JPH07292526A - Production of acrylic carbon fiber - Google Patents

Production of acrylic carbon fiber

Info

Publication number
JPH07292526A
JPH07292526A JP8160494A JP8160494A JPH07292526A JP H07292526 A JPH07292526 A JP H07292526A JP 8160494 A JP8160494 A JP 8160494A JP 8160494 A JP8160494 A JP 8160494A JP H07292526 A JPH07292526 A JP H07292526A
Authority
JP
Japan
Prior art keywords
carbon fiber
heat
acrylic
fibers
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8160494A
Other languages
Japanese (ja)
Inventor
Chikasuke Yoshino
愼祐 吉野
Makoto Endo
真 遠藤
Makoto Kobayashi
真 木林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8160494A priority Critical patent/JPH07292526A/en
Publication of JPH07292526A publication Critical patent/JPH07292526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a method for mass-producing carbon fibers from acrylic fibers as a base in a short time with good productivity while suppressing the deterioration in strength or elastic modulus in carbonization. CONSTITUTION:This method for producing carbon fibers is to heat-treat acrylic fibers comprising >=85wt.% acrylonitrile and <=15wt.% monomers copolymerizable with the acrylonitrile at 220-300 deg.C in an atmosphere of an inert gas at 0.01-3vol.% oxygen concentration, then heat-treat the resultant fibers at 220-320 deg.C in an atmosphere of an inert gas at >=8vol.% oxygen concentration and subsequently carry out the carbonization treatment in nitrogen at 1400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアクリル系繊維から炭素
繊維を製造する方法に関する。更に詳細には、短時間か
つ大量に炭素繊維を製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing carbon fibers from acrylic fibers. More specifically, it relates to a method for producing a large amount of carbon fibers in a short time.

【0002】[0002]

【従来の技術】従来アクリル系繊維から得られる炭素繊
維は比強度,比弾性率などの力学的性質に優れており、
品質,性能を均一かつ安定的に製造できる為、広く工業
的に生産されている。一般にアクリル系繊維からの炭素
繊維の製造プロセスは、アクリル系繊維を予め空気など
酸化性雰囲気中で加熱する耐炎化工程と、更に高温の不
活性ガス雰囲気中で加熱して前記耐炎化繊維を炭素繊維
に転換させる炭化工程ないし黒鉛化工程からなってい
る。上記炭素繊維の工業的製造工程の内、耐炎化工程は
生産性を左右する極めて重要な工程とされている。すな
わち、耐炎化反応は発熱反応であるため、耐炎化反応速
度を促進しようとして加熱温度を高くしたり、生産性を
上げようとして大量のアクリル系繊維を一度に耐炎化工
程に供給すると、単位時間当たりの発熱量が過大となり
すぎ除熱が追いつかなくなることによって蓄熱現象が起
こり、反応が暴走しコントロールできなくなる問題が生
じる。また、暴走に至らないまでも加熱温度が高すぎる
と単繊維同士が相互に融着し、最終的に得られる炭素繊
維の力学的性質を低下させる原因となる。つまり従来で
は、暴走や単繊維融着が発生しないよう発熱をコントロ
ールするため、緩やかに反応を進行させる必要があり、
したがって耐炎化工程には長時間を要し、炭素繊維の生
産性をあげることが困難であるという問題があった。
2. Description of the Related Art Carbon fibers obtained from conventional acrylic fibers are excellent in mechanical properties such as specific strength and specific elastic modulus.
It is widely industrially manufactured because it can be manufactured with uniform and stable quality and performance. Generally, a process for producing carbon fibers from acrylic fibers is performed by a flame-proofing step in which acrylic fibers are heated in advance in an oxidizing atmosphere such as air, and by further heating in a high-temperature inert gas atmosphere, the flame-resistant fibers are carbonized. It consists of a carbonization process to convert to fibers or a graphitization process. Among the above-mentioned carbon fiber industrial manufacturing processes, the flameproofing process is considered to be an extremely important process that affects productivity. That is, since the flameproofing reaction is an exothermic reaction, if a large amount of acrylic fiber is supplied to the flameproofing process at one time in order to increase the heating temperature in order to accelerate the flameproofing reaction rate or to increase the productivity, it takes a unit time. When the amount of heat generated per unit becomes excessively large and heat removal cannot catch up, a heat storage phenomenon occurs, causing a problem of reaction runaway and uncontrollability. In addition, if the heating temperature is too high, even if the runaway does not occur, the single fibers are fused to each other, which causes the mechanical properties of the finally obtained carbon fibers to deteriorate. In other words, conventionally, in order to control heat generation so that runaway or single fiber fusion does not occur, it is necessary to slowly proceed the reaction,
Therefore, there is a problem that it takes a long time for the flameproofing process and it is difficult to improve the productivity of the carbon fiber.

【0003】アクリル系繊維の耐炎化反応は、該繊維を
構成する高分子鎖を酸化すると共に高分子鎖に結合した
ニトリル基を環化することにより、マッチやガスバーナ
ーの炎に曝しても燃焼せず、引き続く炭化工程を通過し
得る程度に、熱的に安定な構造を有する繊維に転換させ
るものである。純粋な不活性雰囲気中の熱処理において
は、主に環化反応だけが選択的に進行し、発生する反応
熱が小さく、太い糸条や多量の糸を一度に熱処理できる
可能性があるが、耐炎化工程としてこのような処理のみ
を行なっても、環化反応速度が空気中に比べて遅いこ
と、耐炎化糸強度の低下が起こること、得られる炭素繊
維の強度,弾性率等の力学的物性が劣ること、また炭化
収率が低くなることなどの問題点があった。そこで、炭
素繊維の物性を下げることなく耐炎化工程の短時間化を
図るために、特公昭53−22576,特公昭58−2
14535,特開昭58−174630において空気中
で途中まで耐炎化反応を行い、更に酸素濃度を調節した
不活性雰囲気中などで短時間熱処理することによって耐
炎化繊維を作製し、それを炭化させることが提案され
た。しかし、このような方法でもまず第一段目としては
空気中で耐炎化反応を行なうため、初期の発生熱が大き
いままであり、太い糸条や多量の糸条を短時間かつ大量
に処理することは困難であるという問題があった。
The flame-resistant reaction of acrylic fibers burns even when exposed to the flame of a match or a gas burner by oxidizing the polymer chains constituting the fibers and cyclizing the nitrile groups bonded to the polymer chains. Instead, it is converted into fibers having a thermally stable structure to the extent that it can pass through the subsequent carbonization step. In the heat treatment in a pure inert atmosphere, mainly the cyclization reaction selectively progresses, the reaction heat generated is small, and there is a possibility that a thick yarn or a large number of yarns can be heat treated at one time. The cyclization reaction rate is slower than in the air, the strength of the flame-resistant yarn decreases, and the mechanical properties such as the strength and elastic modulus of the obtained carbon fiber are increased even if only such a treatment is performed as the oxidization step. However, there are problems such as inferiority of carbon and low carbonization yield. Therefore, in order to shorten the flame-proofing process without deteriorating the physical properties of carbon fiber, Japanese Patent Publication No. 53-22576 and Japanese Patent Publication No. 58-2
14535, Japanese Patent Application Laid-Open No. 58-174630 discloses that a flame-resistant fiber is produced by performing a flame-proofing reaction in the air halfway and then heat-treating for a short time in an inert atmosphere in which the oxygen concentration is adjusted. Was proposed. However, even in such a method, as the first step, since the flame resistance reaction is carried out in the air, the initial generated heat remains large, and a large number of thick yarns or a large number of yarns are processed in a short time. The problem was that it was difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は上記の
ような問題点を解決し、アクリル系繊維を短時間かつ大
量に耐炎化し、かつ従来技術で得られる炭素繊維に比較
して物性,炭化収率が遜色ない炭素繊維を製造する方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to make an acrylic fiber flame resistant in a short time in a large amount, and to improve physical properties as compared with carbon fibers obtained by the prior art. It is an object of the present invention to provide a method for producing carbon fiber having a carbonization yield comparable to that of the carbon fiber.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を有する。すなわち、アクリル系
繊維を酸素濃度0.01〜3容量%の雰囲気中で熱処理
し、次いで活性雰囲気中で熱処理した後、炭化すること
を特徴とするアクリル系炭素繊維の製造方法である。
In order to solve the above problems, the present invention has the following constitution. That is, it is a method for producing an acrylic carbon fiber, characterized in that the acrylic fiber is heat-treated in an atmosphere having an oxygen concentration of 0.01 to 3% by volume, then heat-treated in an active atmosphere, and then carbonized.

【0006】本発明におけるアクリル系繊維とはポリア
クリロニトリルからなる繊維であれば良い。その組成は
アクリロニトリル85重量%以上,アクリロニトリルと
共重合可能な単量体15重量%以下であることが好まし
い。重合可能な単量体としては、アクリル酸,メタクリ
ル酸,イタコン酸及びそれらのアルカリ金属塩,アンモ
ニウム塩及びアルキルエステル類,アクリルアミド,メ
タクリルアミド及びそれらの誘導体,アリルスルホン
酸,メタリルスルホン酸及びそれらの塩類またはアルキ
ルエステル類を挙げることができる。また、不飽和カル
ボン酸等の耐炎化反応を促進する重合性不飽和単量体を
共重合することが好ましい。不飽和カルボン酸の具体例
としては、アクリル酸,メタクリル酸,イタコン酸,ク
ロトン酸,シトラコン酸,エタクリル酸,マレイン酸,
メサコン酸等を挙げることができる。ポリアクリロニト
リルの重合方法としては、懸濁重合,溶液重合,乳化重
合など従来公知の方法を採用することができる。
The acrylic fiber in the present invention may be a fiber made of polyacrylonitrile. The composition is preferably 85% by weight or more of acrylonitrile and 15% by weight or less of a monomer copolymerizable with acrylonitrile. As the polymerizable monomer, acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and alkyl esters, acrylamide, methacrylamide and their derivatives, allyl sulfonic acid, methallyl sulfonic acid and those Examples thereof include salts or alkyl esters. Further, it is preferable to copolymerize a polymerizable unsaturated monomer such as unsaturated carboxylic acid which promotes the flameproofing reaction. Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid,
Mesaconic acid etc. can be mentioned. As a method for polymerizing the polyacrylonitrile, conventionally known methods such as suspension polymerization, solution polymerization and emulsion polymerization can be adopted.

【0007】紡糸に用いるポリアクリロニトリルの溶媒
には、有機,無機の公知の溶媒を使用することができ
る。好ましい紡糸方法としては、直接凝固浴中へ紡出す
る湿式紡糸法、一旦空気中へ紡出した後に浴中凝固させ
る乾湿式紡糸法、あるいは乾式紡糸法、更には溶融紡糸
法を挙げることができる。溶媒,可塑剤を使用する紡糸
法による時には、紡出糸を直接浴中延伸しても良いし、
水洗して溶媒,可塑剤を除去した後に浴中延伸しても良
い。浴中延伸後の糸条はホットドラムなどで乾燥するこ
とによって乾燥緻密化が達成される。乾燥温度,時間な
どは適宜選択できる。また、必要に応じて乾燥緻密化後
の糸条をより高温(例えば加圧スチーム中)で延伸する
ことも行っても良い。また、乾燥緻密化に先立って、焼
成中の単繊維間接着を防止するために、耐熱性の高いシ
リコン油剤を付与しておくことが好ましい。炭素繊維を
製造する上では、耐炎化工程において焼成斑を起こさな
いよう細い方が好ましく、単繊維繊度として好ましくは
1.5d以下、より好ましくは1.0d以下、さらに好
ましくは0.8d以下であることが望ましい。
As the solvent of polyacrylonitrile used for spinning, known organic and inorganic solvents can be used. Preferred spinning methods include a wet spinning method of spinning directly into a coagulation bath, a dry-wet spinning method of spinning once into air and then solidifying in a bath, or a dry spinning method, and further a melt spinning method. . When using a spinning method using a solvent and a plasticizer, the spun yarn may be directly drawn in a bath,
The film may be stretched in the bath after washing with water to remove the solvent and plasticizer. Dry densification is achieved by drying the yarn after drawing in the bath with a hot drum or the like. The drying temperature, time, etc. can be appropriately selected. If necessary, the dried and densified yarn may be stretched at a higher temperature (for example, in pressure steam). Further, prior to the drying and densification, it is preferable to add a silicone oil agent having high heat resistance in order to prevent adhesion between single fibers during firing. In the production of carbon fibers, it is preferable that the carbon fibers are thin so as not to cause burning spots in the flameproofing step, and the single fiber fineness is preferably 1.5 d or less, more preferably 1.0 d or less, and further preferably 0.8 d or less Is desirable.

【0008】本発明においては、耐炎化工程としてアク
リル系繊維を先ず不活性雰囲気中で熱処理するのだが、
その際濃度として0.01〜3容量%、好ましくは0.
01〜1容量%の酸素を混在せしめるのである。不活性
雰囲気としては例えばアルゴン,ヘリウム,窒素等を挙
げることができ、またこれらの混合物でもよく、酸素濃
度を前記した濃度にコントロールできれば特に限定され
ない。酸素濃度が0.01容量%未満の不活性雰囲気中
の熱処理では環化反応が選択的に進行するものの、その
反応速度は小さく、処理時間が長くなり、また耐炎化糸
強度の低下が起こる。一方、酸素濃度が3容量%を越え
ると、発生する反応熱が急速に増大し、暴走反応が起こ
り易くなるので反応速度向上のための処理温度上昇がで
きなくなる。特に、この場合の酸素濃度の上限は暴走反
応を抑制するため厳密に制御する必要がある。
In the present invention, the acrylic fiber is first heat treated in an inert atmosphere as a flameproofing step.
At that time, the concentration is 0.01 to 3% by volume, preferably 0.1.
Oxygen of 01 to 1% by volume is mixed. Examples of the inert atmosphere include argon, helium, nitrogen and the like, and a mixture thereof may be used, and is not particularly limited as long as the oxygen concentration can be controlled to the above-mentioned concentration. In the heat treatment in an inert atmosphere having an oxygen concentration of less than 0.01% by volume, the cyclization reaction selectively proceeds, but the reaction rate is low, the treatment time becomes long, and the flame resistant yarn strength decreases. On the other hand, when the oxygen concentration exceeds 3% by volume, the heat of reaction generated is rapidly increased, and a runaway reaction is likely to occur, so that the processing temperature cannot be increased to improve the reaction rate. In particular, the upper limit of the oxygen concentration in this case must be strictly controlled in order to suppress the runaway reaction.

【0009】微量酸素濃度の不活性雰囲気中での熱処理
温度は、アクリル系繊維の糸条数,繊度等によって異な
るが、220〜300℃、より好ましくは230〜27
0℃であることが望ましい。220℃未満では処理時間
が長くなり、300℃以上では糸が脆化し易くなる場合
がある。処理時間は、処理温度,酸素濃度,糸条数等に
より異なるが、糸条の比重が1.25以上、より好まし
くは比重1.30以上になる程度まで処理することが望
ましい。なお、ここでの処理において張力をかけること
は、炭素繊維の強度,弾性率を上げるには有効である。
The temperature of the heat treatment in an inert atmosphere with a slight oxygen concentration varies depending on the number of yarns and the fineness of the acrylic fiber, but is 220 to 300 ° C., preferably 230 to 27.
It is preferably 0 ° C. If it is less than 220 ° C, the treatment time becomes long, and if it is 300 ° C or more, the yarn may become brittle. The treatment time varies depending on the treatment temperature, the oxygen concentration, the number of yarns, etc., but it is desirable that the treatment is performed until the specific gravity of the yarn becomes 1.25 or more, more preferably 1.30 or more. It should be noted that applying tension in the treatment here is effective for increasing the strength and elastic modulus of the carbon fiber.

【0010】微量の酸素を含む不活性雰囲気中での熱処
理を行なったアクリル系繊維を、次いで酸化性気体から
なる活性雰囲気中で熱処理する。不活性雰囲気で環化さ
せたアクリル繊維は極めて酸化され易い状態であるの
で、活性雰囲気中では短時間熱処理することで必要な酸
化が達成される。酸化性気体としては例えば二酸化窒
素,二酸化硫黄、酸素を挙げることができ、これらを単
独または混合しても用いてもよいし、これら気体と不活
性気体との混合気体として用いてもよい。気体の毒性の
点からは酸素と不活性気体との混合気体を用いることが
好ましい。さらにコスト面からは酸素と窒素の混合気
体、特に空気が最も好ましく用いられる。酸化性気体濃
度が低すぎると処理時間が長くなる場合があるため、好
ましくは8容量%以上、より好ましくは15容量%以上
であることが望ましい。一方、酸化性気体濃度が高すぎ
ると、暴走温度が低くなりプロセス上危険な状態になる
ことがあるので、好ましくは酸化性気体濃度は25容量
%以下であることが望ましい。
The acrylic fiber that has been heat-treated in an inert atmosphere containing a trace amount of oxygen is then heat-treated in an active atmosphere containing an oxidizing gas. Since the acrylic fiber cyclized in the inert atmosphere is in a state of being easily oxidized, the required oxidation can be achieved by performing the heat treatment for a short time in the active atmosphere. Examples of the oxidizing gas include nitrogen dioxide, sulfur dioxide, and oxygen. These may be used alone or in combination, or may be used as a mixed gas of these gases and an inert gas. From the viewpoint of gas toxicity, it is preferable to use a mixed gas of oxygen and an inert gas. From the viewpoint of cost, a mixed gas of oxygen and nitrogen, particularly air, is most preferably used. If the concentration of the oxidizing gas is too low, the treatment time may be long. Therefore, the concentration is preferably 8% by volume or more, more preferably 15% by volume or more. On the other hand, if the concentration of the oxidizing gas is too high, the runaway temperature becomes low and the process may be in a dangerous state. Therefore, the concentration of the oxidizing gas is preferably 25% by volume or less.

【0011】活性雰囲気中での熱処理温度については、
糸条数,繊度,酸化性気体濃度等により異なるが、低す
ぎると反応時間が長くなり、高すぎると暴走反応が起こ
り易くなる場合があるため、好ましくは220〜320
℃の範囲、より好ましくは230〜280℃の範囲が望
ましい。ここでの熱処理では炭素繊維の強度,弾性率を
上げるために張力をかけることが好ましい。処理時間は
処理温度,酸化性気体濃度等により異なるが、230〜
280℃で処理する場合では3〜10分も行えば十分で
ある。
Regarding the heat treatment temperature in the active atmosphere,
Although it depends on the number of yarns, the fineness, the concentration of oxidizing gas, etc., if it is too low, the reaction time becomes long, and if it is too high, a runaway reaction may occur easily.
The temperature range is preferably in the range of ℃, more preferably 230 to 280 ℃. In this heat treatment, it is preferable to apply tension in order to increase the strength and elastic modulus of the carbon fiber. The treatment time varies depending on the treatment temperature, the concentration of oxidizing gas, etc.
When the treatment is performed at 280 ° C., it is sufficient to perform the treatment for 3 to 10 minutes.

【0012】本発明においては上記した耐炎化糸を炭化
して、炭素繊維を得る。必要に応じて、炭化前に400
〜700℃の温度勾配を持つ不活性雰囲気炉で熱処理し
ておくことが好ましい。炭化の方法は特に限定されるも
のではなく、公知の各種の方法、例えば窒素,ヘリウ
ム,アルゴン等の不活性雰囲気中1000〜2000℃
で加熱するなどの方法がある。この時、炭素繊維の強
度,弾性率を上げるために毛羽を発生させない程度に延
伸することが好ましい。
In the present invention, the above-mentioned flame resistant yarn is carbonized to obtain a carbon fiber. 400 if necessary before carbonization
It is preferable to perform heat treatment in an inert atmosphere furnace having a temperature gradient of up to 700 ° C. The carbonization method is not particularly limited, and various known methods, for example, 1000 to 2000 ° C. in an inert atmosphere of nitrogen, helium, argon or the like.
There is a method such as heating with. At this time, in order to increase the strength and elastic modulus of the carbon fiber, it is preferable to stretch the carbon fiber to the extent that fluff is not generated.

【0013】このようにして得た炭素繊維に対して、必
要に応じて従来公知の方法により表面処理,サイジング
付与等を行うことができる。
The carbon fiber thus obtained can be subjected to surface treatment, sizing, etc., if necessary, by a conventionally known method.

【0014】つまり、一段目に特定酸素濃度の不活性雰
囲気下で熱処理によって、短時間かつ大量にアクリル系
繊維の環化反応を行なうことができ、かつ二段目として
活性雰囲気中での熱処理によって、短時間かつ大量に酸
化反応を行なうことができるため、引き続く炭化によっ
て得られる炭素繊維の強度、弾性率を低下を抑制し、ま
た炭化収率の低下を抑制して炭素繊維を得ることができ
る。このような耐炎化工程における効率化と、得られる
炭素繊維の物性,炭化収率の維持の両立は従来技術では
成し得なかったものである。
That is, the cyclization reaction of acrylic fibers in a short time and in a large amount can be performed by heat treatment in an inert atmosphere having a specific oxygen concentration in the first step, and by the heat treatment in an active atmosphere in the second step. Since a large amount of oxidation reaction can be carried out in a short time, it is possible to obtain a carbon fiber by suppressing a decrease in strength and elastic modulus of the carbon fiber obtained by subsequent carbonization and by suppressing a decrease in carbonization yield. . Such efficiency improvement in the flameproofing process and maintenance of the physical properties and carbonization yield of the obtained carbon fiber cannot be achieved by the conventional technology.

【0015】[0015]

【実施例】以下、実施例によって本発明を説明する。EXAMPLES The present invention will be described below with reference to examples.

【0016】なお、本例中、炭素繊維の引張強度、弾性
率はJIS−R−7601に規定する樹脂含浸ストラン
ド試験法に従って測定した。樹脂としては、ベークライ
ト(登録商標)ERL4221(ユニオン・カーバイド
(株)製)/三フッ化ホウ素モノエチルアミン(BF3
・MEA)/アセトン=100/3/4部を用い、樹脂
硬化条件は130℃で30分間とした。
In this example, the tensile strength and elastic modulus of carbon fiber were measured according to the resin-impregnated strand test method defined in JIS-R-7601. As the resin, Bakelite (registered trademark) ERL4221 (manufactured by Union Carbide Co., Ltd.) / Boron trifluoride monoethylamine (BF3)
MEA) / acetone = 100/3/4 parts was used, and the resin curing condition was 130 ° C. for 30 minutes.

【0017】また、炭化収率は、炭化工程に供給した耐
炎化糸の重量に対する得られた炭素繊維の重量の百分率
を表わす。
The carbonization yield represents the percentage of the weight of the obtained carbon fiber with respect to the weight of the flame-resistant yarn supplied to the carbonization step.

【0018】[実施例1]アクリロニトリル95重量
%,イタコン酸5重量%からなる1.0d,48000
フィラメントのアクリル系繊維を260℃の酸素濃度
0.5容量%の窒素雰囲気下で1.2〜1.5kgの張
力をかけて30分間熱処理し(1段目)、更に260℃
の空気中で2.5〜2.8kgの張力をかけて5分間熱
処理した(2段目)。耐炎化工程に要した時間は35分
間であった。次いで1400℃の窒素中で炭化し、炭素
繊維を得た。
[Example 1] 1.0d, 48000 consisting of 95% by weight of acrylonitrile and 5% by weight of itaconic acid
The acrylic fiber of the filament is heat-treated for 30 minutes at a tension of 1.2 to 1.5 kg in a nitrogen atmosphere having an oxygen concentration of 0.5% by volume at 260 ° C. (first step), and further at 260 ° C.
In the above air, a tension of 2.5 to 2.8 kg was applied and heat treatment was performed for 5 minutes (second stage). The time required for the flameproofing process was 35 minutes. Next, carbonization was performed in nitrogen at 1400 ° C. to obtain carbon fibers.

【0019】得られた炭素繊維の物性を表1に示す。Table 1 shows the physical properties of the obtained carbon fiber.

【0020】[比較例1]実施例1で得たアクリル系繊
維を空気中でのみ240℃で120分耐炎化しようとし
たが、処理中に暴走反応を起こし、炭素繊維を得ること
はできなかった。 [比較例2]比較例1において、処理温度を220℃に
下げ、400分耐炎化処理して炭素繊維を得た。得られ
た炭素繊維の物性を表1に示す。
[Comparative Example 1] The acrylic fiber obtained in Example 1 was tried to be flame resistant only in air at 240 ° C for 120 minutes, but a runaway reaction occurred during the treatment, and carbon fiber could not be obtained. It was [Comparative Example 2] In Comparative Example 1, the treatment temperature was lowered to 220 ° C, and flame-resistant treatment was performed for 400 minutes to obtain a carbon fiber. Table 1 shows the physical properties of the obtained carbon fiber.

【0021】[比較例3]フィラメント数を12000
とした以外は実施例1と同様にしてアクリル系繊維を得
た。これを空気中でのみ240℃で120分熱処理した
こと以外は実施例1と同様にして炭素繊維を得た。得ら
れた炭素繊維の物性を表1に示す。
[Comparative Example 3] The number of filaments was 12000.
An acrylic fiber was obtained in the same manner as in Example 1 except that A carbon fiber was obtained in the same manner as in Example 1 except that this was heat-treated in air only at 240 ° C. for 120 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0022】[比較例4]1段目の熱処理を酸素濃度
0.005容量%で行った以外は実施例1と同様にして
炭素繊維を得た。耐炎化工程に要した時間は35分間で
あった。得られた炭素繊維の物性を表1に示す。
[Comparative Example 4] A carbon fiber was obtained in the same manner as in Example 1 except that the first-stage heat treatment was performed at an oxygen concentration of 0.005% by volume. The time required for the flameproofing process was 35 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0023】[比較例5]1段目の熱処理を酸素濃度
0.005容量%で60分行った以外は実施例1と同様
にして炭素繊維を得た。耐炎化工程に要した時間は65
分間であった。得られた炭素繊維の物性を表1に示す。
[Comparative Example 5] A carbon fiber was obtained in the same manner as in Example 1 except that the first-stage heat treatment was carried out at an oxygen concentration of 0.005% by volume for 60 minutes. The time required for the flameproofing process is 65
It was a minute. Table 1 shows the physical properties of the obtained carbon fiber.

【0024】[比較例6]1段目の熱処理を酸素濃度4
容量%で行った以外は実施例1と同様に行なおうとした
が、1段目の熱処理中に暴走反応を起こし、炭素繊維を
得られなかった。 [比較例7]空気中での2段目の熱処理を行わない以外
は実施例1と同様に行ったが、炭化工程で糸切れが生
じ、炭素繊維を得ることはできなかった。
[Comparative Example 6] Oxygen concentration of 4 in the first heat treatment
An attempt was made to carry out in the same manner as in Example 1 except that the carbon fiber was not used, but a carbon fiber could not be obtained due to a runaway reaction during the first heat treatment. [Comparative Example 7] The same procedure as in Example 1 was carried out except that the second heat treatment was not performed in air, but a yarn breakage occurred in the carbonization step, and carbon fibers could not be obtained.

【0025】[実施例2]空気中での2段目の熱処理を
1分に変更した以外は実施例1と同様にして炭素繊維を
得た。耐炎化工程に要した時間は31分間であった。得
られた炭素繊維の物性を表1に示す。
Example 2 A carbon fiber was obtained in the same manner as in Example 1 except that the second heat treatment in air was changed to 1 minute. The time required for the flameproofing process was 31 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0026】[実施例3]空気中での2段目の熱処理を
15分に変更した以外は実施例1と同様にして炭素繊維
を得た。耐炎化工程に要した時間は45分間であった。
得られた炭素繊維の物性を表1に示す。
Example 3 A carbon fiber was obtained in the same manner as in Example 1 except that the second heat treatment in air was changed to 15 minutes. The time required for the flameproofing process was 45 minutes.
Table 1 shows the physical properties of the obtained carbon fiber.

【0027】[実施例4]2段目の熱処理を酸素濃度5
容量%の窒素中で行った以外は実施例1と同様にして炭
素繊維を得た。耐炎化工程に要した時間は35分間であ
った。得られた炭素繊維の物性を表1に示す。
[Embodiment 4] The second step of heat treatment is performed with an oxygen concentration of 5
A carbon fiber was obtained in the same manner as in Example 1 except that the carbon fiber was used in a volume% of nitrogen. The time required for the flameproofing process was 35 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0028】[実施例5]2段目の熱処理を酸素濃度1
0容量%の窒素中で行った以外は実施例1と同様にして
炭素繊維を得た。耐炎化工程に要した時間は35分間で
あった。得られた炭素繊維の物性を表1に示す。
[Embodiment 5] The second step of heat treatment is performed with an oxygen concentration of 1
A carbon fiber was obtained in the same manner as in Example 1 except that the carbon fiber was used in 0% by volume of nitrogen. The time required for the flameproofing process was 35 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0029】[比較例8]実施例1で得たアクリル系繊
維を空気中で1.2〜1.5kgの張力をかけて220
℃60分間熱処理し、次いで窒素中で2.5〜2.8k
gの張力をかけて280℃12分熱処理して炭素繊維を
得た。耐炎化工程に要した時間は72分間であった。得
られた炭素繊維の物性を表1に示す。
[Comparative Example 8] The acrylic fiber obtained in Example 1 was applied with a tension of 1.2 to 1.5 kg in air to give 220
Heat treatment at 60 ° C for 60 minutes, then 2.5 to 2.8k in nitrogen
A carbon fiber was obtained by applying a tension of g and heat-treating at 280 ° C. for 12 minutes. The time required for the flameproofing process was 72 minutes. Table 1 shows the physical properties of the obtained carbon fiber.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明によれば、短時間かつ大量に、す
なわち生産性良くアクリル系炭素繊維を得ることができ
る。すなわち、特定酸素濃度の不活性雰囲気下での熱処
理によって、短時間かつ大量にアクリル系繊維の環化反
応を行なうことができ、かつその後の活性雰囲気中での
熱処理によって、短時間かつ大量に酸化反応を行なうこ
とができるため、引き続く炭化によって得られる炭素繊
維の強度、弾性率の低下を抑制し、また炭化収率の低下
を抑制して炭素繊維を得ることができる。
According to the present invention, an acrylic carbon fiber can be obtained in a short time and in a large amount, that is, with good productivity. That is, the cyclization reaction of acrylic fibers can be carried out in a short time and in a large amount by heat treatment in an inert atmosphere of a specific oxygen concentration, and the subsequent heat treatment in an active atmosphere can oxidize a large amount in a short time. Since the reaction can be carried out, it is possible to obtain a carbon fiber by suppressing a decrease in the strength and elastic modulus of the carbon fiber obtained by the subsequent carbonization and by suppressing a decrease in the carbonization yield.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アクリル系繊維を酸素濃度0.01〜3容
量%の不活性雰囲気中で熱処理し、次いで活性雰囲気中
で熱処理した後、炭化することを特徴とするアクリル系
炭素繊維の製造方法。
1. A method for producing an acrylic carbon fiber, characterized in that an acrylic fiber is heat-treated in an inert atmosphere having an oxygen concentration of 0.01 to 3% by volume, then heat-treated in an active atmosphere, and then carbonized. .
【請求項2】活性雰囲気が、酸素濃度8容量%以上の気
体雰囲気であることを特徴とする請求項1に記載のアク
リル系炭素繊維の製造方法。
2. The method for producing an acrylic carbon fiber according to claim 1, wherein the active atmosphere is a gas atmosphere having an oxygen concentration of 8% by volume or more.
【請求項3】不活性雰囲気中での熱処理温度が220〜
300℃の範囲であることを特徴とする請求項1に記載
のアクリル系炭素繊維の製造方法。
3. The heat treatment temperature in an inert atmosphere is 220 to.
The method for producing an acrylic carbon fiber according to claim 1, wherein the temperature is in the range of 300 ° C.
【請求項4】活性雰囲気中での熱処理温度が220〜3
20℃であることを特徴とする請求項1に記載のアクリ
ル系炭素繊維の製造方法。
4. The heat treatment temperature in an active atmosphere is 220 to 3
It is 20 degreeC, The manufacturing method of the acrylic carbon fiber of Claim 1 characterized by the above-mentioned.
JP8160494A 1994-04-20 1994-04-20 Production of acrylic carbon fiber Pending JPH07292526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8160494A JPH07292526A (en) 1994-04-20 1994-04-20 Production of acrylic carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8160494A JPH07292526A (en) 1994-04-20 1994-04-20 Production of acrylic carbon fiber

Publications (1)

Publication Number Publication Date
JPH07292526A true JPH07292526A (en) 1995-11-07

Family

ID=13750930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8160494A Pending JPH07292526A (en) 1994-04-20 1994-04-20 Production of acrylic carbon fiber

Country Status (1)

Country Link
JP (1) JPH07292526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183174A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Method for producing flame resistant fiber
KR20200066646A (en) * 2017-10-10 2020-06-10 디킨 유니버시티 Precursor stabilization method
JP2022088487A (en) * 2017-10-10 2022-06-14 ディーキン ユニバーシティ Reactor, device and system for pre-stabilizing polyacrylonitrile (pan) precursor used for producing carbon fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183174A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Method for producing flame resistant fiber
KR20200066646A (en) * 2017-10-10 2020-06-10 디킨 유니버시티 Precursor stabilization method
JP2021500481A (en) * 2017-10-10 2021-01-07 ディーキン ユニバーシティ Precursor stabilization method
JP2022088487A (en) * 2017-10-10 2022-06-14 ディーキン ユニバーシティ Reactor, device and system for pre-stabilizing polyacrylonitrile (pan) precursor used for producing carbon fiber
KR20220093397A (en) * 2017-10-10 2022-07-05 디킨 유니버시티 Precursor Stabilisation Process
US11873584B2 (en) 2017-10-10 2024-01-16 Deakin University Precursor stabilisation process

Similar Documents

Publication Publication Date Title
US4113847A (en) Process for producing carbon fibers
US4080417A (en) Process for producing carbon fibers having excellent properties
US4001382A (en) Process for producing carbon fibers having excellent physical properties
US4452860A (en) Carbon fibers and process for producing the same
JP2012082541A (en) Method for producing carbon fiber
US4009991A (en) Process for producing carbon fibers
JPH07292526A (en) Production of acrylic carbon fiber
JPS6113004B2 (en)
JPS6128019A (en) Production of pitch based carbon fiber
JPS60181323A (en) Manufacture of carbon fiber
JP2869085B2 (en) Precursor for carbon fiber production
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
GB1578492A (en) Production of carbon fibres
JP7343538B2 (en) Carbon fiber and its manufacturing method
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JPH0214013A (en) Precursor for producing carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP4919410B2 (en) Carbon fiber manufacturing method
JP2007332498A (en) Method for producing carbon fiber bundle
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JPH0931758A (en) Carbon fiber
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JP3154595B2 (en) Method for producing acrylonitrile fiber
JP2012117161A (en) Method for manufacturing carbon fiber bundle