JPS6113004B2 - - Google Patents

Info

Publication number
JPS6113004B2
JPS6113004B2 JP5301476A JP5301476A JPS6113004B2 JP S6113004 B2 JPS6113004 B2 JP S6113004B2 JP 5301476 A JP5301476 A JP 5301476A JP 5301476 A JP5301476 A JP 5301476A JP S6113004 B2 JPS6113004 B2 JP S6113004B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
formula
firing
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5301476A
Other languages
Japanese (ja)
Other versions
JPS52148227A (en
Inventor
Hiroaki Yoneyama
Takeji Ootani
Yoshikatsu Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5301476A priority Critical patent/JPS52148227A/en
Publication of JPS52148227A publication Critical patent/JPS52148227A/en
Publication of JPS6113004B2 publication Critical patent/JPS6113004B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリロニトリル系繊維束を原料とし
て品質の優れた炭素繊維を迅速かつ能率良く製造
する方法に関する。 更に詳しくは高温焼成処理において繊維相互の
合着又は融着のない高強度炭素繊維束の製造方法
に係るものである。 アクリロニトリル系繊維が高強力、高弾性の炭
素繊維用原料として有用であることが見出されて
以来、工業的規模での製造方法、その他に関する
多くの提案がなされている。特に炭素繊維を複合
材料の補強材として使用する場合には高度の引張
り強さが要求され、しかも単繊維としてのみなら
ず繊維束としてもその性能が安定に得られること
が望まれている。このような要請を満足させるた
めには、原料であるアクリロニトリル繊維束を目
的とする炭素繊維束に転換する焼成過程におい
て、即ち原繊維を酸素含有気流中において200〜
300℃の温度領域で処理する予備酸化工程、次い
で窒素ガス等の不活性気流中で700℃までの温度
で処理する前炭素化工程、更に窒素ガス、アルゴ
ンガス等の不活性気流中での2000℃までの温度で
処理する炭素化工程を最も適切な条件で操作する
ことが肝要である、と同時に目標とする炭素繊維
性能をより容易に達成し得る原繊維を見出すこと
も特に重要な課題である。 しかしながらアクリロニトリル系繊維束を炭素
繊維束へ転換する焼成過程は大巾な物理的、化学
的な変化を伴うこと等から両者の因果関係は未だ
明らかではなく、多くの未解決の問題を包含して
いる。従つて炭素繊維用アクリロニトリル系繊維
束として具備すべき条件、もしくは最適焼成方法
に関して特に工業的見地から検討する必要があ
る。 本発明者らはアクリロニトリル系繊維束を原料
として迅速かつ能率良く炭素繊維束を製造する方
法に関して鋭意検討した結果、前記の焼成工程の
うち第一段階の予備酸化工程がきわめて重要であ
ることを確認した。即ち該工程はアクリロニトリ
ル系繊維を構成する分子の環化反応および架橋反
応を進行させ、分子間結合を強固にし、かつ炭素
化反応に移行し易い分子構造に変成する役割を有
している。 従来、予備酸化工程は原繊維を空気中200〜300
℃の温度で加熱処理することにより実施されてい
るが、上記反応を充分に進行させるためにはかな
りの長時間処理を要し、このことが炭素繊維の高
価格をもたらす大きな要因となつている。 前記予備酸化工程での反応、主としてニトリル
基の環化反応および酸素吸収に伴う酸化的架橋反
応などは処理温度に強く影響され、高温である程
その進行が加速される。 従つて予備酸化時間をできるだけ短縮し、迅速
に焼成することを目的とする場合、より高温度で
の焼成技術の確立が一つの重要な研究課題とな
る。例えば本発明者らの検討では予備酸化を空気
気流中、240℃で実施した場合には1〜3時間の
焼成時間を必要とするが、270℃では20〜40分に
短縮できる。予備酸化によつて繊維の密度は漸次
増大し、好適到達点では約1.35〜1.40g/cm3とな
る。 一方、このような温度上昇による時間短縮法の
最も大きな欠点の一つは、焼成操作中著しく原繊
維の単繊維相互の合着又は融着を誘発することで
ある。この現象は原繊維の組成、繊維の表面構造
および構成本数の大きさなどによつてその度合を
異にするが、通常のアクリロニトリル系繊維束で
は殆んどの場合発生することを確めた。 しかも合着又は融着現象の発生した酸化処理繊
維束を引き続き炭素化して得られる炭素繊維束は
機械的特性、とりわけ引張強度の低下が極めて大
きく、時には炭素化工程中で切断を生ずるなどの
トラブルを生じ、明らかに合着又は融着現象が炭
素繊維の性能に重大な悪影響を及ぼすことを認め
た。本発明者らはかかる観点から予備酸化工程の
処理時間を短縮し、かつ焼成時の合着又は融着現
象を起さない方法につき、鋭意検討を重ねた結
果、本発明に到達した。 即ち、本発明は特殊なシリコン系化合物を含有
するアクリル系繊維を原料繊維として焼成するこ
とを特徴とするアクリル系炭素繊維の製造方法に
関するものであり、この方法によれば、短時間焼
成が可能となり、また予備酸化処理における合着
又は融着化を防止すると共に単繊維もしくは繊維
束として優れた機械的性能の炭素繊維が得られ
る。 本発明に適用するシリコン系化合物としては一
般式(1)又は(2)で示される化合物が好ましい。 (但し、式中R4
The present invention relates to a method for rapidly and efficiently producing carbon fibers of excellent quality using acrylonitrile fiber bundles as raw materials. More specifically, the present invention relates to a method for producing a high-strength carbon fiber bundle in which fibers do not coalesce or fuse together during high-temperature firing treatment. Since it was discovered that acrylonitrile fibers are useful as a raw material for high-strength, high-elastic carbon fibers, many proposals have been made regarding industrial-scale production methods and the like. In particular, when carbon fiber is used as a reinforcing material for a composite material, a high tensile strength is required, and it is desired that its performance can be stably obtained not only as a single fiber but also as a fiber bundle. In order to satisfy these demands, in the firing process for converting raw material acrylonitrile fiber bundles into target carbon fiber bundles, in other words, raw fibers are heated to
A preliminary oxidation step in a temperature range of 300℃, followed by a pre-carbonization step in an inert gas flow of nitrogen gas, etc. at a temperature of up to 700℃, and then a 2000°C treatment in an inert gas flow of nitrogen gas, argon gas, etc. It is essential to operate the carbonization process, which is processed at temperatures up to be. However, since the firing process that converts acrylonitrile fiber bundles into carbon fiber bundles involves extensive physical and chemical changes, the causal relationship between the two is still unclear, and there are many unresolved issues. There is. Therefore, it is necessary to examine the conditions that should be provided for the acrylonitrile fiber bundle for carbon fibers or the optimum firing method, especially from an industrial standpoint. The inventors of the present invention have conducted intensive studies on a method for quickly and efficiently manufacturing carbon fiber bundles using acrylonitrile fiber bundles as raw materials, and have confirmed that the first stage of the pre-oxidation process is extremely important in the above-mentioned firing process. did. That is, this step has the role of advancing the cyclization reaction and crosslinking reaction of the molecules constituting the acrylonitrile fiber, strengthening the intermolecular bonds, and modifying the molecular structure to be easily transferred to the carbonization reaction. Traditionally, the preliminary oxidation process is to process the fibrils in air at 200-300%
This is carried out by heat treatment at a temperature of °C, but in order for the above reaction to proceed sufficiently, a considerably long treatment time is required, and this is a major reason for the high price of carbon fiber. . The reactions in the preliminary oxidation step, mainly the cyclization reaction of the nitrile group and the oxidative crosslinking reaction accompanying oxygen absorption, are strongly influenced by the treatment temperature, and the higher the temperature, the faster the progress. Therefore, if the aim is to shorten the preliminary oxidation time as much as possible and perform rapid firing, an important research topic is the establishment of firing technology at higher temperatures. For example, the present inventors have found that when preliminary oxidation is carried out in an air stream at 240°C, a firing time of 1 to 3 hours is required, but this can be shortened to 20 to 40 minutes at 270°C. Preoxidation gradually increases the density of the fibers, reaching a preferred point of about 1.35-1.40 g/cm 3 . On the other hand, one of the biggest drawbacks of this method of shortening time by increasing temperature is that it significantly induces coalescence or fusing of filaments of the fibrils during the firing operation. Although the degree of this phenomenon varies depending on the composition of the fibrils, the surface structure of the fibers, the size of the number of fibers, etc., it has been confirmed that this phenomenon occurs in most cases with ordinary acrylonitrile fiber bundles. Furthermore, the carbon fiber bundles obtained by subsequent carbonization of oxidized fiber bundles in which coalescence or fusion phenomena have occurred have extremely large decreases in mechanical properties, especially tensile strength, and sometimes suffers from problems such as breakage during the carbonization process. It was clearly recognized that the coalescence or fusion phenomenon had a serious adverse effect on the performance of carbon fibers. From this point of view, the present inventors have conducted intensive studies on a method that shortens the processing time of the preliminary oxidation step and does not cause coalescence or fusion during firing, and as a result, they have arrived at the present invention. That is, the present invention relates to a method for producing acrylic carbon fiber, which is characterized by firing acrylic fiber containing a special silicon compound as a raw material fiber, and according to this method, short-time firing is possible. Furthermore, coalescence or fusion during preliminary oxidation treatment can be prevented, and carbon fibers with excellent mechanical performance can be obtained as single fibers or fiber bundles. As the silicon-based compound applicable to the present invention, a compound represented by general formula (1) or (2) is preferable. (However, R 4 in the formula is

【式】であり、 R′は−(CH2)−oである。またXは7000ストーク以
下となるような値、Yは1〜15の整数、nは1〜
3の整数である。) (但し、式中R5は水素又は炭素原子数6以下
のアルキル基であり、aおよびbは1〜10の整数
である。XおよびYは式(1)と同じである。) 本発明によるシリコン系化合物は、酸素を含む
側鎖を導入したことに特徴があり、かかる特定の
シリコン系化合物は、水素エマルジヨンにした時
安定で均一な分散液となり、アクリル繊維に対す
る均一付着性が向上するので、焼成に於ける合着
が、より回避されると推察される。 上記一般式(1),(2)で示されるシリコン系化合物
は一般に繊維重量に対して0.01〜5.0重量%をア
クリル系繊維に付着させる。シリコン化合物が
0.01重量%より少ない場合は本発明の目的は達成
されず、逆に5.0重量%より多い場合は原繊維の
製造工程の操業性が不安定となるので好ましくな
い。 本発明においては少なくとも90モル%以上のア
クリロニトリルからなる重合体を使用する。アク
リロニトリル以外の成分が10モル%以上に達する
と、一般に合着現象を防止することが困難とな
り、焼成操作性を悪化させ、かつ目的とする炭素
繊維の物性が急激に低下する。 アクリロニトリル以外の共重合成分としては例
えばアクリル酸、メタクリル酸、イタコン酸、ア
クリル酸メチル、メタクリル酸メチル等のアクリ
ル酸誘導体、アクリルアミド、メタクリルアミ
ド、N−メチロールアクリルアミド、N,N−ジ
メチルアクリルアミド等のアクリルアミド誘導
体、メチルビニルケトン、エチルビニルケトン等
のアルキルビニルケトン、アクロレイン、メタク
ロレイン等のアクロレイン誘導体、2−ビニルピ
リジン、2−メチル−5−ビニルピリジン等のビ
ニルピリジン誘導体、メタクリルスルホン酸ソー
ダ、スチレンスルホン酸ソーダ等のスルホン酸誘
導体、酢酸ビニル、メタクリロニトリル等があげ
られる。これらは単独でも組合せでも良い。 前記アクリロニトリル共重合体は通常のラジカ
ル重合触媒、例えばアゾビスイソブチロニトリル
などのアゾ化合物、過酸化ベンゾイル、過酸化ラ
ウロイルなどの過酸化物、過硫酸カリウム/亜硫
酸水素ナトリウム、過硫酸アンモニウム/亜硫酸
水素ナトリウムなどのレドツクス触媒を用いて従
来から知られている重合方法、例えばジメチルホ
ルムアミド中での溶液重合や水系懸濁重合、乳化
重合等の方法によつて製造することができる。 本発明の原繊維を製造する方法としては、紡
糸、洗浄された水膨潤状態にある(つまり、乾燥
緻密化以前の)繊維にシリコン系化合物を乳化・
分散剤或は静電防止剤等の処理油剤と共に付着処
理させる方法が用いられる。 かくして得られた原料繊維は次いで通常の焼成
工程に移される。まず一定の張力を与えながら、
酸素含有気流中、230〜330℃の温度で予備酸化処
理が施され、次いで不活性気流中700℃までの温
度で前炭素化、引き続き連続的に高純度の不活性
気流中、約1500℃までの温度で炭素化処理が行な
われる。更に必要に応じて3000℃以内の温度で黒
鉛化処理を施す。 本発明の改質アクリル系繊維を用いる焼成炭素
化においては、予備酸化処理が例えば270℃で約
30分、300℃では約10分と云う、通常の原料繊維
を使用する場合に比較し、極めて苛酷な短時間処
理条件においても、単繊維相互の合着又は融着を
殆んど起すことなく、柔軟な耐炎化繊維が得ら
れ、これを焼成して得られる炭素繊維の機械的性
能も非常に優れている。 以上のように本発明は炭素繊維用アクリロニト
リル系繊維の製造工程中で繊維に前記(1),(2)の一
般式で示されるシリコン系化合物を付着したこの
繊維を前駆体として比較的高温度で迅速に焼成
し、高性能の炭素繊維を製造することを可能にし
たものであるから、その工業的価値はまことに大
きいものがある。 以下実施例により本発明をより具体的に説明す
るが、実施例中、繊維性能の引張伸度以外の%は
特にことわらない限り重量%を示す。 実施例 1 過硫酸カリおよび酸性亜硫酸ソーダからなるレ
ドツクス触媒を用い、温度50℃で連続的に水素懸
濁重合を行なつて、アクリロニトリル(以下AN
と称する)97.0モル%、アクリル酸メチル(以下
MAと称する)1.0モル%、メタクリル酸(以下
MAAと称する)2.0モル%の組成を有し、比粘度
0.190(0.10gの共重合体を0.1Nのロダンソーダ
を含むジメチルホルムアミド溶液100ml中に溶解
して25℃で測定、以下同様)の共重合体を調製し
た。この共重合体をDMAC中に均一に溶解して
共重合体濃度21.0%の紡糸原液とした。紡糸原液
の粘度は50℃で510ポイズであつた。 この紡糸原液を孔数10000、孔径0.065mmφの紡
糸口金を通してDMAC68%および水32%の組成
からなる35℃の凝固浴中に湿式紡糸した。溶剤お
よび水を多量に含む膨潤状態の凝固糸条を98℃の
温水中で7.5倍延伸すると同時に脱溶剤を行なつ
た。更に水膨潤状態の延伸束に2.5Kg/cm2ゲージ
圧の加圧飽和水蒸気中で2.0倍の後延伸を施し
た。 次いで下記一般式(1)′,(2)′,(3)′で示されるシ
リコン系化合物を紡糸油剤中に乳化、分散させ、
それぞれ所定量になるように油浴の濃度を変更し
てシリコンの付着処理をした。 (但し、R4
[Formula], and R′ is −(CH 2 ) − o . Also, X is a value that is 7000 stokes or less, Y is an integer from 1 to 15, and n is from 1 to
It is an integer of 3. ) (However, in the formula, R 5 is hydrogen or an alkyl group having 6 or less carbon atoms, and a and b are integers of 1 to 10. X and Y are the same as in formula (1).) According to the present invention Silicon-based compounds are characterized by the introduction of oxygen-containing side chains, and when such specific silicon-based compounds are made into a hydrogen emulsion, they form a stable and uniform dispersion, improving uniform adhesion to acrylic fibers. It is inferred that coalescence during firing is further avoided. The silicone compounds represented by the above general formulas (1) and (2) are generally attached to acrylic fibers in an amount of 0.01 to 5.0% by weight based on the weight of the fibers. silicon compound
If it is less than 0.01% by weight, the object of the present invention will not be achieved, and if it is more than 5.0% by weight, the operability of the fibril manufacturing process will become unstable, which is not preferable. In the present invention, a polymer comprising at least 90 mol% or more of acrylonitrile is used. When the content of components other than acrylonitrile reaches 10 mol % or more, it is generally difficult to prevent the coalescence phenomenon, worsening firing operability, and sharply decreasing the physical properties of the target carbon fiber. Examples of copolymerization components other than acrylonitrile include acrylic acid, methacrylic acid, itaconic acid, acrylic acid derivatives such as methyl acrylate and methyl methacrylate, acrylamide such as acrylamide, methacrylamide, N-methylolacrylamide, and N,N-dimethylacrylamide. Derivatives, alkyl vinyl ketones such as methyl vinyl ketone and ethyl vinyl ketone, acrolein derivatives such as acrolein and methacrolein, vinyl pyridine derivatives such as 2-vinylpyridine and 2-methyl-5-vinylpyridine, sodium methacrylsulfonate, and styrene sulfone. Examples include sulfonic acid derivatives such as acid soda, vinyl acetate, methacrylonitrile, and the like. These may be used alone or in combination. The acrylonitrile copolymer can be prepared using conventional radical polymerization catalysts, such as azo compounds such as azobisisobutyronitrile, peroxides such as benzoyl peroxide and lauroyl peroxide, potassium persulfate/sodium hydrogen sulfite, and ammonium persulfate/hydrogen sulfite. It can be produced by conventionally known polymerization methods using a redox catalyst such as sodium, such as solution polymerization in dimethylformamide, aqueous suspension polymerization, and emulsion polymerization. The method for producing the fibrils of the present invention involves emulsifying a silicon-based compound into fibers that have been spun, washed, and in a water-swollen state (that is, before being dried and densified).
A method of adhesion treatment is used in which a treatment oil agent such as a dispersant or an antistatic agent is used. The raw material fiber thus obtained is then transferred to a normal firing process. First, while applying a certain tension,
Pre-oxidation treatment is carried out at temperatures between 230 and 330 °C in an oxygen-containing air stream, followed by pre-carbonization at temperatures up to 700 °C in an inert stream, followed continuously in a high purity inert air stream up to approximately 1500 °C. Carbonization treatment is carried out at a temperature of . Furthermore, if necessary, graphitization treatment is performed at a temperature within 3000℃. In sintering carbonization using the modified acrylic fiber of the present invention, preliminary oxidation treatment is performed at 270°C for example.
Even under extremely harsh short-time processing conditions, such as 30 minutes or approximately 10 minutes at 300°C, compared to when using normal raw material fibers, there is almost no coalescence or fusion between single fibers. , a flexible flame-resistant fiber is obtained, and the carbon fiber obtained by firing this fiber has excellent mechanical performance. As described above, the present invention uses the fibers to which the silicon compounds represented by the general formulas (1) and (2) are attached to the fibers as a precursor during the manufacturing process of acrylonitrile fibers for carbon fibers at relatively high temperatures. Because it has made it possible to quickly fire carbon fibers and produce high-performance carbon fibers, its industrial value is truly great. The present invention will be explained in more detail with reference to Examples. In the Examples, percentages other than tensile elongation of fiber properties are percentages by weight unless otherwise specified. Example 1 Acrylonitrile (hereinafter referred to as AN
) 97.0 mol%, methyl acrylate (hereinafter referred to as
(hereinafter referred to as MA) 1.0 mol%, methacrylic acid (hereinafter referred to as
MAA) has a composition of 2.0 mol%, and has a specific viscosity of
A copolymer of 0.190 (measured at 25°C by dissolving 0.10 g of the copolymer in 100 ml of a dimethylformamide solution containing 0.1N rhodan soda, the same applies hereinafter) was prepared. This copolymer was uniformly dissolved in DMAC to obtain a spinning stock solution with a copolymer concentration of 21.0%. The viscosity of the spinning dope was 510 poise at 50°C. This spinning dope was wet-spun through a spinneret with 10,000 holes and a hole diameter of 0.065 mm into a coagulation bath at 35° C. containing 68% DMAC and 32% water. The coagulated filament in a swollen state containing a large amount of solvent and water was stretched 7.5 times in warm water at 98°C, and at the same time, the solvent was removed. Further, the water-swollen stretched bundle was subjected to post-stretching by a factor of 2.0 in pressurized saturated steam at 2.5 kg/cm 2 gauge pressure. Next, silicone compounds represented by the following general formulas (1)′, (2)′, and (3)′ are emulsified and dispersed in a spinning oil,
The silicone adhesion treatment was carried out by changing the concentration of the oil bath so that each had a predetermined amount. (However, R 4 is

【式】であり、該エポ キシ基を約1重量%式中に含む;粘度は25℃で
5000〜7000センチストーク) (但し、Rはメチル基、粘度は25℃で200セン
チストーク、X,Yは厳密に表わせないので前記
粘度で示す) 次いで130℃の表面温度のロール上で繊維束の
乾燥と繊維内組織の緻密化を行なつて第1表に示
した原料繊維を製造した。
[Formula] and contains about 1% by weight of the epoxy group in the formula; viscosity at 25°C
5000-7000 centistokes) (However, R is a methyl group, the viscosity is 200 centistokes at 25°C, and X and Y cannot be expressed exactly, so they are shown as the viscosity above.) Next, the fiber bundle was dried on a roll with a surface temperature of 130°C and the internal structure of the fiber was densified to produce the raw material fibers shown in Table 1.

【表】 繊維性能はテンシロン型引張試験機を用いて
JIS L1074に準じて行なつた。測定雰囲気は20
℃、65%RHである(以下同様)。 比較試料(ホ)はシリコン化合物を油浴中に乳化、
分散させなかつた他は試料1〜9とまつたく同様
の紡糸工程を経て製造されたものである。 比較試料(イ)〜(ニ)はシリコン系化合物の付着量が
本発明の請求範囲(0.01〜5.0%)を越えてお
り、いずれのサンプルも、熱ロールに糸が捲きつ
き、安定なサンプリングは不可能であつた。 これらの原料繊維を180〜245℃の温度勾配を有
する加熱空気の酸化炉中に140mg/dの張力下で
40分間滞在させて酸化処理を行なつた、酸化処理
では原料繊維に対して2.0〜2.5%の範囲の収縮を
許した。酸化処理繊維の密度(トルエン−四塩化
炭素密度勾配管法により30℃で測定した値、以下
同様)は何れも1.37〜1.39g/cm3の範囲にあつ
た。これらの酸化処理繊維を次に320〜700℃の温
度勾配を有する窒素ガス加熱雰囲気の前炭素化炉
中を7分間の滞在時間で通過させた。次いで700
〜1100℃の温度勾配を有する窒素ガス加熱雰囲気
の炭素化工程を滞在時間4分間で通過させ、更に
1350℃の温度の窒素ガス雰囲気中で30秒間熱処理
を施して炭素繊維を製造した。上記方法で得られ
た酸化処理繊維の融着性と炭素繊維の性能を第2
表に示した。
[Table] Fiber performance was measured using a Tensilon type tensile tester.
This was done in accordance with JIS L1074. The measurement atmosphere is 20
℃, 65%RH (the same applies below). The comparative sample (e) is a silicon compound emulsified in an oil bath.
They were manufactured through the same spinning process as Samples 1 to 9 except that they were not dispersed. In comparative samples (a) to (d), the amount of silicon-based compounds attached exceeds the claimed range of the present invention (0.01 to 5.0%), and in all samples, the thread was wound around the heated roll, making stable sampling impossible. It was impossible. These raw fibers were placed in a heated air oxidation furnace with a temperature gradient of 180 to 245°C under a tension of 140 mg/d.
The oxidation treatment was performed for 40 minutes.The oxidation treatment allowed the raw fiber to shrink in the range of 2.0 to 2.5%. The densities of the oxidized fibers (values measured at 30°C by toluene-carbon tetrachloride density gradient tube method, hereinafter the same) were all in the range of 1.37 to 1.39 g/cm 3 . These oxidized fibers were then passed through a pre-carbonization furnace in a nitrogen gas heating atmosphere with a temperature gradient of 320 to 700°C for a residence time of 7 minutes. then 700
The carbonization process was carried out in a nitrogen gas heating atmosphere with a temperature gradient of ~1100°C for a residence time of 4 minutes, and then
Carbon fibers were produced by heat treatment for 30 seconds in a nitrogen gas atmosphere at a temperature of 1350°C. The fusion properties of the oxidized fibers obtained by the above method and the performance of carbon fibers were evaluated in a second manner.
Shown in the table.

【表】【table】

【表】 表中の炭素繊維の引張試験の数値はテンシロン
VTM−3型を用いて試長25mm、引張速度2%/
分、測定雰囲気20℃、65%RHで25本測定して得
られた平均値で示した。 第2表の結果より、本発明の化合物処理を施さ
なかつた比較試料(ホ)に比較して、本発明の試料1
〜9は酸化処理時の合着が生ぜず、炭素繊維性能
も高品質であることがわかる。
[Table] The carbon fiber tensile test values in the table are Tensilon
Using VTM-3 type, test length 25mm, tensile speed 2%/
It is shown as the average value obtained from 25 measurements in a measurement atmosphere of 20°C and 65% RH. From the results in Table 2, compared to the comparative sample (e) which was not treated with the compound of the present invention, sample 1 of the present invention
It can be seen that in samples 9 to 9, no coalescence occurred during the oxidation treatment, and the carbon fiber performance was also of high quality.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)又は(2)で示されるシリコン系化
合物を繊維重量に対して0.01〜5.0重量%付着し
たアクリル系繊維を焼成することを特徴とするア
クリル系炭素繊維の製造方法。 (但し、式中R4は【式】であり、 R′は−(CH2)−oである。またXは7000センチスト
ーク以下となるような値、Yは1〜15の整数、n
は1〜3の整数である。) (但し、式中R5は水素又は炭素原子数6以下
のアルキル基であり、aおよびbは1〜10の整数
である。XおよびYは(1)式と同じである。)
[Claims] 1. Acrylic carbon characterized by firing acrylic fibers to which a silicon compound represented by the following general formula (1) or (2) is adhered in an amount of 0.01 to 5.0% by weight based on the weight of the fibers. Fiber manufacturing method. (However, in the formula, R 4 is [Formula], R' is -(CH 2 ) - o , X is a value of 7000 centistokes or less, Y is an integer from 1 to 15, and n
is an integer from 1 to 3. ) (However, in the formula, R 5 is hydrogen or an alkyl group having 6 or less carbon atoms, and a and b are integers of 1 to 10. X and Y are the same as in formula (1).)
JP5301476A 1976-05-10 1976-05-10 Preparation of carbon fiber from acrylic fiber Granted JPS52148227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301476A JPS52148227A (en) 1976-05-10 1976-05-10 Preparation of carbon fiber from acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301476A JPS52148227A (en) 1976-05-10 1976-05-10 Preparation of carbon fiber from acrylic fiber

Publications (2)

Publication Number Publication Date
JPS52148227A JPS52148227A (en) 1977-12-09
JPS6113004B2 true JPS6113004B2 (en) 1986-04-11

Family

ID=12931038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301476A Granted JPS52148227A (en) 1976-05-10 1976-05-10 Preparation of carbon fiber from acrylic fiber

Country Status (1)

Country Link
JP (1) JPS52148227A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052206B2 (en) * 1978-03-27 1985-11-18 三菱レイヨン株式会社 Method for manufacturing acrylic carbon fiber
JPS6052208B2 (en) * 1979-09-25 1985-11-18 住友化学工業株式会社 Carbon fiber tow manufacturing method
JPS59116422A (en) * 1982-12-22 1984-07-05 Toray Ind Inc Treatment of gas discharged from flame resistant treatment process in manufacture of carbon fiber
JPS6088124A (en) * 1983-10-14 1985-05-17 Nippon Oil Co Ltd Method for infusibilizing pitch fiber
JPS60134027A (en) * 1983-12-20 1985-07-17 Nippon Oil Co Ltd Production of pitch carbon fiber
JPH0686707B2 (en) * 1984-09-14 1994-11-02 竹本油脂株式会社 Method for preventing fusion of precursor fiber in production of carbon fiber
JPS6197477A (en) * 1984-10-19 1986-05-15 東邦レーヨン株式会社 Raw yarn for producing carbon fiber
JPS62243874A (en) * 1986-04-14 1987-10-24 東レ株式会社 Production of precursor fiber for producing carbon fiber
JP4624601B2 (en) * 2001-06-14 2011-02-02 竹本油脂株式会社 Synthetic fiber treatment agent for carbon fiber production and method for treating synthetic fiber for carbon fiber production

Also Published As

Publication number Publication date
JPS52148227A (en) 1977-12-09

Similar Documents

Publication Publication Date Title
JP6495326B2 (en) Low polydispersity index (PDI) polyacrylonitrile (PAN) polymers and carbon fibers made therefrom
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
JP6664401B2 (en) Densification of polyacrylonitrile fiber
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
JPS6113004B2 (en)
JPH0583642B2 (en)
JP5072668B2 (en) Precursor fiber, and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JPS60181323A (en) Manufacture of carbon fiber
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
JPH0433890B2 (en)
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP4068694B2 (en) Method for producing oxidized fiber and carbon fiber
JPS6141326A (en) Preparation of precursor for carbon fiber
TWI762414B (en) Method for producing carbon fibers
JP3154595B2 (en) Method for producing acrylonitrile fiber
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JPH0157165B2 (en)
JPH07292526A (en) Production of acrylic carbon fiber
JP2005248358A (en) Precursor fiber for carbon fiber
KR20240071429A (en) Manufacturing method of high modulus graphite fiber
JP4454364B2 (en) Carbon fiber manufacturing method
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JPH06322616A (en) Acrylic-derived carbon fiber and its production
EP3856959A1 (en) Controlling the degree of swelling of polymer fibers during coagulation