KR101490529B1 - Preparation method of polyacrylonitrile precursor based carbon Fiber - Google Patents

Preparation method of polyacrylonitrile precursor based carbon Fiber Download PDF

Info

Publication number
KR101490529B1
KR101490529B1 KR20090135008A KR20090135008A KR101490529B1 KR 101490529 B1 KR101490529 B1 KR 101490529B1 KR 20090135008 A KR20090135008 A KR 20090135008A KR 20090135008 A KR20090135008 A KR 20090135008A KR 101490529 B1 KR101490529 B1 KR 101490529B1
Authority
KR
South Korea
Prior art keywords
spinning
polyacrylonitrile
fibers
precursor
carbon fiber
Prior art date
Application number
KR20090135008A
Other languages
Korean (ko)
Other versions
KR20110078249A (en
Inventor
최성현
방윤혁
조원섭
김병한
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR20090135008A priority Critical patent/KR101490529B1/en
Publication of KR20110078249A publication Critical patent/KR20110078249A/en
Application granted granted Critical
Publication of KR101490529B1 publication Critical patent/KR101490529B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/103De-aerating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Abstract

본 발명은 고성능의 탄소섬유 제조를 위하여 폴리아크릴로니트릴 (polyacrylonitrile)계 전구체(precursor) 섬유를 생산함에 있어 방사 공정에 방사원액(dope)을 안정적으로 공급하여 공정 안정성, 조업성, 생산성을 개선하는 것을 목적으로 한다.The present invention relates to a process for producing polyacrylonitrile precursor fibers for the production of high-performance carbon fibers by stably supplying a spinning dope to a spinning process to improve process stability, operability and productivity .

본 발명에 관한 폴리아크릴로니트릴계 탄소섬유 전구체 섬유는 방사원액 제조 시 발생할 수 있는 겔 폴리머(gel polymer)의 빈도를 일정한 기준으로 관리하여 방사 공정에 있어 전구체 섬유의 모우(fuzzy fibers) 발생량을 최소화 하여 전구체 섬유 생산 공정의 안정성, 조업성을 개선 하는 것을 특징으로 한다. The polyacrylonitrile-based carbon fiber precursor fiber according to the present invention controls the frequency of the gel polymer that can be generated in the spinning solution to a predetermined standard, thereby minimizing the amount of fuzzy fibers generated in the spinning process Thereby improving the stability and operability of the precursor fiber production process.

본 발명의 폴리아크릴로니트릴계 전구체 섬유를 이용한 탄소섬유는 겔 폴리머를 관리하지 않은 탄소섬유에 비해 모우 발생량이 적어 각종 복합재료를 제작함에 있어 공정 안정성, 조업성, 생산성이 향상될 뿐 아니라 강도, 인장률 등의 기계적 물성이 뛰어나 각종 항공 우주용도, 스포츠 레저용도, 산업용도 분야에서 그 구조재료 및 보강재료 등에 바람직하게 사용될 수 있다.The carbon fiber using the polyacrylonitrile-based precursor fiber of the present invention has a lower generation amount than the carbon fiber which does not manage the gel polymer, thereby improving the process stability, workability and productivity in manufacturing various composite materials, And mechanical properties such as tensile modulus, and can be preferably used for structural materials and reinforcing materials in various aerospace applications, sports leisure applications, and industrial applications.

탄소섬유, 폴리아크릴로니트릴, 방사원액, 겔 폴리머, 빈도 측정, 관리 기준 Carbon fiber, polyacrylonitrile, fiber stock solution, gel polymer, frequency measurement, management standard

Description

탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법{Preparation method of polyacrylonitrile precursor based carbon Fiber}Preparation method of polyacrylonitrile precursor based carbon fiber [0002]

본 발명은 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법에 관한 것으로, 상세하게는 폴리아크릴로니트릴계 탄소섬유 전구체 생산을 위한 방사원액 제조 시 발생할 수 있는 겔 폴리머의 빈도를 일정한 기준으로 관리하여 전구체 섬유 생산 공정에 있어 발생할 수 있는 모우의 수를 최소화 한 탄소섬유 전구체 섬유를 제조하는 것으로 전구체 섬유 방사 공정에 있어 공정 안정성, 조업성, 생산성이 개선된 폴리아크릴로니트릴계 전구체 섬유 및 강도, 인장률, 탄성률 등의 기계적 물성이 향상된 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법에 관한 것이다.The present invention relates to a method for producing polyacrylonitrile-based precursor fibers for carbon fibers, and more particularly, to a method for producing polyacrylonitrile-based precursor fibers for carbon fibers by controlling the frequency of gel polymers, The production of carbon fiber precursor fibers that minimizes the number of moths that can occur in the precursor fiber production process, and the production of polyacrylonitrile precursor fibers and the strength and tensile strength of the precursor fiber spinning process with improved process stability, The present invention relates to a method for producing a polyacrylonitrile-based precursor fiber for carbon fibers, which is improved in mechanical properties such as tensile modulus, modulus and elastic modulus.

폴리아크릴로니트릴계 전구체 섬유로부터 제조되는 탄소섬유는 레이온계, 피치계 전구체로부터 제조되는 탄소섬유에 비해 더 나은 생산성, 기계적 물성을 가지고 있다. 폴리아크릴로니트릴계 전구체 섬유를 산화기체 분위기에서 200~350°C로 안정화 시킨 내염화 섬유를 불활성기체 분위기에서 850~1800°C로 탄소화 시켜 얻어지는 탄소섬유는 무게가 강철의 4분의 1에 불과하지만 기계적 강도는 강철의 6~10 배에 달하는 뛰어난 역학적 특성으로 인해 항공 각종 항공 우주용도, 스포츠 레저용도, 산업용도 분야에서 그 구조재료 및 보강재료 등에 사용되고 있으며 그 용도는 더욱 확산될 전망이다. Carbon fibers made from polyacrylonitrile-based precursor fibers have better productivity and mechanical properties than carbon fibers made from rayon-based and pitch-based precursors. Carbon fibers obtained by carbonizing polychloronitrile precursor fibers at 850 to 1800 ° C in an inert gas atmosphere stabilized at 200 to 350 ° C in an oxidizing gas atmosphere have a weight of less than one quarter of that of steel However, the mechanical strength is 6 to 10 times higher than that of steel. Therefore, it is used for various aerospace applications, sports leisure and industrial use, and its structural and reinforcing materials are expected to be used more widely.

폴리아크릴로니트릴계 중합체는 전구체 섬유의 내염화 처리를 촉진하여 안정성을 확보하기 위해서 카르복실기(carboxylic acid group)를 포함한 소량의 비닐(vinyl)계 모노머를 아크릴로니트릴(acrylonitrile)과 함께 공중합 하는 방법이 널리 쓰이고 있다. 이렇게 생산된 폴리아크릴로니트릴계 공중합체로 방사원액을 만들어 습식 혹은 건습식 방사함에 있어 방사원액의 친수성을 높이고 마이크로 혹은 매크로 보이드를 억제하기 위해 상기의 카르복실기를 암모니아 혹은 암모늄염을 이용하여 이온화 하는 방법이 "일본 특개소 59-82421호 공보", 일본 특개평 11-12856호 공보"에 제안되어 있다. 하지만 카르복실기를 이온화 하기 위해 주입한 암모니아 또는 암모늄염은 방사원액 내부에서 겔 폴리머를 발생시키기 쉽고, 이러한 겔 폴리머는 전구체 섬유 방사 공정에 있어 이물질로서 작용하기 때문에 생산 안정성, 조업성을 악화시키는 경향이 있다.The polyacrylonitrile-based polymer is a method of copolymerizing a small amount of a vinyl monomer including a carboxylic acid group together with acrylonitrile in order to accelerate the chlorination treatment of the precursor fiber to secure stability It is widely used. A method of ionizing the above carboxyl group with ammonia or ammonium salt in order to increase the hydrophilicity of the spinning solution and inhibit micro or macrovoids in wet or dry wet spinning by making a spinning solution with the polyacrylonitrile copolymer produced as described above Japanese Unexamined Patent Publication No. 59-82421 and Japanese Unexamined Patent Application, First Publication No. Hei 11-12856. However, the ammonia or ammonium salt injected for ionizing a carboxyl group easily generates a gel polymer in the spinning solution, Polymers tend to deteriorate production stability and operability because they act as impurities in the precursor fiber spinning process.

폴리아크릴로니트릴계 방사원액 내부의 겔 폴리머 생성을 억제하기 위해서 방사원액 내부에 에틸렌(ethylene)성의 이중결합을 포함하는 화합물을 일정량 첨가하는 방법이 "일본 특개 2002-249924호 공보"에 제안되어 있다. 이와는 달리 암모니아를 주입하는 위치를 방사 노즐(nozzle) 직전에 위치시켜 겔 폴리머의 생성을 최소화 하는 방법이 "일본 특개 2008-308775호 공보"에 제시되어 있다. 하지만 현재 겔 폴리머의 정확한 정량화 방법과 관리 기준이 아직 명확하게 제안되지 않아 고성는 탄 소섬유용 폴리아크릴로니트릴계 전구체 섬유생산에 있어 공정 안정성, 조업성, 생산성 확보가 어려운 상황이다.A method of adding a certain amount of a compound containing an ethylene-based double bond into a spinning stock solution to suppress the formation of a gel polymer in a polyacrylonitrile-based spinning stock solution has been proposed in Japanese Patent Application Laid-Open No. 2002-249924 . Unlike this, a method of minimizing the generation of gel polymer by positioning the position where ammonia is injected just before the spinning nozzle is disclosed in Japanese Patent Application Laid-Open No. 2008-308775. However, at present, precise quantification methods and management standards for gel polymers are not yet clearly proposed, and it is difficult for Goseong to secure process stability, productivity, and productivity in producing polyacrylonitrile precursor fibers for carbon fibers.

고성능 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유를 생산하는 공정중 방사원액에 존재하는 겔 폴리머는 방사공정에 있어 생산성의 저하, 조업성의 악화, 안정성의 저하를 초래한다. 따라서 방사원액에 존재하는 겔 폴리머의 빈도를 일정 수준으로 관리하여 방사 공정에서 생산성, 조업성, 안정성을 확보하고 모우를 줄여 안정적인 프리커서를 생산하고 이를 내염화 및 탄화 처리하여 고성능의 물성을 가지는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유를 제조하는 방법을 제공함에 본 특허의 목적이 있다.Among the processes for producing polyacrylonitrile-based precursor fibers for high-performance carbon fibers, the gel polymer present in the spinning solution causes deterioration of productivity, deterioration of workability and deterioration of stability in the spinning process. Therefore, by controlling the frequency of the gel polymer present in the spinning liquid to a certain level, it is possible to secure productivity, operability and stability in the spinning process, to produce stable precursors by reducing the number of droplets, and by treating them with chlorination and carbonization, It is an object of the present invention to provide a method for producing polyacrylonitrile-based precursor fibers for fibers.

상기된 목적을 달성하기 위하여, 본 발명은 아크릴로니트릴 단량체(monomer)와 카르복실기를 포함한 비닐계 공중합 단량체를 공중합하여 공중합물을 만들고 탈포 및 미반응 아크릴로니트릴 단량체 회수 공정을 거쳐 저장탱크에 저장된 방사원액을 이용하여 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유를 제조하는 방법에 있어서, 상기 방사원액 중 겔 폴리머 빈도를 20개/mm² 이하로 관리하여 생산하는 것을 특징으로 한다.In order to achieve the above object, the present invention relates to a method for producing a copolymer by copolymerizing an acrylonitrile monomer and a vinyl copolymerizable monomer including a carboxyl group, A method for producing a polyacrylonitrile precursor fiber for carbon fiber by using a stock solution is characterized in that the gel polymer frequency in the spinning stock solution is controlled to be 20 pieces / mm 2 or less.

방사원액 중 겔 폴리머의 빈도를 일정 기준으로 관리하 전구체 섬유의 품질이 균일하고 공정상 사절을 막아서 생산성 향상을 도모할 수 있다. 또한, 이후 계속되는 소성공정에 있어 탄소섬유의 결함을 줄여 고강도/고탄성의 탄소섬유 제조가 용이하게 된다.By controlling the frequency of the gel polymer in the spinning stock solution on the basis of a certain standard, the quality of the precursor fibers is uniform, and the threading can be prevented in the process, thereby improving the productivity. Further, in the succeeding firing step, it is possible to reduce the defects of the carbon fibers and to easily manufacture the high strength / high elasticity carbon fibers.

고성능 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유를 생산하기 위해서 95~99.8wt% 이상의 아크릴로니트릴 단량체(monomer)와 0.2~5wt%의 카르복실기를 포함한 비닐계 공중합 단량체를 공중합하여 중합물을 만들고 이를 방사 원액으로 만들 때 암모니아 혹은 암모니아수를 주입한 후 탈포 및 미반응 아크릴로니트릴 단량체 회수 공정을 거쳐 저장탱크에 저장된 방사 원액 중 겔 폴리머 빈도를 20개/mm² 이하로 관리하여 방사하는 방법으로 고성능 탄소섬유용 전구체 섬유를 얻는 것이 본 발명의 과제이다.In order to produce polyacrylonitrile precursor fibers for high performance carbon fibers, a copolymer is prepared by copolymerizing 95 to 99.8 wt% of an acrylonitrile monomer and 0.2 to 5 wt% of a vinyl copolymerizable monomer containing a carboxyl group, , The ammonia or ammonia water is injected, and defoaming and unreacted acrylonitrile monomer are recovered, and the gel polymer frequency in the spinning stock solution stored in the storage tank is controlled to be 20 / mm 2 or less to emit the precursor for high performance carbon fiber It is an object of the present invention to obtain fibers.

본 발명에 대한 상세한 설명은 다음과 같다.A detailed description of the present invention follows.

전구체 섬유의 내염화 공정을 촉진시키고 안정화하기 위해 95~99.8wt%의 아크릴로니트릴 단량체에 카르복실기를 포함한 비닐계 공중합 단량체를 0.2~5wt% 첨가하여 수계현탁중합 혹은 용액중합을 실시하여 폴리아크릴로니트릴계 공중합물을 얻는다. In order to promote and stabilize the chlorination process of the precursor fibers, 0.2 to 5 wt% of a vinyl copolymerizable monomer containing a carboxyl group is added to 95 to 99.8 wt% of an acrylonitrile monomer, and water suspension polymerization or solution polymerization is carried out to obtain polyacrylonitrile Based copolymer.

이때 아크릴로니트릴의 함량은 95~99.8wt% 가 되어야 한다. 아크릴로니트릴의 함량이 95wt% 이하이면 방사 혹은 소성공정에서 분해되는 성분이 많아져 탄소섬유 의 물성이 저하되고 수율이 떨어져 생산성이 저하된다. 아크릴로니트릴의 함량이 99.8wt% 이상이면 전구체 섬유의 산화 처리시 내염화가 촉진되지 않고 폭주 반응을 일으킬 수 있다. 이때 아크릴로니트릴 단량체의 함량은 97~99.5wt%가 더욱 바람직 하다.The content of acrylonitrile should be 95 ~ 99.8 wt%. When the content of acrylonitrile is less than 95 wt%, the components decomposed in the spinning or firing process are increased, so that the physical properties of the carbon fiber are lowered and the yield is lowered and the productivity is lowered. If the content of acrylonitrile is 99.8 wt% or more, oxidation reaction of the precursor fibers may not accelerate chloride attack and may cause a runaway reaction. At this time, the content of the acrylonitrile monomer is more preferably 97 to 99.5 wt%.

폴리아크릴로니트릴계 공중합물에 포함되는 카르복실기를 포함한 비닐계 단량체로는 아크릴산, 이타콘산, 메타크릴산 등이 있으며 카르복실기가 많은 이타콘산이 가장 바람직 하다. Examples of vinyl monomers containing carboxyl groups contained in the polyacrylonitrile copolymer include acrylic acid, itaconic acid, methacrylic acid and the like, and itaconic acid having a large number of carboxyl groups is the most preferable.

폴리아크릴로니트릴계 공중합물의 중합방법으로는 수계현탁중합법 과 용액중합법이 가능하며 공정편의성과 조업의 편리성을 위해서 용액중합법이 바람직하다. 용액중합에 쓰이는 용매로는 디메틸 포름아마이드 (dimethyl formamide), 디메틸 설폭사이드 (dimethyl sulfoxide), 디메틸 아세트아마이드 (dimethyl acetamide) 와 같은 유기용매들이 널리 쓰인다. 이때 용해성이 좋고 독성이 적고 사슬이동상수가 작은 디메틸 설폭사이드가 용액중합의 용매로서 가장 바람직하다.As the polymerization method of the polyacrylonitrile-based copolymer, the aqueous suspension polymerization method and the solution polymerization method can be used, and the solution polymerization method is preferable for convenience of processing and convenience of operation. Organic solvents such as dimethyl formamide, dimethyl sulfoxide, and dimethyl acetamide are widely used as solvents for solution polymerization. At this time, dimethylsulfoxide having good solubility, low toxicity and small chain transfer constant is most preferable as a solvent for solution polymerization.

폴리아크릴로니트릴계 공중합물의 비닐계 화합물중 카르복실기 부분을 이온화 하여 친수성을 향상시켜 응고욕에서의 응고중 보이드 발생을 억제시시키기 위해서 암모니아 혹은 암모니아수 혹은 암모늄염을 공중합물에 첨가한다. 이때 가격이 저렴하고 다루기가 쉬운 암모니아 혹은 암모니아수가 바람직하다. 첨가되는 암모니아 또는 암모니아수의 첨가량은 공중합물중 카르복실기를 포함한 비닐계 화합물에 대해서 몰(mole) 비율로 0.6~1.5배가 적당하며 0.9~1.1배가 더욱 바람직하다.Ammonia or ammonia water or an ammonium salt is added to the copolymer to ionize the carboxyl group portion of the vinyl compound of the polyacrylonitrile copolymer to improve the hydrophilicity and to suppress void formation during solidification in the coagulating bath. Ammonia or ammonia water, which is cheap and easy to handle, is preferable. Amount of ammonia or ammonia water to be added is preferably 0.6 to 1.5 times, and more preferably 0.9 to 1.1 times, in terms of a mole ratio with respect to the vinyl compound containing a carboxyl group in the copolymer.

방사원액의 제조는 수계현탁중합물을 용매에 용해시켜도 되고 용액중합물의 미 반응 모노머를 제거한 용액을 그대로 사용해도 좋다. 이때 방사원액을 구성하는 폴리아크릴로니트릴계 공중합물의 농도는 15~25wt%가 적당하며 18~22wt%가 특히 적당하다. 방사원액속의 공중합물의 농도가 15wt%보다 낮으면 습식 또는 건습식 방사 공정의 응고과정에서 응고사의 구조가 성글게 되어 보이드가 형성되고 이후 소성공정을 거쳐 탄소섬유로 만들었을 때 물성이 저하된다. 농도가 25wt%보다 높으면 방사 원액의 점도가 지나치게 높아 설비에 무리가 갈 수 있고 연신성도 떨어져 생산성이 나빠진다.For the preparation of the spinning solution, the aqueous suspension polymer may be dissolved in a solvent, or a solution obtained by removing unreacted monomer of the solution polymer may be used as it is. At this time, the concentration of the polyacrylonitrile-based copolymer constituting the spinning solution is suitably 15 to 25 wt%, particularly preferably 18 to 22 wt%. If the concentration of the copolymer in the spinning liquid is lower than 15 wt%, the structure of the coagulated yarn becomes coarse during the solidification process of the wet or dry wet spinning process, and the voids are formed. If the concentration is higher than 25 wt%, the viscosity of the spinning solution becomes excessively high, so that the spinning machine can become unstable and the stretchability is deteriorated and the productivity is deteriorated.

방사원액 중 겔 폴리머의 빈도는 20개/mm² 이하가 적당하며 특히 10개/mm² 이하의 기준으로 관리하는 것이 바람직하다. 겔 폴리머의 빈도가 20개/mm²를 초과하면 방사 공정에서 모우수가 증가하여 방사 공정의 안정성, 조업성이 악화되며 이후 소성 공정에서도 모우가 많아지며 결과적으로 낮은 물성의 탄소섬유를 얻게 된다. 방사원액 중 겔 폴리머의 빈도를 측정하는 도구 및 방법은 아래와 같다. The frequency of the gel polymer in the spinning stock solution is preferably 20 / mm 2 or less, and more preferably 10 / mm 2 or less. If the frequency of the gel polymer is more than 20 / mm 2, the stability of the spinning process is deteriorated due to an increase in the number of milling cycles in the spinning process, and thereafter, the milling is increased in the firing process, resulting in obtaining low-quality carbon fibers. A method and a method for measuring the frequency of the gel polymer in the spinning stock solution are as follows.

격자(grid) 간격이 1mm 인 세균수 측정 슬라이드(hemocytometer) 위에 방사원액 10μl를 얹은 후 방사원액을 고루 펴서 슬라이드 위에 덮인 방사원액의 두께가 0.1mm 가 되도록 하고 슬라이드를 광학현미경을 이용하여 100배의 비율로 관찰하면 도 1과 같은 모습을 발견할 수 있다.After placing 10 μl of the spinning solution on a hemocytometer with a grid spacing of 1 mm, the spinning stock solution was spread evenly and the thickness of the spinning solution coated on the slide was 0.1 mm. When observed at a ratio, the appearance as shown in Fig. 1 can be found.

위와 같이 관찰된 한 격자(1mm²)당 겔 폴리머의 수를 모양과 크기에 상관없이 센다. 측정 횟수는 슬라이드 글라스를 3개 준비하여 슬라이드 글라스당 10곳의 격자를 관찰하여 모두 평균하여 방사원액 중 겔 폴리머의 빈도를 구한다.The number of gel polymers per grid (1 mm²) observed is counted regardless of shape and size. The number of times of measurement was determined by preparing three slide glasses, observing 10 lattices per slide glass, and averaging them to determine the frequency of the gel polymer in the spinning stock solution.

방사원액은 습식 혹은 건습식 방사 공정을 거쳐 응고욕으로 방사 시키며 이후 수세, 열수연신, 유제부여, 1차건조, 스팀연신, 2차건조 및 열고정, 릴렉스, 권취 등의 공정을 거쳐 폴리아크릴로니트릴계 탄소섬유 전구체 섬유를 생산하고 계속해서 내염화, 저온탄화, 고온탄화, 표면처리, 사이징(sizing)처리, 권취의 과정을 거쳐 최종 제품인 탄소섬유를 생산한다.The spinning liquid is spinned by a wet or dry spinning process and then spun into a coagulating bath where it is subjected to a process such as water washing, hot water drawing, emulsion application, primary drying, steam drawing, secondary drying and heat fixing, relaxation, Nitrile-based carbon fiber precursor fibers are produced and then carbonized at low temperature, carbonized at high temperature, carbonized, surface treated, sizing treated, and wound to produce final carbon fiber.

이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. The following examples illustrate the present invention and are not intended to limit the scope of the present invention.

< < 실시예Example 1 >  1>

용량 200리터의 반응기에 디메틸 설폭사이드 79.7wt%, 아크릴로니트릴 20wt%, 이타콘산 0.2wt%, 개시제(AIBN) 0.1wt%, 분자량 조절제(DDM)를 넣고 70°C의 온도에서 10시간 동안 공중합을 진행하여 20wt% 농도의 공중합체 용액을 얻었다. 이후 암모니아수를 이타콘산의 몰비 만큼 주입하고 60°C에서 2시간 더 교반하고 탈포 및 모노머 회수를 진행하여 최종 방사원액을 얻었고 방사원액 중 겔 폴리머의 빈도는 8.3개/mm² 이었다. A reactor having a capacity of 200 liters was charged with 79.7 wt% of dimethyl sulfoxide, 20 wt% of acrylonitrile, 0.2 wt% of itaconic acid, 0.1 wt% of initiator (AIBN) and a molecular weight regulator (DDM) To obtain a copolymer solution having a concentration of 20 wt%. After that, ammonia water was added by the molar ratio of itaconic acid and further stirred at 60 ° C for 2 hours to recover the final spinning solution. The frequency of the gel polymer in the spinning solution was 8.3 / mm 2.

이후 저장된 방사원액을 50°C로 하여 습식방사 하였다. 이때 응고욕의 온도는 55°C, 디메틸설폭사이드의 농도는 40wt%로 하였으며 방사 노즐은 6개로 직경 0.1mm, 2000홀 노즐을 사용하였다. 이후 수세, 연신, 유제부여, 건조, 스팀연신, 열고정, 릴렉스, 권취의 과정을 거쳐 탄소섬유 전구체용 섬유를 얻었다. 섬유의 물성은 인장강도, 모우수를 측정하였다. 그 결과는 표1에 있다. Then, the spinning stock solution stored at 50 ° C was wet-radiated. The temperature of the coagulation bath was 55 ° C and the concentration of dimethylsulfoxide was 40wt%. The number of spinning nozzles was 6, and diameter of 0.1mm, 2000 hole nozzle was used. Thereafter, fibers for carbon fiber precursor were obtained through washing, stretching, emulsion application, drying, steam drawing, heat fixing, relaxation and winding. The tensile strength and the modulus of the fiber were measured. The results are shown in Table 1.

< < 실시예Example 2 > 2>

실시예1의 암모니아수 주입 몰수를 이타콘산의 몰수의 1.1배로 하는 것 외에는 실시예1과 모두 같은 조건으로 방사하여 탄소섬유 전구체용 섬유를 얻었다. 방사원액 중 겔 폴리머의 빈도는 9.7개/mm² 로 측정되었고, 섬유의 물성은 인장강도, 모우수를 측정하였다. 그 결과는 표1에 있다.The same procedure as in Example 1 was carried out except that the number of moles of ammonia water injected in Example 1 was set to 1.1 times the number of moles of itaconic acid to obtain fibers for a carbon fiber precursor. The frequency of the gel polymer in the spinning solution was measured to be 9.7 pieces / mm 2, and the physical properties of the fibers were measured for tensile strength and wetness. The results are shown in Table 1.

< < 실시예Example 3 > 3>

실시예1의 암모니아수 주입 몰수를 이타콘산의 몰수의 0.9배로 하는 것 외에는 실시예1과 모두 같은 조건으로 방사하여 탄소섬유 전구체용 섬유를 얻었다. 방사원액 중 겔 폴리머의 빈도는 7.9개/mm² 측정되었고, 섬유의 물성은 인장강도, 모우수를 측정하였다. 그 결과는 표1에 있다.The same procedure as in Example 1 was carried out except that the number of moles of ammonia water injected in Example 1 was 0.9 times the number of moles of itaconic acid. Thus, fibers for carbon fiber precursor were obtained. The frequency of the gel polymer in the spinning solution was measured to be 7.9 fibers / mm 2, and the physical properties of the fibers were measured. The results are shown in Table 1.

< < 비교예Comparative Example 1 > 1>

실시예1의 암모니아수 주입 몰수를 이타콘산의 몰수의 2배로 하는 것 외에는 실시예1과 모두 같은 조건으로 방사하여 탄소섬유 전구체용 섬유를 얻었다. 방사원액 중 겔 폴리머의 빈도는 23.6개/mm² 로 측정되었고, 섬유의 물성은 인장강도, 모우수를 측정하였다. 그 결과는 표1에 있다.The same procedure as in Example 1 was carried out except that the number of moles of ammonia water injected in Example 1 was twice the number of moles of itaconic acid. Thus, fibers for carbon fiber precursor were obtained. The frequency of the gel polymer in the spinning solution was measured to be 23.6 pieces / mm 2, and the physical properties of the fibers were measured with respect to tensile strength and moistness. The results are shown in Table 1.

< < 비교예Comparative Example 2 > 2>

실시예1의 암모니아수 주입 몰수를 이타콘산의 몰수와 같이 주입한 후 30°C 에서 교반을 1시간 실시하는 것 외에는 실시예1과 모두 같은 조건으로 방사하여 탄소섬유 전구체용 섬유를 얻었다. 방사원액 중 겔 폴리머의 빈도는 32.8개/mm² 로 측정되었고, 섬유의 물성은 인장강도, 모우수를 측정하였다. 그 결과는 표1에 있다.The same procedure as in Example 1 was carried out except that the molar number of injected ammonia water of Example 1 was injected as the number of moles of itaconic acid and stirring was carried out at 30 ° C for one hour to obtain fibers for carbon fiber precursor. The frequency of the gel polymer in the spinning solution was measured to be 32.8 / mm 2, and the physical properties of the fiber were measured with respect to tensile strength and moistness. The results are shown in Table 1.

표 1. Table 1. 실시예와Examples 비교예Comparative Example

구분division 암모니아수/이타콘산 몰비 및 교반온도Ammonia / itaconic acid molar ratio and stirring temperature 방사원액중
겔 폴리머 빈도
Among the spinning solution
Gel polymer frequency
전구체 섬유의 모우수Moisture of precursor fiber 전구체 섬유의 인장강도Tensile strength of precursor fibers 방사 공정의 안정성Stability of spinning process
실시예1Example 1 1:1 (60°C)1: 1 (60 [deg.] C.) 8.3개/mm²8.3 pieces / mm² 0.4개/m0.4 pieces / m 7.8 g/d7.8 g / d 안정함Stable 실시예2Example 2 1.1:1 (60°C)1.1: 1 (60 DEG C.) 9.7 개/mm²9.7 pieces / mm² 0.5개/m0.5 pieces / m 7.8 g/d7.8 g / d 안정함Stable 실시예3Example 3 0.9:1 (60°C)0.9: 1 (60 [deg.] C.) 7.9개/mm²7.9 / mm² 0.4개/m0.4 pieces / m 8.0 g/d8.0 g / d 안정함Stable 비교예1Comparative Example 1 2:1 (60°C)2: 1 (60 [deg.] C) 23.6개/mm²23.6 pieces / mm² 1.2개/m1.2 pieces / m 7.6 g/d7.6 g / d 불안정함Unstable 비교예2Comparative Example 2 1:1 (30°C)1: 1 (30 [deg.] C) 32.8개/mm²32.8 / mm² 7.6개/m7.6 pieces / m 7.1 g/d7.1 g / d 불안정함Unstable

도 1은 광학현미경(100배)으로 관찰한 방사원액 중의 겔 폴리머 관찰 도면.Brief Description of the Drawings Fig. 1 is a view showing a gel polymer in a spinning stock solution observed under an optical microscope (100 times). Fig.

Claims (3)

아크릴로니트릴 단량체(monomer)와 카르복실기를 포함한 비닐계 공중합 단량체를 공중합하여 공중합물을 만들고 탈포 및 미반응 아크릴로니트릴 단량체 회수 공정을 거쳐 저장탱크에 저장된 방사원액을 이용하여 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유를 제조하는 방법에 있어서, 상기 방사원액 중 겔 폴리머 빈도를 20개/mm² 이하로 관리하여 생산하는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법.A copolymer is prepared by copolymerizing an acrylonitrile monomer and a vinyl copolymerizable monomer including a carboxyl group, and a copolymerization product is prepared by using a spinning stock solution stored in a storage tank through a process of defoaming and unreacted acrylonitrile monomer recovery. Polyacrylonitrile Based precursor fiber for carbon fibers, wherein the gel polymer frequency in the spinning stock solution is controlled to be 20 / mm &lt; 2 &gt; or less to produce polyacronitrile precursor fibers for carbon fibers. 제 1항에 있어서, 상기 공중합은 아크릴로니트릴 단량체 95~99.8wt%와 상기 카르복실기 0.2~5wt%를 공중합하는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법.The method according to claim 1, wherein the copolymerization is performed by copolymerizing 95 to 99.8 wt% of an acrylonitrile monomer with 0.2 to 5 wt% of a carboxyl group of the polyacrylonitrile based precursor fiber. 제 1항에 있어서, 상기 방사원액에는 공중합물중 카르복실기를 포함한 비닐계 화합물에 대해서 몰(mole) 비율로 0.6~1.5배가 되도록 암모니아 또는 암모니아수가 첨가되어 있는 것을 특징으로 하는 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유 제조 방법.The method according to claim 1, wherein ammonia or ammonia water is added to the spinning solution to a molar ratio of the vinyl compound containing a carboxyl group in the copolymer to 0.6 to 1.5 times the amount of the polyacrylonitrile Method of manufacturing precursor precursor fibers.
KR20090135008A 2009-12-31 2009-12-31 Preparation method of polyacrylonitrile precursor based carbon Fiber KR101490529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090135008A KR101490529B1 (en) 2009-12-31 2009-12-31 Preparation method of polyacrylonitrile precursor based carbon Fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090135008A KR101490529B1 (en) 2009-12-31 2009-12-31 Preparation method of polyacrylonitrile precursor based carbon Fiber

Publications (2)

Publication Number Publication Date
KR20110078249A KR20110078249A (en) 2011-07-07
KR101490529B1 true KR101490529B1 (en) 2015-02-05

Family

ID=44917730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090135008A KR101490529B1 (en) 2009-12-31 2009-12-31 Preparation method of polyacrylonitrile precursor based carbon Fiber

Country Status (1)

Country Link
KR (1) KR101490529B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066500A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Acrylonitrile-based fiber manufacturing method
KR20210031260A (en) 2019-09-11 2021-03-19 주식회사 엘지화학 Method for preparing acrylonitrile based fiber and system for preparing acrylonitrile based fiber
CN115850896B (en) * 2022-11-21 2023-09-08 苏州北美国际高级中学 Hydrogel with adjustable strength and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091943A (en) 2002-08-29 2004-03-25 Toray Ind Inc Method for producing acrylic fiber
JP2008127697A (en) 2006-11-17 2008-06-05 Toray Ind Inc Spinning dope for carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
KR20090068370A (en) * 2006-10-18 2009-06-26 도레이 카부시키가이샤 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091943A (en) 2002-08-29 2004-03-25 Toray Ind Inc Method for producing acrylic fiber
KR20090068370A (en) * 2006-10-18 2009-06-26 도레이 카부시키가이샤 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
JP2008127697A (en) 2006-11-17 2008-06-05 Toray Ind Inc Spinning dope for carbon fiber precursor fiber and method for producing carbon fiber precursor fiber

Also Published As

Publication number Publication date
KR20110078249A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
KR100364655B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
KR20130078788A (en) The method of producing complex precursor multi filament and carbon fiber
JP2007162144A (en) Method for producing carbon fiber bundle
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JP2011213773A (en) Polyacrylonitrile-based polymer and carbon fiber
JP2008163537A (en) Method for producing carbon fiber
US20210284774A1 (en) A polymer for the production of carbon fibers and carbon fibers made therefrom
KR101268173B1 (en) Polyacrylonitrile-based polymer solution, preparing method of the same, Carbon fiber precursor, manufacturing method of the same and manufacturing method of carbon fiber using the same
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2021139062A (en) Production method of carbon fiber bundle
KR20110078306A (en) Process for producing precursor fiber for acrylonitrile-based carbon fiber and carbon fiber obtained from the precursor fiber
CN114108136B (en) Method for producing carbon fiber
JPS63275718A (en) Production of high-tenacity carbon fiber
KR20120007183A (en) Manufacturing method of carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
TWI832071B (en) Manufacturing method for carbon fiber
KR20110130186A (en) Manufacturing method of carbon fiber
KR101626223B1 (en) A polymer mixture for a precursor fiber of carbon-fiber and carbon-fiber manufactured by using the same
JP7420608B2 (en) Method for producing carbon fiber precursor fiber
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
KR20120111473A (en) Precursor fiber for carbon fiber and manufacturing method of it
JP2005248358A (en) Precursor fiber for carbon fiber

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 6