JP2016040419A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2016040419A
JP2016040419A JP2014164277A JP2014164277A JP2016040419A JP 2016040419 A JP2016040419 A JP 2016040419A JP 2014164277 A JP2014164277 A JP 2014164277A JP 2014164277 A JP2014164277 A JP 2014164277A JP 2016040419 A JP2016040419 A JP 2016040419A
Authority
JP
Japan
Prior art keywords
carbon fiber
electrolytic solution
fiber bundle
fiber
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014164277A
Other languages
Japanese (ja)
Inventor
洋之 中尾
Hiroyuki Nakao
洋之 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014164277A priority Critical patent/JP2016040419A/en
Publication of JP2016040419A publication Critical patent/JP2016040419A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide such a technique that when the surface of a carbon fiber is treated, a tar-like substance or the like in an electrolytic solution is removed efficiently so that the electrolytic solution is reused while suppressing an increase of a production cost thereof.SOLUTION: A method for producing the carbon fiber satisfies the following steps (1)-(4). At the step (1), a polyacrylonitrile-based carbon fiber precursor fiber bundle is introduced into a flameproofing furnace and flameproofing treatment is performed on the introduced fiber bundle at the temperature range of 200-300°C to obtain a flameproofing fiber bundle. At the step (2), the obtained flameproofing fiber bundle is introduced into a carbonization furnace and carbonization treatment is performed on the introduced flameproofing fiber bundle at the temperature range of 300-2,500°C to obtain a carbon fiber bundle. At the step (3), the obtained carbon fiber bundle is immersed in the electrolytic solution in an electrolytic oxidation treatment tank to perform electrolytic oxidation treatment thereon. At the step (4), a polyacrylonitrile-based fiber is immersed in the electrolytic solution by a ratio of 10 g/L or higher so that absorbance of the electrolytic solution is made equal to or lower than 0.4 and the resulting electrolytic solution is circulated through the electrolytic oxidation treatment tank and then reused.SELECTED DRAWING: None

Description

本発明はポリアクリロニトリル系炭素繊維の製造方法に関するものである。   The present invention relates to a method for producing a polyacrylonitrile-based carbon fiber.

炭素繊維は、力学的、化学的諸特性及び軽量性などにより、航空機部材、鉄道車両部材、船舶部材、スポーツ用品用途などに広く使用され、さらに近年では自動車などの一般産業分野などにも用途が拡大されている。そのため、炭素繊維に望まれる力学特性のレベルも高まっており、また生産性向上による価格の低減も強く要望されている。   Carbon fiber is widely used in aircraft parts, railway vehicle parts, ship parts, sports equipment, etc. due to its mechanical and chemical properties and light weight, and in recent years, it is also used in general industrial fields such as automobiles. It has been expanded. For this reason, the level of mechanical properties desired for carbon fibers is increasing, and there is a strong demand for a reduction in price by improving productivity.

しかし、炭素繊維はマトリックス樹脂との濡れ性、親和性、接着性が不十分である場合が多く、複合材料としたときに満足な特性が得られにくいことがあった。このため、通常は、焼成後の炭素繊維には表面処理を施し、さらにはサイジング処理を施すことにより、炭素繊維に対するマトリックス樹脂の濡れ性、親和性、接着性を向上させている。   However, carbon fibers often have insufficient wettability, affinity, and adhesiveness with the matrix resin, and it has been difficult to obtain satisfactory characteristics when used as a composite material. For this reason, the carbon fiber after firing is usually subjected to a surface treatment and further subjected to a sizing treatment to improve the wettability, affinity, and adhesion of the matrix resin to the carbon fiber.

炭素繊維を表面処理する方法としては、電解酸化処理や薬液酸化処理などの液相酸化処理や、気相酸化処理が知られている。炭素繊維の表面に酸化処理を施すことにより、繊維表面に酸素含有官能基が導入され、繊維の表面積が増大するため、炭素繊維に対するマトリックス樹脂の濡れ性、親和性、接着性が向上する。特に、電解酸化処理は、その処理のしやすさ、処理条件制御の容易さ、炭素繊維表面への酸素含有官能基の導入のしやすさなどの観点から、薬液酸化処理や気相酸化処理よりも実用的かつ効果的な表面処理方法として、工業的に広く用いられてきた。   As a method for surface treatment of carbon fiber, liquid phase oxidation treatment such as electrolytic oxidation treatment and chemical solution oxidation treatment, and gas phase oxidation treatment are known. By subjecting the carbon fiber surface to an oxidation treatment, oxygen-containing functional groups are introduced to the fiber surface and the surface area of the fiber is increased, so that the wettability, affinity, and adhesion of the matrix resin to the carbon fiber are improved. In particular, electrolytic oxidation treatment is easier than chemical oxidation treatment or gas phase oxidation treatment from the viewpoint of ease of treatment, ease of treatment condition control, ease of introduction of oxygen-containing functional groups on the carbon fiber surface, and the like. Has been widely used industrially as a practical and effective surface treatment method.

炭素繊維の表面には、炭素繊維前駆体繊維や油剤由来の熱分解生成物が繊維束に付着したタール状付着物や、低結晶性炭素化物からなる付着物、あるいは該繊維束の熱的損傷又は機械的損傷により生じた強度的に脆弱な不均質構造(以下、「タ−ル状物質等」と略す。)が存在している。このような炭素繊維を、電解酸化処理の電解液槽に浸漬すると、炭素繊維の表面からタ−ル状物質等が脱離して、電解槽内部に蓄積したり、電解液中に堆積したりすることにより、炭素繊維の製造歩留りの低下や、炭素繊維製品の品質低下の原因となる。   On the surface of the carbon fiber, a carbon fiber precursor fiber or a pyrolysis product derived from an oil agent adheres to the fiber bundle, a tar-like deposit, a deposit made of a low crystalline carbonized product, or thermal damage to the fiber bundle. Alternatively, there is a highly fragile heterogeneous structure (hereinafter abbreviated as “tar-like substance”) generated by mechanical damage. When such a carbon fiber is immersed in an electrolytic bath for electrolytic oxidation treatment, tar-like substances and the like are detached from the surface of the carbon fiber and accumulated in the electrolytic bath or deposited in the electrolytic solution. As a result, the production yield of the carbon fiber is lowered and the quality of the carbon fiber product is lowered.

以上の課題を解決するために、例えば特許文献1(特開昭63−315668号公報)には、アルカリ性電解質を含む電解液水溶液を、フィルターにより濾過しながら循環し再使用する技術が開示されている。また、特許文献2(特開平2−200867号公報)には、アルカリ性電解液中のタ−ル状物質等をアニオン交換物質により吸着除去しながら、同電解液を循環し再使用する技術が開示されている。   In order to solve the above problems, for example, Patent Document 1 (Japanese Patent Laid-Open No. Sho 63-315668) discloses a technique of circulating and reusing an aqueous electrolyte solution containing an alkaline electrolyte while filtering it with a filter. Yes. Patent Document 2 (Japanese Patent Application Laid-Open No. 2-200867) discloses a technique for circulating and reusing the electrolyte while adsorbing and removing the tar-like substance in the alkaline electrolyte with an anion exchange substance. Has been.

特開昭63−315668号公報Japanese Unexamined Patent Publication No. Sho 63-315668 特開平2−200867号公報JP-A-2-200787

しかし、特許文献1に記載された方法では、炭素繊維から脱離した固形状のタ−ル状物質等はフィルターで除去できるものの、電解液水溶液に溶解したタ−ル状物質等は除去できないため、電解液水溶液を必ずしも十分に洗浄できなかった。   However, in the method described in Patent Document 1, although the solid tar-like substance detached from the carbon fiber can be removed with a filter, the tar-like substance dissolved in the aqueous electrolyte solution cannot be removed. The aqueous electrolyte solution could not be washed sufficiently.

また特許文献2に記載された方法では、アルカリ性電解液中のタ−ル状物質等をアニオン交換物質で除去できるが、炭素繊維に対して多量のアニオン交換物質が必要となり、さらに電解液洗浄の設備投資費が増大するという課題があった。   Further, in the method described in Patent Document 2, tar-like substances and the like in the alkaline electrolyte can be removed with an anion exchange substance, but a large amount of anion exchange substance is required for the carbon fiber, and the electrolyte washing There was a problem that capital investment costs increased.

以上から、表面処理の電解液を洗浄、再利用する方法を選択する場合、種々の表面処理方法や洗浄方法について、原料費用、設備投資費用及びユーティリティ費用等が、炭素繊維の製造コストに及ぼす影響を考慮して、最適な洗浄方法を選択する必要がある。   From the above, when selecting a method for cleaning and reusing the electrolyte for surface treatment, the effects of raw material costs, capital investment costs, utility costs, etc. on the production cost of carbon fiber for various surface treatment methods and cleaning methods. Therefore, it is necessary to select an optimal cleaning method.

本発明の目的は、炭素繊維の表面から電解液中に脱離したタ−ル状物質等を効率的に除去し、製造コストの増大を抑えながら、同電解液を再利用する技術を提供することにある。   An object of the present invention is to provide a technique for efficiently removing tar-like substances and the like detached from the surface of a carbon fiber into the electrolytic solution and reusing the electrolytic solution while suppressing an increase in manufacturing cost. There is.

本発明は、以下の(1)〜(4)を満足する炭素繊維束の製造方法に関する。
(1)ポリアクリロニトリル系炭素繊維前駆体繊維束を耐炎化炉に導入し、200℃〜300℃の温度範囲のいずれかで耐炎化処理し、耐炎化繊維束を得る。
(2)前記耐炎化繊維束を炭素化炉に導入し、300℃〜2500℃の温度範囲のいずれかで炭素化処理し、炭素繊維束を得る。
(3)前記炭素繊維束を、電解酸化処理槽中の電解液に浸漬して、電解酸化処理する。
(4)前記電解液を、単繊維繊度が1.0dtex以上、総繊度が30000dtex以上のポリアクリロニトリル系繊維により洗浄しながら循環使用する。
The present invention relates to a method for producing a carbon fiber bundle that satisfies the following (1) to (4).
(1) A polyacrylonitrile-based carbon fiber precursor fiber bundle is introduced into a flameproofing furnace and subjected to a flameproofing treatment in any temperature range of 200 ° C to 300 ° C to obtain a flameproofing fiber bundle.
(2) The flame-resistant fiber bundle is introduced into a carbonization furnace and carbonized in any temperature range of 300 ° C to 2500 ° C to obtain a carbon fiber bundle.
(3) The carbon fiber bundle is immersed in an electrolytic solution in an electrolytic oxidation treatment tank and subjected to electrolytic oxidation treatment.
(4) The electrolytic solution is circulated and used while being washed with polyacrylonitrile fiber having a single fiber fineness of 1.0 dtex or more and a total fineness of 30000 dtex or more.

前記ポリアクリロニトリル系繊維は、電解酸化処理槽の電解液に対して10g/L以上の割合で浸漬させることが好ましい。   The polyacrylonitrile fiber is preferably immersed in the electrolytic solution in the electrolytic oxidation treatment tank at a rate of 10 g / L or more.

また、電解酸化処理槽から抜き出した電解液に、前記ポリアクリロニトリル系繊維を浸漬し、該電解液の下記の吸光度測定で測定された230nmの吸光度を0.4以下とした後、前記電解酸化処理槽に送液することが好ましい。   Further, the polyacrylonitrile fiber is immersed in the electrolytic solution extracted from the electrolytic oxidation treatment tank, and the absorbance at 230 nm measured by the following absorbance measurement of the electrolytic solution is set to 0.4 or less, and then the electrolytic oxidation treatment. It is preferable to send the solution to a tank.

本発明によれば、炭素繊維を表面処理(電解酸化処理)する工程において、電解液中のタ−ル状物質等を、安価な方法で効率的に除去できる。これにより、電解液を循環しながら再使用することが可能となり、炭素繊維の製造歩留りの低下や炭素繊維の品質低下を改善できる。   According to the present invention, in the step of surface treatment (electrolytic oxidation treatment) of carbon fibers, tar-like substances and the like in the electrolytic solution can be efficiently removed by an inexpensive method. As a result, the electrolytic solution can be reused while being circulated, and a reduction in carbon fiber production yield and a reduction in carbon fiber quality can be improved.

以下に本発明の詳細な説明を示す。   The following is a detailed description of the present invention.

(ポリアクリル系前駆体繊維)
本発明の炭素繊維用ポリアクリロニトリル系前駆体繊維(以下、「ポリアクリロニトリ」を「PAN」と略する。)の紡糸原液に用いるPAN系重合体には、炭素繊維にしたときの共重合成分に起因する欠陥点を少なくし、炭素繊維の品質ならびに性能の向上目的から、アクリロニトリルが90重量%以上、好ましくは96%重量以上を重合したものが良い。
(Polyacrylic precursor fiber)
The PAN-based polymer used for the spinning solution of the polyacrylonitrile-based precursor fiber for carbon fiber (hereinafter, “polyacrylonitrile” is abbreviated as “PAN”) of the present invention includes a copolymer component when converted into carbon fiber. In order to reduce defects caused by the above and improve the quality and performance of the carbon fiber, it is preferable to polymerize acrylonitrile at 90% by weight or more, preferably 96% by weight or more.

本発明で用いるPAN系重合体には、共重合成分、分子量分布、立体規則性などに制約はなく、炭素繊維となすための耐炎化処理を促進させるために、共重合成分として耐炎化促進作用を有する単量体を0.1〜5モル%共重合させるのが良い。耐炎化促進成分としては、カルボキシル基又はアミド基を一つ以上有するものが好ましく用いられる。また耐炎化反応が高くなるほど、短時間で耐炎化処理でき、生産性を高めることができることから耐炎化促進成分の共重合量を多くすることが望ましい。しかし一方で、該共重合量が多くなるほど、発熱速度が大きくなり暴走反応の危険が生じることがあるため、5モル%を超えない範囲とすることが好ましく、0.5〜3モル%がより好ましく、1〜3モル%とすることがさらに好ましい。   The PAN-based polymer used in the present invention has no restrictions on the copolymer component, molecular weight distribution, stereoregularity, etc., and promotes flame resistance as a copolymer component in order to promote flame resistance treatment for carbon fiber. It is preferable to copolymerize 0.1 to 5 mol% of the monomer having As the flame resistance promoting component, those having at least one carboxyl group or amide group are preferably used. Further, as the flame resistance reaction becomes higher, the flame resistance treatment can be performed in a shorter time, and the productivity can be increased. Therefore, it is desirable to increase the copolymerization amount of the flame resistance promoting component. However, on the other hand, as the amount of copolymerization increases, the exothermic rate increases and the risk of runaway reaction may occur. Therefore, the range is preferably not more than 5 mol%, more preferably 0.5 to 3 mol%. Preferably, it is more preferable to set it as 1-3 mol%.

耐炎化促進作用を有する単量体の具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸、アクリルアミド、メタクリルアミドなどが好ましく用いられる。焼成工程での耐炎化促進や溶媒に対する溶解性の向上の観点から、アクリルアミド、メタクリルアミドがより好ましく用いられる。   As specific examples of the monomer having a flame resistance promoting action, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, acrylamide, methacrylamide and the like are preferably used. Acrylamide and methacrylamide are more preferably used from the viewpoint of promoting flame resistance in the firing step and improving solubility in solvents.

本発明で用いるPAN系重合体を製造するには、従来公知の溶液重合、懸濁重合、乳化重合などを適用することができる。アクリル系重合体溶液の調製に使用される溶媒としては、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、塩化亜鉛水溶液、硝酸などが挙げられる。   In order to produce the PAN-based polymer used in the present invention, conventionally known solution polymerization, suspension polymerization, emulsion polymerization and the like can be applied. Examples of the solvent used for preparing the acrylic polymer solution include dimethyl sulfoxide, dimethylacetamide, dimethylformamide, an aqueous zinc chloride solution, and nitric acid.

(PAN系前駆体繊維の紡糸)
本発明の方法では、前記した紡糸原液を、湿式紡糸法または乾湿式紡糸法により口金から紡出し、凝固浴に導入して繊維を凝固せしめる。工業的な観点では、生産性に優れた湿式紡糸法が好ましい。
(Spinning of PAN-based precursor fiber)
In the method of the present invention, the above-described spinning solution is spun from a die by a wet spinning method or a dry-wet spinning method and introduced into a coagulation bath to coagulate the fibers. From an industrial viewpoint, a wet spinning method excellent in productivity is preferable.

本発明において、前記凝固浴は、紡糸原液に用いられる用材を含む水溶液が好適に使用され、含まれる溶剤の濃度を調節して、凝固糸の空隙率を少なくするように設定する。使用する溶剤によって一般的に異なるが、例えばDMAcを使用する場合は、DMAcの濃度は50〜80重量%、好ましくは60〜75重量%である。また凝固浴の温度は低い方が好ましく、通常50℃以下、さらに好ましくは40℃以下である。凝固浴の温度を低くすればより緻密な糸を得ることができるが、温度を下げすぎると凝固糸の引取速度が低下し生産性が低下するので、適切な範囲に設定することが望ましい。   In the present invention, the coagulation bath is preferably an aqueous solution containing materials used for the spinning dope, and is set so as to reduce the porosity of the coagulated yarn by adjusting the concentration of the contained solvent. Generally, depending on the solvent used, for example, when DMAc is used, the concentration of DMAc is 50 to 80% by weight, preferably 60 to 75% by weight. The temperature of the coagulation bath is preferably low, and is usually 50 ° C. or lower, more preferably 40 ° C. or lower. If the temperature of the coagulation bath is lowered, a denser yarn can be obtained. However, if the temperature is lowered too much, the take-up speed of the coagulated yarn is lowered and the productivity is lowered.

本発明の方法では、洗浄、延伸工程において上記で得られた膨潤糸を洗浄及び延伸する。なお、洗浄と延伸の順番については、洗浄を先に行っても良く、また同時に行っても良い。洗浄の方法としては、特に制限はないが、一般的に用いられている、水中、特に温水中に浸漬させる方法がよい。   In the method of the present invention, the swollen yarn obtained above is washed and drawn in the washing and drawing steps. In addition, about the order of washing | cleaning and extending | stretching, you may perform washing | cleaning first and may carry out simultaneously. Although there is no restriction | limiting in particular as a washing | cleaning method, The method of immersing in the water generally used, especially warm water is good.

延伸の方法としては、水中、温水中に浸漬させながら延伸する方法、熱板、ローラー等のよる空気中での乾熱延伸法、また熱風が循環している箱型炉内での延伸でも良く、これらに限定されるものではない。経済的な観点から、温水中で行うことが好ましい。また延伸倍率は、1〜8倍とすることが好ましい。但し、後に二次延伸を行う場合、その延伸倍率を考慮して設定することが好ましい。   The stretching method may be a method of stretching while being immersed in water or warm water, a dry heat stretching method in the air using a hot plate or a roller, or stretching in a box furnace where hot air is circulated. However, it is not limited to these. From an economical viewpoint, it is preferable to carry out in warm water. The draw ratio is preferably 1 to 8 times. However, when performing secondary stretching later, it is preferable to set in consideration of the stretching ratio.

本発明の方法では、油剤付与工程において上記で得られた洗浄及び延伸後の繊維束を、シリコーン系油剤が入った油浴槽に導いて、繊維束にシリコーン系油剤を付与する。油剤としては、シリコーン化合物を含有するシリコーン系油剤を使用する。かかるシリコーン油剤はジメチルシリコーンオイルや有機変性シリコーンオイルを用いることが好ましく、耐熱性の高いアミノ変性シリコーンオイルがより好ましい。通常は、シリコーン化合物とノニオン系乳化剤とを混合し、乳化したものを用いる。また、場合により、酸化防止剤や各種添加剤、さらにシリコーン原子を含まない有機物を混合することもできる。   In the method of the present invention, the fiber bundle after washing and stretching obtained above in the oil agent application step is guided to an oil bath containing a silicone oil agent, and the silicone oil agent is applied to the fiber bundle. As the oil agent, a silicone-based oil agent containing a silicone compound is used. As the silicone oil, dimethyl silicone oil or organically modified silicone oil is preferably used, and amino-modified silicone oil having high heat resistance is more preferable. Usually, a silicone compound and a nonionic emulsifier are mixed and emulsified. In some cases, an antioxidant, various additives, and an organic substance not containing a silicone atom can be mixed.

本発明の方法では、乾燥緻密化において上記で得られたシリコーン系油剤を付与した繊維束を乾燥緻密化する。乾燥緻密化の方法としては、熱板や加熱ローラーに接触させることにより行うことが一般的に用いられており、加熱ローラーによる乾燥が好ましく用いられる。乾燥温度が高いほど、シリコーン油剤の架橋反応が促進され、また生産性の観点からも好ましいので、単繊維間の融着が生じない範囲で高く設定できる。具体的には150℃以上が好ましく、180℃以上であればさらに好ましい。また乾燥時間は上記繊維束が十分乾燥する時間をとることが好ましい。   In the method of the present invention, the fiber bundle provided with the silicone-based oil obtained above in dry densification is dry densified. As a method for drying and densifying, it is generally performed by contacting with a hot plate or a heating roller, and drying with a heating roller is preferably used. The higher the drying temperature, the more the crosslinking reaction of the silicone oil agent is promoted, and it is also preferable from the viewpoint of productivity. Therefore, it can be set high within a range in which fusion between single fibers does not occur. Specifically, 150 ° C. or higher is preferable, and 180 ° C. or higher is more preferable. Further, it is preferable that the drying time is a time for sufficiently drying the fiber bundle.

本発明の方法では、必要に応じて、上記で得られた乾燥緻密化後の繊維束を二次延伸することもできる。二次延伸の方法としては、乾熱延伸、スチーム延伸等が挙げられる。   In the method of the present invention, the fiber bundle after drying and densification obtained above can be secondarily stretched as necessary. Examples of the secondary stretching method include dry heat stretching and steam stretching.

本発明において、得ようとする炭素繊維用PAN系前駆体繊維の単繊維繊度は1.0〜3.0dtexが好ましく、1.0〜2.5dtexがより好ましい。PAN系前駆体繊維のフィラメント数としては、30,000〜300,000が好ましく、30,000〜200,000がより好ましく、30,000〜100,000がさらに好ましい。単繊維繊度が小さすぎると、可紡性の低下、ローラー、ガイドの接触による糸切れ発生などにより、製糸工程及び焼成工程の工程通過性が低下することがある。また単繊維繊度が大きすぎると、耐炎化後の各単繊維における内外構造差が大きくなり、続く炭化工程での工程通過性や、得られる炭素繊維の引張強度、引張弾性率が低下することがある。   In the present invention, the single fiber fineness of the PAN precursor fiber for carbon fiber to be obtained is preferably 1.0 to 3.0 dtex, and more preferably 1.0 to 2.5 dtex. The number of filaments of the PAN-based precursor fiber is preferably 30,000 to 300,000, more preferably 30,000 to 200,000, and even more preferably 30,000 to 100,000. If the single fiber fineness is too small, the processability of the yarn-making process and the firing process may decrease due to a decrease in spinnability and the occurrence of yarn breakage due to contact between rollers and guides. In addition, if the single fiber fineness is too large, the difference between the inner and outer structures of each single fiber after flame resistance becomes large, and the process passability in the subsequent carbonization process, the tensile strength of the obtained carbon fiber, and the tensile elastic modulus may decrease. is there.

(耐炎化処理)
PAN系前駆体繊維を、以下に記載する方法で耐炎化処理することにより、耐炎化繊維とする。耐炎化は雰囲気加熱方式で、200℃〜300℃の温度範囲のいずれかで耐炎化処理を行う。装置としては、加熱した酸化性ガスを循環させる方式の熱風循環炉が好適に採用できる。通常、熱風循環炉では、炉に入った繊維束を一旦炉の外部に出した後、炉の外部に配設された折り返しロールによって折り返して炉に繰り返し通過させる方法がとられる。雰囲気については、空気、酸素、二酸化窒素など公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。
(Flame resistance treatment)
The PAN-based precursor fiber is made flame resistant fiber by subjecting it to flame resistance treatment by the method described below. Flame resistance is an atmospheric heating method, and flame resistance treatment is performed in any temperature range of 200 ° C to 300 ° C. As the apparatus, a hot-air circulating furnace that circulates a heated oxidizing gas can be suitably employed. Usually, in a hot-air circulating furnace, a fiber bundle that has entered the furnace is once taken out of the furnace, and then folded back by a folding roll disposed outside the furnace and repeatedly passed through the furnace. As the atmosphere, a known oxidizing atmosphere such as air, oxygen, and nitrogen dioxide can be adopted, but air is preferable from the viewpoint of economy.

(前炭素化処理、及び炭素化処理)
耐炎化繊維を、以下に記載する方法で、300℃〜2500℃の温度範囲のいずれかで前炭素化処理及び炭素化処理することにより、炭素繊維とする。まず、耐炎化繊維を第1の炭素化炉に投入して前炭素化処理する。第1の炭素化炉内には、温度が300〜800℃の不活性雰囲気が循環しており、耐炎化繊維は該不活性雰囲気中を走行する間に前炭素化処理される。なお、第1の炭素化炉内を循環する不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも、垂直方向でもよく、特に限定されない。不活性雰囲気としては、窒素、アルゴン、ヘリウムなど公知の不活性雰囲気を採用できるが、経済性の面から窒素が望ましい。
(Pre-carbonization treatment and carbonization treatment)
The flame-resistant fiber is made into carbon fiber by pre-carbonization treatment and carbonization treatment at any temperature range of 300 ° C. to 2500 ° C. by the method described below. First, the flame resistant fiber is put into a first carbonization furnace and pre-carbonized. An inert atmosphere having a temperature of 300 to 800 ° C. circulates in the first carbonization furnace, and the flame resistant fiber is pre-carbonized while traveling in the inert atmosphere. In addition, the flow of the inert atmosphere which circulates in the 1st carbonization furnace may be a parallel direction with respect to the to-be-processed fiber, or a perpendicular direction, and is not specifically limited. As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is desirable from the viewpoint of economy.

次いで、前炭素化処理された繊維を第2の炭素化炉に投入して炭素化処理する。第2の炭素化炉内には、最高温度が1000〜2500℃の不活性雰囲気が循環しており、前炭素化処理された繊維は、該不活性雰囲気中を走行する間に炭素化処理される。なお、第2の炭素化炉内を循環する不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも、垂直方向でもよく、特に限定されない。不活性雰囲気としては、先に例示した公知の不活性雰囲気の中から選択して用いることができるが、経済性の面から窒素が望ましい。   Next, the pre-carbonized fiber is put into a second carbonization furnace and carbonized. An inert atmosphere having a maximum temperature of 1000 to 2500 ° C. circulates in the second carbonization furnace, and the pre-carbonized fiber is carbonized while traveling in the inert atmosphere. The In addition, the flow of the inert atmosphere which circulates in the 2nd carbonization furnace may be a parallel direction or a perpendicular direction with respect to the to-be-processed fiber to drive, and is not specifically limited. The inert atmosphere can be selected from the known inert atmospheres exemplified above, but nitrogen is desirable from the viewpoint of economy.

(炭素繊維の表面処理)
本発明の炭素繊維の製造方法は、上述した方法により得られた炭素繊維を、電解酸化処理法を用いて表面処理することを含む。電解酸化処理の電解液に使用される電解質としては、(1)硫酸、硝酸、リン酸、ホウ酸、炭酸などの無機酸、(2)酢酸酪酸、シュウ酸、マレイン酸等の有機酸、(3)これらの無機酸若しくは有機酸のアルカリ金属塩、アンモニウム塩等を挙げることができる。前記(1)〜(3)は、単独で使用しても、2種以上の混合物として使用しても良い。
(Carbon fiber surface treatment)
The manufacturing method of the carbon fiber of this invention includes surface-treating the carbon fiber obtained by the method mentioned above using the electrolytic oxidation treatment method. The electrolytes used in the electrolytic solution for electrolytic oxidation include (1) inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, boric acid and carbonic acid, (2) organic acids such as acetic acid butyric acid, oxalic acid and maleic acid, ( 3) Alkali metal salts and ammonium salts of these inorganic or organic acids can be mentioned. Said (1)-(3) may be used individually or may be used as a 2 or more types of mixture.

(電解液の洗浄)
炭素繊維の表面には、炭素繊維前駆体繊維や油剤由来の熱分解生成物が繊維束に付着したタール状付着物や、低結晶性炭素化物からなる付着物、あるいは該繊維束の熱的損傷又は機械的損傷により生じた強度的に脆弱な不均質構造(タ−ル状物質等)が存在している。このような炭素繊維を、電解酸化処理の電解液槽に浸漬すると、炭素繊維の表面からタ−ル状物質等が脱離して、電解槽内部に蓄積したり、電解液中に堆積して、炭素繊維の製造歩留り低下や、炭素繊維製品の品質低下の原因となる。
(Cleaning of electrolyte)
On the surface of the carbon fiber, a carbon fiber precursor fiber or a pyrolysis product derived from an oil agent adheres to the fiber bundle, a tar-like deposit, a deposit made of a low crystalline carbonized product, or thermal damage to the fiber bundle. Alternatively, there is a highly fragile heterogeneous structure (such as a tar-like substance) caused by mechanical damage. When such a carbon fiber is immersed in an electrolytic bath for electrolytic oxidation treatment, tar-like substances and the like are detached from the surface of the carbon fiber and accumulated in the electrolytic bath, or deposited in the electrolytic solution, This causes a decrease in the production yield of carbon fibers and a decrease in the quality of carbon fiber products.

本発明者は、電解液中のタ−ル状物質等を吸着、除去する方法について検討を行ったところ、表面積が大きく、タ−ル状物質等に対する吸着効果が大きい繊維状物質を電解液に浸漬することにより、電解液中のタ−ル状物質等を効率的に吸着、除去できることを見出した。このような繊維状物質としては、タ−ル状物質等に対する吸着性が高く、炭素繊維を製造する者にとって入手が容易な、PAN系繊維束が最適である。   The present inventor has studied a method for adsorbing and removing tar-like substances and the like in an electrolytic solution. It has been found that tar-like substances and the like in the electrolyte can be efficiently adsorbed and removed by soaking. As such a fibrous substance, a PAN-based fiber bundle that has high adsorptivity to tar-like substances and the like and is easily available to those who manufacture carbon fibers is optimal.

本発明において、電解液の洗浄に用いるPAN系繊維束には、上述したPAN系前駆体繊維を使用することができる。PAN系繊維束を構成する単繊維の繊度は1.0〜3.0dtexが好ましく、1.0〜2.5dtexがより好ましい。PAN系繊維束のフィラメント数としては、30,000〜300,000が好ましく、30,000〜200,000がより好ましく、30,000〜100,000がさらに好ましい。PAN系繊維束の単繊維繊度やフィラメント数が小さすぎると、繊維状物質の表面積が小さく、タ−ル状物質等を十分に吸着除去できない。   In the present invention, the PAN-based precursor fiber described above can be used for the PAN-based fiber bundle used for cleaning the electrolytic solution. The fineness of the single fiber constituting the PAN-based fiber bundle is preferably 1.0 to 3.0 dtex, and more preferably 1.0 to 2.5 dtex. The number of filaments in the PAN-based fiber bundle is preferably 30,000 to 300,000, more preferably 30,000 to 200,000, and even more preferably 30,000 to 100,000. If the single fiber fineness and the number of filaments of the PAN-based fiber bundle are too small, the surface area of the fibrous material is small and the tar-like material cannot be sufficiently removed by adsorption.

本発明において、電解液の洗浄に用いるPAN系繊維は油剤が付与されていないことが好ましい。PAN系繊維に油剤が付着している場合、その油剤自体が電解液を汚す原因になるとともに、タ−ル状物質等を十分に吸着除去することができない。   In the present invention, it is preferable that the PAN fiber used for washing the electrolytic solution is not provided with an oil agent. When the oil agent adheres to the PAN-based fiber, the oil agent itself causes the electrolytic solution to become dirty, and the tar-like substance cannot be sufficiently adsorbed and removed.

本発明において、電解液の洗浄に用いるPAN系繊維の使用量は、電解液1Lに対してPAN系繊維を10g/L以上とすることが好ましく、15g/L以上とすることがより好ましい。PAN系繊維の使用量が電解液に対して少ない場合、電解液中のタ−ル状物質等を十分に吸着除去できないため、電解液中にタ−ル状物質等が堆積し、炭素繊維の製造上歩留りの低下や、炭素繊維の品質低下の原因となる。PAN系繊維の使用量については、特に上限はないが、40g/Lあれば十分である。   In the present invention, the amount of the PAN-based fiber used for washing the electrolytic solution is preferably 10 g / L or more, more preferably 15 g / L or more with respect to 1 L of the electrolytic solution. When the amount of PAN fiber used is small relative to the electrolyte, the tar-like substance in the electrolyte cannot be sufficiently adsorbed and removed. This causes a decrease in production yield and a decrease in the quality of the carbon fiber. There is no particular upper limit on the amount of PAN fiber used, but 40 g / L is sufficient.

電解液の洗浄の具体的な態様としては、電解酸化処理槽から抜き出した電解液に、PAN系繊維を浸漬し、電解液の吸光度(後述)を0.4以下とした後、電解酸化処理槽に循環、送液する方法を挙げることができる。   As a specific aspect of washing of the electrolytic solution, the PAN-based fiber is immersed in the electrolytic solution extracted from the electrolytic oxidation treatment tank so that the absorbance (described later) of the electrolytic solution is 0.4 or less, and then the electrolytic oxidation treatment tank And a method of circulating and feeding the solution.

(吸光度)
電解液を十分に洗浄するには、下記の方法で測定される電解液の吸光度が一定値以下とすることが好ましい。吸光度が0.4以下であれば、電解液中のタ−ル状物質等は、炭素繊維の製造歩留りや炭素繊維の品質に影響しない程度まで除去されたと見なせる。
『吸光度測定』
電解液Xgを取り出し、この電解液を洗浄液として分光分析用蒸留水Ygを入れたビーカー内に希釈する。(但し、「X:Y=1:9」とする)処理後の洗浄液を分光光度計(HITACHI製、U−3300)により、スキャン速度300nm/min、サンプリング間隔1nm、スリット2nmの条件下で、セル長10mmの石英セルを用いて吸光度測定を行う。まず分光分析用蒸留水を用いたリファレンスの測定を行い、得られた結果の波長230nmにおける透過度をTとする。続いて、前記洗浄液の吸光度を同様に測定し、得られた結果の波長230nmにおける透過度をTとする。前記透過度により算出される吸光度A=−log10(T/T)を異物の存在量とする。
(Absorbance)
In order to sufficiently wash the electrolytic solution, the absorbance of the electrolytic solution measured by the following method is preferably set to a certain value or less. If the absorbance is 0.4 or less, it can be considered that tar-like substances and the like in the electrolytic solution have been removed to the extent that they do not affect the carbon fiber production yield and the quality of the carbon fibers.
Absorbance measurement
The electrolytic solution Xg is taken out, and diluted in a beaker containing distilled water Yg for spectroscopic analysis using the electrolytic solution as a cleaning solution. (However, it is assumed that “X: Y = 1: 9”) The cleaning liquid after the treatment was subjected to a spectrophotometer (manufactured by HITACHI, U-3300) under the conditions of a scanning speed of 300 nm / min, a sampling interval of 1 nm, and a slit of 2 nm. Absorbance measurement is performed using a quartz cell having a cell length of 10 mm. First, a reference measurement using distilled water for spectroscopic analysis is performed, and the resulting transmittance at a wavelength of 230 nm is T 0 . Subsequently, the absorbance of the cleaning liquid is measured in the same manner, and the resulting transmittance at a wavelength of 230 nm is T. Absorbance A = −log 10 (T / T 0 ) calculated from the transmittance is defined as the amount of foreign matter present.

以下、実施例により本発明をより具体的に説明する。本実施例においては、各種特性を次のようにして測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. In this example, various characteristics were measured as follows.

<PAN系繊維の総繊度>
電解液の洗浄に用いるPAN系繊維の総繊度を、JIS R 7605に準拠して測定した。
<Total fineness of PAN fiber>
The total fineness of the PAN-based fiber used for washing the electrolytic solution was measured according to JIS R 7605.

<吸光度>
電解液Xgを取り出し、この電解液を洗浄液として分光分析用蒸留水Ygを入れたビーカー内に希釈する。(但し、「X:Y=1:9」とする)処理後の洗浄液を分光光度計(HITACHI製、U−3300)により、スキャン速度300nm/min、サンプリング間隔1nm、スリット2nmの条件下で、セル長10mmの石英セルを用いて吸光度測定を行う。まず分光分析用蒸留水を用いたリファレンスの測定を行い、得られた結果の波長230nmにおける透過度をTとする。続いて、前記洗浄液の吸光度を同様に測定し、得られた結果の波長230nmにおける透過度をTとする。前記透過度により算出される吸光度A=−log10(T/T)を異物の存在量とする。
<Absorbance>
The electrolytic solution Xg is taken out, and diluted in a beaker containing distilled water Yg for spectroscopic analysis using the electrolytic solution as a cleaning solution. (However, it is assumed that “X: Y = 1: 9”) The cleaning liquid after the treatment was subjected to a spectrophotometer (manufactured by HITACHI, U-3300) under the conditions of a scanning speed of 300 nm / min, a sampling interval of 1 nm, and a slit of 2 nm. Absorbance measurement is performed using a quartz cell having a cell length of 10 mm. First, a reference measurement using distilled water for spectroscopic analysis is performed, and the resulting transmittance at a wavelength of 230 nm is T 0 . Subsequently, the absorbance of the cleaning liquid is measured in the same manner, and the resulting transmittance at a wavelength of 230 nm is T. Absorbance A = −log 10 (T / T 0 ) calculated from the transmittance is defined as the amount of foreign matter present.

[実施例1]
アクリロニトリル単位96%、アクリルアミド単位3%、メタクリル酸単位1%からなるアクリロニトリル系重合体(カルボン酸基の量は7.0×10−5当量、極限粘度〔η〕は1.7)を、ポリアクリロニトリル系重合体の総固形分濃度が21.2重量%となるようDMAcに溶解し、炭素繊維用アクリル系前駆体繊維の紡糸原液を得た。孔径0.006mm、孔数30000の紡糸口金を用いて、温度38℃、濃度68%のDMAc水溶液(凝固浴)に、湿式紡糸法を用いて吐出させ、凝固糸とした。次いで、凝固糸を60℃から98℃の温水中で脱溶媒しながら、7倍に延伸した。延伸糸をアミノシリコン系油剤1%水溶液中に浸漬した後、180℃の加熱ローラーで乾燥緻密化し、単糸繊度が1.0dtex、フィラメント数60000、総繊度60000dtexの炭素繊維前駆体繊維を得た。
[Example 1]
An acrylonitrile-based polymer composed of 96% acrylonitrile units, 3% acrylamide units and 1% methacrylic acid units (the amount of carboxylic acid groups is 7.0 × 10 −5 equivalent, the intrinsic viscosity [η] is 1.7), The acrylonitrile polymer was dissolved in DMAc so that the total solid content concentration was 21.2% by weight to obtain a spinning dope for acrylic precursor fibers for carbon fibers. Using a spinneret having a hole diameter of 0.006 mm and a number of holes of 30000, a DMAc aqueous solution (coagulation bath) having a temperature of 38 ° C. and a concentration of 68% was discharged using a wet spinning method to obtain a coagulated yarn. Next, the coagulated yarn was stretched 7 times while removing the solvent in warm water of 60 ° C to 98 ° C. After the drawn yarn was immersed in a 1% aqueous solution of an aminosilicon-based oil, it was dried and densified with a heating roller at 180 ° C. to obtain a carbon fiber precursor fiber having a single yarn fineness of 1.0 dtex, a filament number of 60000, and a total fineness of 60000 dtex. .

得られたアクリル系前駆体繊維束を、空気中230〜250℃で緊張下に70分間加熱し、密度1.37g/cmの耐炎化繊維束を得た。 The resulting acrylic precursor fiber bundle was heated in air at 230 to 250 ° C. under tension for 70 minutes to obtain a flameproof fiber bundle having a density of 1.37 g / cm 3 .

この耐炎化繊維束を、窒素雰囲気中、最高温度が700℃で緊張下に1分間加熱し前炭素化繊維束とした。この炭素化処理での400〜500℃での昇温速度は200℃/分であった。得られた前炭素化繊維束を、窒素雰囲気中、最高温度が1350℃で緊張下に1分間加熱し炭素化繊維束とした。この炭素化処理での1000〜1200℃での昇温速度は400℃/分であった。   This flame-resistant fiber bundle was heated under tension at a maximum temperature of 700 ° C. in a nitrogen atmosphere for 1 minute to obtain a pre-carbonized fiber bundle. The temperature rising rate at 400 to 500 ° C. in this carbonization treatment was 200 ° C./min. The obtained pre-carbonized fiber bundle was heated for 1 minute under tension at a maximum temperature of 1350 ° C. in a nitrogen atmosphere to obtain a carbonized fiber bundle. The rate of temperature increase at 1000 to 1200 ° C. in this carbonization treatment was 400 ° C./min.

得られた炭素化繊維束に対し、濃度0.1Nの重炭酸アンモニウム水溶液を電解液とし、炭素繊維を陽極として、炭素繊維1g当りの電気量が30クーロンになるように30秒間電解酸化処理を行った。   The obtained carbonized fiber bundle was subjected to an electrolytic oxidation treatment for 30 seconds using an aqueous solution of ammonium bicarbonate having a concentration of 0.1 N as an electrolytic solution and carbon fiber as an anode so that the amount of electricity per 1 g of carbon fiber was 30 coulombs. went.

電解液には単繊維繊度が1.0dtex、総繊度が30000dtexのポリアクリロニトリル系繊維を10g/L浸透させ、電解液中のタ−ル状物質等を吸着させた。この時の電解酸化開始直後及び1時間、2時間、3時間、24時時間、48時間経過後の電解液の吸光度を測定した。また電解液の汚れや凝集の度合いを目視で観察して凝集物の生成する時間を調べた。こうして得られた電解酸化後の電解液を50ml採取し、評価サンプルとした。前記繊維束の230nmにおける吸光度は0.38であった。   The electrolytic solution was impregnated with 10 g / L of polyacrylonitrile fiber having a single fiber fineness of 1.0 dtex and a total fineness of 30000 dtex to adsorb tar-like substances and the like in the electrolytic solution. Immediately after the start of electrolytic oxidation at this time and after 1 hour, 2 hours, 3 hours, 24 hours, and 48 hours, the absorbance of the electrolyte was measured. Further, the degree of contamination of the electrolytic solution and the degree of aggregation were visually observed to examine the time for the formation of aggregates. 50 ml of the electrolytic solution thus obtained after electrolytic oxidation was sampled and used as an evaluation sample. The absorbance at 230 nm of the fiber bundle was 0.38.

[実施例2〜3、比較例1〜4]
表1で示した条件で電解液の洗浄処理を行った。洗浄処理後の電解液の吸光度を表1に記載した。
[Examples 2-3, Comparative Examples 1-4]
The electrolytic solution was washed under the conditions shown in Table 1. Table 1 shows the absorbance of the electrolyte solution after the washing treatment.


実施例1、3と比較例1、2を比較すると、電解液に浸漬するPAN系繊維の使用量を10g/L以上とすることで、電解液中のタ−ル状物質等が吸着除去され、十分な洗浄効果を得ることができる。   When Examples 1 and 3 are compared with Comparative Examples 1 and 2, the amount of PAN-based fibers immersed in the electrolyte is 10 g / L or more, so that tar-like substances in the electrolyte are adsorbed and removed. A sufficient cleaning effect can be obtained.

また実施例1と比較例3、4を比較すると、PAN系繊維の単繊維繊度が小さい又は総繊度が少ないと、電解液中のタ−ル状物質等が十分に吸着除去されず、十分な洗浄効果を得ることができない。
Moreover, when Example 1 and Comparative Examples 3 and 4 are compared, if the single fiber fineness of the PAN-based fiber is small or the total fineness is small, the tar-like substance and the like in the electrolytic solution are not sufficiently adsorbed and removed. The cleaning effect cannot be obtained.

Claims (3)

以下の(1)〜(4)を満足する炭素繊維束の製造方法。
(1)ポリアクリロニトリル系炭素繊維前駆体繊維束を耐炎化炉に導入し、200℃〜300℃の温度範囲のいずれかで耐炎化処理し、耐炎化繊維束を得る。
(2)前記耐炎化繊維束を炭素化炉に導入し、300℃〜2500℃の温度範囲のいずれかで炭素化処理し、炭素繊維束を得る。
(3)前記炭素繊維束を、電解酸化処理槽中の電解液に浸漬して、電解酸化処理する。
(4)前記電解液を、単繊維繊度が1.0dtex以上、総繊度が30000dtex以上のポリアクリロニトリル系繊維により洗浄しながら循環使用する。
The manufacturing method of the carbon fiber bundle which satisfies the following (1)-(4).
(1) A polyacrylonitrile-based carbon fiber precursor fiber bundle is introduced into a flameproofing furnace and subjected to a flameproofing treatment in any temperature range of 200 ° C to 300 ° C to obtain a flameproofing fiber bundle.
(2) The flame-resistant fiber bundle is introduced into a carbonization furnace and carbonized in any temperature range of 300 ° C to 2500 ° C to obtain a carbon fiber bundle.
(3) The carbon fiber bundle is immersed in an electrolytic solution in an electrolytic oxidation treatment tank and subjected to electrolytic oxidation treatment.
(4) The electrolytic solution is circulated and used while being washed with polyacrylonitrile fiber having a single fiber fineness of 1.0 dtex or more and a total fineness of 30000 dtex or more.
前記ポリアクリロニトリル系繊維を、前記電解酸化処理槽の電解液に対して10g/L以上の割合で浸漬させる、請求項1に記載の炭素繊維の製造方法。   The method for producing carbon fiber according to claim 1, wherein the polyacrylonitrile fiber is immersed at a rate of 10 g / L or more with respect to the electrolytic solution in the electrolytic oxidation treatment tank. 前記電解酸化処理槽から抜き出した電解液に、前記ポリアクリロニトリル系繊維を浸漬し、該電解液の下記の吸光度測定で測定された230nmの吸光度を0.4以下とした後、前記電解酸化処理槽に送液する、請求項2に記載の炭素繊維の製造方法。 The polyacrylonitrile fiber is immersed in the electrolytic solution extracted from the electrolytic oxidation treatment tank, and the absorbance at 230 nm measured by the following absorbance measurement of the electrolytic solution is set to 0.4 or less, and then the electrolytic oxidation treatment tank The method for producing a carbon fiber according to claim 2, wherein the solution is fed to the liquid.
JP2014164277A 2014-08-12 2014-08-12 Method for producing carbon fiber Pending JP2016040419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164277A JP2016040419A (en) 2014-08-12 2014-08-12 Method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164277A JP2016040419A (en) 2014-08-12 2014-08-12 Method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2016040419A true JP2016040419A (en) 2016-03-24

Family

ID=55540813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164277A Pending JP2016040419A (en) 2014-08-12 2014-08-12 Method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2016040419A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003914A1 (en) * 2017-06-28 2019-01-03 東レ株式会社 Production method for carbon fiber precursor fibers and production method for carbon fibers
US10385186B2 (en) 2016-11-28 2019-08-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor and method for producing carbon material using the same
CN112522814A (en) * 2019-09-19 2021-03-19 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
US11040882B2 (en) 2018-03-23 2021-06-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
EP4060101A2 (en) 2021-03-18 2022-09-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon fiber and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385186B2 (en) 2016-11-28 2019-08-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor and method for producing carbon material using the same
WO2019003914A1 (en) * 2017-06-28 2019-01-03 東レ株式会社 Production method for carbon fiber precursor fibers and production method for carbon fibers
US11001660B2 (en) 2017-07-27 2021-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
US11040882B2 (en) 2018-03-23 2021-06-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
CN112522814A (en) * 2019-09-19 2021-03-19 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
EP3795726A1 (en) 2019-09-19 2021-03-24 Toyota Jidosha Kabushiki Kaisha Stabilized fiber, method of producing the same, and method of producing carbon fiber
CN112522814B (en) * 2019-09-19 2022-12-20 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
US11702769B2 (en) 2019-09-19 2023-07-18 Toyota Jidosha Kabushiki Kaisha Stabilized fiber, method of producing the same, and method of producing carbon fiber
EP4060101A2 (en) 2021-03-18 2022-09-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon fiber and method for producing the same

Similar Documents

Publication Publication Date Title
JP6885109B2 (en) Carbon fiber bundle and its manufacturing method
JP2018145540A (en) Method for production of carbon fiber bundle
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2016040419A (en) Method for producing carbon fiber
JP2007162144A (en) Method for producing carbon fiber bundle
JP4023226B2 (en) Carbon fiber bundle processing method
JP2016037689A (en) Method for producing carbon fiber
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JPH02242920A (en) Carbon fiber containing composite metal
JP2012193465A (en) Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2012219382A (en) Method for producing precursor fiber bundle of polyacrylonitrile-based carbon fiber, and precursor fiber bundle of polyacrylonitrile-based carbon fiber obtained by using the same
JP2021139062A (en) Production method of carbon fiber bundle
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
EP0372622B1 (en) Acrylic precursor for carbon fibres and method for its preparation
JP3697793B2 (en) Precursor for carbon fiber, method for producing the same, and method for producing carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP2007332498A (en) Method for producing carbon fiber bundle
JP2014125701A (en) Method of manufacturing carbon fiber bundle
CN111088535B (en) Oiling method of low-silicon polyacrylonitrile protofilament
EP3699333B1 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
KR101148554B1 (en) A device for washing coagulated fiber of polyacrylonitrile-based precusor for carbon fiber and the method thereof