JPH0329890B2 - - Google Patents

Info

Publication number
JPH0329890B2
JPH0329890B2 JP57097759A JP9775982A JPH0329890B2 JP H0329890 B2 JPH0329890 B2 JP H0329890B2 JP 57097759 A JP57097759 A JP 57097759A JP 9775982 A JP9775982 A JP 9775982A JP H0329890 B2 JPH0329890 B2 JP H0329890B2
Authority
JP
Japan
Prior art keywords
fibers
filter
less
carbon fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57097759A
Other languages
Japanese (ja)
Other versions
JPS58220821A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9775982A priority Critical patent/JPS58220821A/en
Publication of JPS58220821A publication Critical patent/JPS58220821A/en
Publication of JPH0329890B2 publication Critical patent/JPH0329890B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強伸度アクリル系炭素繊維束の製造
法、特に複合材料(コンポジツト)の補強用繊維
として品質、性能のバラツキが小さく、信頼性の
高められた炭素繊維束の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a method for producing high-strength and elongation acrylic carbon fiber bundles, particularly as fibers for reinforcing composite materials, with small variations in quality and performance and reliability. The present invention relates to a method for producing carbon fiber bundles with enhanced carbon fiber bundles.

[従来技術] 従来、炭素繊維はその卓越した力学的性質、特
に比強度、比弾性率が優れているため、航空・宇
宙用、テニスラケツト、ゴルフクラブシヤフト、
釣竿等のスポーツ用具、高速回転胴のほかに、自
動車、船舶等の運輸機械等、広範囲の分野に利用
されようとしている。これらの用途、例えば航
空・宇宙用、並びに運輸機械等の構造材料分野に
用いられる炭素繊維は、該構造材料の耐久性およ
び信頼性を向上させるために、その品質、性能の
向上を強く要望されているが、このような要望を
満足する炭素繊維は生産性よく、かつ安価に製造
することが容易ではない。
[Prior Art] Conventionally, carbon fiber has been used for aerospace, tennis rackets, golf club shafts,
In addition to sports equipment such as fishing rods, high-speed rotating bodies, and transportation equipment such as automobiles and ships, it is expected to be used in a wide range of fields. Carbon fibers used in these applications, such as structural materials for aerospace and transportation machinery, are in strong demand for improved quality and performance in order to improve the durability and reliability of these structural materials. However, it is not easy to manufacture carbon fibers that meet these demands with good productivity and at low cost.

すなわち、炭素繊維、特に一般に“ハイグレー
ド”と呼称される高強度炭素繊維は、その前駆体
繊維、すなわちプリカーサとしてアクリロニトリ
ル系重合体からなる繊維糸条を用いて200〜350℃
の空気等の酸化性雰囲気中で加熱し、その繊維を
酸化繊維に転換した後、少なくとも1000℃の窒素
に代表される不活性雰囲気中で加熱し炭化乃至黒
鉛化する方法によつて製造される。
That is, carbon fibers, especially high-strength carbon fibers that are generally referred to as "high grade", are manufactured by using fiber threads made of acrylonitrile polymer as their precursor fibers, i.e., precursors, at temperatures of 200 to 350°C.
The fibers are heated in an oxidizing atmosphere such as air to convert the fibers into oxidized fibers, and then heated in an inert atmosphere such as nitrogen at a temperature of at least 1000°C to carbonize or graphitize. .

[発明が解決しようとする課題] 上記した炭素繊維の製造において、生産性を高
め、製造コストを低減させるためには、通常プリ
カーサとして単繊維本数をできる限り多くする
か、あるいは酸化および炭化の速度を大きくする
か、いずれかの手段が採用されるが、これらの手
段はいずれも炭素繊維の物性、品質、性能を低下
させることが多い。
[Problems to be Solved by the Invention] In the production of the above-mentioned carbon fibers, in order to increase productivity and reduce production costs, it is usually necessary to increase the number of single fibers as a precursor as much as possible, or to increase the rate of oxidation and carbonization. However, these methods often deteriorate the physical properties, quality, and performance of the carbon fiber.

本発明者らは、複数本の単繊維からなる炭素繊
維束の力学的性質は亀裂、ボイド、異物等に起因
する構造的欠陥を有する単繊維本数が増大するに
つれて急激に低下し、しかもその欠陥単繊維本数
がある値を越えると、炭素繊維束の力学的性質の
飛躍的な向上が望めないことを見出し、本発明を
なすに至つたのである。
The present inventors have discovered that the mechanical properties of carbon fiber bundles consisting of multiple single fibers rapidly decrease as the number of single fibers with structural defects due to cracks, voids, foreign objects, etc. increases, and that It was discovered that when the number of single fibers exceeds a certain value, dramatic improvement in the mechanical properties of the carbon fiber bundle cannot be expected, and this led to the present invention.

すなわち、本発明の目的は上記炭素繊維束を構
成する単繊維の構造的欠陥が少なく、力学的性質
のバラツキも小さいコンポジツトの補強材として
高品質、高性能の炭素繊維束を提供するにある。
That is, an object of the present invention is to provide a high-quality, high-performance carbon fiber bundle as a reinforcing material for a composite in which the single fibers constituting the carbon fiber bundle have few structural defects and have small variations in mechanical properties.

[課題を解決するための手段] 本発明の上記目的は、アクリロニトリルを主成
分とするアクリル系重合体溶液を目びらき5μ以
下のフイルターで濾過し、実質ドラフトを2.0〜
5.0の範囲内に設定して凝固浴中に吐出し、得ら
れた構成単繊維本数が少なくとも1000本の湿潤糸
条に対して、ニツプローラ等による圧力を1.5
Kg/cm2以下に維持すると共に、水洗、延伸、およ
びびシリコン系油剤処理を施し、次に乾燥して前
駆体繊維糸条を形成せしめ、しかる後該糸条を目
びらき1μ以下のフイルターを用いて清浄化処理
した空気雰囲気中で200〜350℃の温度範囲で加熱
して酸化せしめ、次に不活性雰囲気中で少なくと
も1000℃に加熱して炭化せしめることを特徴とす
る高強伸度アクリル系炭素繊維束の製造法、によ
つて達成することができる。
[Means for Solving the Problems] The above-mentioned object of the present invention is to filter an acrylic polymer solution containing acrylonitrile as a main component through a filter with a mesh opening of 5 μm or less, and to reduce the actual draft to 2.0 to 2.0 μm.
5.0 and discharged into the coagulation bath, and apply a pressure of 1.5 using a Nitsu roller etc. to the resulting wet yarn with at least 1000 constituent single fibers.
Kg/cm 2 or less, the fibers are washed with water, stretched, and treated with a silicone oil, and then dried to form precursor fiber threads. After that, the threads are opened and passed through a filter with a diameter of 1μ or less. A high strength and elongation acrylic system characterized by being oxidized by heating at a temperature range of 200 to 350°C in an air atmosphere that has been purified by using acrylic resin, and then carbonized by heating to at least 1000°C in an inert atmosphere. This can be achieved by a method for producing carbon fiber bundles.

すなわち、本発明において、まずプリカーサの
紡糸原液としては、重合槽や輸送パイプ等に起因
する不純物および重合時の副反応や熱劣化等に起
因するゲル状物を実質的に除去するために、紡糸
に先立ち目びらき5μ以下のフイルターを用いて
濾過を行い、クリーン化しておく。
That is, in the present invention, first, the precursor spinning dope is prepared by spinning in order to substantially remove impurities caused by the polymerization tank, transportation pipes, etc., and gel-like substances caused by side reactions during polymerization, thermal deterioration, etc. Prior to washing, filter and clean using a filter with a viscosity of 5μ or less.

このクリーン化された紡糸原液は、ホール数が
1000個以上の多ホール紡糸口金を通して、凝固浴
中に吐出し、実質ドラフト、即ち引取速度(V1
に対する自由吐出線速度(Vf)の比V1/Vfが2.0
〜5.0、好ましくは2.5〜4.5の範囲内になるように
引き取る。この際、実質ドラフトが2.0よりも小
さいと単糸相互間の融着が生じ易く、一方5.0を
越えると得られる炭素繊維の平滑性が損われるよ
うになる。
This cleaned spinning stock solution has a number of holes.
It is discharged into a coagulation bath through a multi-hole spinneret of 1000 or more holes, and the actual draft, that is, the take-up speed (V 1 )
The ratio of free discharge linear velocity (V f ) to V 1 /V f is 2.0
-5.0, preferably within the range of 2.5-4.5. At this time, if the actual draft is smaller than 2.0, fusion between the single filaments tends to occur, while if it exceeds 5.0, the smoothness of the obtained carbon fiber will be impaired.

次に、このような実質ドラフトで紡糸された凝
固糸条は、少なくとも該糸条が乾燥緻密化される
迄の工程において、該糸条に対してニツプローラ
等による圧力を1.5Kg/cm2以下に維持すると共に、
凝固、延伸、水洗、およびシリコン油剤付与等の
各工程を通過させることが重要である。これによ
り炭素繊維の単糸間融着はもちろん表層部の欠陥
等を大幅に減少させることができる。
Next, the coagulated yarn spun in such a substantial draft is subjected to pressure of 1.5 kg/cm 2 or less with a nip roller or the like, at least in the process until the yarn is dried and densified. In addition to maintaining
It is important to pass through each process such as coagulation, stretching, washing with water, and application of silicone oil. As a result, it is possible to significantly reduce not only inter-filament fusion of carbon fibers but also defects in the surface layer portion.

ここでいうニツプローラ等による圧力とは、ニ
ツプローラ等にかかる全荷重(自重、エアー押圧
力、メカロスなどの総和)を糸条の被ニツプ面積
で除した値であり、被ニツプ面積とは全糸幅と感
圧紙(たとえば、富士フイルム(株)製“プレスケー
ル”)などで測定した糸条の長さ方向のニツプ長
との積である。
The pressure exerted by the nip roller, etc. here is the value obtained by dividing the total load (total of its own weight, air pressing force, mechanical loss, etc.) applied to the nip roller, etc. by the nipped area of the yarn, and the nipped area is the total yarn width. It is the product of the nip length in the longitudinal direction of the yarn, measured with pressure-sensitive paper (for example, "Prescale" manufactured by Fuji Film Corporation).

なお、この際、凝固、延伸、油剤処理等の各工
程における用水、薬液、および油剤等も、前記紡
糸原液の場合と同様に、目びらき5μ以下のフイ
ルターで濾過したものを用いることが望ましい。
特に凝固浴液のようにその一部が循環再使用され
るものは、この濾過によるクリーン化が望まし
い。
At this time, it is desirable to use water, chemicals, oils, etc. in each process such as coagulation, stretching, oil treatment, etc. that have been filtered with a filter with a mesh opening of 5 μm or less, as in the case of the spinning dope.
In particular, cleaning by filtration is desirable when a part of the coagulation bath liquid is recycled and reused.

また乾燥以降の工程としては、スチームまたは
加圧スチーム中での二次延伸、油剤付与および開
繊処理等があり、これらを必要に応じて適用する
ことができる。
Further, steps after drying include secondary stretching in steam or pressurized steam, application of an oil agent, fiber opening treatment, etc., and these can be applied as necessary.

このようにして得られるアクリル系繊維は、炭
素繊維用プリカーサとして、単糸繊度が0.5〜
1.5d、繊度変動率が8%以下、特に5%以下、引
張強度が5.7g/d以上、特に6.0〜7.5g/d、お
よび同伸度が8〜12%の範囲のものが望ましい。
The acrylic fiber obtained in this way can be used as a carbon fiber precursor with a single yarn fineness of 0.5 to
1.5d, a fineness fluctuation rate of 8% or less, especially 5% or less, a tensile strength of 5.7g/d or more, especially 6.0 to 7.5g/d, and an elongation of 8 to 12%.

上記プレカーサは、酸化および炭化のための焼
成工程に供給されるが、その際特に酸化工程にお
ける加熱雰囲気、すなわち、空気中に含まれる粉
塵、無機金属微粒子等は除去せねばならない。具
体的には、空気を酸化工程に供給するに先立つて
目びらき1μ以下のフイルターを用いて濾過し、
クリーン化することが重要である。この加熱雰囲
気のクリーン化によれば、加熱炉の空気用配管内
部の加熱、酸化劣化等によつて生じる鉄、その他
の無機金属酸化物が繊維表面に付着し、繊維表面
が劣化するのを未然に防止するだけではなく、一
旦付着した上記酸化物等が炭化工程でカーバイド
等を形成し、炭素繊維表面に局所的欠陥が生じる
のを効果的に防止できる。むろん、本発明におい
ては前記酸化性雰囲気のみならず、炭化工程での
雰囲気ガスも同様に濾過し、クリーン化すること
が望ましい。
The precursor is supplied to a firing process for oxidation and carbonization, but at this time, dust, inorganic metal fine particles, etc. contained in the heating atmosphere in the oxidation process, that is, air, must be removed. Specifically, before the air is supplied to the oxidation process, it is filtered using a filter with a mesh opening of 1μ or less.
It is important to keep it clean. This cleaning of the heating atmosphere prevents iron and other inorganic metal oxides, which are produced by heating and oxidative deterioration inside the air piping of the heating furnace, from adhering to the fiber surface and deteriorating the fiber surface. In addition, it is possible to effectively prevent the above-mentioned oxides and the like once attached from forming carbides and the like in the carbonization process, thereby effectively preventing local defects from occurring on the carbon fiber surface. Of course, in the present invention, it is desirable to filter and clean not only the oxidizing atmosphere but also the atmospheric gas in the carbonization step.

またプリカーサとしては、単繊維本数が1000本
以上、特に2000〜30000本の集束糸条として用い
ることが望ましい。すなわち、プリカーサの単繊
維本数が1000本より少なくなると、耐炎化工程に
おいて発生する熱分解物、例えばタールまたはピ
ツチ状物が繊維束の周辺に付着し、その上に耐炎
化雰囲気中に微量に存在する粉塵、無機金属粒子
等が付着、固定され、付着物欠陥の発生原因にな
る単糸本数の増大を招くような場合がある。
Further, as a precursor, it is desirable to use a bundled yarn having a number of single fibers of 1000 or more, particularly 2000 to 30000. In other words, when the number of single fibers in the precursor decreases to less than 1000, thermal decomposition products generated during the flame retardant process, such as tar or pitch-like substances, adhere to the periphery of the fiber bundle and are present in small amounts in the flame retardant atmosphere. In some cases, dust, inorganic metal particles, etc., may adhere and become fixed, leading to an increase in the number of single yarns, which causes deposit defects.

なお、プリカーサの耐炎化処理において、熱エ
ネルギー節減のために加熱空気の全部または一部
を循環使用する場合には循環空気の上記クリーン
化処理のみならず、プリカーサから派生する熱分
解物の酸化分解処理を施すことが望ましい。
In addition, in the flameproofing treatment of the precursor, when all or part of the heated air is recycled to save thermal energy, in addition to the above-mentioned cleaning treatment of the circulating air, the oxidative decomposition of the thermal decomposition products derived from the precursor is also carried out. It is desirable to carry out treatment.

[実施例] 以下、実施例により本発明を具体的に説明す
る。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

本例中、炭素繊維の単繊維物性およびストラン
ド物性、並びに単繊維の引張破断試験は次のとお
り行つたものである。
In this example, the single fiber physical properties and strand physical properties of the carbon fibers, as well as the tensile rupture test of the single fibers, were conducted as follows.

単繊維引張強度および同伸度 JIS−R−7601に記載された単繊維試験方法に
準じて測定した。
Single fiber tensile strength and elongation were measured according to the single fiber test method described in JIS-R-7601.

ストランド強度および同伸度 JIS−R−7601に記載された樹脂含浸ストラン
ド試験方法に準じて測定した。このとき、樹脂組
成はチツソノツクス221/三フツ化ホウ素モノエ
チルアミン/アセトン=100/3/4部とした。
Strand strength and elongation were measured according to the resin-impregnated strand test method described in JIS-R-7601. At this time, the resin composition was Chitsonox 221/boron trifluoride monoethylamine/acetone = 100/3/4 parts.

単繊維の引張破断試験 先ず、炭素繊維束を予め溶剤等で洗浄する。そ
の繊維束試料から長さが約10cmの繊維集団を取り
出し、適宜開繊して該繊維集団からランダムに単
繊維を抜き取る。この抜き取つた単繊維1を第1
図に示すように、5cmの試料長に正確に対応する
長さに打ち抜いた5cm×1cmの寸法の穴あき台紙
2の上に台紙2の中央線3に沿つて真直ぐにして
接着剤4で張り付け固定し、テストピースを作製
する。
Tensile breakage test for single fibers First, the carbon fiber bundle is washed with a solvent or the like in advance. A fiber group with a length of about 10 cm is taken out from the fiber bundle sample, opened as appropriate, and single fibers are randomly extracted from the fiber group. This extracted single fiber 1 is
As shown in the figure, stick it straight along the center line 3 of the mount 2 with adhesive 4 on a perforated mount 2 with dimensions of 5 cm x 1 cm that has been punched out to a length that exactly corresponds to the sample length of 5 cm. Fix it and prepare a test piece.

次に、炭素繊維のような脆性の著しい繊維は空
中で引張破断した場合に、破断時の衝撃によつて
一次破壊のほかに数ケ所で二次破壊が生じ易いの
で、これを避けるために水中での引張破断試験が
できるように改造した定速緊張型引張試験機を用
いて、前記テストピースを該試験機に取り付け、
引張歪速度1%/分で引張破断試験を行う。
Next, when extremely brittle fibers such as carbon fibers are tensilely fractured in the air, the impact at the time of fracture tends to cause secondary fractures in several places in addition to the primary fracture, so in order to avoid this, Using a constant speed tension type tensile testing machine modified to be able to perform a tensile rupture test, the test piece is attached to the testing machine,
A tensile rupture test is performed at a tensile strain rate of 1%/min.

この引張破断試験は繊維束を構成する総単繊維
本数当り少なくとも1%の単繊維について行う。
This tensile rupture test is performed on at least 1% of the single fibers based on the total number of single fibers constituting the fiber bundle.

引張破壊されたテストピースから単繊維を取り
出し、該単繊維の一次破壊面に金コーテイングを
施し、走査型電子顕微鏡を用いて、加速電圧
25KV、倍率10000倍で破壊面を観察し、写真を
撮影する。第2図は炭素繊維の付着物に起因する
欠陥の代表例を示す電子顕微鏡写真である。
A single fiber was taken out from the tensile fractured test piece, gold coating was applied to the primary fracture surface of the single fiber, and using a scanning electron microscope, the accelerating voltage was
Observe and photograph the fractured surface at 25KV and 10,000x magnification. FIG. 2 is an electron micrograph showing a typical example of defects caused by deposits on carbon fibers.

実施例 1 アクリロニトリル(AN)98モル%と、アクリ
ル酸2モル%からなる固有粘度[η]が1.73の共
重合体にアンモニアを吹き込み、該共重合体のカ
ルボキシル基末端水素をアンモニウム基で置換し
た変性ポリマとし、この変性ポリマ濃度が20重量
%のジメチルスルホキシド(DMSO)溶液を作
製した。
Example 1 Ammonia was blown into a copolymer of 98 mol% acrylonitrile (AN) and 2 mol% acrylic acid with an intrinsic viscosity [η] of 1.73, and the terminal hydrogens of the carboxyl groups of the copolymer were replaced with ammonium groups. A dimethyl sulfoxide (DMSO) solution with a modified polymer concentration of 20% by weight was prepared as a modified polymer.

この溶液を濾材として目びらき3μの焼結金属
フイルターを用いて濾過した後、温度60℃に調整
し、温度60℃、濃度50%のDMSO水溶液中に吐
出した。口金としては孔径0.05mm、ホール数3000
のものを用い、凝固引取速度を8m/分にして、
実質ドラフトを3.5とした。
This solution was filtered using a sintered metal filter with a mesh opening of 3μ as a filter medium, the temperature was adjusted to 60°C, and the solution was discharged into a DMSO aqueous solution at a temperature of 60°C and a concentration of 50%. As for the cap, the hole diameter is 0.05mm and the number of holes is 3000.
using a coagulation drawing speed of 8 m/min.
The actual draft was set at 3.5.

なお、凝固浴液は目びらき5μのマイクロ・ワ
インドフイルターにて濾過しつつ循環使用した。
The coagulation bath solution was circulated and filtered through a micro-wind filter with a mesh opening of 5 μm.

得られた凝固糸条を水洗し、熱水中で5倍に延
伸した後、シリコン系油剤浴中に浸漬し、圧力が
1.0Kg/cm2のニツプローラで繊維束を絞つて含水
率を減少させた後、130〜160℃に加熱されたロー
ラ表面に接触させ乾燥緻密化後、4.0Kg/cm2の加
圧スチームで2.5倍に延伸した。
The obtained coagulated thread was washed with water, stretched 5 times in hot water, and then immersed in a silicone oil bath to reduce the pressure.
After squeezing the fiber bundle with a 1.0 Kg/cm 2 Nitz Pro roller to reduce the moisture content, it was brought into contact with a roller surface heated to 130 to 160°C to dry and densify it, and then compressed with 4.0 Kg/cm 2 pressurized steam for 2.5 Stretched twice.

得られた単繊維繊度1.0d、トータルデニール
3000Dのプリカーサは、リング状ノズルを用いて
圧力0.7Kg/cm2のエア開繊処理を施した後、目び
らき1μの焼結金属フイルターにより清浄化処理
した空気を用いて雰囲気温度が夫々250℃、260℃
に保たれた熱風循環式加熱炉中に実質的に定長状
態で順次通過させて酸化処理をした。次に、得ら
れた酸化繊維束を目びらきが1μの焼結金属フイ
ルターにより清浄化処理された窒素雰囲気下で最
高温度1300℃で炭化処理を行つた。
Obtained single fiber fineness 1.0d, total denier
3000D precursors are air-opened using a ring-shaped nozzle at a pressure of 0.7 kg/cm 2 and then cleaned using a sintered metal filter with a mesh opening of 1 μm at an ambient temperature of 250°C. ,260℃
The oxidation treatment was carried out by sequentially passing the sample in a substantially constant length state through a hot air circulation type heating furnace maintained at a constant temperature. Next, the obtained oxidized fiber bundle was carbonized at a maximum temperature of 1300° C. in a nitrogen atmosphere that had been cleaned using a sintered metal filter with a mesh opening of 1 μm.

得られた炭素繊維束について、単繊維の引張破
断テストを行い、走査型電子顕微鏡を用いて一次
破断面の観察を行なつた結果、第2図に示した如
き、付着物に起因する欠陥を有する単繊維が認め
られたが、その頻度は8%と非常に少なかつた。
またこの炭素繊維単繊維の平均引張強度は405
Kg/mm2、同伸度は1.62%であり(いずれもn=60
の平均値)、またこの炭素繊維束のストランド強
度は455Kg/mm2、同伸度は1.84%と非常に高い値
を示した。
The obtained carbon fiber bundle was subjected to a single fiber tensile fracture test, and the primary fracture surface was observed using a scanning electron microscope. As a result, defects caused by deposits were detected as shown in Figure 2. Although some single fibers were observed, their frequency was very low at 8%.
Also, the average tensile strength of this carbon fiber single fiber is 405
Kg/mm 2 and the elongation is 1.62% (n=60 in both cases).
The strand strength of this carbon fiber bundle was 455 Kg/mm 2 and the elongation was 1.84%, which were very high values.

比較例 1 実施例1において、酸化処理工程に使用する空
気として、目びらき1μの焼結金属フイルターを
用いて濾過することなく、他は実施例1と同様に
して炭素繊維を作製した。
Comparative Example 1 Carbon fibers were produced in the same manner as in Example 1, except that the air used in the oxidation treatment step was not filtered using a sintered metal filter with a mesh opening of 1 μm.

得られた炭素繊維につき、単糸破断面を観察し
ところ、付着物に起因する欠陥を有する単繊維本
数が20%であり、その平均繊維強度は335Kg/mm2
伸度は1.39%(いずれもn=60の平均値)、スト
ランド強度は390Kg/mm2、同伸度は1.58%であつ
た。
When the fractured surface of the single fibers of the obtained carbon fibers was observed, the number of single fibers with defects due to deposits was 20%, and the average fiber strength was 335 Kg/mm 2 .
The elongation was 1.39% (all average values for n=60), the strand strength was 390 Kg/mm 2 , and the elongation was 1.58%.

比較例 2 実施例1において、凝固引取速度を2m/分と
非常に遅くして、実質ドラフトを1.8とした以外
は、実施例1と同じ条件でプリカーサを作製した
が、単糸間の接着が多く、またこの繊維の酸化な
いし炭化工程においても毛羽、糸切れ等の発生が
著しく、安定した品質、性能の炭素繊維束の製造
が困難であつた。
Comparative Example 2 A precursor was produced under the same conditions as in Example 1, except that the coagulation and take-off speed was very slow at 2 m/min and the actual draft was 1.8. However, the adhesion between single yarns was Furthermore, during the oxidation or carbonization process of these fibers, fuzz, thread breakage, etc. occur significantly, making it difficult to produce carbon fiber bundles with stable quality and performance.

他方、実施例1において、凝固引取速度を
18m/分と非常に速くして、実質ドラフトを5.5
とした以外は、実施例1と同じ条件でプリカーサ
を作製し、続いてこの繊維の酸化ないし炭化処理
を行なつて炭素繊維とした。
On the other hand, in Example 1, the solidification withdrawal speed was
Very fast at 18m/min, effectively reducing the draft to 5.5
A precursor was produced under the same conditions as in Example 1 except that the fiber was oxidized or carbonized to obtain carbon fiber.

得られた炭素繊維につき、単糸破断面を観察し
たところ、付着物に起因する欠陥を有する単繊維
本数が30%と非常に多く、またその平均単繊維強
度は310Kg/mm2、同伸度は1.28%(いずれもn=
60の平均値)、ストランド強度は360Kg/mm2、同伸
度は1.49%であつた。
When we observed the fractured surface of the single fibers of the obtained carbon fibers, we found that the number of single fibers with defects due to deposits was as high as 30%, and the average single fiber strength was 310 Kg/mm 2 and the same elongation. is 1.28% (n=
60), the strand strength was 360 Kg/mm 2 , and the elongation was 1.49%.

比較例 3 実施例1において、乾燥緻密化工程に入る繊維
の含水率を一層減少させる目的で、ニツプ・ロー
ラ圧を2.0Kg/cm2と高くした以外は、実施例1と
同じ条件でプリカーサを作製し、続いてこの繊維
を実施例1と同様に焼成して炭素繊維を得た。
Comparative Example 3 In Example 1, the precursor was produced under the same conditions as in Example 1, except that the nip roller pressure was increased to 2.0 kg/cm 2 in order to further reduce the moisture content of the fibers entering the drying and densification process. This fiber was then fired in the same manner as in Example 1 to obtain carbon fiber.

得られた炭素繊維につき、単糸破断面を観察し
たところ、付着物に起因する欠陥を有する単繊維
本数が24%であり、またその平均単繊維強度は
320Kg/mm2、同伸度は1.32%(いずれもn=60の
平均値)、ストランド強度は375Kg/mm2、同伸度は
1.51%であつた。
When we observed the single fiber fracture surface of the obtained carbon fibers, we found that the number of single fibers with defects due to deposits was 24%, and the average single fiber strength was
320Kg/mm 2 , the same elongation is 1.32% (all average values of n=60), the strand strength is 375Kg/mm 2 , the same elongation is
It was 1.51%.

[発明の効果] 本発明方法によれば、炭素繊維の破断面におけ
る付着物欠陥が、炭素繊維束を構成する全単繊維
本数の約15%以下に減少した。このため炭素繊維
のコンポジツト特性をよく反映するといわれてい
るストランド物性、すなわち、ストランド強度が
400Kg/mm2以上、同伸度が1.7%以上と、著しく向
上するという、顕著な効果を奏するのである。
[Effects of the Invention] According to the method of the present invention, deposit defects on the fractured surface of carbon fibers were reduced to about 15% or less of the total number of single fibers constituting a carbon fiber bundle. For this reason, the strand physical properties that are said to reflect the composite properties of carbon fiber well, that is, the strand strength,
This has a remarkable effect of significantly improving the elongation to 400Kg/mm 2 or more and the elongation to 1.7% or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素繊維束の引張破断試験用テストピ
ースを示す概略図、第2図は炭素繊維束の付着物
に起因する欠陥の代表例を示す電子顕微鏡写真で
ある。
FIG. 1 is a schematic diagram showing a test piece for a tensile fracture test of a carbon fiber bundle, and FIG. 2 is an electron micrograph showing a typical example of defects caused by deposits on the carbon fiber bundle.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリルを主成分とするアクリル系
重合体溶液を目びらき5μ以下のフイルターで濾
過し、実質ドラフトを2.0〜5.0の範囲内に設定し
て凝固浴中に吐出し、得られた構成単繊維本数が
少なくとも1000本の湿潤糸条に対して、ニツプロ
ーラ等による圧力を1.5Kg/cm2以下に維持すると
共に、水洗、延伸、およびシリコン系油剤処理を
施し、次に乾燥して前駆体繊維糸条を形成せし
め、しかる後該糸条を目びらき1μ以下のフイル
ターを用いて清浄化処理した空気雰囲気中で200
〜350℃の温度範囲で加熱して酸化せしめ、次に
不活性雰囲気中で少なくとも1000℃に加熱して炭
化せしめることを特徴とする高強伸度アクリル系
炭素繊維束の製造法。
1 Filter an acrylic polymer solution containing acrylonitrile as the main component through a filter with a mesh opening of 5μ or less, set the actual draft within the range of 2.0 to 5.0, and discharge it into a coagulation bath.The number of constituent single fibers obtained At least 1,000 wet yarns are kept under pressure of 1.5 kg/cm 2 or less using a Nitzpro roller, washed with water, stretched, and treated with silicone oil, and then dried to form precursor fiber yarns. After that, the yarn was heated for 200 minutes in an air atmosphere that had been purified using a filter with a mesh size of 1 μm or less.
A method for producing a high strength and elongation acrylic carbon fiber bundle, which comprises heating to oxidize the bundle at a temperature of ~350°C, and then carbonizing it by heating to at least 1000°C in an inert atmosphere.
JP9775982A 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production Granted JPS58220821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9775982A JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775982A JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Publications (2)

Publication Number Publication Date
JPS58220821A JPS58220821A (en) 1983-12-22
JPH0329890B2 true JPH0329890B2 (en) 1991-04-25

Family

ID=14200800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775982A Granted JPS58220821A (en) 1982-06-09 1982-06-09 Acrylic carbon fiber bundle with high strength and elongation and its production

Country Status (1)

Country Link
JP (1) JPS58220821A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185813A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Spinning of acrylic fiber for making carbon fiber
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production
JP4924484B2 (en) * 2008-03-05 2012-04-25 東レ株式会社 Method for producing carbon fiber precursor fiber
JP6232897B2 (en) * 2013-10-04 2017-11-22 三菱ケミカル株式会社 Method for producing carbon fiber precursor acrylonitrile fiber
KR102365274B1 (en) 2016-06-30 2022-02-21 도레이 카부시키가이샤 Carbon fiber bundle and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861730A (en) * 1971-12-02 1973-08-29
JPS49117724A (en) * 1973-03-15 1974-11-11
JPS5052323A (en) * 1973-04-06 1975-05-09
JPS5140431A (en) * 1974-10-03 1976-04-05 Mitsubishi Rayon Co Tansosenino seizoho

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861730A (en) * 1971-12-02 1973-08-29
JPS49117724A (en) * 1973-03-15 1974-11-11
JPS5052323A (en) * 1973-04-06 1975-05-09
JPS5140431A (en) * 1974-10-03 1976-04-05 Mitsubishi Rayon Co Tansosenino seizoho

Also Published As

Publication number Publication date
JPS58220821A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
JP2018145540A (en) Method for production of carbon fiber bundle
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5161604B2 (en) Carbon fiber manufacturing method
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP2016040419A (en) Method for producing carbon fiber
CN110359114B (en) Polyacrylonitrile fiber, polyacrylonitrile-based carbon fiber and preparation method thereof
JP2007162144A (en) Method for producing carbon fiber bundle
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JPH0329890B2 (en)
JP7176850B2 (en) Sea-island composite fiber bundle
EP0378381A2 (en) Metal-loaded carbon fibres
JPH0329888B2 (en)
CN110144649B (en) Electro-spun polyacrylonitrile-based carbon nanofiber continuous long yarn and preparation method thereof
JP2016037689A (en) Method for producing carbon fiber
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2001248025A (en) Method for producing carbon fiber
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JPH0329885B2 (en)
JP3048449B2 (en) Acrylonitrile precursor fiber
WO2023140212A1 (en) Carbon fiber bundle
JP2001049524A (en) Production of acrylic fiber
EP3699333B1 (en) Method for manufacturing oxidized fiber bundle, method for manufacturing carbon fiber bundle, and joining apparatus
KR101148554B1 (en) A device for washing coagulated fiber of polyacrylonitrile-based precusor for carbon fiber and the method thereof
KR870000534B1 (en) Carbon fiber and it's making method