JPS6328132B2 - - Google Patents

Info

Publication number
JPS6328132B2
JPS6328132B2 JP5421778A JP5421778A JPS6328132B2 JP S6328132 B2 JPS6328132 B2 JP S6328132B2 JP 5421778 A JP5421778 A JP 5421778A JP 5421778 A JP5421778 A JP 5421778A JP S6328132 B2 JPS6328132 B2 JP S6328132B2
Authority
JP
Japan
Prior art keywords
flame
fiber
carbonization
carbon fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5421778A
Other languages
Japanese (ja)
Other versions
JPS54147222A (en
Inventor
Takashi Kaneko
Yoshikatsu Imai
Akira Takaku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5421778A priority Critical patent/JPS54147222A/en
Publication of JPS54147222A publication Critical patent/JPS54147222A/en
Publication of JPS6328132B2 publication Critical patent/JPS6328132B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高性能炭素繊維若しくは黒鉛繊維の製
造法に関するものであり、とくにアクリロニトリ
ル系合成繊維プレカーサーを用い高強度、高弾性
の炭素繊維若しくは黒鉛繊維を短時間で高収率下
に製造する方法にある。 アクリル系合成繊維プレカーサーを用いて炭素
繊維プレカーサーを製造する方法としては、ま
ず、プレカーサーを200〜250℃の酸化性雰囲気下
で0.01〜0.15g/dなる範囲の張力をかけて、繊
維を伸長せしめながら予備酸化処理した後、250
〜1000℃以上の温度に温度勾配を有する非酸化性
雰囲気中で炭素化処理する方法が、特公昭44−
21175号公報明細書や特公昭45−12540号公報明細
書中に記載されている如く知られている。これら
の方法によつて作られた炭素繊維の性能のうち、
その弾性率は、ほぼ繊維の熱処理温度によつて一
義的に定まるものと考えられており、所望の弾性
率を有する炭素繊維を製造することは比較的容易
である。ところが、炭素繊維の強度と炭素繊維の
製造方法との関係については何等明確になされて
おらず、ただ単に炭素繊維中に形成された黒鉛結
晶の大きさ、その配向度並びに炭素繊維中に存在
する微細なクラツクと強度との間に何等かの関係
がありそうだと推定されているにすぎない。 従来、開発されてきた炭素繊維の製法は、上述
の如くして製作した予備酸化処理した繊維を250
〜1000℃以上の温度で炭素化ないし黒鉛化処理す
ることによつて炭素繊維を得ているのであるが、
従来法に於てはこの炭素化ないし黒鉛化工程に於
て繊維長は原料繊維長に対し数%乃至20%の収縮
をするものと言われており、この収縮を低減する
ために糸に緊張を与えながら焼成する方法の検討
が加えているにもかかわらず、耐炎繊維の炭素化
工程において繊維に伸張を与えることによつて高
強度の炭素繊維を得ようとする際には糸切れが生
ずるようになるばかりでなく、高強度の炭素繊維
を得ることはできない。 本発明者等は上述した如き現状に鑑み高強度の
炭素繊維を得ることを目的として検討中のとこ
ろ、従来開発されてきた炭素繊維のX−線配向度
が80%程度と低いのに対し、X−線配向度を82%
程度に高めたものはその強度を著しく向上し得た
ものとすることができることを見出し、このよう
な高強度の炭素繊維を作るには耐炎化繊維を特定
条件下で伸長せしめながら前炭素化処理し、引き
続いて完全炭素化を行わしめることによつて本発
明の目的とする炭素繊維が得られることを見出し
本発明を完成した。 本発明の要旨とするところは繊維密度1.30〜
1.42g/cm3なる耐炎化処理糸を不活性雰囲気中
300〜800℃の温度領域に於て25%までの範囲で伸
長しながら炭素化処理し、引き続いて800℃以上
の温度で熱処理しながら炭素化処理を終了せし
め、引張強度350Kg/mm2以上、伸度1.5%以上の炭
素繊維とすることを特徴とする高性能炭素繊維の
製造方法にある。 本発明を実施するに際して用いる耐炎化処理糸
とは繊維密度1.30〜1.42g/cm3であり、炭素含量
62〜68重量%程度のものならば、いかなる耐炎化
処理糸をも用い得るが、特に好ましいものはアク
リロニトリルの重合量が85重量%以上であるポリ
アクリロニトリル又はアクリロニトリル系重合体
より作られた繊維を、200〜250℃の酸化性雰囲気
下で収縮せしめながら或いは定長下に、更には延
伸せしめながら酸化処理することによつて作成し
たものである。耐炎化処理糸の繊維密度は、乾燥
除湿した耐炎化処理糸の短片をキシロール/四塩
化炭素系密度勾配管にて測定したものである。こ
の測定法は予め試験繊維片をその繊維密度にほぼ
等しい上記混合溶媒中に浸漬し脱泡処理したもの
を密度勾配管中に入れ、測定温度30℃、浸漬後測
定時間までの時間を3時間として測定したもので
ある。 本発明の実施例に際して用いる耐炎化処理糸の
繊維密度が1.30g/cm3未満である場合には、不活
性雰囲気下での300〜800℃まで前炭素化工程中
に、耐炎化処理糸が激しい軟化を起し、フロー現
象が認められ、炭素化処理を効率よく十分に行な
うことが難しく、また、激しい熱分解により繊維
の中空化などが起り高強度の炭素繊維を得ること
ができない。一方耐炎化処理糸の密度が1.42g/
cm3よりも大きなものは耐炎化処理糸は、その不融
構造が極めて高く800℃までの不活性雰囲気下で
の前炭素化処理時に25%なる範囲まで伸長を加え
ることができず、逆に収縮現象を起す場合もあ
り、無理にこの前炭素化工程で耐炎化処理糸を伸
長する際には、糸切れ、破断を生ずるため、得ら
れる炭素繊維の結晶配向度を高めることができ
ず、高強度の炭素繊維を作ることはできない。そ
こで、本発明を実施するに際して用いる耐炎化処
理糸の繊維密度は1.30〜1.42g/cm3なる範囲であ
ることが必要である。 耐炎化処理糸を作るに際して用いるアクリロニ
トリル系重合体はポリアクリロニトリル又は85重
量%以上のアクリロニトリルと他の共重合可能な
単量体、例えばアクリル酸、メタクリル酸、クロ
トン酸、イタコン酸等の不飽和カルボン酸類、こ
れら不飽和カルボン酸のメチル、エチル、ブチ
ル、プロピル、ヘキシル、2−エチルヘキシル、
ステアリルエステル類、アクリル酸アミド、メタ
クリル酸アミド及びこれら酸アミド類のメチロー
ル化物類、N−アルコキシメチル化物類、ジアセ
トンアクリルアミド、酢酸ビニル、プロピオン酸
ビニル、塩化ビニル、臭化ビニル、アリルスルホ
ン酸、メタリルスルホン酸、ビニルベンゼンスル
ホン酸、ナトリウム−p−スルホフエニルメタリ
ルエーテルなどを適宜共重合せしめた共重合体な
どである。 本発明は上述した特性を有する耐炎化処理糸を
300〜800℃、とくに400〜600℃の範囲の温度の不
活性雰囲気下で25%まで、好ましくは20%までの
範囲の伸長を加えながら炭素化処理することが必
要である。本発明の耐炎化処理糸を不活性ガス
(窒素ガス等)雰囲気下で低荷重下に熱処理した
場合の繊維長の変化を約1000℃までの温度の範囲
で測定した結果を第1図に示した。第1図から明
らかな如く本発明の実施に際しては耐炎化繊維を
不活性ガス雰囲気下で熱処理しながら炭素化処理
すると300〜800℃、とくに600℃までの間で繊維
長は伸長するのである。本発明はこの温度領域に
於て25%まで繊維長を伸長することができること
を見出したことに最も大きな特徴があり、かくの
如き処理を施すことによつて得られる炭素繊維の
結晶配向度を従来法に比べて高めることに成功
し、その結果高強度の炭素繊維を作ることに成功
したものである。本発明の800℃までの炭素化処
理工程に於ける繊維の伸長とは原料として用いる
耐炎化処理糸に対し収縮を起させないことを意味
し、好ましくは0〜20%なる範囲の伸長を意味す
るものである。この工程に於ける繊維の伸長を25
%を越えて大きくする場合には繊維構造破壊を招
くようになり、得られる炭素繊維の強度低下を招
くようになり、一方、この工程に於て収縮が起る
ような処理を加えると、得られる炭素繊維の結晶
配向度を実質的に高めることができず、従つて最
終的に得られる炭素繊維の強度を高めることがで
きない。また、この処理工程に於ける処理時間は
好ましくは0.5〜40分程度とするのがよい。 上述の如くして得た伸長、炭素化処理した繊維
は、本発明に於ては800℃以上の温度の不活性雰
囲気中で、耐炎化処理糸の原長に対し負の長さと
ならないように炭素化を完了せしめることが必要
である。この800℃以上の不活性雰囲気中での炭
素化処理を施さないものは高弾性、高強度の炭素
繊維とすることはできない。また、この工程で炭
素繊維は第1図に示す如く収縮挙動を示すのであ
るが、出発原料として用いた耐炎化処理糸の原長
に対し、負となるような収縮が起るような条件で
炭素化を完了する際には、得られる炭素繊維の結
晶配向度を高めることができないため、高強度の
炭素繊維とすることはできないので、本発明にお
いてはこの工程に於ける炭素繊維の収縮は出発原
料として用いた耐炎性繊維の原長に対し負となる
ようにしてはならない。好ましくは前炭素化処理
終了後の繊維長に対し、後炭素化処理後の繊維の
収縮率は10%以下とするのがよい。 本発明の方法の実施に際し、800℃までの温度
範囲での不活性雰囲気下での前炭素化処理工程
と、800℃以上の不活性雰囲気下での後炭素化処
理工程とは連続的に温度勾配を有する連続炉や多
段昇温工程を取る多段炉を用いる方法、或いは前
炭素化処理工程で一度巻取つた後、後炭素化処理
炉で焼成する方法など種々の方法を取り得る。 本発明に於ては出発原料として用いる耐炎化処
理糸として繊維密度が1.30〜1.42g/cm3のものを
用いること、前炭素化処理工程に於て0〜25%な
る範囲の伸長を施すこと、並びに後炭素化処理工
程を制限収縮下に行なうことによつて高強度の炭
素繊維を得ることに成功したものであるが、もう
一つの本発明の特徴は高強度、高弾性の炭素繊維
を短時間に製造しうる点である。この目的を達成
するためには、前炭素化処理時間を0.5〜40分程
度となし、後炭素化処理時間を前炭素化処理時間
の1/1〜1/15程度となすことによつて十分に性能
の優れた炭素繊維を得ることができる。 本発明は従来の炭素繊維の製法に比べ、出発原
料として用いる耐炎化処理糸を特定化したこと、
炭素化工程を基本的に2分化し、その前炭素化工
程に於て25%、好ましくは20%までの伸長を加
え、後炭素化工程に於ては制限収縮下に炭素化を
終了せしめることによつて高強度、高弾性の炭素
繊維を短時間に製造し得た点に大きな特徴を有す
るものである。 以下実施例により本発明を更に詳細に説明する
が、強度、弾性率、X−線配向度、収率の測定は
次に示す方法に従つて求めたものである。 強度、弾性率および伸度 強度と弾性率はエポキシ樹脂(シエル化学社
製:エピコート828)を含浸硬化処理せしめた炭
素繊維束を試長200mm、変形速度5mm/minなる
条件で引張り破断試験法にて求めた。 伸度は引張強度(Kg/mm2)/弾性率(ton/mm2
)×100 から求めた。 X−線配向度 一方向に引き揃えた炭素繊維のX−線回折写真
において黒鉛結晶の(002)反射に基づく赤道線
上に極大を有する回折パターンに注目してデイフ
ラクトメーター(理学電機製:X−線源Cu、
Kα)によつて方位角方向に測定し、得られた方
位角方向の強度分布曲線の半価巾H(degree)を
求め、次式によつて微結晶のX−線配向度π
(002)を求めた。 π(002)=(180−H)/180×100(%) 収 率 耐炎化処理糸および耐炎化処理糸を焼成して得
た炭素繊維の重量繊度を絶乾法で求めた値をそれ
ぞれDpおよびDcとする。一方、炭素化処理にお
ける伸長操作による耐炎化処理糸長さlpから炭素
繊維長さlcに至る変化、糸の移動速度を測定し次
式によつて算出した。 収縮=Dc/Dp×lc/lp×100(%) 実施例 1 アクリロニトリル/メチルアクリレート/メタ
クリル酸=95/4/1なる共重合体を湿式法によ
り繊維化してフイラメント数3000本、単糸デニー
ル1.5d、引張強度6.2g/d、破断伸度15.4%のマ
ルチフイラメントを得た。この繊維束を230〜250
℃の温度勾配をもつた炉中を滞在時間が40分で伸
長率が表1に示したようになるよう連続処理を行
なつた。この耐炎化処理糸の密度はいずれもほぼ
1.36g/cm3であつた。ついで表1に示したような
前及び後炭素化条件を用い、窒素ガス流下の炭素
化処理を連続的に行なつて、得られた炭素繊維の
性能を評価した結果を表1に示した。
The present invention relates to a method for producing high-performance carbon fibers or graphite fibers, and in particular to a method for producing high-strength, high-elastic carbon fibers or graphite fibers in a short time and with high yield using an acrylonitrile-based synthetic fiber precursor. be. As a method for producing a carbon fiber precursor using an acrylic synthetic fiber precursor, first, the fiber is elongated by applying a tension of 0.01 to 0.15 g/d to the precursor in an oxidizing atmosphere at 200 to 250°C. After pre-oxidation treatment, 250
A method of carbonization treatment in a non-oxidizing atmosphere with a temperature gradient of ~1000℃ or more was developed in the Japanese Patent Publication No. 44-
It is known as described in the specification of Japanese Patent Publication No. 21175 and Japanese Patent Publication No. 12540/1983. Among the performance of carbon fiber made by these methods,
The modulus of elasticity is considered to be uniquely determined by the heat treatment temperature of the fiber, and it is relatively easy to produce carbon fibers having a desired modulus of elasticity. However, the relationship between the strength of carbon fiber and the manufacturing method of carbon fiber has not been clarified at all, and it is simply the size of graphite crystals formed in carbon fiber, their degree of orientation, and the amount of carbon fiber present in carbon fiber. It is only assumed that there is some kind of relationship between minute cracks and strength. Conventionally, the carbon fiber manufacturing method that has been developed is to process the pre-oxidized fibers produced as described above at 250%
Carbon fibers are obtained by carbonization or graphitization treatment at temperatures of ~1000℃ or higher.
In the conventional method, it is said that the fiber length shrinks by several percent to 20% compared to the raw material fiber length during this carbonization or graphitization process, and in order to reduce this shrinkage, tension is applied to the yarn. Despite the study of methods of firing while imparting a Not only that, but also high-strength carbon fiber cannot be obtained. In view of the above-mentioned current situation, the inventors of the present invention are currently investigating the purpose of obtaining high-strength carbon fibers. 82% X-ray orientation
They found that it is possible to significantly improve the strength of carbon fibers with a certain degree of strength, and in order to make such high-strength carbon fibers, flame-resistant fibers are stretched under specific conditions and then subjected to pre-carbonization treatment. However, the present invention was completed based on the discovery that the target carbon fiber of the present invention can be obtained by subsequent complete carbonization. The gist of the present invention is that the fiber density is 1.30~
1.42g/ cm3 flame-retardant treated yarn in an inert atmosphere
Carbonization treatment is performed while elongating up to 25% in a temperature range of 300 to 800℃, followed by finishing the carbonization treatment while heat treatment at a temperature of 800℃ or higher, and the tensile strength is 350Kg/mm 2 or higher. A method for producing high-performance carbon fiber, characterized in that the carbon fiber has an elongation of 1.5% or more. The flame-resistant treated yarn used in carrying out the present invention has a fiber density of 1.30 to 1.42 g/cm 3 and a carbon content of
Any flame-retardant treated yarn can be used as long as it has a content of about 62 to 68% by weight, but it is particularly preferable to use fibers made from polyacrylonitrile or acrylonitrile-based polymers in which the amount of polymerized acrylonitrile is 85% by weight or more. , by oxidation treatment under an oxidizing atmosphere at 200 to 250° C. while shrinking or stretching to a constant length. The fiber density of the flame-resistant treated yarn is measured by measuring a short piece of the flame-resistant treated yarn that has been dried and dehumidified using a xylol/carbon tetrachloride density gradient tube. In this measurement method, a test fiber piece is immersed in advance in the above-mentioned mixed solvent whose density is approximately equal to the fiber density, and the sample is degassed and placed in a density gradient tube.The measurement temperature is 30℃, and the measurement time after immersion is 3 hours. It was measured as follows. If the fiber density of the flame-retardant yarn used in the examples of the present invention is less than 1.30 g/cm 3 , the flame-retardant yarn may be Severe softening occurs and a flow phenomenon is observed, making it difficult to carry out the carbonization process efficiently and sufficiently.Furthermore, the fibers become hollow due to severe thermal decomposition, making it impossible to obtain high-strength carbon fibers. On the other hand, the density of flame-resistant treated yarn is 1.42g/
Flame-retardant yarns larger than cm 3 have an extremely infusible structure and cannot be elongated to a range of 25% during pre-carbonization treatment in an inert atmosphere at temperatures up to 800°C; Shrinkage may occur, and if the flame-retardant treated yarn is forcibly stretched in the pre-carbonization step, it may break or break, making it impossible to increase the degree of crystal orientation of the resulting carbon fiber. It is not possible to make high-strength carbon fiber. Therefore, it is necessary that the fiber density of the flame-retardant yarn used in carrying out the present invention is in the range of 1.30 to 1.42 g/cm 3 . The acrylonitrile polymer used to make the flame-resistant yarn is polyacrylonitrile or 85% by weight or more of acrylonitrile and other copolymerizable monomers, such as unsaturated carboxylic acid such as acrylic acid, methacrylic acid, crotonic acid, and itaconic acid. Acids, methyl, ethyl, butyl, propyl, hexyl, 2-ethylhexyl of these unsaturated carboxylic acids,
Stearyl esters, acrylic acid amide, methacrylic acid amide and methylolated products of these acid amides, N-alkoxymethylated products, diacetone acrylamide, vinyl acetate, vinyl propionate, vinyl chloride, vinyl bromide, allyl sulfonic acid, These include copolymers obtained by appropriately copolymerizing methallyl sulfonic acid, vinylbenzenesulfonic acid, sodium-p-sulfophenyl methallyl ether, and the like. The present invention uses flame-resistant treated yarn having the above-mentioned characteristics.
It is necessary to carry out the carbonization treatment under an inert atmosphere at a temperature in the range from 300 to 800°C, in particular from 400 to 600°C, with an elongation in the range of up to 25%, preferably up to 20%. Figure 1 shows the results of measuring the change in fiber length in a temperature range up to about 1000°C when the flame-resistant treated yarn of the present invention was heat-treated under a low load in an inert gas (nitrogen gas, etc.) atmosphere. Ta. As is clear from FIG. 1, when carrying out the present invention, flame-resistant fibers are carbonized while being heat-treated in an inert gas atmosphere, and the fiber length is elongated between 300 and 800°C, particularly up to 600°C. The most significant feature of the present invention is the discovery that the fiber length can be extended by up to 25% in this temperature range, and the degree of crystal orientation of carbon fiber obtained by such treatment can be improved. This method succeeded in increasing the carbon fiber strength compared to conventional methods, and as a result succeeded in producing high-strength carbon fiber. The elongation of fibers in the carbonization process up to 800°C in the present invention means that the flame-retardant yarn used as a raw material does not shrink, preferably elongation in the range of 0 to 20%. It is something. The elongation of the fiber in this process is 25
If the increase exceeds %, the fiber structure will be destroyed and the strength of the obtained carbon fiber will decrease.On the other hand, if a treatment that causes shrinkage is added in this process, the gain will be reduced. The degree of crystal orientation of the carbon fibers obtained cannot be substantially increased, and therefore the strength of the carbon fibers ultimately obtained cannot be increased. Further, the treatment time in this treatment step is preferably about 0.5 to 40 minutes. In the present invention, the elongated and carbonized fibers obtained as described above are treated in an inert atmosphere at a temperature of 800°C or higher so that the length does not become negative with respect to the original length of the flame-retardant yarn. It is necessary to complete carbonization. Unless this carbonization treatment is performed in an inert atmosphere at 800° C. or higher, carbon fibers with high elasticity and high strength cannot be obtained. In addition, during this process, carbon fibers exhibit shrinkage behavior as shown in Figure 1, but under conditions where the shrinkage is negative with respect to the original length of the flame-retardant yarn used as the starting material. When carbonization is completed, it is not possible to increase the degree of crystal orientation of the obtained carbon fibers, so it is not possible to obtain high-strength carbon fibers. Therefore, in the present invention, the shrinkage of the carbon fibers in this process is The length must not be negative with respect to the original length of the flame-resistant fiber used as a starting material. Preferably, the shrinkage rate of the fiber after the post-carbonization process is preferably 10% or less with respect to the fiber length after the pre-carbonization process. When carrying out the method of the present invention, a pre-carbonization step under an inert atmosphere at a temperature range of up to 800°C and a post-carbonization step under an inert atmosphere at a temperature range of 800°C or higher are performed continuously at a temperature of up to 800°C. Various methods can be used, such as a method using a continuous furnace with a gradient, a multistage furnace with a multistage temperature raising process, or a method in which the material is wound once in a pre-carbonization process and then fired in a post-carbonization process furnace. In the present invention, the flame-retardant yarn used as the starting material has a fiber density of 1.30 to 1.42 g/cm 3 and is elongated in the range of 0 to 25% in the pre-carbonization process. , and by performing the post-carbonization process under limited shrinkage, we succeeded in obtaining high-strength carbon fibers. Another feature of the present invention is that high-strength, high-elasticity carbon fibers can be obtained by The advantage is that it can be manufactured in a short time. In order to achieve this purpose, it is sufficient to set the pre-carbonization treatment time to about 0.5 to 40 minutes and the post-carbonization treatment time to about 1/1 to 1/15 of the pre-carbonization treatment time. It is possible to obtain carbon fiber with excellent performance. Compared to conventional carbon fiber manufacturing methods, the present invention specifies the flame-retardant yarn used as the starting material;
Basically, the carbonization process is divided into two parts, and in the pre-carbonization process, elongation is applied by 25%, preferably up to 20%, and in the post-carbonization process, carbonization is completed under limited contraction. The major feature of this method is that high-strength, high-elasticity carbon fibers can be produced in a short period of time. The present invention will be described in more detail with reference to Examples below. Strength, elastic modulus, X-ray orientation, and yield were determined according to the following methods. Strength, elastic modulus, and elongation Strength and elastic modulus were measured using a tensile rupture test using carbon fiber bundles impregnated with epoxy resin (Epicote 828, manufactured by Ciel Chemical Co., Ltd.) and subjected to a tensile rupture test under conditions of a sample length of 200 mm and a deformation rate of 5 mm/min. I asked. Elongation is tensile strength (Kg/mm 2 )/elastic modulus (ton/mm 2
)×100. Degree of X-ray orientation In the X-ray diffraction photograph of carbon fibers aligned in one direction, we focused on the diffraction pattern having a maximum on the equator line based on the (002) reflection of graphite crystals using a diffractometer (manufactured by Rigaku Denki: - source Cu,
The half width H (degree) of the obtained intensity distribution curve in the azimuthal direction is determined by the following formula, and the degree of X-ray orientation π of the microcrystal is
(002) was found. π (002) = (180 - H) / 180 × 100 (%) Yield The weight fineness of the flame-retardant treated yarn and the carbon fiber obtained by firing the flame-retardant treated yarn is determined by the bone-dry method and is Dp. and Dc. On the other hand, the change from the flame-retardant yarn length lp to the carbon fiber length lc due to the elongation operation in the carbonization treatment and the yarn movement speed were measured and calculated using the following formula. Shrinkage = Dc/Dp x lc/lp x 100 (%) Example 1 A copolymer of acrylonitrile/methyl acrylate/methacrylic acid = 95/4/1 was made into fibers by a wet process, with a number of filaments of 3000 and a single yarn denier of 1.5. A multifilament with a tensile strength of 6.2 g/d and a breaking elongation of 15.4% was obtained. This fiber bundle is 230~250
Continuous treatment was carried out in a furnace with a temperature gradient of 0.degree. C. for a residence time of 40 minutes so that the elongation rate was as shown in Table 1. The density of this flame-retardant yarn is approximately
It was 1.36 g/cm 3 . Next, using the pre-carbonization and post-carbonization conditions shown in Table 1, carbonization treatment under nitrogen gas flow was continuously performed, and the performance of the obtained carbon fibers was evaluated. Table 1 shows the results.

【表】 表1中のNo.1〜10は本発明の方法実施の条件
及び本発明の方法によつて得られた炭素繊維の性
能及び収率を示したものであり、No.11〜13は従
来法による炭素繊維の製法及び得られた炭素繊維
の性能を示したものである。 本発明の方法によつて得た炭素繊維は比較例の
ものに比べそのX−線配向度が高くなつており、
その結果、炭素繊維の強度が著しく向上せしめら
れていることが分る。また収率も従来法のものに
比べて向上しており、その炭素化処理時間も短縮
し得ているにもかかわらず、十分に優れた性能を
有する炭素繊維が得られている。 実施例 2 実施例1で用いたアクリロニトリル系合成繊維
マルチフイラメントを230〜250℃の温度勾配を有
する耐炎化処理炉中を滞在時間を変えることによ
つて表2に示した繊維密度を有する4種の耐炎化
処理糸を用意した。 この4種の耐炎化処理糸を表2に示した前炭素
化条件及び後炭素化条件を用いて炭素化し、得ら
れた炭素繊維の性能を表2に示した。 表2に示された結果より耐炎化処理糸の繊維密
度は本発明で規定する範囲にあることが必要であ
ることが判る。
[Table] Nos. 1 to 10 in Table 1 indicate the conditions for carrying out the method of the present invention and the performance and yield of carbon fibers obtained by the method of the present invention. 1 shows a conventional carbon fiber manufacturing method and the performance of the obtained carbon fiber. The carbon fiber obtained by the method of the present invention has a higher degree of X-ray orientation than that of the comparative example,
As a result, it can be seen that the strength of the carbon fibers is significantly improved. Furthermore, the yield is improved compared to that of the conventional method, and although the carbonization treatment time can be shortened, carbon fibers with sufficiently excellent performance are obtained. Example 2 The acrylonitrile-based synthetic fiber multifilament used in Example 1 was placed in a flameproofing treatment furnace with a temperature gradient of 230 to 250°C by varying the residence time to produce four types of fibers having the fiber densities shown in Table 2. A flame-resistant treated yarn was prepared. These four kinds of flame-resistant treated yarns were carbonized using the pre-carbonization conditions and post-carbonization conditions shown in Table 2, and the performance of the obtained carbon fibers is shown in Table 2. From the results shown in Table 2, it is clear that the fiber density of the flame-resistant treated yarn must be within the range specified by the present invention.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる耐炎化処理糸を熱処理
した際の糸長の変化を縦軸に、熱処理温度を横軸
にとり、連続的に耐炎化処理糸を昇温熱処理した
ときの繊維長の長さ変化を示したものである。
Figure 1 shows the change in yarn length when the flame-resistant treated yarn used in the present invention is heat-treated, with the vertical axis representing the heat treatment temperature, and the horizontal axis representing the heat treatment temperature. This shows the change in length.

Claims (1)

【特許請求の範囲】 1 繊維密度が1.30〜1.42g/cm3なる耐炎化処理
糸を不活性雰囲気中300〜800℃の温度域で25%ま
での範囲で伸長しながら炭素化処理し、引き続い
て800℃以上の温度で炭素化を終了せしめ、引張
強度350Kg/mm2以上、伸度1.5%以上の炭素繊維と
することを特徴とする高性能炭素繊維の製法。 2 耐炎化処理糸がアクリロニトリル系合成繊維
より作られたものであることを特徴とする特許請
求の範囲第1項記載の高性能炭素繊維の製法。 3 炭素化を得られる炭素繊維の長さが耐炎化処
理糸の原長に対し負とならないように炭素化処理
を行なうことを特徴とする特許請求の範囲第1項
又は第2項記載の高性能炭素繊維の製法。
[Claims] 1. A flame-retardant treated yarn with a fiber density of 1.30 to 1.42 g/ cm3 is carbonized in an inert atmosphere at a temperature range of 300 to 800°C while being stretched up to 25%, and then A method for producing high-performance carbon fiber, which is characterized by completing carbonization at a temperature of 800°C or higher, producing carbon fiber with a tensile strength of 350 kg/mm 2 or higher and an elongation of 1.5% or higher. 2. The method for producing high-performance carbon fiber according to claim 1, wherein the flame-resistant treated yarn is made of acrylonitrile synthetic fiber. 3. The carbonization treatment according to claim 1 or 2, characterized in that the carbonization treatment is carried out so that the length of the carbonized carbon fibers is not negative with respect to the original length of the flame-resistant treated yarn. Production method of performance carbon fiber.
JP5421778A 1978-05-08 1978-05-08 Production of high-performance carbon fiber Granted JPS54147222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5421778A JPS54147222A (en) 1978-05-08 1978-05-08 Production of high-performance carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5421778A JPS54147222A (en) 1978-05-08 1978-05-08 Production of high-performance carbon fiber

Publications (2)

Publication Number Publication Date
JPS54147222A JPS54147222A (en) 1979-11-17
JPS6328132B2 true JPS6328132B2 (en) 1988-06-07

Family

ID=12964367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5421778A Granted JPS54147222A (en) 1978-05-08 1978-05-08 Production of high-performance carbon fiber

Country Status (1)

Country Link
JP (1) JPS54147222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711216A (en) * 1980-06-18 1982-01-20 Mitsubishi Rayon Co Ltd Production of carbon fiber
JPS5716921A (en) * 1980-07-02 1982-01-28 Mitsubishi Rayon Co Ltd Preparation of carbon fiber
JPS5721521A (en) * 1980-07-14 1982-02-04 Mitsubishi Rayon Co Ltd Production of carbon fiber of high strength and elongation
JPS5725418A (en) * 1980-07-16 1982-02-10 Mitsubishi Rayon Co Ltd Preparation of low-density carbon fiber
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance
JPS58144128A (en) * 1982-02-18 1983-08-27 Mitsubishi Rayon Co Ltd Preparation of carbon fiber having high performance
JPS59106521A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon yarn having improved physical properties
JPS59106522A (en) * 1982-12-08 1984-06-20 Toray Ind Inc Production of acrylic carbon fiber bundle having improved properties
JPS59150116A (en) * 1983-02-10 1984-08-28 Mitsubishi Rayon Co Ltd Production of high-strength carbon fiber
KR870000533B1 (en) * 1984-05-18 1987-03-14 미쓰비시레이욘 가부시끼가이샤 Carbon fiber's making method
JPS61119719A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Production of carbon fiber of high strength
JPS62117814A (en) * 1985-11-18 1987-05-29 Toray Ind Inc Acrylic fiber precursor for high-strength and high-modulus carbon fiber and production thereof
JPS62117818A (en) * 1985-11-18 1987-05-29 Toray Ind Inc High-strength and high-modulus carbon fiber and production thereof
JPS6366317A (en) * 1986-09-08 1988-03-25 Mitsubishi Rayon Co Ltd Highly orientated polyacrylonitrile based fiber and production thereof
JP2004060126A (en) * 2002-07-31 2004-02-26 Toho Tenax Co Ltd Carbon fiber and method for producing the same
CN110655737A (en) * 2019-10-16 2020-01-07 厦门欧势复材科技有限公司 Preparation method of impact-resistant carbon fiber material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084390A1 (en) 2007-12-30 2009-07-09 Toho Tenax Co., Ltd. Processes for producing flameproof fiber and carbon fiber
US8236273B2 (en) 2007-12-30 2012-08-07 Toho Tenax Co., Ltd. Method of producing pre-oxidation fiber and carbon fiber

Also Published As

Publication number Publication date
JPS54147222A (en) 1979-11-17

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
JPS6328132B2 (en)
US4113847A (en) Process for producing carbon fibers
EP0159365B1 (en) Carbon fibers with high strength and high modulus, and process for their production
CA1040370A (en) Process for producing carbon fibers having excellent physical properties
US4452860A (en) Carbon fibers and process for producing the same
KR870000533B1 (en) Carbon fiber's making method
US11702769B2 (en) Stabilized fiber, method of producing the same, and method of producing carbon fiber
US3993719A (en) Process for producing carbon fibers
US4154807A (en) Process for the production of carbon fibers
JPH05195324A (en) Precursor for carbon fiber production and method for producing the precursor
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
US5413858A (en) Acrylic fiber and process for production thereof
JPS6353295B2 (en)
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
KR870000534B1 (en) Carbon fiber and it's making method
JP7319955B2 (en) Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle
JP2004060126A (en) Carbon fiber and method for producing the same
JP6998924B2 (en) Method for manufacturing flame-resistant fiber and carbon fiber
JPS6156328B2 (en)
JP2010024581A (en) Flameproof fiber and method for producing the same
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle