JP7176850B2 - Sea-island composite fiber bundle - Google Patents

Sea-island composite fiber bundle Download PDF

Info

Publication number
JP7176850B2
JP7176850B2 JP2018062000A JP2018062000A JP7176850B2 JP 7176850 B2 JP7176850 B2 JP 7176850B2 JP 2018062000 A JP2018062000 A JP 2018062000A JP 2018062000 A JP2018062000 A JP 2018062000A JP 7176850 B2 JP7176850 B2 JP 7176850B2
Authority
JP
Japan
Prior art keywords
sea
island
composite fiber
islands
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062000A
Other languages
Japanese (ja)
Other versions
JP2019173212A (en
Inventor
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2018062000A priority Critical patent/JP7176850B2/en
Publication of JP2019173212A publication Critical patent/JP2019173212A/en
Application granted granted Critical
Publication of JP7176850B2 publication Critical patent/JP7176850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、海島型複合繊維束に関するものであり、特に海島型複合繊維の島径が小さい海島型複合繊維束に関するものである。さらに詳しく述べるならば、高強度・低収縮率といった優れた特性を有し、毛羽の発生が少ない、品質・品位に優れたポリフェニレンサルファイド極細繊維群を安定的に製造できる海島型複合繊維束に関するものである。 TECHNICAL FIELD The present invention relates to a sea-island composite fiber bundle, and more particularly to a sea-island composite fiber bundle having a small island diameter. More specifically, it relates to a sea-island type composite fiber bundle capable of stably producing a group of polyphenylene sulfide ultrafine fibers having excellent properties such as high strength and low shrinkage rate, little occurrence of fluff, and excellent quality and grade. is.

従来より、衣料用布帛や人工皮革、フィルターなどの産業用資材には、柔軟性や審美性、緻密性を発現させる為に、極細繊維(マイクロファイバー)が用いられてきた。
近年では、繊細な肌触りやソフト感を追求して単糸直径1マイクロメートル以下となる超極細繊維(ナノファイバー)が提案されている。
BACKGROUND ART Conventionally, ultrafine fibers (microfibers) have been used in industrial materials such as clothing fabrics, artificial leathers, and filters in order to develop flexibility, aesthetics, and denseness.
In recent years, ultrafine fibers (nanofibers) having a single filament diameter of 1 micrometer or less have been proposed in pursuit of delicate touch and softness.

ナノファイバーは繊維径のスケールダウンによる究極のソフトタッチ化のほか、繊維群の比表面積や空隙率が飛躍的に増加することによるナノサイズ特有の効果も認められていることから、マイクロファイバー以上の商品展開可能性を秘めており、早期の研究・開発・安定的製造が求められている。 In addition to the ultimate soft touch by scaling down the fiber diameter, nanofibers have been recognized to have the unique effect of nanosize due to the dramatic increase in the specific surface area and porosity of the fiber group. It has potential for product development, and early research, development, and stable production are required.

例えば、易溶解性ポリマーとして5-ナトリウムスルホイソフタル酸とポリエチレングリコール共重合ポリエステルを用い、さらに海島型複合繊維(単糸)中での島成分配置を規定することで、生産性が高められたナノファイバーの製造方法が開示されている(特許文献1、2)。 For example, by using 5-sodium sulfoisophthalic acid and polyethylene glycol copolymerized polyester as the readily soluble polymer, and by defining the island component arrangement in the islands-in-sea composite fiber (single filament), productivity has been enhanced. A method for manufacturing a fiber has been disclosed (Patent Documents 1 and 2).

また、海島型複合繊維(単糸)の島数、単糸繊度を規定することで、高強度かつ耐擦過性や耐摩耗性に優れたナノファイバーの製造方法が開示されている(特許文献3)。
特に、紡糸安定性の良い汎用ポリエステルやナイロンについては、上記のような製法により、ナノファイバーの実用化が進み、衣料用布帛や人工皮革、フィルター等に展開されている。
Further, a method for producing nanofibers with high strength and excellent abrasion resistance and abrasion resistance is disclosed by specifying the number of islands and the fineness of the single yarn of the sea-island composite fiber (single yarn) (Patent Document 3). ).
In particular, with regard to general-purpose polyesters and nylons with good spinning stability, nanofibers have been put to practical use by the production methods described above, and are being used in clothing fabrics, artificial leathers, filters, and the like.

一方、耐熱性、耐薬品性、難燃性、電気絶縁性等が要求される、過酷な環境下で使用される高機能エンジニアリングプラスチックについても極細繊維の早期の研究・開発・安定的製造が求められている。 On the other hand, early research, development, and stable production of ultrafine fibers are also required for high-performance engineering plastics that are used in harsh environments that require heat resistance, chemical resistance, flame resistance, electrical insulation, etc. It is

例えば、バグフィルター用のろ材には、耐熱性および耐薬品性に優れたポリフェニレンサルファイド(以下「PPS」ともいう。)繊維が用いられているが、PPS繊維等からなる不織布は、その特性を利用してバグフィルターだけでなく、電気絶縁材、抄紙カンバス、電池セパレーターなどの用途への展開が期待されている。これらの各種フィルター用途では、その厚みを高めると、流体が通過する際の圧力損失が過剰になり、ろ過にかかるエネルギーの効率が大幅に低下してしまう為、省エネの観点から、薄膜化や繊維の極細化が求められている。 For example, polyphenylene sulfide (hereinafter also referred to as "PPS") fibers, which are excellent in heat resistance and chemical resistance, are used as filter media for bag filters. As a result, it is expected to be used not only for bag filters, but also for applications such as electrical insulation, papermaking canvas, and battery separators. In these various filter applications, if the thickness is increased, the pressure loss when the fluid passes through will be excessive, and the efficiency of the energy required for filtration will be greatly reduced. is demanded.

一般に、PPS繊維は汎用ポリエステルやナイロンに比べ紡糸安定性に劣り、極細繊維の製造は困難であるが、PPS極細繊維を得る方法として、例えば特開2002-279958号公報(特許文献4)には、PPS繊維を叩解したPPSパルプを用いている例が開示されているが、PPSは叩解しても粉体化し易く、実際にはPPS繊維を充分叩解することは困難であった。 In general, PPS fibers are inferior in spinning stability to general-purpose polyesters and nylons, and it is difficult to produce ultrafine fibers. , discloses an example using PPS pulp obtained by beating PPS fibers, but PPS is easily pulverized even if it is beaten, and in practice it is difficult to fully beat PPS fibers.

また、該公報には割繊繊維やメルトブローによるPPS極細糸も開示されているが、これとてもその単繊維の繊維径は高々5μm程度であり、さらに、特開平2-99658号公報(特許文献5)にはいわゆる海島複合繊維により極細糸を得ることが提案されているが、ここでも最も細くとも単繊維繊度が0.07デニール(単繊維直径2.5μm相当)であり、やはり目的とする薄膜化に適した良好なPPS極細繊維を得るためには細さが不十分であった。
また、ポリマーアロイ繊維を利用してPPSナノファイバーが得られることが示された特許文献6及び特許文献7も知られている。
The publication also discloses split fibers and PPS ultrafine yarns obtained by melt blowing, but the fiber diameter of the single fibers is about 5 μm at most. ) proposes to obtain ultra-fine yarn by so-called sea-island composite fiber. The fineness was insufficient to obtain good PPS microfibers suitable for processing.
Also known are US Pat.

しかし、ここで得られているPPSナノファイバーは、ポリマーアロイ繊維からなる太いトウの中心部まで均一に海成分を溶解除去することは容易ではなかった。すなわち、脱海溶媒がトウ内部まで均一に浸透し、かつ溶出成分が均一にトウ外部に排出されるようにし、内部まで均一にナノファイバー化したトウを得ることが技術的に大きな課題であった。 However, with the PPS nanofibers obtained here, it was not easy to uniformly dissolve and remove the sea component up to the center of the thick tow made of polymer alloy fibers. That is, it has been a major technical challenge to obtain a tow that is uniformly nanofiberized to the inside by allowing the deseaing solvent to uniformly permeate the inside of the tow and uniformly discharging the eluted components to the outside of the tow. .

このため、繊維径が不均一で、且つ毛羽の発生などが多い、品質・品位に劣るPPSナノファイバーしか得ることが出来なかった。 For this reason, it was only possible to obtain PPS nanofibers with non-uniform fiber diameters and with a large amount of fluff, which were inferior in quality and grade.

このように、従来の方法では、汎用ポリエステルやナイロンに比べ、紡糸安定性に劣るPPS等のような樹脂を極細繊維化し、毛羽の発生が少ない、品質・品位に優れた極細繊維群を安定的に製造することは不可能であった。 In this way, in the conventional method, resins such as PPS, which are inferior in spinning stability compared to general-purpose polyester and nylon, are made into ultrafine fibers, and ultrafine fibers with excellent quality and grade with little fluff are stably produced. It was impossible to manufacture

特開2007-100243号公報JP 2007-100243 A 特開2007-100253号公報JP 2007-100253 A 特開2011-208326号公報JP 2011-208326 A 特開2002-279958号公報JP-A-2002-279958 特開平2-99658号公報JP-A-2-99658 特開2004-169261号公報JP-A-2004-169261 特開2006-257618号公報JP 2006-257618 A

本発明の課題は、上記背景技術における問題点を解決し、汎用ポリエステルやナイロンに比べ、紡糸安定性に劣るPPSについて、高強度・低収縮率といった樹脂本来の優れた特性を有し、且つ毛羽の発生が少ない、品質・品位にも優れた極細繊維群を安定的に製造できる海島型複合繊維束を提供することを目的とする。 The problem of the present invention is to solve the problems in the above background art, and for PPS, which is inferior in spinning stability compared to general-purpose polyester and nylon, it has the excellent properties inherent to resins such as high strength and low shrinkage, and fluff To provide an islands-in-the-sea composite fiber bundle capable of stably producing a group of ultrafine fibers having excellent quality and grade with little occurrence of .

本発明者らは、上記の課題を解決するために鋭意検討した結果、本発明を完成するに至った。即ち、本発明によれば、海成分が易溶解性ポリマー、島成分がポリフェニレンサルファイドからなる海島型複合繊維を構成成分とする繊維束であって、該海島型複合繊維の横断面における島成分の直径が0.1~5.0μm、該海島型複合繊維の単糸数が4~48フィラメントであり、且つ以下の要件(A)~(F)を同時に満足することを特徴とする海島型複合繊維束が得られる。
(A)島成分であるポリフェニレンサルファイドの、300℃、剪断速度300sec-1における溶融粘度が1000~2000ポイズである。
(B)島成分であるポリフェニレンサルファイドの、温度300℃、剪断速度300sec-1における溶融粘度ηaと、温度300℃、剪断速度100sec-1における溶融粘度ηbとの比ηa/ηbが0.8以上である。
(C)海島型複合繊維中に存在する島数が10島以上である。
(D)海島型複合繊維の繊度が6.0dtex以下である。
(E)海島型複合繊維の強度が2cN/dtex以上である。
(F)海島型複合繊維の海成分を溶解除去して得られる、島成分からなる極細繊維の強度が3cN/dtex以上である。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, there is provided a fiber bundle composed of islands-in-sea composite fibers in which the sea component is a readily soluble polymer and the island component is polyphenylene sulfide. An islands-in-the-sea composite fiber having a diameter of 0.1 to 5.0 μm, a single filament count of the islands-in-the-sea composite fiber of 4 to 48 filaments, and simultaneously satisfying the following requirements (A) to (F): you get a bundle.
(A) The island component polyphenylene sulfide has a melt viscosity of 1000 to 2000 poise at 300° C. and a shear rate of 300 sec −1 .
(B) The ratio ηa/ηb of the melt viscosity ηa at a temperature of 300° C. and a shear rate of 300 sec −1 to the melt viscosity ηb at a temperature of 300° C. and a shear rate of 100 sec −1 of the island component polyphenylene sulfide is 0.8 or more. is.
(C) The number of islands present in the sea-island composite fiber is 10 or more.
(D) The sea-island type composite fiber has a fineness of 6.0 dtex or less.
(E) The strength of the islands-in-the-sea composite fiber is 2 cN/dtex or more.
(F) The strength of the ultrafine fiber composed of the island component obtained by dissolving and removing the sea component of the sea-island composite fiber is 3 cN/dtex or more.

本発明によれば、製糸安定性に優れた海島型複合繊維束を提供でき、これを原料とすることにより、細さと強度、均一性を兼ね備えた、バグフィルター、電池セパレーター等、多方面に好適に利用可能なポリフェニレンサルファイド極細繊維群を提供することができる。 According to the present invention, it is possible to provide a sea-island type composite fiber bundle with excellent spinning stability, and by using this as a raw material, it is suitable for various fields such as bag filters, battery separators, etc., which have both fineness, strength, and uniformity. It is possible to provide a polyphenylene sulfide ultrafine fiber group that can be used for

以下、本発明の実施形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

本発明に適用されるPPSは、繰り返し単位としてp-フェニレンスルフィド単位やm-フェニレンスルフィド単位などのフェニレンスルフィド単位を有するポリマーを意味する。PPSは、p-フェニレンスルフィド単位か、m-フェニレンスルフィド単位のいずれか一方からなるホモポリマーであってもよいし、両者を有する共重合体であってもよい。
また、本発明の効果を得られる範囲で、他の芳香族スルフィドが共重合されていてもよい。
PPS applied to the present invention means a polymer having phenylene sulfide units such as p-phenylene sulfide units and m-phenylene sulfide units as repeating units. PPS may be a homopolymer comprising either p-phenylene sulfide units or m-phenylene sulfide units, or may be a copolymer comprising both.
In addition, other aromatic sulfides may be copolymerized within the range in which the effects of the present invention can be obtained.

本発明の海島型複合繊維束は、海島型複合繊維の横断面における島成分の直径が0.1~5μmであることが必要である。島成分の直径が0.1μm未満の場合には、PPSの繊維構造自身が不安定で、物性、および繊維形態が不安定になるので好ましくない。一方、島成分の直径が5μm以上では、既存のPPS繊維では成し得なかった、不織布の緻密性向上や薄膜化が困難になる。 In the sea-island composite fiber bundle of the present invention, the diameter of the island component in the cross section of the sea-island composite fiber must be 0.1 to 5 μm. If the diameter of the island component is less than 0.1 μm, the PPS fiber structure itself becomes unstable, and the physical properties and fiber morphology become unstable, which is not preferable. On the other hand, if the diameter of the island component is 5 μm or more, it becomes difficult to improve the denseness of the nonwoven fabric and reduce the thickness of the nonwoven fabric, which could not be achieved with existing PPS fibers.

一般に、高分子の溶融粘度は、剪断速度に依存し、剪断速度を大きくすると、溶融粘度は減少する。その際の剪断速度依存性は、高分子鎖の形態にも依存する。例えば、架橋高分子・枝分れ高分子等の非鎖状性(直線性の悪い)高分子鎖の場合は、剪断速度が小さいと高い溶融粘度を示すが、剪断速度を大きくしていくと、溶融粘度は急激に低下する挙動を示すという、剪断速度依存性が大きいという特徴を有する。 In general, the melt viscosity of a polymer depends on the shear rate, and as the shear rate increases, the melt viscosity decreases. The shear rate dependence at that time also depends on the form of the polymer chain. For example, in the case of non-chain polymer chains (poor linearity) such as crosslinked polymers and branched polymers, the melt viscosity is high when the shear rate is low, but when the shear rate is increased, , the melt viscosity shows a sharp decrease behavior, which is characterized by a large shear rate dependence.

一方、直線性の良い高分子鎖は、剪断速度が小さい場合、溶融粘度は非直線性高分子鎖の場合程、高くはないが、剪断速度を大きくしても、溶融粘度の低下の程度はそれ程大きくならないという、剪断速度依存性が小さいという特徴を有する。 On the other hand, when the shear rate is low, the melt viscosity of polymer chains with good linearity is not as high as in the case of non-linear polymer chains. It is characterized by a small shear rate dependency that does not increase so much.

所で、ポリフェニレンサルファイドポリマーは、必ずしも直線性の良いポリマーだけではないため、その極細化の際には、上記特性を考慮し、その溶融粘度を極めて限定された範囲に制御することが極めて重要になってくる。この点、本発明者は、ポリフェニレンサルファイドの場合、300℃、剪断速度300sec-1における溶融粘度ηaと、300℃、剪断速度100sec-1における溶融粘度ηbとの比ηa/ηbが0.8以上であるポリマーが直線性の面で好ましく、このようなポリマーを使用すれば、従来技術的に困難であったポリフェニレンサルファイドポリマーのナノオーダーの極細化が可能となることを見出した。 By the way, since polyphenylene sulfide polymers are not necessarily only polymers with good linearity, it is extremely important to control the melt viscosity within a very limited range in consideration of the above characteristics when making them ultrafine. It's coming. In this respect, the present inventors have found that, in the case of polyphenylene sulfide, the ratio ηa/ηb between the melt viscosity ηa at 300°C and a shear rate of 300 sec -1 and the melt viscosity ηb at 300°C and a shear rate of 100 sec-1 is 0.8 or more. is preferable in terms of linearity, and it has been found that the use of such a polymer enables nano-order ultra-thin polyphenylene sulfide polymer, which has been difficult in the prior art.

すなわち、この溶融粘度の比が0.8未満の場合は、海島型複合繊維束の海成分を溶解除去した後に得られるポリフェニレンサルファイド極細繊維群は強度が弱く、不均一なものとなり、目標とするポリフェニレンサルファイド極細繊維を得る事は出来ない、何故なら、この場合、高分子鎖の直線性が良くないため、紡糸時の伸長性が悪く、海成分が十分に配向した状態においても物性面で充分なものを得る事が出来ない、延伸性が不良であり、断糸が多発する、或いは毛羽が発生する等の不具合が生じる。 That is, when the ratio of the melt viscosities is less than 0.8, the polyphenylene sulfide ultrafine fibers obtained after dissolving and removing the sea component of the sea-island composite fiber bundle are weak in strength and non-uniform. Polyphenylene sulfide ultrafine fibers cannot be obtained because, in this case, the linearity of the polymer chains is not good, so the elongation at the time of spinning is poor, and the physical properties are sufficient even when the sea component is sufficiently oriented. It is not possible to obtain a product, the stretchability is poor, and there are problems such as frequent yarn breakage and fluff.

更に、本発明の、島成分であるポリフェニレンサルファイドは、温度320℃、剪断速度剪断速度1000sec-1における溶融粘度ηcが700~1200ポイズであり、温度320℃、剪断速度3000sec-1における溶融粘度ηdが600ポイズ以上であり、かつ、ηcとηdとの溶融粘度差(ηc-ηd)が200ポイズ以下であることが好ましい。 Furthermore, the island component polyphenylene sulfide of the present invention has a melt viscosity ηc of 700 to 1200 poise at a temperature of 320° C. and a shear rate of 1000 sec −1 , and a melt viscosity ηd of 700 to 1200 poise at a temperature of 320° C. and a shear rate of 3000 sec −1 . is 600 poise or more, and the melt viscosity difference (ηc-ηd) between ηc and ηd is preferably 200 poise or less.

温度320℃、剪断速度1000sec-1における溶融粘度ηcが700ポイズ未満の時は、重合度が低過ぎるため、物性、特に強度の面で充分なものを得る事が出来ないため、延伸時の断糸が多発する。一方、溶融粘度ηcが1200ポイズを超える場合、重合度があまりにも高過ぎる為、紡糸温度を必要以上に高くしなければならず、海成分として用いるポリマーの劣化が促進され、得られる海島型複合繊維束の断糸、毛羽が多発するので好ましくない。 When the melt viscosity ηc at a temperature of 320° C. and a shear rate of 1000 sec −1 is less than 700 poise, the degree of polymerization is too low and sufficient physical properties, especially strength, cannot be obtained. Many threads. On the other hand, when the melt viscosity ηc exceeds 1200 poise, the degree of polymerization is too high, and the spinning temperature must be increased more than necessary, which accelerates the deterioration of the polymer used as the sea component, resulting in a sea-island composite. It is not preferable because the fiber bundle breaks and fuzz occurs frequently.

次に、温度320℃、剪断速度3000sec-1における溶融粘度ηdの値は、重合度・直線性の関係で、600ポイズ以上は必要である。600ポイズ未満の時は、重合度が著しく低いかあるいは直線性が極めて悪いため、海島型複合繊維束の海成分を溶解除去した後に得られるポリフェニレンサルファイド極細繊維群は強度が弱く、不均一なものとなる。 Next, the value of the melt viscosity ηd at a temperature of 320° C. and a shear rate of 3000 sec −1 must be 600 poise or more due to the degree of polymerization and linearity. When the poise is less than 600 poise, the degree of polymerization is extremely low or the linearity is extremely poor, so that the polyphenylene sulfide ultrafine fibers obtained after dissolving and removing the sea component of the islands-in-sea type composite fiber bundle have low strength and unevenness. becomes.

本発明で用いるポリフェニレンサルファイドは、公知の合成法、例えば極性有機溶剤中で無水硫化ナトリウムと多ハロ置換の環状化合物とを反応させることによって得ることができるが、その際本発明の溶融粘度の要件を満足させるためには、後記の実施例に示すように重合温度と重合時間とを適宜調整することが肝要である。 The polyphenylene sulfide used in the present invention can be obtained by a known synthesis method, for example, by reacting anhydrous sodium sulfide with a multihalo-substituted cyclic compound in a polar organic solvent. In order to satisfy the above, it is important to appropriately adjust the polymerization temperature and the polymerization time as shown in the examples below.

次に、本発明の海島型複合繊維に用いる海成分ポリマーとしては島成分ポリマーよりも溶解性が高い組合せである限り、適宜選定できる。例えば、アルカリ水溶液に対して易溶解性ポリマーとしては、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、5-ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。また、ナイロン6はギ酸に溶解し易く、ポリスチレンはトルエンなど有機溶剤に溶解し易いので、これらでもよい。 Next, the sea component polymer used in the sea-island composite fiber of the present invention can be appropriately selected as long as it is a combination having higher solubility than the island component polymer. For example, polylactic acid, ultra-high-molecular-weight polyalkylene oxide condensed polymer, and copolyester of 5-sodium sulfoisophthalic acid are most suitable as polymers that are readily soluble in an alkaline aqueous solution. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution, and the like. Also, nylon 6 is easily dissolved in formic acid, and polystyrene is easily dissolved in organic solvents such as toluene.

本発明の海島型複合繊維において、前記ポリエチレングリコール系化合物と、5-ナトリウムスルホイソフタル酸との共重合ポリエステルが、6~12モル%の5一ナトリウムスルホン酸および3~10重量%の分子量4000~12000のポリエチレングリコールが共重合されているポリエチレンテレフタレート共重合体から選ばれることが好ましいが、島成分として使用するPPSと複合紡糸される工程で、海成分、島成分は別々に溶融し、口金内で海島型に複合し、吐出される。最終の口金内ではPPSと同じ紡糸温度となる為、海成分ポリマーの固有粘度は0.35dl/g以上に設計しておくことが好ましい。 In the islands-in-the-sea composite fiber of the present invention, the copolymer polyester of the polyethylene glycol compound and 5-sodium sulfoisophthalic acid contains 6 to 12 mol% of 5-sodium sulfonic acid and 3 to 10% by weight of molecular weight of 4000 to 4,000. It is preferably selected from polyethylene terephthalate copolymers copolymerized with polyethylene glycol of 12,000. It combines into a sea-island type and is discharged. Since the spinning temperature in the final spinneret is the same as that of PPS, the intrinsic viscosity of the sea component polymer is preferably designed to be 0.35 dl/g or more.

海島型複合繊維束における海島型複合繊維の単糸の数は4~48フィラメントであることが重要である。 It is important that the number of monofilaments of the islands-in-the-sea composite fibers in the islands-in-the-sea composite fiber bundle is 4 to 48 filaments.

48フィラメントよりも多い場合には単糸間に微小な冷却斑、延伸斑等が生じ、海成分を溶解除去した後の極細単糸群に物性差、繊度斑が生じる。一方、4フィラメント未満の場合には単糸間の斑は少ないが、海成分を溶解除去しても極細単繊維からなる単糸群を得ることができず、本発明の目的を達成することができなくなる場合がある。 If the number of filaments is more than 48 filaments, minute cooling spots, stretching spots, etc. occur between the single yarns, and physical property differences and fineness unevenness occur in the ultrafine single yarn group after the sea component is dissolved and removed. On the other hand, if the number of filaments is less than 4 filaments, the unevenness between the single yarns is small, but even if the sea component is dissolved and removed, a single yarn group consisting of ultrafine single fibers cannot be obtained, and the object of the present invention cannot be achieved. may disappear.

島数は、多いほど海成分を溶解除去して極細単糸群を製造する場合の生産性が高くなるので、10島以上は必要である。 The more the number of islands, the higher the productivity in manufacturing ultrafine single filaments by dissolving and removing the sea component, so 10 or more islands are necessary.

次に海島型複合繊維(単糸)の繊度は6.0dtex以下であることが重要である。
6.0dtex以下であれば、海島型複合繊維(単糸)の表面/芯部での冷却、配向度の差が少なく、溶解後の島繊維径、強度のばらつきが小さく、高強度な極細単糸群を得ることができる。さらに繊維径ばらつきが少なく、強度低下が少ない極細単糸群を得るためには、単糸繊度が3.0dtex以下であることがより好ましい。
Next, it is important that the sea-island composite fiber (single yarn) has a fineness of 6.0 dtex or less.
If it is 6.0 dtex or less, there is little difference in the degree of cooling and orientation at the surface/core of the sea-island composite fiber (single filament). Yarn groups can be obtained. Furthermore, in order to obtain a group of ultra-fine single yarns with less variation in fiber diameter and less reduction in strength, it is more preferable that the single yarn fineness is 3.0 dtex or less.

但し、製糸安定性を保持するためには単糸繊度が0.3dtex以上であることが好ましい。 However, in order to maintain spinning stability, the single yarn fineness is preferably 0.3 dtex or more.

単糸繊度が6.0dtexを超えると、海島型複合繊維(単糸)の表面と芯部で冷却差が生じ、溶解処理後の極細単糸群の品質ばらつきが大きくなる為、好ましくない。 If the single filament fineness exceeds 6.0 dtex, a difference in cooling occurs between the surface and the core of the sea-island composite fiber (single filament), resulting in large variations in the quality of the ultrafine single filament group after dissolution treatment, which is not preferable.

また、海島型複合繊維(単糸)の断面内の各島成分は、その直径が均一であるほど海成分を除去して得られる極細単糸群の品位、および耐久性が向上する。島成分の直径のばらつきを表すCV%は、0~30%であることが好ましい。より好ましくは0~20%、さらに好ましくは0~15%である。このCV%が低いことは、極細単糸の繊度ばらつきも少ないことを意味する。 In addition, the more uniform the diameter of each island component in the cross section of the sea-island composite fiber (single filament), the higher the quality and durability of the ultrafine single yarn group obtained by removing the sea component. CV%, which represents the variation in the diameter of the island component, is preferably 0 to 30%. More preferably 0 to 20%, still more preferably 0 to 15%. A low CV% means that there is little variation in the fineness of the ultrafine single yarn.

また、海島型複合繊維束は、品位として糸斑(ウースター斑)に優れる。糸斑の指標として平均偏差率(U%)があるが、この数値が低いほど糸斑に優れていることを意味する。この平均偏差率を、ツェルベガーウースター社製ウースターテスターUT-5のハーフInertモードで測定した値は1%以下が好ましく、より好ましくは0.9%以下であり、さらに好ましくは0.8%以下であり、0.7%以下が最も好ましい。 In addition, the islands-in-the-sea type composite fiber bundle is excellent in yarn spotting (Worcester spots) as a quality. There is an average deviation rate (U%) as an index of uneven thread, and the lower the value, the better the uneven thread. The average deviation rate is preferably 1% or less, more preferably 0.9% or less, and still more preferably 0.8% or less, measured with a Wooster tester UT-5 manufactured by Zellweger Wooster in half inert mode. and most preferably 0.7% or less.

本発明の海島型複合繊維束の海成分を溶解除去して得られる、島成分からなる極細繊維群は、ナノレベルの繊維径でばらつきも少なく、用途に合わせた商品設計が可能となる。例えば、フィルター用途では、ナノファイバー単繊維径において吸着できる物質を選択しておけば、用途に合わせて繊維径の設計をすることが可能になり、非常に効率的に商品設計を行うことが可能になる。 The ultrafine fiber group composed of island components obtained by dissolving and removing the sea component of the sea-island composite fiber bundle of the present invention has a nano-level fiber diameter with little variation, and can be designed according to the application. For example, in filter applications, if a substance that can be adsorbed by nanofiber single fiber diameter is selected, it becomes possible to design the fiber diameter according to the application, and product design can be carried out very efficiently. become.

ここで、本発明の海島型複合繊維束を製造する為の紡糸設備としては、紡糸温度300~350℃程度の高温紡糸可能な設備であれば、ポリエステルに採用している既存の設備などをそのまま使用できる。 Here, as the spinning equipment for producing the sea-island type composite fiber bundle of the present invention, the existing equipment used for polyester can be used as it is, as long as it is capable of high-temperature spinning at a spinning temperature of about 300 to 350 ° C. Available.

海成分、島成分は別々に溶融し、口金内で海島型に複合し、吐出される。そして、かかる紡糸口金から吐出された海島型複合繊維は、口金下加熱長が30~200mm、雰囲気温度が250~500℃の加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングされた後に400~3000m/minの紡糸速度で巻き取られる。ここで、本発明の海島型複合繊維束を得るためには口金下加熱長が30~200mm、雰囲気温度が250℃以上~500℃未満の加熱帯域を通過させることが好ましい。加熱体域が存在しないか、又は口金下加熱長が30mmよりも短い場合には、紡糸工程で断糸が生じたり、強度不足、海島型複合繊維の単繊維間で繊度斑や強度斑が発生しやすく、島成分の直径のばらつきを表すCV%も30%を超えたものとなる。又、口金下加熱長が200mmを超える場合には、海島型複合繊維に糸長方向の繊度斑が発生する為、口金下加熱長は30~200mm、好ましくは90~150mmの範囲に設定する。該口金下加熱帯域の温度が250℃未満の場合には海島型複合繊維束の強度不足、または単繊維間で強度斑や繊度斑が発生しやすい。又、500℃を超える場合には糸長方向の繊度斑が発生する為、好ましくない。 The sea component and the island component are melted separately, combined into a sea-island shape in the die, and discharged. The islands-in-the-sea composite fiber discharged from the spinneret passes through a heating zone having a heating length under the spinneret of 30 to 200 mm and an ambient temperature of 250 to 500° C., and a cooling device provided continuously to the heating zone. and then wound up at a spinning speed of 400 to 3000 m/min after being oiled. Here, in order to obtain the islands-in-the-sea composite fiber bundle of the present invention, it is preferable to pass through a heating zone having a heating length under the spinneret of 30 to 200 mm and an ambient temperature of 250°C to 500°C. If there is no heating area, or if the heating length below the spinneret is shorter than 30 mm, the fiber may break during the spinning process, lack strength, and cause uneven fineness and uneven strength between single fibers of the sea-island composite fiber. CV%, which indicates the dispersion of the diameter of the island component, exceeds 30%. If the heating length under the spinneret exceeds 200 mm, the islands-in-the-sea type composite fiber will have fineness unevenness in the yarn length direction. If the temperature of the heating zone below the spinneret is less than 250° C., the strength of the islands-in-the-sea composite fiber bundle is likely to be insufficient, or unevenness in strength or fineness is likely to occur between single fibers. On the other hand, when the temperature exceeds 500° C., unevenness in fineness occurs in the yarn length direction, which is not preferable.

紡糸速度のより好ましい範囲は600~2000m/分である。紡糸速度が200m/分未満では生産性が悪く、3000m/分を超えると紡糸安定性が悪いので好ましくない。 A more preferred range of spinning speed is 600 to 2000 m/min. A spinning speed of less than 200 m/min results in poor productivity, and a spinning speed of more than 3000 m/min results in poor spinning stability.

得られた海島型複合繊維未延伸糸(束)は一旦巻き取り、別途延伸工程にて延伸・熱セットし、所望の強伸度・熱収縮特性などを有する複合繊維束とするか、あるいは、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取って、所望の強伸度・熱収縮特性などを有する複合繊維束とする方法のいずれも適用することが出来る。 The obtained sea-island type composite fiber undrawn yarn (bundle) is wound once, and drawn and heat-set in a separate drawing process to obtain a composite fiber bundle having desired strength and elongation, heat shrinkage properties, etc., or It is possible to apply any of the methods in which the fiber is pulled onto a roller at a constant speed without being wound once, then subjected to a drawing process and then wound up to obtain a composite fiber bundle having desired strength and elongation, heat shrinkage properties, etc. .

具体的には、該未延伸糸(束)を60~190℃、好ましくは75℃~180℃の予熱ローラー上で予熱し、延伸倍率1.2~6.0倍、好ましくは2.0~5.0倍で延伸し、セットローラー120~220℃、好ましくは130~200℃で熱セットを実施することが好ましい。予熱温度不足の場合には、目的とする高倍率延伸を達成することができなくなる。セット温度が低すぎると収縮率が高すぎるため好ましくない。また、セット温度が高すぎると該繊維束の物性が著しく低下するため好ましくない。 Specifically, the undrawn yarn (bundle) is preheated on a preheating roller at 60 to 190° C., preferably 75 to 180° C., and the draw ratio is 1.2 to 6.0, preferably 2.0 to It is preferable to stretch the film by a factor of 5.0 and perform heat setting with set rollers at 120 to 220°C, preferably 130 to 200°C. If the preheating temperature is insufficient, the intended high-ratio stretching cannot be achieved. If the set temperature is too low, the shrinkage rate is too high, which is not preferable. On the other hand, if the set temperature is too high, the physical properties of the fiber bundle are significantly lowered, which is not preferable.

得られた海島型複合繊維の海成分を溶解除去して極細繊維群とするには、海成分ポリマーを溶解除去し得る液体で海成分を選択的に溶解させる方法であればいかなる方法も採用できる。 In order to dissolve and remove the sea component of the obtained sea-island composite fibers to form ultrafine fibers, any method can be employed as long as the sea component is selectively dissolved in a liquid capable of dissolving and removing the sea component polymer. .

海成分が、5-ナトリウムスルホイソフタル酸6~12モル%と分子量4000~20000のポリエチレングリコールを1~5重量%共重合させた固有粘度が0.3~0.6のポリエチレンテレフタレート系共重合ポリエステルである場合は、水酸化ナトリウム(NaOH)濃度1~10重量%のアルカリ水溶液中で、温度80~105℃にて処理して海成分を溶解除去するのが好ましい。 The sea component is a polyethylene terephthalate-based copolymer polyester having an intrinsic viscosity of 0.3 to 0.6 obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 1 to 5% by weight of polyethylene glycol having a molecular weight of 4,000 to 20,000. , it is preferable to dissolve and remove the sea component in an alkaline aqueous solution having a sodium hydroxide (NaOH) concentration of 1 to 10% by weight at a temperature of 80 to 105°C.

本発明の海島型複合繊維の海成分を溶解除去して得られる、島成分からなる極細繊維を用いた繊維構造体は、布帛状物はもちろん、わた状物、帯状物、紐状物、糸状物など、その構造、形状はいかなるものであっても差し支えない。また織物、編物、不織布は、複数の種類の繊維を混紡、混繊、交織、交編をした複合材料であってもよい。また、これらの繊維製品であってもかまわない。 The fiber structure using ultrafine fibers composed of island components obtained by dissolving and removing the sea component of the sea-island composite fiber of the present invention can be used not only in fabrics, but also in cotton, band, string, and thread. Objects, etc. may have any structure or shape. Woven fabrics, knitted fabrics, and non-woven fabrics may be composite materials obtained by blending, blending, interweaving, or interknitting a plurality of types of fibers. Also, these textile products may be used.

上記繊維構造体は、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途が挙げられる。 Examples of the fiber structure include environmental and industrial material applications such as filters, hazardous substance removal products, and battery separators.

以下、実施例及び比較例をあげて本発明をさらに具体的に説明するが、本発明はこれらによって何ら限定されるものではない。なお、各例中に示す各評価項目は下記の方法で測定した値である。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these. Each evaluation item shown in each example is a value measured by the following method.

(1)溶融粘度
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度-溶融粘度曲線を作成し、以下ア)~エ)の溶融粘度を読み取った。
ア)温度300℃、剪断速度100sec-1
イ)温度300℃、剪断速度300sec-1
ウ)温度320℃、剪断速度1000sec-1
エ)温度320℃、剪断速度3000sec-1
(1) Melt viscosity The polymer after drying is set in an orifice set to the Ruder melting temperature at the time of spinning and held melted for 5 minutes. plot. The plots were smoothly connected to create a shear rate-melt viscosity curve, and the melt viscosities of a) to d) were read below.
a) Temperature 300°C, shear rate 100 sec -1
b) Temperature 300°C, shear rate 300 sec -1
c) Temperature 320°C, shear rate 1000 sec -1
d) Temperature 320°C, shear rate 3000 sec -1

(2)固有粘度
o-クロロフェノール溶液中、1.2g/100mlの濃度、および35℃の温度において、チップの固有粘度[η]を測定した。
(2) Intrinsic Viscosity The intrinsic viscosity [η] of the chip was measured at a concentration of 1.2 g/100 ml in an o-chlorophenol solution and at a temperature of 35°C.

(3)海島型複合繊維の強度及び伸度
JIS-L1017法に準じ、島津製作所(株)製オートグラフAGS500Dを用い、試長100mm、引張速度100mm/分で測定した。
(3) Strength and elongation of islands-in-the-sea composite fiber Measured according to JIS-L1017, using Autograph AGS500D manufactured by Shimadzu Corporation, at a sample length of 100 mm and a tensile speed of 100 mm/min.

(4)極細繊維の強度及び伸度
海島型複合繊維を用いて質量1g以上の筒編み布を作製し、この編布を溶剤処理して海成分を除去した。得られた極細繊維からなる編物をほどき、得られた極細繊維の荷重-伸長曲線チャートを、室温、初期試料長=100mm、引張速度=200m/minの条件下に作成した。上記チャートから、極細繊維の強度(cN/dtex)及び伸度(%)を求めた。
(4) Strength and elongation of ultrafine fibers
A tubular knitted fabric having a weight of 1 g or more was produced using the islands-in-the-sea composite fiber, and the knitted fabric was treated with a solvent to remove the sea component. A knitted fabric composed of the obtained ultrafine fibers was unwound, and a load-elongation curve chart of the obtained ultrafine fibers was prepared under the conditions of room temperature, initial sample length = 100 mm, and tensile speed = 200 m/min. The strength (cN/dtex) and elongation (%) of the ultrafine fibers were obtained from the above chart.

(5)海島型複合繊維(単糸)の横断面における島数及び海成分/島成分の比率
透過型電子顕微鏡TEMで倍率30000倍にて撮影した海島型複合繊維(単糸)の断面写真を観察し測定した。
(5) Number of islands and ratio of sea component/island component in cross section of sea-island composite fiber (single filament) observed and measured.

(6)海島型複合繊維(単糸)の横断面における島成分の直径
透過型電子顕微鏡TEMで倍率30000倍にて撮影した海島型複合繊維(単糸)の断面写真から島成分を観察し、長径と、短径の平均値を直径とした。ランダムに50点の島成分を観察し、平均島成分直径(r)を算出した。
(6) Diameter of Island Component in Cross Section of Sea-island Composite Fiber (Single Filament) The island component was observed from a cross-sectional photograph of the sea-island composite fiber (single filament) taken at a magnification of 30000 times with a transmission electron microscope TEM. The average value of the major axis and the minor axis was taken as the diameter. 50 island components were randomly observed, and the average island component diameter (r) was calculated.

(7)平均島成分直径のばらつきCV%
平均島成分直径(r)を求めるに際し、その標準偏差σを算出し、以下で定義する島成分直径変動係数CV%を算出した。
CV%=標準偏差σ/平均島成分直径r×100 (%)
(7) Variation CV% of mean island component diameter
When obtaining the average island component diameter (r), its standard deviation σ was calculated, and the island component diameter variation coefficient CV% defined below was calculated.
CV% = standard deviation σ/average island component diameter r × 100 (%)

(8)長手方向の糸斑(ウースター斑)
ツェルベガーウースター社製 ウースターテスターUT-5を用い、ハーフInertモードで、海島型複合繊維束の平均偏差率(U%)を測定した。
給糸速度:400m/分
測定糸長:2000m
U%の値が1.0未満であれば、糸斑の少ない海島型複合繊維束であると判断した。
(8) Thread spots in the longitudinal direction (Worcester spots)
Using a Wooster Tester UT-5 manufactured by Zellweger Wooster Co., Ltd., the average deviation rate (U%) of the islands-in-the-sea composite fiber bundle was measured in half inert mode.
Yarn feeding speed: 400m/min Measured yarn length: 2000m
If the U% value was less than 1.0, it was judged to be a sea-island type composite fiber bundle with little yarn unevenness.

(9)製糸安定性
各実施例についての製糸を行い、糸切れ無く、7時間以上連続製糸できた場合を「良好」と評価表記し、その他の場合を「不良」と評価表示した。
(9) Spinning Stability Spinning was performed for each example, and the case where continuous spinning was possible for 7 hours or more without yarn breakage was evaluated as "good", and the other cases were evaluated as "bad".

(10)毛羽
巻き取った海島型複合繊維束の外観を検査し、毛羽がほとんど見つけられない場合を「良好」、容易に見つけることが出来る場合を「不良」と評価表示した。
A.ポリマーの合成
(a)後記の表1中、実施例1~3、比較例3で用いたポリマー
硫化ナトリウム95.4g、酢酸リチウム2水和物76.5g、NMP(N-メチルピロリドン)185g、水14gをガラスフラスコに仕込み、210℃で2時間処理し、留出物を44CC生じさせた。次に、NMP80g、DCB(ジクロルベンゼン)225gの溶液を添加し、窒素シール中で、260℃で5時間加熱した(圧力は5kg/cm)。
次いで生成物を熱水で10回洗浄し、乾燥し、チップ化した。
溶融粘度特性はそれぞれ以下の通りであった。
ア)温度300℃、剪断速度100sec-1 :1860ポイズ
イ)温度300℃、剪断速度300sec-1 :1730ポイズ
ウ)温度320℃、剪断速度1000sec-1 :970ポイズ
エ)温度320℃、剪断速度3000sec-1 :820ポイズ
得られたチップを180℃の熱風乾燥機中で4時間乾燥し、製糸評価に用いた。
(b)後記の表1中、比較例1~2で用いたポリマーの合成
上記(a)の合成法において、重合時間を3時間とした以外は、同様の処法によりポリマーを得た。
溶融粘度特性はそれぞれ以下の通りであった。
ア)温度300℃、剪断速度100sec-1 :1560ポイズ
イ)温度300℃、剪断速度300sec-1 :1230ポイズ
ウ)温度320℃、剪断速度1000sec-1 :620ポイズ
エ)温度320℃、剪断速度3000sec-1 :480ポイズ
得られたチップを180℃の熱風乾燥機中で4時間乾燥し、製糸評価に用いた。
B.製糸(紡糸、延伸)
(10) Fluff The appearance of the wound sea-island type composite fiber bundle was examined, and evaluated and displayed as "good" when fluff was hardly found, and as "poor" when fluff could be easily found.
A. Polymer synthesis
(a) In Table 1 below, 95.4 g of the polymer sodium sulfide used in Examples 1 to 3 and Comparative Example 3, 76.5 g of lithium acetate dihydrate, 185 g of NMP (N-methylpyrrolidone), and 14 g of water were A glass flask was charged and treated at 210° C. for 2 hours to produce 44 CC of distillate. Next, a solution of 80 g of NMP and 225 g of DCB (dichlorobenzene) was added and heated at 260° C. for 5 hours under a nitrogen seal (pressure 5 kg/cm 3 ).
The product was then washed ten times with hot water, dried and chipped.
Melt viscosity characteristics were as follows.
a) Temperature 300°C, shear rate 100 sec -1 : 1860 poise b) Temperature 300 °C, shear rate 300 sec -1 : 1730 poise c) Temperature 320 °C, shear rate 1000 sec -1 : 970 poise D) Temperature 320 °C, shear rate 3000 sec −1 : 820 poise The obtained chips were dried in a hot air dryer at 180° C. for 4 hours and used for yarn production evaluation.
(b) Synthesis of Polymers Used in Comparative Examples 1 and 2 in Table 1 below Polymers were obtained in the same manner as in the synthesis method (a) except that the polymerization time was changed to 3 hours.
Melt viscosity characteristics were as follows.
a) Temperature 300°C, shear rate 100 sec -1 : 1560 poise b) Temperature 300°C, shear rate 300 sec -1 : 1230 poise c) Temperature 320°C, shear rate 1000 sec -1 : 620 poise d) Temperature 320°C, shear rate 3000 sec −1 : 480 poise The obtained chips were dried in a hot air dryer at 180° C. for 4 hours and used for yarn production evaluation.
B. Spinning (spinning, drawing)

[実施例1]
島成分として、A-(a)で得たポリフェニレンサルファイド、海成分として5-ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した、固有粘度0.39のポリエチレンテレフタレート(改質PET1と呼ぶ)を用いた。
[Example 1]
Polyphenylene sulfide obtained in A-(a) as the island component, and polyethylene having an intrinsic viscosity of 0.39 obtained by copolymerizing 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 as the sea component. Terephthalate (referred to as modified PET1) was used.

島成分と海島成分それぞれを別々に、ポリフェニレンサルファイドを340℃、ポリエチレンテレフタレートを280℃で溶融後、24個の孔径0.25mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=12の海島型複合未延伸糸条を紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度400℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。 After melting the island component and the sea-island component separately, polyphenylene sulfide at 340°C and polyethylene terephthalate at 280°C, spinning for manufacturing a sea-island composite fiber having 24 ejection holes with a hole diameter of 0.25 mm and a land length of 0.6 mm. They were combined in a spinneret, and a sea-island composite undrawn yarn with islands:sea=70:30 (weight ratio) and number of islands=12 was discharged at a spinning temperature of 320.degree. After that, it passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 400° C., passed through a cooling device continuously provided in the heating zone, was then oiled, and was wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが56dtex/24フィラメントになるように紡糸吐出流量、および延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The undrawn yarn was adjusted in the spinning flow rate and the draw ratio so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 56 dtex/24 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

[実施例2]
実施例1と同じ海島ポリマーを使用し、海成分と島成分それぞれを別々に溶融後、6個の孔径0.3mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=90の海島型複合未延伸繊維を、紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度450℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。
[Example 2]
Using the same sea-island polymer as in Example 1, after separately melting the sea component and the island component, a spinneret for manufacturing a sea-island composite fiber having six discharge holes with a hole diameter of 0.3 mm and a land length of 0.6 mm was used. , and a sea-island composite undrawn fiber with islands:sea=70:30 (weight ratio) and number of islands=90 was discharged at a spinning temperature of 320.degree. After that, the fiber was passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 450°C, then through a cooling device continuously provided in the heating zone, then oiled, and then wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが36dtex/6フィラメントになるように、紡糸吐出流量、及び延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The spinning discharge flow rate and draw ratio of the undrawn yarn were adjusted so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 36 dtex/6 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

[実施例3]
実施例1と同じ海島ポリマーを使用し、海成分と島成分それぞれを別々に溶融後、16個の孔径0.2mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=720の海島型複合未延伸繊維を、紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度450℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。
[Example 3]
Using the same sea-island polymer as in Example 1, after separately melting the sea component and the island component, a spinneret for manufacturing a sea-island composite fiber having 16 ejection holes with a hole diameter of 0.2 mm and a land length of 0.6 mm was used. , and a sea-island composite undrawn fiber having islands:sea=70:30 (weight ratio) and number of islands=720 was discharged at a spinning temperature of 320.degree. After that, the fiber was passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 450°C, then through a cooling device continuously provided in the heating zone, then oiled, and then wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが56dtex/16フィラメントになるように、紡糸吐出流量、及び延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The spinning discharge flow rate and the draw ratio of the undrawn yarn were adjusted so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 56 dtex/16 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

[比較例1]
島成分として、A-(b)で得たポリフェニレンサルファイドを使用したこと以外は、実施例1と同じく、海成分として5-ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した、固有粘度0.39のポリエチレンテレフタレート(改質PET1と呼ぶ)を用いた。島成分と海島成分それぞれを別々に、ポリフェニレンサルファイドを340℃、ポリエチレンテレフタレートを280℃で溶融後、24個の孔径0.25mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=12の海島型複合未延伸糸条を紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度400℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。
[Comparative Example 1]
9 mol % of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 were used as the sea component in the same manner as in Example 1, except that the polyphenylene sulfide obtained in A-(b) was used as the island component. was copolymerized and had an intrinsic viscosity of 0.39 (referred to as modified PET1). After melting the island component and the sea-island component separately, polyphenylene sulfide at 340°C and polyethylene terephthalate at 280°C, spinning for manufacturing a sea-island composite fiber having 24 ejection holes with a hole diameter of 0.25 mm and a land length of 0.6 mm. They were combined in a spinneret, and a sea-island composite undrawn yarn with islands:sea=70:30 (weight ratio) and number of islands=12 was discharged at a spinning temperature of 320.degree. After that, it passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 400° C., passed through a cooling device continuously provided in the heating zone, was then oiled, and was wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが56dtex/24フィラメントになるように、紡糸吐出流量、および延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The spinning discharge flow rate and draw ratio of the undrawn yarn were adjusted so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 56 dtex/24 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

断糸せずに、海島型複合繊維束が得られたが、PPSの直線性が不足しているため、強度が低い他、島成分径のばらつきが大きく、また、毛羽も多い為、今回目的とする用途には適さないものであった。 A sea-island type composite fiber bundle was obtained without breaking the yarn, but due to the lack of linearity of the PPS, the strength was low, the island component diameter varied greatly, and there was a lot of fluff. It was not suitable for the purpose of

[比較例2]
島成分として、A-(b)で得たポリフェニレンサルファイドを使用したこと以外は、実施例2と同じく、海成分として5-ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した、固有粘度0.39のポリエチレンテレフタレート(改質PET1と呼ぶ)を用いた。島成分と海島成分それぞれを別々に、ポリフェニレンサルファイドを340℃、ポリエチレンテレフタレートを280℃で溶融後、6個の孔径0.3mm、ランド長0.6mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=90の海島型複合未延伸繊維を、紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度450℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。
[Comparative Example 2]
9 mol % of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 were used as the sea component in the same manner as in Example 2, except that the polyphenylene sulfide obtained in A-(b) was used as the island component. was copolymerized and had an intrinsic viscosity of 0.39 (referred to as modified PET1). After melting the island component and the sea-island component separately, polyphenylene sulfide at 340°C and polyethylene terephthalate at 280°C, spinning for producing a sea-island type composite fiber having 6 ejection holes with a hole diameter of 0.3 mm and a land length of 0.6 mm. The fibers were combined in a spinneret, and a sea-island composite undrawn fiber having an island:sea ratio of 70:30 (weight ratio) and the number of islands of 90 was discharged at a spinning temperature of 320°C. After that, the fiber was passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 450°C, then through a cooling device continuously provided in the heating zone, then oiled, and then wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが36dtex/6フィラメントになるように、紡糸吐出流量、及び延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The spinning discharge flow rate and draw ratio of the undrawn yarn were adjusted so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 36 dtex/6 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

複合紡糸の段階で断糸が多く、連続製糸が不可能であった他、わずかに得られた海島型複合繊維束についても、PPSの直線性が不足しているため、強度が低い他、島成分径のばらつきが大きく、また、毛羽も多い為、今回目的とする用途には適さないものであった。 Many yarn breakage occurred during the conjugate spinning stage, making continuous yarn spinning impossible. Since there was a large variation in component diameter and there was a large amount of fluff, it was not suitable for the intended use.

[比較例3]
島成分として、A-(a)で得たポリフェニレンサルファイド、海成分として5-ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合した、固有粘度0.39のポリエチレンテレフタレート(改質PET1と呼ぶ)を用いた。島成分と海島成分それぞれを別々に、ポリフェニレンサルファイドを340℃、ポリエチレンテレフタレートを280℃で溶融後、10個の孔径0.35mm、ランド長0.7mmの吐出孔を有する海島型複合繊維製造用紡糸口金内で合流させ、島:海=70:30(重量比)、島数=12の海島型複合未延伸糸条を紡糸温度320℃で吐出させた。その後、口金下加熱長90mm、雰囲気温度400℃の口金下加熱帯域を通過し、該加熱帯域に連続して設けられた冷却装置を通過、次いでオイリングした後に1000m/minの紡糸速度で巻き取った。
[Comparative Example 3]
Polyphenylene sulfide obtained in A-(a) as the island component, and polyethylene having an intrinsic viscosity of 0.39 obtained by copolymerizing 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 as the sea component. Terephthalate (referred to as modified PET1) was used. After melting the island component and the sea-island component separately, polyphenylene sulfide at 340°C and polyethylene terephthalate at 280°C, spinning for producing a sea-island composite fiber having 10 ejection holes with a hole diameter of 0.35 mm and a land length of 0.7 mm. They were combined in a spinneret, and a sea-island composite undrawn yarn with islands:sea=70:30 (weight ratio) and number of islands=12 was discharged at a spinning temperature of 320.degree. After that, it passed through a heating zone under the spinneret with a heating length of 90 mm and an atmospheric temperature of 400° C., passed through a cooling device continuously provided in the heating zone, was then oiled, and was wound at a spinning speed of 1000 m/min. .

得られた未延伸糸を、得られる延伸熱処理された海島型複合繊維束のヤーンカウントが80dtex/10フィラメントになるように紡糸吐出流量、および延伸倍率を調整した。得られた海島型複合繊維束の評価結果を表1及び表2に示す。 The spinning discharge flow rate and draw ratio of the undrawn yarn were adjusted so that the yarn count of the drawn and heat-treated sea-island composite fiber bundle was 80 dtex/10 filaments. Tables 1 and 2 show the evaluation results of the sea-island composite fiber bundles obtained.

実施例と同様に、直線性のよいPPSを使用した為、海島型複合繊維束を得ることが出来たが、海島型複合繊維の単糸繊度が太く、海島型複合繊維(単糸)の表面/芯部での冷却、配向度の差が発生した為、島成分径のばらつきが大きく、ウースター斑の値も悪かった。また、毛羽も多い為、今回目的とする用途には適さないものであった。 Since PPS with good linearity was used in the same manner as in the Examples, a sea-island composite fiber bundle could be obtained. / Due to the difference in the degree of cooling and the degree of orientation at the core, the island component diameter varied greatly and the Worcester spots were also poor. In addition, since there is a lot of fluff, it is not suitable for the purpose of this application.

Figure 0007176850000001
Figure 0007176850000001

Figure 0007176850000002
Figure 0007176850000002

本発明の極細繊維は、フィルター、有害物質除去製品、電池用セパレーターなどの環境
・産業資材用途や、人工血管、血液フィルターなどの医療用途に使用することができる。
The ultrafine fiber of the present invention can be used for environmental and industrial material applications such as filters, hazardous substance removal products and battery separators, and for medical applications such as artificial blood vessels and blood filters.

Claims (5)

海成分が易溶解性ポリマー、島成分がポリフェニレンサルファイドからなる海島型複合繊維を構成成分とする繊維束であって、該海島型複合繊維の横断面における島成分の直径が0.1~5.0μm、該海島型複合繊維の単糸数が4~48フィラメントであり、且つ以下の要件(A)~(F)を同時に満足することを特徴とする海島型複合繊維束。
(A)島成分であるポリフェニレンサルファイドの、300℃、剪断速度300sec-1における溶融粘度が1000~2000ポイズである。
(B)島成分であるポリフェニレンサルファイドの、温度300℃、剪断速度300sec-1における溶融粘度ηaと、温度300℃、剪断速度100sec-1における溶融粘度ηbとの比ηa/ηbが0.8以上である。
(C)海島型複合繊維中に存在する島数が10島以上である。
(D)海島型複合繊維の繊度が6.0dtex以下である。
(E)海島型複合繊維の強度が2cN/dtex以上である。
(F)海島型複合繊維の海成分を溶解除去して得られる、島成分からなる極細繊維の強度が3cN/dtex以上である。
A fiber bundle composed of islands-in-sea composite fibers in which the sea component is a readily soluble polymer and the island component is polyphenylene sulfide, wherein the diameter of the island component in the cross section of the sea-island composite fiber is 0.1 to 5.5. 0 μm, the number of single filaments of the islands-in-sea composite fiber is 4 to 48 filaments, and the following requirements (A) to (F) are simultaneously satisfied.
(A) The island component polyphenylene sulfide has a melt viscosity of 1000 to 2000 poise at 300° C. and a shear rate of 300 sec −1 .
(B) The ratio ηa/ηb of the melt viscosity ηa at a temperature of 300° C. and a shear rate of 300 sec −1 to the melt viscosity ηb at a temperature of 300° C. and a shear rate of 100 sec −1 of the island component polyphenylene sulfide is 0.8 or more. is.
(C) The number of islands present in the sea-island composite fiber is 10 or more.
(D) The sea-island type composite fiber has a fineness of 6.0 dtex or less.
(E) The strength of the islands-in-the-sea composite fiber is 2 cN/dtex or more.
(F) The strength of the ultrafine fiber composed of the island component obtained by dissolving and removing the sea component of the sea-island composite fiber is 3 cN/dtex or more.
島成分であるポリフェニレンサルファイドの、温度320℃、剪断速度1000sec-1における溶融粘度ηcが700~1200ポイズであり、温度320℃、剪断速度3000sec-1における溶融粘度ηdが600ポイズ以上であり、かつ、ηcとηdとの溶融粘度差(ηc-ηd)が200ポイズ以下である請求項1に記載の海島型複合繊維束。 The island component polyphenylene sulfide has a melt viscosity ηc of 700 to 1200 poise at a temperature of 320° C. and a shear rate of 1000 sec −1 , and a melt viscosity ηd of 600 poise or more at a temperature of 320° C. and a shear rate of 3000 sec −1 , 2. The islands-in-the-sea composite fiber bundle according to claim 1, wherein the melt viscosity difference (ηc-ηd) between ηc and ηd is 200 poise or less. 海島型複合繊維の横断面における島成分の直径のばらつきを示すCV%が0~30%である、請求項1又は2に記載の海島型複合繊維束。 3. The islands-in-the-sea composite fiber bundle according to claim 1, wherein CV%, which indicates the variation in the diameter of the island component in the cross section of the islands-in-the-sea composite fiber, is 0 to 30%. ツェルベガーウースター社製ウースターテスターUT-5のハーフInertモードで測定したU%が1.0以下である請求項1~3のいずれか1項に記載の海島型複合繊維束。 The islands-in-the-sea composite fiber bundle according to any one of claims 1 to 3, having a U% of 1.0 or less as measured in half inert mode with a Wooster tester UT-5 manufactured by Zellweger Wooster. 海成分に用いる易溶解性ポリマーの固有粘度が0.35dl/g以上である請求項1~4のいずれか1項に記載の海島型複合繊維束。 The sea-island composite fiber bundle according to any one of claims 1 to 4, wherein the easily soluble polymer used for the sea component has an intrinsic viscosity of 0.35 dl/g or more.
JP2018062000A 2018-03-28 2018-03-28 Sea-island composite fiber bundle Active JP7176850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062000A JP7176850B2 (en) 2018-03-28 2018-03-28 Sea-island composite fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062000A JP7176850B2 (en) 2018-03-28 2018-03-28 Sea-island composite fiber bundle

Publications (2)

Publication Number Publication Date
JP2019173212A JP2019173212A (en) 2019-10-10
JP7176850B2 true JP7176850B2 (en) 2022-11-22

Family

ID=68167210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062000A Active JP7176850B2 (en) 2018-03-28 2018-03-28 Sea-island composite fiber bundle

Country Status (1)

Country Link
JP (1) JP7176850B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102443249B1 (en) * 2020-09-25 2022-09-15 주식회사 휴비스 Polyphenylene sulfide sea-island fiber and manufacturing method thereof
CN113151930B (en) * 2021-05-20 2023-06-06 东华大学 Sea-island type polyphenylene sulfide superfine fiber and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208326A (en) 2010-03-30 2011-10-20 Toray Ind Inc Sea-island composite fiber
WO2013021809A1 (en) 2011-08-11 2013-02-14 東レ株式会社 Islands-in-sea fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239109A (en) * 1988-03-15 1989-09-25 Teijin Ltd Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208326A (en) 2010-03-30 2011-10-20 Toray Ind Inc Sea-island composite fiber
WO2013021809A1 (en) 2011-08-11 2013-02-14 東レ株式会社 Islands-in-sea fiber

Also Published As

Publication number Publication date
JP2019173212A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4818273B2 (en) Manufacturing method of sea-island type composite spun fiber
Zhou et al. Manufacturing technologies of polymeric nanofibres and nanofibre yarns
JP4473867B2 (en) Sea-island type composite fiber bundle and manufacturing method thereof
KR20110087031A (en) The method for preparation of uniformly separated nanofilament or microfiber
JP4950472B2 (en) Method for producing short cut nanofibers
JP7176850B2 (en) Sea-island composite fiber bundle
JP4359999B2 (en) Method for producing polyphenylene sulfide fiber
JP4994313B2 (en) Method for producing short cut nanofiber and method for producing wet nonwoven fabric
JP2008007870A (en) Polyester fine fiber and its fiber product
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
KR101031924B1 (en) Process Of Producing Nano Size Meta-Aramid Fibrils
JP7334623B2 (en) Copolymer polyphenylene sulfide fiber
JP2012117196A (en) Monofilament for screen gauze
JP2020033680A (en) Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes
JP4995523B2 (en) False twisted yarn and method for producing the same
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP5249713B2 (en) Heat resistant nonwoven fabric
JP2003293237A (en) Method for polylactic acid fiber
JPH02216295A (en) Production of highly strong polyester fiber paper
JP2020020053A (en) Polyether sulfone fiber, method for producing the same, and non-woven fabric and paper comprising the fiber
JP2018168484A (en) Sea-island type conjugate fiber bundle
JP4985358B2 (en) Shrinkage difference mixed yarn
JP2021134459A (en) High orientation unstretched yarn and manufacturing method thereof
JP3400188B2 (en) Method for producing polybenzazole fiber
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221110

R150 Certificate of patent or registration of utility model

Ref document number: 7176850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150