaret fiber

Also Published As

Publication number Publication date
JP2010235794A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5691366B2 (en) Carbon fiber manufacturing method
JP5169939B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP5397292B2 (en) Polyacrylonitrile-based polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
JP4924469B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
EP2554725A2 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
JP5109936B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5151809B2 (en) Method for producing carbon fiber precursor fiber
JP2011213773A (en) Polyacrylonitrile-based polymer and carbon fiber
JP2010100970A (en) Method for producing carbon fiber
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JP2012017461A (en) Polyacrylonitrile-based copolymer, method of manufacturing the same, carbon fiber precursor fiber, and carbon fiber
JP2011042893A (en) Method for producing polyacrylonitrile-based fiber and method for producing carbon fiber
JP5066952B2 (en) Method for producing polyacrylonitrile-based polymer composition, and method for producing carbon fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
JP2012201727A (en) Method for producing polyacrylonitrile copolymer, method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5146004B2 (en) Polyacrylonitrile polymer composition and method for producing carbon fiber
JP2012025837A (en) Method for producing polyacrylonitrile mixed solution, carbon fiber precursor fiber, and carbon fiber
JP2008308777A (en) Carbon fiber and method for producing polyacrylonitrile-based precursor fiber for producing carbon fiber
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP4957634B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber bundle and method for producing the same
JP2010031418A (en) Method for producing precursor fiber for carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

LAPS Cancellation because of no payment of annual fees