JPS58220821A - Acrylic carbon fiber bundle with high strength and elongation and its production - Google Patents

Acrylic carbon fiber bundle with high strength and elongation and its production

Info

Publication number
JPS58220821A
JPS58220821A JP9775982A JP9775982A JPS58220821A JP S58220821 A JPS58220821 A JP S58220821A JP 9775982 A JP9775982 A JP 9775982A JP 9775982 A JP9775982 A JP 9775982A JP S58220821 A JPS58220821 A JP S58220821A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
yarn
fibers
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9775982A
Other languages
Japanese (ja)
Other versions
JPH0329890B2 (en
Inventor
Toru Hiramatsu
徹 平松
Shigeo Mitsui
三井 茂雄
Tomimasa Higuchi
樋口 富壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9775982A priority Critical patent/JPS58220821A/en
Publication of JPS58220821A publication Critical patent/JPS58220821A/en
Publication of JPH0329890B2 publication Critical patent/JPH0329890B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:An acrylic polymer solution is filtered, extruded into a coagulation bath to form a precursoy yarn, then subjected to heat treatment under specific conditions, thus producing the titled fiber bundle with high strength and elongation as well as high reliability, because of its little deviation in qualities and performances. CONSTITUTION:A solution of an acrylic polymer mainly containing acrylonitrile is filtered by means of a filter with less than 5 micron aperture and extruded into a coagulation bath at a draft of 2.0-5.0. The resultant wet yarn is washed with water, drawn, treated with a finishing oil and dried to give the precursor yarn. The resultant precursor yarn is oxidized by heating it in an atmosphere of the air filtered through a filter of less than 1 micron aperture at 200-350 deg.C, then carbonized in an inert atmosphere at a temperature over 1,000 deg.C to produce the objective carbon fiber bundle consisting of more than 1,000 carbon filaments more than 85% of which are free from defects caused by foreign matters sticking thereto at the broken surfaces.

Description

【発明の詳細な説明】 本発明は高強伸度アクリル系炭素繊維束およびその製造
法に係り、さらに詳しくは複合材料(コンポジット)の
補強繊維として品質、性能、のバラツキが小さく、信頼
性の高められた炭素繊維束に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high strength and elongation acrylic carbon fiber bundle and a method for producing the same, and more specifically, it is used as a reinforcing fiber for composite materials, with small variations in quality and performance, and high reliability. The present invention relates to carbon fiber bundles.

従来、炭素繊維はその卓越した力学的性質、特に比7強
度、比弾性率等により航空、宇宙用、ゴルフクラブシャ
フト、釣竿、テニスラケットなどのスポーツ用具、高速
回転胴のほかに自動車、船舶などの運輸機械にも利用さ
れようとしており、その用途は広く、かつ多種多様であ
ると云われている。これらの用途、たとえば航空、宇宙
用並びに運輸機械等の構造材料としての分野に用いられ
る炭素繊維は、該構造材料の耐久性および信頼性を向上
させるために、その品質、性能の向上を強く要望されて
いるが、このような要望を満足する炭素繊維を生産性よ
く、かつ安価に製造することは容易ではない。
Conventionally, carbon fiber has been used for aviation, space, sports equipment such as golf club shafts, fishing rods, tennis rackets, high-speed rotating bodies, automobiles, ships, etc. due to its excellent mechanical properties, especially specific strength and specific modulus. It is said that it will be used in many types of transportation machinery, and its uses are wide and diverse. Carbon fibers used in these applications, for example, as structural materials for aviation, space, and transportation machinery, have strong demands for improved quality and performance in order to improve the durability and reliability of these structural materials. However, it is not easy to manufacture carbon fibers that meet these demands with good productivity and at low cost.

すなわち、炭素繊維、特に一般゛・ハイグレード″と呼
称され、る高強度炭素繊維は前駆体繊維1.すなわちプ
レカーサとしてアクリルニトリル系重合体からなる繊維
糸条を用いて2oO′〜350℃の空気等の酸化性雰囲
気中で加熱し、該繊維を酸化繊維に転換した後、少くと
も1000’Cの窒素に代表される不活性雰囲気中で加
熱して該―化繊維を炭化乃至黒鉛化する方法によって製
造される。しかしながら、炭素繊維の生産性。
That is, carbon fibers, especially high-strength carbon fibers commonly referred to as "high grade", are produced using precursor fibers 1. That is, fiber yarns made of an acrylonitrile polymer as precursors are used in air at 2oO' to 350°C. A method of converting the fibers into oxidized fibers by heating in an oxidizing atmosphere such as, etc., and then carbonizing or graphitizing the oxidized fibers by heating in an inert atmosphere represented by nitrogen at at least 1000'C. However, the productivity of carbon fiber.

を高め、製造コストを低減・、させるためには、通常プ
レカーサとして単繊維本数をできる限り多くするかある
いは酸イヒ並びに炭化の速度を大きくするかのいずれか
の手段が採用されるが、これらの手段はいずれも炭素繊
維の物性、品質、・弓・1 性能を低下させることが多く工業的ではない。
In order to increase the carbonization rate and reduce the manufacturing cost, the usual methods are to increase the number of single fibers as a precursor as much as possible or to increase the rate of acidification and carbonization. All of these methods often degrade the physical properties, quality, and performance of carbon fibers, and are not industrially viable.

本発明者らは、複数本の単繊維からなる炭素繊維束の力
学的性質は亀裂、ボイド、異物などに起因、する・構造
的欠陥を有する単繊維本数が増大するにつれて急激に低
下すること並びに、このような構造的欠陥を電子る単繊
維はプレカーサのズクリル系繊維糸条を構成する単繊維
の本数に関係し、しかもこの炭素繊維束構成単繊維の本
数がある一定の本数を越えると前記構造的欠陥の発生を
抑制しても炭素繊維束の力学的性質の飛躍的な向上は望
めないことを見出し、鋭意検討を進めて本発明を為すに
到ったものである。
The present inventors have discovered that the mechanical properties of carbon fiber bundles consisting of multiple single fibers are caused by cracks, voids, foreign matter, etc., and that they rapidly decrease as the number of single fibers with structural defects increases. The number of single fibers that exhibit such structural defects is related to the number of single fibers that make up the precursor carbon fiber yarn, and moreover, if the number of single fibers that make up this carbon fiber bundle exceeds a certain number, the above-mentioned We have discovered that even if we suppress the occurrence of structural defects, we cannot expect a dramatic improvement in the mechanical properties of carbon fiber bundles, and we have conducted extensive studies to develop the present invention.

すなわち、本発明は上記炭素繊維束を構成する単繊維の
構造的欠−陥が少なく、力学的性質のバラツキも小さい
コツポジットの補強材として高品質、高性能の炭素繊維
束を提供するにある。
That is, the present invention provides a high-quality, high-performance carbon fiber bundle that can be used as a reinforcing material for composites in which the single fibers constituting the carbon fiber bundle have few structural defects and have small variations in mechanical properties.

このような本発明の目的は炭素繊維束を構成する単繊維
本数が少くともi ooo本、好ましくは2000〜3
.、、、0.000本の範囲内にあり、かつ該繊維束を
引張破壊試験をすることによって得られた繊維の破断面
を観察した際、付着物に起因して、破壊が開始している
単繊維本数が炭素繊維束構成単繊維本数当り15%以下
である繊維束によって達成することができる。
The object of the present invention is to reduce the number of single fibers constituting the carbon fiber bundle to at least i ooo, preferably 2000 to 3.
.. , , 0.000, and when the fracture surface of the fiber obtained by subjecting the fiber bundle to a tensile fracture test was observed, fracture had started due to deposits. This can be achieved by using a fiber bundle in which the number of single fibers is 15% or less based on the number of single fibers constituting the carbon fiber bundle.

ここで付着物に起因する≠仲書欠陥とは、以下に詳述す
る引張破断試験を行い、この試験によって得られた単繊
維の破断面の電子顕微鏡観察によって検出、定量される
欠陥である。
Here, the ≠ Nakasho defect caused by deposits is a defect that is detected and quantified by carrying out a tensile break test as detailed below and observing the fractured surface of a single fiber obtained by this test using an electron microscope.

まず、引張破断試験は、予かしめ溶剤等で洗浄した炭素
繊維束試料から長さが約10crnの繊維集団をとり出
し、適宜開繊して該繊維集団からランダムに単繊維を抜
き取る。この抜き取った単繊維(1)を第1図に示すよ
うに、50の試料長に正確に対応する長さに打ち抜いた
5 an X 1cm。
First, in the tensile breakage test, a fiber group with a length of about 10 crn is taken out from a carbon fiber bundle sample that has been pre-washed with a caulking solvent, etc., and the fibers are appropriately opened and single fibers are randomly extracted from the fiber group. As shown in FIG. 1, this sampled single fiber (1) was punched out to a length of 5 an x 1 cm, which exactly corresponds to the length of the 50 samples.

の寸法の穴あき台紙(2)の上に台紙(2)の中央線(
3)に沿って真直ぐにして接着剤(4)で貼りつけ固定
しテストピースを作成する。
Place the center line of the mount (2) on the perforated mount (2) with dimensions (
Make a test piece by straightening it along 3) and fixing it with adhesive (4).

次に、炭素繊維のような脆性の著しい繊維は空中で引張
破断した場合に、破断時の衝撃によって一次破壊のほか
に数ケ所で二次破壊が生じ易いので、これを避けるため
に水中での引張破壊試験ができるように改造した定速緊
張型引張試験機を用いて、前記テストピースを該試験機
に取りつけ、引張歪速度1%/淵で引張破壊試験を行う
Next, when extremely brittle fibers such as carbon fibers are tensilely fractured in the air, the impact at the time of fracture tends to cause secondary fractures in several places in addition to the primary fracture. Using a constant speed tension type tensile testing machine modified to perform a tensile fracture test, the test piece is attached to the test machine and a tensile fracture test is conducted at a tensile strain rate of 1%/depth.

この引張破壊試験を繊維束を構成する総単繊維本数当り
少なくとも1チの単繊維について行い、引張破壊された
テストピースから単繊維を取出し、該単繊維の一次破壊
面に金コーティングを施し、走査型電子顕微鏡を用いて
、加速電圧25 KV 、倍率10,000倍で破壊面
を観察し、写真を撮影する。第2図は本発明の付着物に
起因する持妙嘔欠陥の代表的な例を示す電子顕微鏡写真
である。第2図に示すように、単繊維の破断面には付着
物が付着しており、この付着物が単繊維の破断の原因と
なっていることが判る。
This tensile fracture test is performed on at least 1 single fiber per total number of single fibers constituting the fiber bundle, the single fiber is taken out from the tensile fractured test piece, gold coating is applied to the primary fracture surface of the single fiber, and the single fiber is scanned. The fractured surface is observed using an electron microscope at an acceleration voltage of 25 KV and a magnification of 10,000 times, and a photograph is taken. FIG. 2 is an electron micrograph showing a typical example of a glutinous defect caused by deposits according to the present invention. As shown in FIG. 2, there is deposits attached to the fractured surface of the single fibers, and it can be seen that this deposits are the cause of the single fibers breaking.

一般に炭素繊維の構造的欠陥の代表的なものとしては亀
裂やボイドが広く知られており、このような亀裂やボイ
ド欠陥はプレカーサそのものに顕在するもの及び該プレ
カーサを炭素繊維に転換する過程で顕在化するものなど
があるが、本発明の付着物舞→者欠陥はプレカーサの製
造工程並びにその焼成工程において該グレ力−サに付着
してくる不純物あるいは異物に起因するものと考゛えら
れ、亀裂やボイドなどの欠陥とは発生原因を異にす゛る
のである。
In general, cracks and voids are widely known as typical structural defects in carbon fibers, and such cracks and void defects occur in the precursor itself and in the process of converting the precursor into carbon fiber. However, the deposit dust defects of the present invention are thought to be caused by impurities or foreign substances that adhere to the glare sensor during the manufacturing process and firing process of the precursor. The cause of occurrence is different from defects such as cracks and voids.

すなわち、後述するように、炭素繊維の製造には、通常
ブレカーサとして、十分に濾過、精製された紡糸原液を
用いて、単糸相互間に融着かなく、亀裂やボイドなどの
欠陥がなく均質な前駆体繊維特にアクリル系繊維が用い
られ、このブレカーサにシリコン系油剤などの耐炎化に
おける融着防止油剤を付与し、耐炎化、炭化及び炭化亜
牟≠#≠条件を考慮する必要があるが、得られる炭素繊
維束構成単繊維の付着物欠妙鳴欠陥の発生を防止し、該
炭素繊維構成単繊維相互間の物性の均一化を雫るもので
ある。
In other words, as will be explained later, in the production of carbon fiber, a sufficiently filtered and purified spinning stock solution is usually used as a breaker to ensure that the fibers are homogeneous without fusing between single fibers and without defects such as cracks or voids. Precursor fibers, especially acrylic fibers, are used, and it is necessary to apply an anti-fusing oil for flame resistance, such as a silicone oil, to this breaker, and to consider the conditions for flame resistance, carbonization, and carbonization. This prevents the occurrence of deposit defects in the resulting single fibers constituting the carbon fiber bundle, and reduces the uniformity of physical properties among the single fibers constituting the carbon fiber bundle.

特に、単繊維本数が1000本よりも少なくなってくる
と単に生産性が低くなってコスト高になるだけでなく、
付着物舛イ≠欠陥を有する単繊維の本数を減少させるこ
とが困難になるし、また、該単繊維本数が多すぎる、特
に30.000本を越えると付着柳井イ考欠陥の発生防
止にはある程度有効であるが炭素繊維束としての力学的
性質の大巾な向1を図かることが難しくなり、いずれも
本発明の目的を達成することができなくなるのである。
In particular, when the number of single fibers becomes less than 1,000, not only does productivity drop and costs increase,
Adhesive deposits = It becomes difficult to reduce the number of single fibers with defects, and if the number of single fibers is too large, especially over 30,000, it is difficult to prevent deposits from occurring. Although this method is effective to some extent, it becomes difficult to achieve a wide range of mechanical properties as a carbon fiber bundle, and the object of the present invention cannot be achieved in either case.

本発明の炭素繊維束を構成する単繊維本数と該単繊維の
付着物≠#者大欠陥びに炭素繊維束の物性との関係は該
炭素繊維束の製造条件に関係するので以下本発明の好適
な製造法を例に挙げて具体的かつ詳細に説明する。
Since the relationship between the number of single fibers constituting the carbon fiber bundle of the present invention and the deposits of the single fibers≠large defects and the physical properties of the carbon fiber bundle is related to the manufacturing conditions of the carbon fiber bundle, preferred embodiments of the present invention will be described below. A specific and detailed explanation will be given using a manufacturing method as an example.

まず紡糸原液としては重合槽や輸送パイプなどに起因す
る不純物および重合時の副反応や熱劣化等に起因するゲ
ル状物を実質的に除去するために°目びらき5μ以下の
フィルターで濾過した紡糸原液が用いられる。この紡糸
原液はホール数が少くとも1“・000ケの多ホール紡
糸口金孔を通して、凝固浴中に実質ドラフト、すなわち
、引取速度(■1〕に対する自由吐出線速度(V f 
) (D 比Vt /’ V f カ2.0.〜5. 
Os好ましくは2.5〜4.5の範囲内にするように吐
出される。
First, as a spinning stock solution, in order to substantially remove impurities caused by the polymerization tank and transportation pipes, and gel-like substances caused by side reactions during polymerization, thermal deterioration, etc., the spinning solution is filtered through a filter with a mesh opening of 5μ or less. A stock solution is used. This spinning dope is passed through a multi-hole spinneret hole with a hole number of at least 1".000 into a coagulation bath, where it has a substantial draft, that is, a free discharge linear velocity (V f
) (D ratio Vt/'V f 2.0.~5.
It is discharged so that Os is preferably in the range of 2.5 to 4.5.

実質ドラフトが2.0よりも小さいと、単糸相互間の融
着を生じ易くなるので好ましくないし、5.0を越える
と得られる炭素繊維の平滑性が、損なわれ易くなるので
好ましくない。そして重要なことは、このような実質ド
ラフトで紡糸された凝固糸条は少なくとも該糸条が乾燥
緻密化される迄の工程において、該糸条を少なくとも1
.5に!/ cdlを越える圧力によってプレスされな
いようにして、凝固、延伸、水洗等の各工程を通過させ
ることであ乏。すなわち、前記乾燥工程以前の工程にお
いて、湿潤糸条を1.5 Kp / ctllを越える
圧力下にプレスすると、単糸間融着はもちろん表層に欠
陥を有する炭素繊維が形成され易くなるので好ましくな
い。
If the actual draft is less than 2.0, it is undesirable because it tends to cause fusion between the single filaments, and if it exceeds 5.0, the smoothness of the obtained carbon fiber tends to be impaired, which is undesirable. What is important is that the coagulated yarn spun in such a substantially draft manner is treated at least once in the process until the yarn is dried and densified.
.. To 5! It is necessary to pass through various processes such as coagulation, stretching, and water washing without being pressed by pressure exceeding /cdl. That is, if the wet yarn is pressed under a pressure exceeding 1.5 Kp/ctll in the step before the drying step, it is not preferable because not only inter-filament fusion but also carbon fibers with defects on the surface layer are likely to be formed. .

さらに、上記紡糸原液の濾過に加えて、凝固、水洗、延
伸、工程給油などの各工程に用いる用水、薬液および油
剤なども十分精製されたものを用いるかあるいは目びら
き5μ以下のフィルターを用いて紡糸原液と同様に濾過
したものを用いるのがよい。特に凝固浴液のようにその
一部が循環再使用されるものについては、との濾過によ
る精製を強化するのがよい。
Furthermore, in addition to the above-mentioned filtration of the spinning solution, the water, chemicals, and oils used in each process such as coagulation, water washing, stretching, and process lubrication must be sufficiently purified or filters with an aperture of 5 μm or less should be used. It is preferable to use one that has been filtered in the same way as the spinning dope. Particularly for liquids such as coagulation bath liquids, a part of which is recycled and reused, it is recommended to strengthen purification by filtration.

乾燥以降の工程としてはスチーム又は加圧スチーム中で
の二次延伸、油剤付与および開繊処理等があり、必要に
応じて適用することができる。
Steps after drying include secondary stretching in steam or pressurized steam, application of an oil agent, and opening treatment, which can be applied as necessary.

しかしながら、くのようにして得られるアクリル系繊維
糸条は単糸繊度が0.5〜1.5 d 、引張強伸度が
5.7f/d以上、好ましくは6. O〜Z5p/dお
よび8〜12%、繊度変動率が8チ以下、好ましくは5
チ以下の糸条がよく、このような物性を有する糸条を目
標として前記ブレカーサのアクリル系繊維糸条の製造条
件を選定するのがよい。
However, the acrylic fiber yarn obtained as described above has a single yarn fineness of 0.5 to 1.5 d and a tensile strength and elongation of 5.7 f/d or more, preferably 6. O~Z5p/d and 8~12%, fineness fluctuation rate is 8 inches or less, preferably 5
It is preferable to select the manufacturing conditions for the acrylic fiber yarn of the breaker with a yarn having such physical properties as the target.

そして、本発明の炭素繊維束を再現性よく、安定して製
造するためには得られたアクリル系繊維の焼成工程、特
に酸化工程に用いる加熱雰囲気、たとえば空気中に含ま
れる粉塵、無機金属微粒子などを除去する。具体的には
目びらき1μ以下のフィルターを用いて濾過し、清浄化
することが重要である。
In order to stably produce the carbon fiber bundle of the present invention with good reproducibility, the heating atmosphere used in the firing process, especially the oxidation process, of the obtained acrylic fibers, such as dust contained in the air, inorganic metal fine particles, etc. etc. to be removed. Specifically, it is important to filter and clean using a filter with an eye opening of 1 μm or less.

このような濾過は、加熱炉の空気用配管内部の加熱、酸
化劣化等に起因して発生する鉄そ、の他の無機金属酸化
物が繊維表面に付着し、繊維表面を劣化させるのを防止
するだけでなく、一旦付着した上記酸、化物等が炭化工
程で炭素繊維と反応してカーバイド等を形成し、炭素繊
維表面に局所的欠陥を形成するのを有効に防止するので
ある。したがって、本発明においては、前記酸化性雰囲
気のみならず、炭化工程に用いる窒素に代表される不活
性気体も同様に濾過、精製することが好ましい。
This kind of filtration prevents iron and other inorganic metal oxides, which are generated due to heating and oxidative deterioration inside the air piping of the heating furnace, from adhering to the fiber surface and deteriorating the fiber surface. In addition, the above-mentioned acids, compounds, etc. once attached react with the carbon fibers in the carbonization process to form carbides, etc., thereby effectively preventing the formation of local defects on the carbon fiber surfaces. Therefore, in the present invention, it is preferable to filter and purify not only the oxidizing atmosphere but also the inert gas typified by nitrogen used in the carbonization step.

次に、本発明においては前記耐炎化工程に供するプレカ
ーサのアクリル系繊維として単繊維本数が少くとも10
00本、好ましくは2000〜30.000本の集束糸
条をll:扇いる必要がある。
Next, in the present invention, the number of monofilaments is at least 10 as the precursor acrylic fibers to be subjected to the flame resistant process.
00, preferably 2,000 to 30,000 bundled yarns are required.

すなわち、該アクリル系繊維の単繊維本数が1000本
よりも少なくなると、耐炎化工程において発・生、する
熱−分解物、たとえばタール又はピッチ状物が繊維束の
周辺に付着し、その上に耐炎化雰囲気中に微量に存在す
る粉塵、無機金属粒子等が付着、固定され、付着物件ユ
看欠陥の発生原因になる単糸本数の増大を招くのである
That is, when the number of single fibers of the acrylic fibers decreases to less than 1000, thermal decomposition products such as tar or pitch-like substances generated during the flame-retardant process adhere to the periphery of the fiber bundle, and Small amounts of dust, inorganic metal particles, etc. present in the flame-retardant atmosphere adhere and become fixed, leading to an increase in the number of single filaments that cause visual defects.

したがって、耐炎化の条件としては熱分解物がプレカー
サに付着するのを防ぐために、常に新鮮な空気を供給す
るか、熱エネルギー節約のために、加熱空気の全部また
は一部を循環使用する場合は、空気中の熱分解物を酸化
分解する等により、清浄化処理して使用することが重要
である。
Therefore, the conditions for flame resistance are to always supply fresh air to prevent thermal decomposition products from adhering to the precursor, or to recirculate all or part of the heated air to save thermal energy. It is important to perform cleaning treatment, such as by oxidizing and decomposing thermal decomposition products in the air, before use.

しかしながら、との耐炎化に供するアクリル系繊維束の
単繊維本数が余りに多すぎると、アクリル系繊維束とし
て構成単繊維の繊度、形状及び物性が均一なものを製造
することが難かしくなることに加えて、耐炎化及び炭化
工程において該繊維束構成単、繊維(対する均等な張力
付与熱伝達等が難しくなる結果単繊維相互間の物性差が
著しくな°るのである。
However, if the number of single fibers in the acrylic fiber bundle used for flame resistance is too large, it becomes difficult to produce an acrylic fiber bundle with uniform fineness, shape, and physical properties. In addition, during the flame-proofing and carbonization processes, it becomes difficult to impart tension and heat transfer evenly to the constituent fibers of the fiber bundle, resulting in significant differences in physical properties between the fibers.

以下、実施例により本発明を具体的に説明する0 実施例1゜ アクリロニトリル(AN)98モル係と1.アクリル酸
2モルチからなる固有粘度〔η〕が1.76の共重合体
にアンモニアを吹き込み共重合体のカルボキシル基末端
水素をアンモニウム基で置換した変性ポリマを作成し、
この変性ポリマ濃度が20重量%のジメチルスルホキシ
ド(DMSO)溶液を作成した。この溶液を戸材として
目びらきが、6μの焼結金属フィルター金剛いて濾過し
たのち、温度60℃に調整し、温度60℃、濃度50%
のDMSO水溶液中に吐出した。口金としては、孔径1
]、05m+++、ホール数5000のものを用い、凝
固引取り速度を8 m191−にして、実質ドラフトを
6.5とした。なお凝固浴液は、目びらき5μのマイク
ロ・ワインドフィルターにて、濾過しつつ循環使用した
。得られた凝固糸条を水洗後、熱水中で5倍に延伸した
後、ン」ノコーン系油剤浴中に浸漬し、圧力が1、 O
Ky / cd!のニップ・ロー2で繊維束をしぼって
繊維束の含水率を減少させた後、160〜160℃に加
熱されたローラ表面に接触させ乾燥緻密化後、4. o
 ”y / crdの加圧スチーム中で2.5倍に延伸
した。
Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1: 98 mol of acrylonitrile (AN) and 1. Ammonia was blown into a copolymer of 2 mol acrylic acid with an intrinsic viscosity [η] of 1.76 to create a modified polymer in which the terminal hydrogen of the carboxyl group of the copolymer was replaced with an ammonium group.
A dimethyl sulfoxide (DMSO) solution having a concentration of this modified polymer of 20% by weight was prepared. This solution was used as a door material, and after filtering through a 6μ sintered metal filter, the temperature was adjusted to 60℃, and the concentration was 50%.
was discharged into a DMSO aqueous solution. For the cap, hole diameter 1
], 05 m+++, and 5000 holes were used, the solidification take-off speed was set to 8 m191-, and the actual draft was set to 6.5. The coagulation bath solution was circulated and filtered through a micro-wind filter with a mesh opening of 5 μm. After washing the obtained coagulated yarn with water and stretching it five times in hot water, it was immersed in a corn oil bath at a pressure of 1.0 O.
Ky/cd! After reducing the moisture content of the fiber bundle by squeezing the fiber bundle in Nip Row 2, the fiber bundle is brought into contact with a roller surface heated to 160 to 160°C for drying and densification, and then 4. o
Stretched 2.5 times in pressurized steam at 2.5 y/crd.

得られた単糸繊維繊度1.Od、)−タル・デニール3
000Dの繊維束にリング状ノズルを用い圧力0.7 
KF / crdのエヤ開繊処理を施した後、目びらき
1μの焼結金属フィルターにより清浄化処理された空気
を用いて雰囲気温度がそれぞれ250℃、260℃に保
たれた熱風循環式加熱炉中に実質的に定長状態で順次通
過させて、酸化処理をした。次いで、得られた酸化繊維
束を目びらきが1μの焼結金属フィルターにより清′浄
化処理された窒素雰囲気下で最高温度1′500℃で炭
化処理を行なった。
Obtained single yarn fiber fineness: 1. Od,) - Tal Denir 3
Using a ring nozzle on a fiber bundle of 000D, the pressure was 0.7.
After the KF/CRD air opening process, the air was purified using a sintered metal filter with a mesh opening of 1μ, and the ambient temperature was maintained at 250°C and 260°C, respectively, in a hot air circulation heating furnace. The oxidation treatment was carried out by sequentially passing the sample in a substantially constant length state. Next, the obtained oxidized fiber bundle was carbonized at a maximum temperature of 1'500° C. in a nitrogen atmosphere that had been purified using a sintered metal filter having a mesh opening of 1 μm.

この炭素繊維束を本文中に述べた方法で単繊維の引張破
断テストを行ない、走査型電子顕微欠陥を有する単繊維
が認められたが、その頻度は8%と非常に少なかった。
This carbon fiber bundle was subjected to a single fiber tensile rupture test using the method described in the text, and single fibers with scanning electron microscopic defects were observed, but the frequency was very low at 8%.

また、この炭素繊維束の平均単繊維物性をJIS4−7
601に記載された単繊維試験方法(n=60)で測定
し次結果、強度405に9/mtM、伸度1.62%で
あり、またこの炭素繊維束のストランド物性を測定した
ところ、強度455にり/ ma s伸度1.84 %
と非常に高い物性を示した。
In addition, the average single fiber physical properties of this carbon fiber bundle were determined according to JIS4-7
The results were as follows: the strength was 405 to 9/mtM, the elongation was 1.62%, and the strand physical properties of this carbon fiber bundle were measured using the single fiber test method (n=60) described in 601. 455 Ni/mas elongation 1.84%
It showed very high physical properties.

比較例1゜ 実施例1において、凝固浴液を目びらき5μのマイクロ
拳ワインドフィルターにて濾過をすることをやめた以外
は、実施例1と全く同様にしてアクリル系繊維を6日間
連続的に紡糸した。
Comparative Example 1 Acrylic fibers were continuously spun for 6 days in the same manner as in Example 1, except that the coagulation bath solution was not filtered through a microfist wind filter with a mesh opening of 5μ. did.

得られた繊維糸条を実施例1と同様にして酸化処理、炭
化処理を行ない、炭素繊維を作製した。
The obtained fiber yarn was subjected to oxidation treatment and carbonization treatment in the same manner as in Example 1 to produce carbon fibers.

得られた炭素繊維につ’e 、i単糸破断面の観察を行
なった所、付着物に起薗する≠#考欠陥を有する単繊維
本数が66%であす、その平均単糸強度は500に!/
mA、伸度は1.22%、ストランド悄度は365 K
l/ rtta、伸度は1.47%であつた。
When the fractured surface of the single fibers of the obtained carbon fibers was observed, it was found that the number of single fibers with defects caused by deposits was 66%, and the average single fiber strength was 500%. To! /
mA, elongation is 1.22%, strand flexibility is 365 K
l/rtta, the elongation was 1.47%.

比較例2゜ 実施例1において、酸化処理工程において使用する空気
として;目びらき1μの焼結金属フィルターを用いて洲
過することなく、他は実施例1と同様にして、炭素繊維
を作製した。得られた炭素繊維につ゛き、単糸破断面の
観察を行なった所、付着物に起因する押ユ鳴欠陥を有す
る単繊一本数は20%であり、平均単糸強度は365五
り/、a1伸度は1.39 % 、ストランド強度は6
90にり/−1伸度は1.58%であった。
Comparative Example 2 In Example 1, carbon fiber was produced in the same manner as in Example 1, except that the air used in the oxidation treatment step was not filtered using a sintered metal filter with an opening of 1μ. . When the fractured surface of the single fibers of the obtained carbon fibers was observed, it was found that the number of single fibers with pressing defects caused by deposits was 20%, and the average single fiber strength was 365/. A1 elongation is 1.39%, strand strength is 6
The elongation at 90/-1 was 1.58%.

比較例6゜ 実施例1において、凝固引取り速度を’2 m7分と非
常に!<シて実質ドラフトを1.8とした以外は、、実
施例1と同じ条件でアクリル繊維束を作成したが、単(
,5牟、mのiが多く、酸化工程においそも毛羽、′糸
″勧れ等の発生が著しく安定した品質、性能の炭素繊維
束d製造□が困難であった。他方、゛実施例1において
、−固引取り速度を18m/分と非常に速くして、実質
ドラフトを5,5にした以外は、実施例1と同じ条件で
アクリル繊維束を製糸し、引き続き酸化ならびに炭化処
理を行なって炭素繊維を作成した。
Comparative Example 6゜In Example 1, the solidification take-off speed was extremely high at 2 m7 minutes! An acrylic fiber bundle was produced under the same conditions as in Example 1, except that the actual draft was set to 1.8.
. In Example 1, an acrylic fiber bundle was spun under the same conditions as in Example 1, except that the pick-up speed was very high at 18 m/min and the actual draft was 5.5, and then the acrylic fiber bundle was subjected to oxidation and carbonization treatments. carbon fiber was created.

得られた炭素繊維につき単糸破断面の観察を行なった所
、第2図に示す付着物に起因する未M欠陥を有する単繊
維本数が50%と非常に多く認められ、平均単繊維強度
は310 K!/rtU伸度は1.28%であり、スト
ランド強度は、660にり/−1伸度は1,49%であ
った。
When the fractured surface of the single fibers of the obtained carbon fibers was observed, it was found that the number of single fibers with non-M defects caused by deposits as shown in Fig. 2 was as large as 50%, and the average single fiber strength was 310K! /rtU elongation was 1.28%, strand strength was 660/-1 elongation was 1,49%.

参考例1゜ 実施例1において、乾燥緻密化工程にはいる繊維の含水
率のより一層の減少を図る目的で、ニップ・ローラ圧を
2.0 KF / aaと高くした以外は、実施例1と
同様の方法で、アクリル系繊維を紡糸し、さらに実施例
1と同様の方法で焼成して炭素繊維を試作した。
Reference Example 1゜Example 1 except that the nip roller pressure was increased to 2.0 KF/aa in order to further reduce the moisture content of the fibers entering the drying and densification process. Acrylic fibers were spun in the same manner as in Example 1, and then fired in the same manner as in Example 1 to produce carbon fibers.

得られた炭素繊維につき、単糸破断面の観察を行なった
所、付着物に起因する斡棲鳴欠陥単繊維本数が24チで
あり、平均単糸強度320KP / ma、伸度1.6
2%、ストランド強度575KP/ mj、伸度1.5
1チであった0
When the fractured surface of the single fibers of the obtained carbon fibers was observed, the number of single fibers with cracking defects caused by deposits was 24, the average single fiber strength was 320 KP/ma, and the elongation was 1.6.
2%, strand strength 575KP/mj, elongation 1.5
1chi was 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明・の炭素繊維束中の付着物に起因する舛
妙喘、欠陥°を検出、定量するために用いられる引張破
断試験用テストピースを示す平面図、第2図は本発明の
付着物に起因する会袢噛欠陥の代表例を示す電子顕微鏡
写真である0特許出願人  東 し 株 式 会 社%
 i t@ 葵 2 161 ””  Ts7.I3.25 ”’ 特許庁長官 若 杉 和 夫  殿 1、事件の表示 昭和57卯特許願第  97759  芳性   所 
東京都中央区日本橋室町2丁目2番地昭和57年9月2
8日(発送日) 5、補正により増力ける4明の数 な し&補正の対象 明細書の「図面の簡単な説明」の欄 (1)明細書の第18頁第6・行目〜第7行目「第2図
は・・・電子顕微鏡写真である。」を削除し次の記載を
挿入する。
Fig. 1 is a plan view showing a test piece for a tensile rupture test used for detecting and quantifying cracks and defects caused by deposits in carbon fiber bundles according to the present invention, and Fig. 2 is a plan view showing a test piece according to the present invention. This is an electron micrograph showing a typical example of a lining defect caused by deposits on the patent.
it @ Aoi 2 161 ”” Ts7. I3.25 ”' Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1, Indication of the case, 1982 Patent Application No. 97759
September 2, 1982, 2-2 Nihonbashi Muromachi, Chuo-ku, Tokyo
8th (shipment date) 5. Number of 4-lights that can be increased by amendment None & “Brief explanation of drawings” column of the specification subject to amendment (1) Page 18, line 6 to line 6 of the specification In the 7th line, "Figure 2 is an electron micrograph." is deleted and the following statement is inserted.

Claims (2)

【特許請求の範囲】[Claims] (1)  単繊維本数が少くど右’l000本の炭素繊
維束からなり、該繊維束を構成する単繊維の少くとも8
5チはその破断面に付着物に起因する件妙喘欠陥を有し
ない単繊維である高強伸度アクリル系炭素繊維束。
(1) Consisting of a carbon fiber bundle with a small number of single fibers, at least 8 of the single fibers constituting the fiber bundle.
No. 5 is a high-strength and elongated acrylic carbon fiber bundle that is a single fiber without any defects caused by deposits on its fractured surface.
(2)  アクリロニトリルを主成分とするアクリル系
重合体溶液を目ひらき5μ以下のフィルターで濾過し、
実質ドラフトを2.0〜5.0の範囲内に設定して凝固
浴中に吐出し、得られた湿潤糸条を水洗、延伸、油剤処
理および乾燥の工程を経て前駆体糸条を形成せしめた後
、該前駆体糸条を目びらき1μ以下のフィルターを用い
て清浄化処理した空気雰囲気中で200−350℃の温
度範囲内で加熱して酸化せしめ1、次いで、不活性雰囲
気中で少くとも1000℃に加熱して炭化せしめること
を特徴とする高強伸度アクリル系炭素繊維束の製造法。
(2) Filter the acrylic polymer solution containing acrylonitrile as the main component through a filter with a mesh size of 5μ or less,
The net draft is set within the range of 2.0 to 5.0 and discharged into a coagulation bath, and the obtained wet yarn is washed with water, stretched, treated with an oil agent, and dried to form a precursor yarn. After that, the precursor thread was oxidized by heating within a temperature range of 200-350°C in a purified air atmosphere using a filter with an opening of 1μ or less, and then a small amount was oxidized in an inert atmosphere. A method for producing a high strength and elongation acrylic carbon fiber bundle, which comprises carbonizing both by heating to 1000°C.
JP9775982A 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production Granted JPS58220821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9775982A JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775982A JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Publications (2)

Publication Number Publication Date
JPS58220821A true JPS58220821A (en) 1983-12-22
JPH0329890B2 JPH0329890B2 (en) 1991-04-25

Family

ID=14200800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775982A Granted JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Country Status (1)

Country Link
JP (1) JPS58220821A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185813A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Spinning of acrylic fiber for making carbon fiber
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production
JP2009209487A (en) * 2008-03-05 2009-09-17 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2015071844A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Production method of carbon fiber precursor acrylonitrile-based fiber
KR20190022500A (en) 2016-06-30 2019-03-06 도레이 카부시키가이샤 Carbon fiber bundles and their manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861730A (en) * 1971-12-02 1973-08-29
JPS49117724A (en) * 1973-03-15 1974-11-11
JPS5052323A (en) * 1973-04-06 1975-05-09
JPS5140431A (en) * 1974-10-03 1976-04-05 Mitsubishi Rayon Co Tansosenino seizoho

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861730A (en) * 1971-12-02 1973-08-29
JPS49117724A (en) * 1973-03-15 1974-11-11
JPS5052323A (en) * 1973-04-06 1975-05-09
JPS5140431A (en) * 1974-10-03 1976-04-05 Mitsubishi Rayon Co Tansosenino seizoho

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185813A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Spinning of acrylic fiber for making carbon fiber
JPH0157165B2 (en) * 1984-03-01 1989-12-04 Nikkiso Co Ltd
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production
JPS6314094B2 (en) * 1984-10-16 1988-03-29 Nikkiso Co Ltd
JP2009209487A (en) * 2008-03-05 2009-09-17 Toray Ind Inc Method for producing carbon fiber precursor fiber
JP2015071844A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Production method of carbon fiber precursor acrylonitrile-based fiber
KR20190022500A (en) 2016-06-30 2019-03-06 도레이 카부시키가이샤 Carbon fiber bundles and their manufacturing method
US11286583B2 (en) 2016-06-30 2022-03-29 Toray Industries, Inc. Carbon fiber bundle and method of manufacturing same

Also Published As

Publication number Publication date
JPH0329890B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JP2018145540A (en) Method for production of carbon fiber bundle
US8236273B2 (en) Method of producing pre-oxidation fiber and carbon fiber
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP2016040419A (en) Method for producing carbon fiber
CN110832127B (en) Carbon fiber bundle and method for producing same
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2011017100A (en) Method for producing carbon fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JPS58214533A (en) Carbon fiber bundle having improved mechanical property and production thereof
JP2016037689A (en) Method for producing carbon fiber
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2005179794A (en) Method for producing carbon fiber
JP2555826B2 (en) Acrylic yarn manufacturing method for carbon fiber precursor
KR870000534B1 (en) Carbon fiber and it's making method
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
CN111088535B (en) Oiling method of low-silicon polyacrylonitrile protofilament
WO2023140212A1 (en) Carbon fiber bundle
CN110685029B (en) Oiling method of polyacrylonitrile-based carbon fiber precursor
JPS6059116A (en) Acrylic fiber as precursor for carbon fiber
JPS63303123A (en) Pitch-based carbon fiber and production thereof
JPH0329885B2 (en)
JPS61152826A (en) High-elasticity carbon fiber and its production