JPS6156328B2 - - Google Patents

Info

Publication number
JPS6156328B2
JPS6156328B2 JP5115982A JP5115982A JPS6156328B2 JP S6156328 B2 JPS6156328 B2 JP S6156328B2 JP 5115982 A JP5115982 A JP 5115982A JP 5115982 A JP5115982 A JP 5115982A JP S6156328 B2 JPS6156328 B2 JP S6156328B2
Authority
JP
Japan
Prior art keywords
solvent
stretching
bath
carbon fibers
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5115982A
Other languages
Japanese (ja)
Other versions
JPS58169518A (en
Inventor
Hiroshi Takeda
Hiroki Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5115982A priority Critical patent/JPS58169518A/en
Publication of JPS58169518A publication Critical patent/JPS58169518A/en
Publication of JPS6156328B2 publication Critical patent/JPS6156328B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は均一性の優れた高強度炭素繊維(本明
細書において「炭素繊維」とは「黒鉛繊維」を含
むものとする。)の製造法に関する。さらに詳し
くは、高強力炭素繊維用プレカーサーとして、湿
式紡糸工程で得た凝固糸を溶剤含有延伸浴中で延
伸し、さらに二次延伸することによつて作製され
たアクリル繊維を用い、これを焼成することによ
つて、均一性に優れた高強力炭素繊維を製造する
方法に関する。 アクリル系繊維から炭素繊維を製造することは
周知であつて広く実施されている。然しながら、
炭素繊維の物性には未だかなり大きなバラツキが
あり、そのため炭素繊維の本来の能力が十分発揮
されているとは言えない。また、炭素繊維を製造
する工程のうち、酸化性雰囲気中で加熱処理する
所謂耐炎化工程での切糸が多く生産性が低下して
いるのが現状である。かかる問題点を解決すべく
炭素繊維用プレカーサーの強度、弾性率、配向
度、結晶度等の改良がいくつか提案されている。
また、耐炎化工程での切糸はプレカーサーの耐炎
化工程での接触、融着等に原因して起ると考えら
れるが、接着、融着を防止するために、耐炎化条
件の適正化、油剤の開発等が提案されている。か
かる提案にもかかわらず炭素繊維の強度は理論的
に達成可能な推定値の10数%、弾性率では50%程
度しか達成されていない。また、耐炎化時の切糸
等の問題は充分に満足できる結果が得られていな
い。 本発明の目的は、高強度であるとともに強力そ
の他の物性のバラツキが小さい炭素繊維を得るこ
とにある。さらに他の目的は、耐炎化時の切糸が
減少し、安定な操業を可能にするプレカーサーを
提供するにある。 本発明に係る炭素繊維の製造法は、アクリロニ
トリル系重合体を溶剤に溶解して紡糸原液を作成
し、該紡糸原液を紡糸口金から凝固浴中に押し出
して延伸せずに凝固せしめた後、得られた溶剤を
含有したままの凝固糸を凝固浴中の凝固液濃度よ
り高い濃度で溶剤を含む延伸浴中で延伸した後、
またはさらに水洗した後、二次延伸を施して作成
したアクリル繊維を焼成することを特徴とする。 上述のように、作成された紡糸原液を凝固浴中
で充分に凝固をさせた後、溶剤を含有したまま、
溶剤含有延伸浴中で延伸すると、均一構造物が得
られる。すなわち、溶剤含有延伸浴中では凝固に
より形成された高分子凝集体が動きやすい状態で
あるため、より均一な延伸が可能となり、均一な
構造形成ができ、かつ配向度も均一なものとな
る。また、溶剤を含有した状態で前延伸すること
により、二次延伸性が良く、より高い延伸倍率を
達成することも可能となり、得られた繊維物性が
向上する。こうして得られるアクリル系繊維をプ
レカーサーとして用いて焼成すると、強度その他
の物性が高くかつそれらのバラツキが小さく均一
な炭素繊維が得られる。 さらに、本発明方法で得られるアクリル系繊維
プレカーサーは強度その他の物性のバラツキが小
さく、構造欠陥が少ないために、耐炎化時の切糸
が極端に低下し、耐炎化時の稼動率が向上する。 本発明方法においては、凝固浴中で充分に凝固
せしめた後に、溶剤を含有する延伸浴中で延伸す
ることによつて、より均一な延伸を達成し、配向
を高め、かつ、膨潤度を小さくして緻密化を進め
るものである。このように、膨潤度を小さくして
緻密化を促進するには、溶剤含有延伸浴中の溶剤
濃度を凝固浴中の凝固液濃度より高くする必要が
あり、両者の濃度差は3重量%以上であることが
望ましい。また、溶剤含有延伸浴の温度は凝固浴
の温度よりも5℃以上高いことが好ましい。膨潤
度の低下及び緻密化がより速やかに進行するから
である。溶剤含有延伸浴中での延伸倍率は3〜8
倍であることが望ましい。 上述のように、溶剤含有延伸浴中で均一に延伸
された繊維は均一な配向度とともに格段に優れた
二次延伸性を有する。従つて、二次延伸を施すこ
とによつて全延伸倍率が高められ、さらに一層増
大した配向度および結晶化度を有するプレカーサ
ーを得ることができる。 特に、硝酸水溶液を紡糸原液調整用溶剤、凝固
液および延伸浴液として使用する場合は、凝固浴
と同じ濃度条件で延伸するとき延伸倍率を大きく
とることが全く困難となるのとは対照的に、本発
明の方法のように凝固浴中で充分に凝固させた後
凝固溶中の硝酸濃度より高い濃度の硝酸水溶液中
で延伸するときは本発明の効果が非常に顕著であ
る。さらに、好ましい溶剤含有延伸浴の条件は、
凝固浴より3重量%以上高い濃度で且つ凝固浴よ
り高い(特に5℃以上)温度である。このような
条件で延伸すると延伸倍率を充分に高めることが
でき均一な延伸が可能となると同時に、二次延伸
性が良くなり全延伸倍率が高くなり、配向度が向
上し、かつ、1.5デニール以下の細繊度繊維の紡
糸が容易となる。 本発明の方法において、紡糸原液調製用溶剤、
凝固浴中の凝固液および溶剤含有延伸浴中の溶剤
は、アクリル系重合体の溶剤として知られるもの
の中から選ぶことができる。そのような溶剤とし
ては、ジメチルホルムアミド、ジメチルアセトア
ミド、ジメチルスルホキシド等の有機系溶剤、な
らびにロダン塩、塩化亜鉛、硝酸、硫酸等の無機
系溶剤が挙げられる。これらの中でも、紡糸時の
変性を嫌うため低温で凝固させている硝酸等の無
機酸系の溶剤においては効果が大きい。また、溶
剤含有延伸浴中の溶剤と凝固浴中の凝固液は異な
つていても差支えないが、回収等のことを考えれ
ば、それらは同一物質であることが好しい。 本発明方法で用いられる「アクリル系重合体」
とは、ポリアクリロニトリルおよびアクリロニト
リルを少なくとも90重量%含有するアクリロニト
リルとその他の不飽和単量体との共重合体などを
指す。共重合されるその他の不飽和単量体として
は、アクリル酸、メタアクリル酸、アクリル酸メ
チル、メタアクリル酸メチル、酢酸ビニル、イタ
コン酸等のエチレン系不飽和化合物を挙げること
ができる。アクリル系重合体は一般に常用される
重合手段によつて得ることができる。 本発明方法における紡糸自体は、極く一般に知
られている湿式紡糸の技法に従つて行えばよい。
延伸後の繊維は水洗および乾燥を行うが水洗は含
有している溶剤を洗い落せればいかなる水洗方法
でもよく、また、乾燥方法も水分を除去できれば
よく、特に限定されるものではない。 溶剤含有延伸浴中で延伸した後、またはさらに
水洗した後、二次延伸を施す。二次延伸における
延伸方法は従来公知の熱水延伸法、蒸気延伸法、
加圧飽和蒸気延伸法、加熱蒸気延伸法、乾熱延伸
法、熱ピン延伸法等のいずれの延伸方法でもよ
く、またこれら延伸法の2以上を組合せたもので
もよい。延伸温度も格別限定されるものではな
く、繊維が充分に加熱されて、所望の均一延伸が
達成されれば従来常用されている条件と同様でよ
い。二次延伸において適用される延伸倍率は、溶
剤含有延伸浴中における延伸後の繊維長を基準に
して1.3〜3倍であることが望ましい。溶剤含有
延伸浴中での延伸と二次延伸とにおける合計延伸
倍率は5〜15倍であることが望ましい。 かくして得られたアクリル繊維から炭素繊維を
製造するに際しては、従来より公知の如何なる焼
成方法をも採用することができる。一般に、酸化
性雰囲気中にて150〜400℃に加熱し環化せしめる
耐炎化工程と、次いで非酸化性雰囲気中または減
圧下にて高温焼成することにより炭素化乃至黒鉛
化せしめる炭素化工程とからなる焼成方法が好適
である。耐炎化工程の雰囲気としては空気が好適
であり、炭素化ないしは黒鉛化の雰囲気としては
窒素、ヘリウム、アルゴン等が好適である。 本発明方法によつて得られる炭素繊維は、強度
に優るとともに、品質の均一性が良好であつて、
コンポジツト形成素材として最も優れた性能をも
つ。さらに、耐炎化工程での切糸が非常に少く、
高生産性を以つて炭素繊維を製造することができ
る。 以下に本発明方法の代表的な実施例を示す。実
施例中、百分率は特に断らない重量基準で示す。 実施例 1 アクリロニトリル97%、アクリル酸3%からな
るアクリロニトリル系共重合体を70%硝酸に溶解
し、重合体濃度が16.3%の紡糸原液を調製し、該
原液を紡糸口金から35.3%、−3℃の硝酸水溶液
中に押出して充分に凝固させ、硝酸含有延伸浴の
条件をいろいろ変化させて(条件は後記第1表に
示す)、延伸倍率5倍で延伸を行つた。さらに、
熱水中または飽和蒸気中で延伸倍率3倍で2次延
伸を行つた。その後、通常の水洗を行い、150℃
で乾燥して、単糸繊度1.5デニール、フイラメン
ト数6000fのプレカーサーを作製した。 比較のために、上記と同一紡糸原液を35.3%、
−3℃の硝酸水溶液中に押出して充分に凝固させ
た後、溶剤含有延伸浴中での延伸を施すことな
く、水洗し、熱水中で5倍の延伸を行い、150℃
で乾燥して、単糸繊度1.5デニール、フイラメン
ト数6000fのプレカーサーを作製した。 上述のようにして得られたプレカーサーを電気
炉を使用して空気雰囲気下で240℃にて1.5倍延伸
しながら、45分間連続的に処理することにより耐
炎化糸を得、引続いてかかる耐炎化糸を窒素雰囲
気下で300℃から1200℃まで3分間かかつて徐々
に昇温することにより炭素繊維を得た。得られた
炭素繊維の物性等を測定した。結果は下記第1表
のとおりであつた。
The present invention relates to a method for producing high-strength carbon fibers with excellent uniformity (in this specification, "carbon fibers" include "graphite fibers"). More specifically, as a precursor for high-strength carbon fibers, acrylic fibers produced by drawing coagulated fibers obtained in a wet spinning process in a solvent-containing drawing bath and then performing secondary drawing are used, and this is then sintered. The present invention relates to a method for producing high-strength carbon fibers with excellent uniformity. The production of carbon fibers from acrylic fibers is well known and widely practiced. However,
There is still considerable variation in the physical properties of carbon fibers, and therefore it cannot be said that the original capabilities of carbon fibers are fully demonstrated. Furthermore, among the processes for manufacturing carbon fibers, the current situation is that many threads are cut in the so-called flameproofing process in which the fibers are heat-treated in an oxidizing atmosphere, resulting in a decrease in productivity. In order to solve these problems, several improvements in the strength, elastic modulus, degree of orientation, crystallinity, etc. of precursors for carbon fibers have been proposed.
In addition, cut threads in the flameproofing process are thought to be caused by contact, fusion, etc. during the flameproofing process of the precursor, but in order to prevent adhesion and fusion, it is necessary to optimize the flameproofing conditions. The development of oil agents has been proposed. Despite such proposals, the strength of carbon fibers has only reached a few ten percent of the theoretically achievable estimated values, and the elastic modulus has only reached about 50%. Furthermore, with regard to problems such as cut threads during flame resistance, fully satisfactory results have not been obtained. An object of the present invention is to obtain carbon fibers that have high strength and have small variations in strength and other physical properties. Still another object is to provide a precursor that reduces cutting threads during flameproofing and enables stable operation. The method for producing carbon fibers according to the present invention involves dissolving an acrylonitrile-based polymer in a solvent to create a spinning dope, extruding the spinning dope from a spinneret into a coagulation bath and coagulating it without stretching. After drawing the coagulated thread still containing the solvent in a drawing bath containing a solvent at a concentration higher than the coagulation solution concentration in the coagulation bath,
Alternatively, the method is characterized in that the acrylic fiber created by performing secondary stretching after further washing with water is fired. As mentioned above, after sufficiently coagulating the prepared spinning dope in a coagulation bath,
Stretching in a solvent-containing stretching bath results in a homogeneous structure. That is, in a solvent-containing stretching bath, the polymer aggregates formed by coagulation are in a state where they are easy to move, so that more uniform stretching is possible, a uniform structure can be formed, and the degree of orientation is also uniform. Moreover, by pre-stretching in a state containing a solvent, secondary stretchability is good, it becomes possible to achieve a higher stretching ratio, and the physical properties of the obtained fibers are improved. When the acrylic fiber thus obtained is used as a precursor and fired, a uniform carbon fiber with high strength and other physical properties and small variations in these properties can be obtained. Furthermore, the acrylic fiber precursor obtained by the method of the present invention has small variations in strength and other physical properties, and has few structural defects, so the number of cut threads during flame resistance is extremely reduced, and the operating rate during flame resistance is improved. . In the method of the present invention, by fully coagulating in a coagulation bath and then stretching in a stretching bath containing a solvent, it is possible to achieve more uniform stretching, increase orientation, and reduce the degree of swelling. This will advance the process of refinement. Thus, in order to reduce the swelling degree and promote densification, it is necessary to make the solvent concentration in the solvent-containing drawing bath higher than the coagulation solution concentration in the coagulation bath, and the difference in concentration between the two must be 3% by weight or more. It is desirable that Further, the temperature of the solvent-containing drawing bath is preferably 5° C. or more higher than the temperature of the coagulation bath. This is because the degree of swelling decreases and densification progresses more quickly. The stretching ratio in a solvent-containing stretching bath is 3 to 8.
It is desirable to double the amount. As mentioned above, fibers uniformly drawn in a solvent-containing drawing bath have a uniform degree of orientation and extremely excellent secondary drawability. Therefore, by performing secondary stretching, the total stretching ratio can be increased, and a precursor having an even higher degree of orientation and crystallinity can be obtained. In particular, when a nitric acid aqueous solution is used as a solvent for preparing the spinning stock solution, a coagulating liquid, and a drawing bath liquid, it is difficult to increase the drawing ratio when drawing under the same concentration conditions as the coagulating bath. As in the method of the present invention, the effect of the present invention is very significant when the material is sufficiently coagulated in a coagulation bath and then stretched in an aqueous nitric acid solution having a concentration higher than that of the nitric acid in the coagulation solution. Furthermore, the conditions of the preferable solvent-containing drawing bath are as follows:
The concentration is 3% by weight or more higher than that of the coagulation bath, and the temperature is higher than that of the coagulation bath (particularly 5° C. or more). Stretching under these conditions can sufficiently increase the stretching ratio and enable uniform stretching. At the same time, the secondary stretching properties are improved, the total stretching ratio is increased, the degree of orientation is improved, and the stretching ratio is 1.5 denier or less. This makes it easier to spin fine-grained fibers. In the method of the present invention, a solvent for preparing a spinning stock solution,
The coagulating liquid in the coagulating bath and the solvent in the solvent-containing stretching bath can be selected from those known as solvents for acrylic polymers. Examples of such solvents include organic solvents such as dimethylformamide, dimethylacetamide, and dimethyl sulfoxide, and inorganic solvents such as rhodan salt, zinc chloride, nitric acid, and sulfuric acid. Among these, inorganic acid solvents such as nitric acid, which are coagulated at low temperatures to avoid denaturation during spinning, are highly effective. Further, although the solvent in the solvent-containing drawing bath and the coagulating liquid in the coagulating bath may be different, it is preferable that they be the same substance in consideration of recovery and the like. "Acrylic polymer" used in the method of the present invention
refers to polyacrylonitrile and copolymers of acrylonitrile and other unsaturated monomers containing at least 90% by weight of acrylonitrile. Other unsaturated monomers to be copolymerized include ethylenically unsaturated compounds such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, vinyl acetate, and itaconic acid. Acrylic polymers can be obtained by commonly used polymerization methods. The spinning itself in the method of the present invention may be carried out in accordance with the generally known wet spinning technique.
The fibers after stretching are washed with water and dried, and any washing method may be used as long as the solvent contained therein can be removed, and the drying method is not particularly limited as long as it can remove water. After stretching in a solvent-containing stretching bath or after further washing with water, secondary stretching is performed. The stretching method in the secondary stretching is conventionally known hot water stretching method, steam stretching method,
Any stretching method such as a pressurized saturated steam stretching method, a heated steam stretching method, a dry heat stretching method, a hot pin stretching method, etc. may be used, or a combination of two or more of these stretching methods may be used. The stretching temperature is not particularly limited either, and may be the same as conventionally used conditions as long as the fibers are sufficiently heated and the desired uniform stretching is achieved. The stretching ratio applied in the secondary stretching is preferably 1.3 to 3 times the fiber length after stretching in a solvent-containing stretching bath. The total stretching ratio in the stretching in the solvent-containing stretching bath and the secondary stretching is preferably 5 to 15 times. In producing carbon fibers from the acrylic fibers thus obtained, any conventional firing method can be employed. Generally, it consists of a flameproofing process in which cyclization is achieved by heating to 150 to 400°C in an oxidizing atmosphere, and then a carbonization process in which carbonization or graphitization is achieved by firing at a high temperature in a non-oxidizing atmosphere or under reduced pressure. The following firing method is suitable. Air is suitable as the atmosphere for the flameproofing process, and nitrogen, helium, argon, etc. are suitable as the atmosphere for carbonization or graphitization. The carbon fiber obtained by the method of the present invention has excellent strength and uniform quality, and
It has the best performance as a composite forming material. Furthermore, there are very few cut threads during the flameproofing process,
Carbon fibers can be manufactured with high productivity. Typical examples of the method of the present invention are shown below. In the examples, percentages are expressed on a weight basis unless otherwise specified. Example 1 An acrylonitrile-based copolymer consisting of 97% acrylonitrile and 3% acrylic acid was dissolved in 70% nitric acid to prepare a spinning stock solution with a polymer concentration of 16.3%. It was extruded into a nitric acid aqueous solution at 10°C to sufficiently solidify it, and stretched at a stretching ratio of 5 times by varying the conditions of the nitric acid-containing stretching bath (the conditions are shown in Table 1 below). moreover,
Secondary stretching was performed in hot water or saturated steam at a stretching ratio of 3 times. After that, wash with normal water and heat to 150℃.
A precursor having a single yarn fineness of 1.5 denier and a filament number of 6000 f was prepared. For comparison, the same spinning stock solution as above was used at 35.3%.
After being extruded into a nitric acid aqueous solution at -3°C and sufficiently solidified, it was washed with water without being stretched in a solvent-containing stretching bath, and then stretched 5 times in hot water at 150°C.
A precursor having a single yarn fineness of 1.5 denier and a filament number of 6000 f was prepared. The precursor obtained as described above was continuously treated for 45 minutes while being stretched 1.5 times at 240°C in an air atmosphere using an electric furnace to obtain a flame-resistant yarn. Carbon fibers were obtained by gradually raising the temperature of the synthetic yarn from 300°C to 1200°C for 3 minutes under a nitrogen atmosphere. The physical properties etc. of the obtained carbon fiber were measured. The results were as shown in Table 1 below.

【表】【table】

【表】 第1表から、本発明方法によれば高強度で強度
のバラツキの小さな炭素繊維が得られることがわ
かる。また、接着も減少し切糸が極端に少ない。 実施例 2 実施例1と同様に溶剤含有延伸浴中で延伸して
得た延伸糸を常法に従つて水洗して溶剤を除去し
た後、150℃のシリンダーを用いて乾燥し、次い
で200℃の乾燥板を用いて延伸倍率3倍の二次延
伸を行い、単糸繊度1.5デニール、6000フイラメ
ントのプレカーサーを作製した。 このようにして得られたプレカーサーを実施例
1と同一条件で処理して得られた炭素繊維の強度
及びそのバラツキを比較した。また、耐炎化時の
切糸及び接着の有無も判定した。結果は下記第2
表のとおりであつた。
Table 1 shows that according to the method of the present invention, carbon fibers with high strength and small variations in strength can be obtained. In addition, adhesion is reduced and the number of cut threads is extremely small. Example 2 A drawn yarn obtained by drawing in a solvent-containing drawing bath in the same manner as in Example 1 was washed with water in a conventional manner to remove the solvent, and then dried using a cylinder at 150°C, and then heated at 200°C. A dry plate was used to perform secondary stretching at a draw ratio of 3 times to produce a precursor having a single filament fineness of 1.5 denier and 6000 filaments. The precursor thus obtained was treated under the same conditions as in Example 1, and the strength and variation thereof of carbon fibers obtained were compared. In addition, the presence or absence of cut threads and adhesion during flame resistance was also determined. The result is below
It was as shown in the table.

【表】 第2表の結果からも、本発明の方法によれば均
一性に優れた高強力炭素繊維を得ることができる
ことがわかる。 実施例 3 アクリロニトリル98%、メタアクリル酸メチル
1.0%、メタアクリル酸1.0%からなるアクリロニ
トリル系共重合体を55%のロダンソーダ水溶液に
溶解して重合体濃度16%の紡糸原液を調製し、紡
糸口金(孔径0.08mmφ、孔数6000)を介して−3
℃、15.5%のロダンソーダ水溶液中に押出して充
分に凝固させた後、ロダンソーダを含有する延伸
浴の条件をいろいろ変化させ(条件は後記第3表
に示す)、延伸倍率5.5倍で延伸を行つた。その
後、充分に水洗し、次いで120℃の加熱水蒸気中
で延伸倍率3倍の二次延伸を行なつた。150℃で
乾燥し、単糸繊度1.5デニール、フイラメント数
6000fのプレカーサーを作製した。 上述のようにして得られたプレカーサーを実施
例1と同様な方法で耐炎化処理及び炭素化処理を
して炭素繊維を得た。該繊維の強度、弾性率及び
それらのバラツキについて比較検討した。結果は
下記第3表のとおりであつた。
[Table] The results in Table 2 also show that high strength carbon fibers with excellent uniformity can be obtained by the method of the present invention. Example 3 Acrylonitrile 98%, methyl methacrylate
A spinning stock solution with a polymer concentration of 16% was prepared by dissolving an acrylonitrile copolymer consisting of 1.0% methacrylic acid and 1.0% methacrylic acid in a 55% rhodan soda aqueous solution. Te-3
After being extruded into a 15.5% aqueous Rodan soda solution at 15.3°C and sufficiently coagulated, the conditions of the drawing bath containing Rodan soda were varied (conditions are shown in Table 3 below), and stretching was carried out at a draw ratio of 5.5 times. . Thereafter, the film was thoroughly washed with water and then subjected to secondary stretching at a stretching ratio of 3 times in heated steam at 120°C. Dry at 150℃, single yarn fineness 1.5 denier, number of filaments
A 6000f precursor was created. The precursor obtained as described above was subjected to flameproofing treatment and carbonization treatment in the same manner as in Example 1 to obtain carbon fibers. The strength, elastic modulus, and variation thereof of the fibers were compared and studied. The results were as shown in Table 3 below.

【表】 耐炎化工程での切糸は、試料No.19〜22は非常
に良好であつたのに対し、試料No.16は切糸が多
発して操業性は極端に悪かつた。 実施例 4 実施例1で調製した凝固糸を用いて、塩化亜鉛
水溶液(濃度42%、温度15℃)中で延伸倍率6倍
の延伸を行なつた。水洗後、100℃熱水中で延伸
倍率2.5倍の二次延伸を行い、さらに乾燥を行
い、単糸繊度1.2デニール、6000フイラメントの
プレカーサーを作製した。この繊維を実施例1と
同様な方法で耐炎化処理、炭素化処理をして、炭
素繊維を得た。この炭素繊維の物性を測定した。
引張強度435Kg/mm2で、バラツキσは2.2Kg/mm2
あり、非常に高い強度を示すとともにバラツキも
小さいものであつた。弾性率も同様で、
25.5Ton/mm2でσは0.4Ton/mm2という優れたもの
であつた。また、耐炎化工程での切糸も非常に少
く、良好な操業状態であつた。
[Table] Samples Nos. 19 to 22 had very good cut threads in the flame-retardant process, whereas sample No. 16 had many cut threads and had extremely poor operability. Example 4 Using the coagulated thread prepared in Example 1, stretching was carried out at a stretching ratio of 6 times in an aqueous zinc chloride solution (concentration 42%, temperature 15°C). After washing with water, secondary stretching was performed in hot water at 100° C. at a stretching ratio of 2.5 times, followed by drying to produce a precursor having a single yarn fineness of 1.2 denier and 6000 filaments. This fiber was subjected to flameproofing treatment and carbonization treatment in the same manner as in Example 1 to obtain carbon fiber. The physical properties of this carbon fiber were measured.
The tensile strength was 435 Kg/mm 2 and the variation σ was 2.2 Kg/mm 2 , indicating very high strength and small variation. The elastic modulus is also the same,
At 25.5Ton/mm 2 , σ was excellent at 0.4Ton/mm 2 . In addition, there were very few cut threads during the flame-retardant process, and the plant was in good operating condition.

Claims (1)

【特許請求の範囲】 1 アクリル繊維より炭素繊維を製造するに際
し、アクリロニトリルを90重量%以上含有するア
クリル系重合体を溶剤に溶解して紡糸原液を作成
し、該紡糸原液を紡糸口金から凝固浴中に押し出
して延伸せずに凝固せしめた後、得られた溶剤を
含有したままの凝固糸を凝固浴中の凝固液濃度よ
り高い濃度で溶剤を含む延伸浴中で延伸した後、
またはさらに水洗した後、二次延伸を施して作成
したアクリル繊維を焼成することを特徴とする均
一性に優れた高強度炭素繊維の製造法。 2 凝固浴中の凝固液濃度と溶剤含有延伸浴中の
溶剤濃度との間に3重量%以上の差がある特許請
求の範囲第1項に記載の炭素繊維の製造法。 3 凝固浴中の凝固液温度が溶剤含有延伸浴中の
溶剤温度より5℃以上低い温度である特許請求の
範囲第1項または第2項に記載の炭素繊維の製造
法。 4 紡糸原液作成用溶剤、凝固液および溶剤含有
延伸浴中の溶剤としてそれぞれ硝酸水溶液を用い
る特許請求の範囲第1項から第3項までのいずれ
かに記載の炭素繊維の製造法。
[Claims] 1. When producing carbon fibers from acrylic fibers, an acrylic polymer containing 90% by weight or more of acrylonitrile is dissolved in a solvent to create a spinning stock solution, and the spinning stock solution is passed through a spinneret into a coagulation bath. After coagulating without stretching, the resulting coagulated thread containing the solvent is stretched in a drawing bath containing a solvent at a concentration higher than the coagulation solution concentration in the coagulation bath.
Alternatively, a method for producing high-strength carbon fibers with excellent uniformity, which is characterized by firing acrylic fibers created by subjecting them to secondary stretching after further washing with water. 2. The method for producing carbon fibers according to claim 1, wherein there is a difference of 3% by weight or more between the coagulation solution concentration in the coagulation bath and the solvent concentration in the solvent-containing drawing bath. 3. The method for producing carbon fibers according to claim 1 or 2, wherein the temperature of the coagulating liquid in the coagulating bath is 5° C. or more lower than the temperature of the solvent in the solvent-containing drawing bath. 4. The method for producing carbon fibers according to any one of claims 1 to 3, wherein an aqueous nitric acid solution is used as a solvent for preparing a spinning dope, a coagulating liquid, and a solvent in a solvent-containing drawing bath.
JP5115982A 1982-03-31 1982-03-31 Preparation of high-strength carbon fiber having improved uniformity Granted JPS58169518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5115982A JPS58169518A (en) 1982-03-31 1982-03-31 Preparation of high-strength carbon fiber having improved uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5115982A JPS58169518A (en) 1982-03-31 1982-03-31 Preparation of high-strength carbon fiber having improved uniformity

Publications (2)

Publication Number Publication Date
JPS58169518A JPS58169518A (en) 1983-10-06
JPS6156328B2 true JPS6156328B2 (en) 1986-12-02

Family

ID=12879042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5115982A Granted JPS58169518A (en) 1982-03-31 1982-03-31 Preparation of high-strength carbon fiber having improved uniformity

Country Status (1)

Country Link
JP (1) JPS58169518A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473126B1 (en) 2000-06-23 2005-03-10 미츠비시 레이온 가부시키가이샤 Carbon Fiber Precursor Fiber Bundle
JP5012089B2 (en) * 2007-03-02 2012-08-29 東レ株式会社 Carbon fiber precursor fiber bundle and method for producing the same

Also Published As

Publication number Publication date
JPS58169518A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US3917776A (en) Process for producing carbon fiber
US4113847A (en) Process for producing carbon fibers
EP0159365B1 (en) Carbon fibers with high strength and high modulus, and process for their production
JPS6328132B2 (en)
EP0165465A2 (en) Process for producing carbon fibers
JPS6211089B2 (en)
US4902452A (en) Process for producing an acrylic fiber having high fiber characteristics
KR20160142538A (en) Method of manufacturing carbon fiber with thick denier
JPS6156328B2 (en)
US4154807A (en) Process for the production of carbon fibers
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JPH055224A (en) Production of carbon fiber having excellent uniformity
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JPS6156326B2 (en)
JPS6156327B2 (en)
JPS6317929B2 (en)
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JPS63275718A (en) Production of high-tenacity carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
US3657409A (en) Process for the production of acrylic filaments
JPH026847B2 (en)
JP4190787B2 (en) Method for producing carbonaceous material
JPS5982420A (en) Production of carbon fiber
JPH028049B2 (en)