JPS59106522A - Production of acrylic carbon fiber bundle having improved properties - Google Patents

Production of acrylic carbon fiber bundle having improved properties

Info

Publication number
JPS59106522A
JPS59106522A JP21384082A JP21384082A JPS59106522A JP S59106522 A JPS59106522 A JP S59106522A JP 21384082 A JP21384082 A JP 21384082A JP 21384082 A JP21384082 A JP 21384082A JP S59106522 A JPS59106522 A JP S59106522A
Authority
JP
Japan
Prior art keywords
fiber bundle
specific gravity
fibers
oxidized
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21384082A
Other languages
Japanese (ja)
Other versions
JPH0317925B2 (en
Inventor
Toru Hiramatsu
徹 平松
Tomimasa Higuchi
樋口 富壮
Shigeo Mitsui
三井 茂雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21384082A priority Critical patent/JPS59106522A/en
Publication of JPS59106522A publication Critical patent/JPS59106522A/en
Publication of JPH0317925B2 publication Critical patent/JPH0317925B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an acrylic carbon fibre bundle having improved mechanical properties, especially tensile strength and elongation, by converting an acrylic fiber bundle to give an oxidized yarn bundle, heating it in an inert atmosphere until it reaches a particular specific gravity. CONSTITUTION:An acrylonitrile polymer fiber bundle is heated in an oxidizing atmosphere at 210-300 deg.C, and converted into an oxidized fibre bundle having >=2.8g/d tensile strength, >=10% tensile elongation, 1.25-1.38 specific gravity, 3.5-7% equilibrium water content, and low degree of oxidation. This oxidized fiber bundle is heated in an inert atmosphere of nitrogen, argon, etc. having the maximum temperature of >=1,200 deg.C at 50-300 deg.C set rate of heating until the specific gravity of the fiber reaches 1.45, it is then heated further in the inert atmosphere so that the specific gravity reaches >=1.75, to give the desired acrylic carbon fiber bundle.

Description

【発明の詳細な説明】 本発明は、アクリロニトリル系繊維束から力学的性質に
すぐれた炭素繊維束を製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fiber bundles with excellent mechanical properties from acrylonitrile fiber bundles.

従来、炭素繊維を補強繊維とする複合材料(コンポジッ
ト)は、その卓越した力学的性質、特に比強度、比弾性
率、電気的、化学性質などによりm造材料として広い用
途に使用されているが、航空・宇宙用、自動車、船舷用
などの軽量性および耐久性(信頼性)などをより強く要
望される分野では、アクリロニトリル系重合体繊維を前
駆体繊維(プリカーサ)とするアクリル系炭素繊維が広
く使用されており、上記要望に沿ってよりノj学的性質
の改良されたアクリル系炭素繊維について検討が為され
ている。
Conventionally, composite materials using carbon fiber as reinforcing fibers have been used in a wide range of applications as m-building materials due to their excellent mechanical properties, especially specific strength, specific modulus, electrical, and chemical properties. In fields where lightness and durability (reliability) are strongly required, such as for aerospace, automobiles, and shipboard applications, acrylic carbon fibers that use acrylonitrile polymer fibers as precursor fibers are used. Acrylic carbon fibers, which are widely used and have improved mechanical properties, are being studied to meet the above requirements.

しかしながら、一般にアクリル系炭素Ili維の製造法
としては、アクリル系繊維を原料として20’ 0〜3
50℃の空気等の酸化性雰囲気中で加熱して、該繊維を
いわゆる耐炎化繊維に転換した後、1.00(5〜1.
600℃の窒素などの不活性雰囲気中で加熱して炭化し
、必要に応じてさらに高温の不活性雰囲気中で加熱して
黒鉛繊維とする方法が採用されている。
However, in general, the method for producing acrylic carbon Ili fibers uses acrylic fibers as raw materials and
After converting the fibers into so-called flame-resistant fibers by heating in an oxidizing atmosphere such as air at 50°C,
The method employed is to carbonize the material by heating it in an inert atmosphere such as nitrogen at 600° C., and if necessary, further heat it in an inert atmosphere at a high temperature to form graphite fibers.

しかるに、上記炭素繊維の製造法、特に前記酸化性雰囲
気中で加熱する工程において、アクリル系mHは、分子
内環化や分子間架橋等の複雑な反応を起し、これに伴っ
て熱分解生成物やタール状物を発生すると共に、該m維
に部分的な蓄熱を生U℃単繊維間融着を生ずるなど炭素
繊維の物性に密接に関係する物理的、化学的変化を起づ
ことが知られている。
However, in the above carbon fiber manufacturing method, especially in the step of heating in the oxidizing atmosphere, acrylic mH undergoes complex reactions such as intramolecular cyclization and intermolecular crosslinking, resulting in thermal decomposition products. In addition to generating carbon fibers and tar-like substances, physical and chemical changes closely related to the physical properties of carbon fibers, such as partial heat storage in the carbon fibers and fusion between single fibers, occur. Are known.

特公昭51−6244号公報には、酸化工程における被
処理繊維の損傷を少なくし、かつ高収率短時間で炭素繊
維を製造づ−るためにアクリル系繊維を空気中で酸化し
て酸素含有量が5〜8%の耐炎糸とし、さらに320〜
400℃で30秒以1・で熱処理し、しかる後、不活性
雰囲気中で熱処理する方法および特開昭57−2541
8号公報にはアクリル系繊維を繊維密度が主459/c
i以上になるように耐炎化後、不活性雰囲気中300〜
800℃での昇温速度を500℃/分以下に設定して゛
加熱し、さらに800℃以上に加熱して炭化することに
より、軽量で高性能の炭素繊維を製造する方法がそれぞ
れ提案されている。
Japanese Patent Publication No. 51-6244 discloses that acrylic fibers are oxidized in air to reduce damage to treated fibers in the oxidation process and to produce carbon fibers in a short time with high yield. Flame-resistant yarn with a content of 5 to 8%, and 320 to 8%
Method of heat treatment at 400°C for 30 seconds or more and then heat treatment in an inert atmosphere, and JP-A-57-2541
In Publication No. 8, the fiber density of acrylic fibers is mainly 459/c.
300~ in an inert atmosphere after flame resistant to i or more
Methods have been proposed to produce lightweight, high-performance carbon fibers by heating at a heating rate of 500°C/min or less at 800°C, and then carbonizing by heating to 800°C or higher. .

これらの提案は、それぞれの目的に対しては一応の効果
があるかも知れないが、本発明老らは炭素m維の力学的
性質の向上について鋭意検討した結果、上記アクリル系
炭素繊維の製造法において、酸化もしくは耐炎化工程の
条件と該酸化性繊維もしくは耐炎化繊維を完全に炭化す
る前の初期炭化処理条件とを組み合わせることによって
得られる炭素繊維の物性が著しく向上することを見い出
し、本発明を為すに到ったのである。
Although these proposals may be effective to some extent for their respective purposes, the inventors of the present invention have conducted extensive studies on improving the mechanical properties of carbon fibers, and have developed a method for producing the above-mentioned acrylic carbon fibers. discovered that the physical properties of carbon fibers obtained by combining the conditions of the oxidation or flame-retardant process with the initial carbonization treatment conditions before completely carbonizing the oxidizable fibers or flame-retardant fibers were significantly improved, and the present invention We have come to do this.

すなわち、本発明の目的は力学的性質、特に引張強伸度
に優れた炭素繊維の製造法を提供するにある。このよう
な本発明の目的は前記特許請求の範囲に記載したように
、アクリル系繊維を引張強伸度がそれぞれ2.8s/d
以上および10%以上で比重が1.25〜1.38およ
び平衡水分率か3.5〜7%の範囲内の酸化11i維に
転換し、この繊維を1.200℃以上の不活性雰囲気中
で昇温速度を50〜b 繊維の比重が1.45に達するまで加熱し、さらに加熱
を継続して比重が少なくとも1.75に達づるまで加熱
覆ることにより達成することができる。
That is, an object of the present invention is to provide a method for producing carbon fibers having excellent mechanical properties, particularly tensile strength and elongation. The object of the present invention is to produce acrylic fibers each having a tensile strength and elongation of 2.8 s/d.
oxidized 11i fiber with a specific gravity of 1.25 to 1.38 and an equilibrium moisture content of 3.5 to 7%. This can be achieved by heating the fibers at a heating rate of 50 to 50 b until the specific gravity of the fibers reaches 1.45, and then continuing to heat the fibers until the specific gravity reaches at least 1.75.

づなわち、本発明の特長は特定の引張強伸度を有し、比
重が1.25〜1.38.平衡水分率が3.5〜7%、
好ましくは4〜5%の酸化の程度の低い不完全耐炎化糸
とも称すべき酸化繊維を、少なくとも1.200℃の不
活性雰囲気中で加熱して比重が1.75以上の炭素繊維
に転換するに際して、繊維の比重が1.45に達するま
で昇温速度を50〜b 熱する点にあり、このような特定の酸化繊維および炭化
前の不活性雰囲気中での昇温速度との一体的結合によっ
て、はじめて本発明の目的とする炭素繊維の高強伸度化
を達成したものである。
In other words, the feature of the present invention is that it has a specific tensile strength and elongation, and a specific gravity of 1.25 to 1.38. Equilibrium moisture content is 3.5-7%,
Oxidized fibers, which can also be called incompletely flame-resistant yarns with a low degree of oxidation, preferably 4 to 5%, are heated in an inert atmosphere at at least 1.200°C to convert them into carbon fibers with a specific gravity of 1.75 or more. In this process, the temperature is heated at a heating rate of 50 to 50 b until the specific gravity of the fiber reaches 1.45. By this method, the high strength and elongation of carbon fibers, which is the objective of the present invention, was achieved for the first time.

本発明の要件である引張強度が2.89/d以上、好ま
しくは3.3s/d以上、伸度が10%以上であり、比
重が1.25〜1.38および平衡水分率が3.5〜7
%、好ましくば4〜5%の酸化繊維を得るためには、ア
クリル系繊維どしてアクリロニトリル(以下AN)94
〜99.8モル%と該ANに対して共重合性を有し、耐
炎化促進能のあるビニル系モノマ、たとえばアクリル酸
、メタクリル酸、イタコン酸など、および製糸性を付与
するだめのビニル系モノマ、たとえば上記アクリル酸や
メタクリル酸の低級アルキル1スプル類、スチレンスル
ホン酸、アリル又はメタリルスルホン酸もしくは、それ
らのアルカリ金属又はアンモニウム塩などから選ばれる
少なくとも1種との共重合体を湿式又は乾湿式紡糸し、
水洗、延伸、乾燥、熱セット等の工程を適宜組み合わせ
ることにより得られる。
The requirements of the present invention are that the tensile strength is 2.89/d or more, preferably 3.3 s/d or more, the elongation is 10% or more, the specific gravity is 1.25 to 1.38, and the equilibrium moisture content is 3. 5-7
%, preferably 4 to 5%, acrylonitrile (hereinafter referred to as AN) 94% is used for acrylic fibers.
~99.8 mol% of vinyl monomers that are copolymerizable with the AN and have the ability to promote flame resistance, such as acrylic acid, methacrylic acid, itaconic acid, etc., and other vinyl monomers that impart silk-spinning properties. Wet or Wet and dry spinning
It can be obtained by appropriately combining steps such as washing with water, stretching, drying, and heat setting.

また引張強伸度がそれぞれ2.El/d以上および10
%以上と物性の優れた耐炎糸を得るためには酸化性雰囲
気中の加熱条件が重要であり、210〜300℃、好ま
しくは220〜280℃の温度条件下で緊張ないし伸長
下、あるいは0.05〜0.5’il/dの張力下で行
なうのがよい。
In addition, the tensile strength and elongation are 2. El/d or more and 10
% or more, heating conditions in an oxidizing atmosphere are important in order to obtain a flame-resistant yarn with excellent physical properties. It is preferable to perform this under a tension of 0.05 to 0.5'il/d.

この際、単糸間゛融着防止あるいは耐炎化時間短縮のた
めに段階的に昇温することが望ましい。
At this time, it is desirable to raise the temperature in stages to prevent fusion between single yarns or to shorten the flame resistance time.

耐炎化時間は酸化性雰囲気の種類およびその濃!哀、共
重合組成、単糸デニールあるいはトータルデニールなど
に応じて最適化される必要があるが、いずれにゼよこの
ような重合、製糸および耐炎化条件を選ぶことによって
前述した比重および平衡水分率が、それぞれ1.25〜
1.38.3.5〜7%の耐炎化の不完全な酸化m維を
得ることが肝要である。
The flame resistance time depends on the type and concentration of oxidizing atmosphere! Unfortunately, it is necessary to optimize the copolymerization composition, single yarn denier or total denier, etc., but in any case, by selecting such polymerization, spinning and flame resistance conditions, the above-mentioned specific gravity and equilibrium moisture content can be achieved. But each is 1.25~
1.38. It is essential to obtain incompletely oxidized fibers with 3.5 to 7% flame resistance.

かくして得られる引張強伸度がそれぞれ2.89/dお
よび10%以上で、比重および平衡水分率がそれぞれ1
.25〜1.38.3.5〜7%の酸化繊維は、従来の
いわゆる耐炎化糸としては酸化の程度が不十分であるが
、次いで最高温度が少なくとも1.200℃の不活性雰
囲気、たとえば窒素、ヘリウム、アルゴン等の雰囲気中
で加熱される。この不活性雰囲気中での加熱に際しては
、繊維の比重が1.45までは昇温速度°を50〜30
0℃の範囲内に設定する。ずなわち、昇温温度が300
℃/分を越えるときは、急激な熱分解反応に伴う分解ガ
スの急激な発生のため、繊維内に大量の微少ボイドを生
じるため、力学的にすぐれた炭素1IiHを得ることが
困難になるのである。逆に昇温速度を50℃/分より小
さくしても、炭素!1iIItの強伸度特性を向上する
効果は飽和し、加熱炉長を必要以上に長くしたり、焼成
糸速を必要以上に遅くすることとなり、経済的に得策で
ない。上記の如くして得られた比重が1.45以上の繊
維をさらに不活性雰囲気中で加熱を継続して、比重が1
.75以上の炭素繊維に転換するに際して、好ましくは
!li組の比重が1.60から1.75に上昇する間の
昇温速度を汀OO℃/分以下とするのがよく、これによ
り微少なボイドの少ない力学的特性に優れた炭素繊維が
得られるという効果が助長されt−1゜なお、この間の
昇温速度を100℃/分以1・にしても、炭素繊維の力
学的特性向上効果は小さく経済的に不利であるため、炭
素lii雑の工学的Inには不適である。
The tensile strength and elongation thus obtained are 2.89/d and 10% or more, respectively, and the specific gravity and equilibrium moisture content are 1.
.. 25-1.38.3.5-7% oxidized fibers have insufficient degree of oxidation for conventional so-called flame resistant yarns, but are then oxidized in an inert atmosphere with a maximum temperature of at least 1.200 °C, e.g. Heated in an atmosphere of nitrogen, helium, argon, etc. When heating in this inert atmosphere, the heating rate should be set at 50 to 30 °C until the specific gravity of the fiber is 1.45.
Set within the range of 0℃. That is, the heating temperature is 300
When the temperature exceeds ℃/min, a large amount of microvoid is generated in the fiber due to the rapid generation of cracked gas due to the rapid thermal decomposition reaction, making it difficult to obtain carbon 1IiH with excellent mechanical properties. be. Conversely, even if the heating rate is lower than 50°C/min, carbon! The effect of improving the strength and elongation properties of 1iIIIt is saturated, and the length of the heating furnace becomes longer than necessary or the firing yarn speed becomes slower than necessary, which is not economically advisable. The fibers having a specific gravity of 1.45 or more obtained as described above are further heated in an inert atmosphere to have a specific gravity of 1.45 or more.
.. Preferably when converting to carbon fiber of 75 or more! It is preferable that the temperature increase rate while the specific gravity of the li group rises from 1.60 to 1.75 is 00°C/min or less, thereby producing carbon fibers with excellent mechanical properties with few microvoids. However, even if the temperature increase rate during this period is set to 100°C/min or higher, the effect of improving the mechanical properties of carbon fibers is small and economically disadvantageous. It is unsuitable for engineering In.

工業的に炭素繊維を製造する場合には、トータル・デニ
ールの太い酸化繊維束あるいは酸化繊維束を複数本引き
そろえて合糸して、炭化処理を行なうことが経済的に有
利であるが、処理繊維束のトータル・デニールを太くす
るほど得られる炭素繊維束の力学的特性が低下するため
、酸化繊維束あるいは合糸した酸化繊維束のデニールが
15,000デニールを越えると、引張強度が400K
g/mA以上の優れた力学的特性を有する炭素i維を得
ることが困難となる。しかるに、本発明の如く、繊維の
比重が1.45に上昇する間の昇温速度を50〜b の比重が1.60から1.75に上昇する間の昇温速度
を100〜b より、トータル・デニールが15,000デニールを越
えた酸化繊維束を、一時に優れたツノ学的特性を有する
炭素m維に転換することが可能さなるのである。
When manufacturing carbon fiber industrially, it is economically advantageous to pull together a large total denier oxidized fiber bundle or multiple oxidized fiber bundles, combine them, and perform carbonization treatment. The mechanical properties of the resulting carbon fiber bundle decrease as the total denier of the fiber bundle increases, so if the denier of the oxidized fiber bundle or the spliced oxidized fiber bundle exceeds 15,000 deniers, the tensile strength will increase to 400K.
It becomes difficult to obtain carbon i-fibers having excellent mechanical properties of g/mA or higher. However, as in the present invention, the heating rate while the specific gravity of the fiber increases from 1.45 to 50~b, and the heating rate while the specific gravity increases from 1.60 to 1.75 from 100~b. It becomes possible to convert oxidized fiber bundles with a total denier of more than 15,000 deniers into carbon fibers having excellent horn properties.

耐炎糸の水°分率は下記の方法で測定した。即ち、約2
9の耐炎糸を採取して秤量ビンに入れ、該秤量ビンを開
栓状態で、同相共存硫酸アンモニウム水溶液を下部に入
れたデシケータ中に室温で約16時間放置して耐炎糸に
吸湿させる。
The moisture content of the flame-resistant yarn was measured by the following method. That is, about 2
The flame-resistant yarn No. 9 was collected and placed in a weighing bottle, and with the weighing bottle opened, the flame-resistant yarn was left in a desiccator containing an in-phase coexistence ammonium sulfate aqueous solution at the bottom for about 16 hours at room temperature to allow the flame-resistant yarn to absorb moisture.

デシケータから取り出した耐炎糸の重量を素早く積置し
、重量ををWlとする。上記耐炎糸を秤量ビンに入れ、
開栓した状態で乾燥型中で120℃、2時間乾燥し、素
早く秤量ビンに栓をして、五酸化リンを下部に入れたデ
シケータ中に素早く移してデシケータ内で約5分間放冷
する。放冷後、秤量ビンから取り出し、素早く乾燥耐炎
糸の重量を積置し、重量をWoとする。
The weight of the flame-resistant thread taken out from the desiccator is quickly piled up, and the weight is set as Wl. Put the above flame-resistant thread into a weighing bottle,
Dry in an open drying mold at 120° C. for 2 hours, then quickly stopper the weighing bottle, quickly transfer it to a desiccator containing phosphorus pentoxide at the bottom, and leave it to cool in the desiccator for about 5 minutes. After cooling, it is taken out from the weighing bottle, and the weight of the dry flame-resistant yarn is quickly piled up to give a weight of Wo.

る。Ru.

耐炎糸の比重は下記の方法(アルキメデス法)により測
定した。即ち1mの耐炎糸を採取して秤量ビンに入れ、
該秤量ピンを開栓状態で乾燥型中で160℃、30分間
乾燥し、素早く秤量ビンに栓をして五酸化リンを下部に
入れたデシケータ中に移して、デシケータ内で約30分
間放冷する。放冷後、秤量ビンから取り出し素早く乾燥
耐炎糸の重量を精但し、その時の重量を脱気した後、2
分30秒間エチルアルコール中に静置してから液中型I
W3を測定する。エチルアルコールの液比型はボーメ比
重計で測定し、その比重をρLとする。耐炎糸の比重は
、実施例1〜4、比較例1〜3 アクリロニトリル99.0モル%とメタアクリル酸アン
モニウム1.0モル%のアクリル系共重合体のジメチル
スルホキシド(DMSO)溶液を紡糸原液として常法に
よりDMSO−水系浴中に湿式紡糸し、単糸繊度土Oデ
ニール、トータルフィラメント数12.000のアクリ
ル系繊維束を作成した。
The specific gravity of the flame-resistant yarn was measured by the following method (Archimedes method). That is, take 1 m of flame-resistant thread and put it in a weighing bottle.
Dry the weighing pin in a drying mold at 160°C for 30 minutes with the cap open, then quickly cap the weighing bottle, transfer it to a desiccator containing phosphorus pentoxide at the bottom, and leave it to cool in the desiccator for about 30 minutes. do. After cooling, take it out from the weighing bottle and quickly weigh the dry flame-resistant yarn. After degassing the weight,
After standing in ethyl alcohol for 30 seconds, submerged type I
Measure W3. The liquid ratio type of ethyl alcohol is measured with a Baume hydrometer, and its specific gravity is defined as ρL. The specific gravity of the flame-resistant yarn is as follows: Examples 1 to 4, Comparative Examples 1 to 3 A dimethyl sulfoxide (DMSO) solution of an acrylic copolymer containing 99.0 mol% of acrylonitrile and 1.0 mol% of ammonium methacrylate was used as a spinning stock solution. The fibers were wet-spun in a DMSO-water bath using a conventional method to produce an acrylic fiber bundle having a single yarn fineness of O denier and a total number of filaments of 12,000.

このIII束をプリカーサとして240℃の空気中で0
.29/dの張力下に約55分間耐炎化処理して、平衡
水分率4.5%、比重1.31、強度3.59/d、伸
度11.1%の酸化繊維束を得た。
This III bundle was used as a precursor in air at 240°C.
.. The flameproofing treatment was performed under a tension of 29/d for about 55 minutes to obtain an oxidized fiber bundle having an equilibrium moisture content of 4.5%, a specific gravity of 1.31, a strength of 3.59/d, and an elongation of 11.1%.

上記酸化繊維束を350℃から750℃猿で直線的に■
昇している温度プロフィルを有する窒素雰囲気中で、そ
の間の昇温速度が500℃/分となる糸速下で連続的に
処理しつつ、炉出口側で繊維を切って、瞬間的に!1i
紺を炉入口側から抜き出し、得られた繊維の比重を繊維
の長手方向に追跡した結果、!a維の比重が酸化lIa
紺の1.31から1.45までは急激に上昇し、その後
の比重1.45から1.60までは、比較的ゆるやかに
上昇してていた。ざらに、比重が1.31から1.45
に急激に変化したのは、雰囲気温度が350°Cから4
50℃の温度領域に対応していた。
The above oxidized fiber bundle was heated linearly from 350℃ to 750℃■
In a nitrogen atmosphere with an increasing temperature profile, the fibers are cut at the furnace exit while being processed continuously at a yarn speed of 500°C/min. 1i
As a result of extracting the navy blue from the furnace inlet side and tracing the specific gravity of the obtained fiber in the longitudinal direction of the fiber, ! The specific gravity of a fiber is oxidized lIa
There was a rapid increase from 1.31 to 1.45 for dark blue, and a relatively slow increase from 1.45 to 1.60. Roughly, the specific gravity is 1.31 to 1.45.
The sudden change in ambient temperature from 350°C to 4.
It corresponded to a temperature range of 50°C.

上記串項に基づいて、酸化m維束を窒素雰囲気中で35
0〜450℃の温度領域の昇温速度を第1表に示1通り
変更して、加熱処理した後、最高温度1,300’Cの
温度プロフィルを有する窒素雰囲気中で1.050〜1
.150℃領域における昇温速度を500℃/分にて、
加熱処理して炭素繊維束に転換した。
Based on the above description, oxidized m-fibers were prepared at 35% in nitrogen atmosphere.
After heat treatment by changing the heating rate in the temperature range of 0 to 450°C as shown in Table 1, the heating rate was 1.050 to 1.0°C in a nitrogen atmosphere with a temperature profile of a maximum temperature of 1,300'C.
.. The temperature increase rate in the 150°C region was 500°C/min.
It was heat treated and converted into carbon fiber bundles.

得、られた各炭素繊維束を電解表面処理した後、4J 
l5R−7601−1980(樹脂にチッソノックス2
21/三フツ化ホウ素モノエチルアミン/アセトン=1
00/3/4使用)によりストランド強度を測定し、結
果を第1表に示した。
After electrolytic surface treatment of each carbon fiber bundle obtained, 4J
l5R-7601-1980 (resin with Chissonox 2
21/Boron trifluoride monoethylamine/Acetone = 1
The strand strength was measured using 00/3/4) and the results are shown in Table 1.

第1表 実施例5〜8、比較例4〜6 実施例1において得られた酸化繊維束を、最高温度75
0℃の温度プロフィルを有する窒素雰囲気中で350〜
450℃の温度領域における昇温速度を200℃/分に
て加熱処理して、前炭化処理繊維束を得た。
Table 1 Examples 5 to 8, Comparative Examples 4 to 6 The oxidized fiber bundle obtained in Example 1 was heated to a maximum temperature of 75
350 ~ in a nitrogen atmosphere with a temperature profile of 0 °C
A pre-carbonized fiber bundle was obtained by heat treatment at a heating rate of 200°C/min in a temperature range of 450°C.

上記前炭化処理!1i帷束を1,000℃から1,30
0’C1:で直線的に上昇している温度プロフィルを有
する窒素雰囲気中で、その間の昇温速度が700℃/分
となる糸速下で連続的に処理しつつ、炉出口側で繊維を
切って、瞬間的に繊維を炉入口側から抜き出し、得られ
た繊維の比重を繊維の長手方向に追跡した結果、U&雑
の比重が1.60から1.75までは急激に上昇し、そ
の後1.75から1.80までは、比較的ゆるやかに上
昇していた。さらに、比重が1.60から1.75まで
急激に変化したのは雰囲気温度が1.050℃から1,
150℃の温度領域に対応していた。上記事実に基づき
、前炭化繊維束を窒素雰囲気中で1.050℃〜1.1
50℃の温度領域の昇温速度を第2表に示す通り変更し
て、最高温度1.300℃で加熱処理して炭素繊維束に
転換した。
The above pre-carbonization treatment! 1i paper bundle from 1,000℃ to 1,30℃
In a nitrogen atmosphere with a linearly increasing temperature profile at 0'C1:, the fibers are processed continuously at a yarn speed of 700°C/min during which the temperature rises, and the fibers are processed at the furnace outlet side. After cutting, the fibers were instantly pulled out from the furnace inlet side, and the specific gravity of the obtained fibers was tracked in the longitudinal direction of the fibers. As a result, the specific gravity of U & miscellaneous rose sharply from 1.60 to 1.75, and then From 1.75 to 1.80, it rose relatively slowly. Furthermore, the reason why the specific gravity suddenly changed from 1.60 to 1.75 was because the ambient temperature was 1.050℃ to 1.75℃.
It corresponded to a temperature range of 150°C. Based on the above facts, the pre-carbonized fiber bundle was heated at 1.050°C to 1.1°C in a nitrogen atmosphere.
The heating rate in the temperature range of 50°C was changed as shown in Table 2, and the carbon fiber bundle was converted into a carbon fiber bundle by heat treatment at a maximum temperature of 1.300°C.

得られた各炭素繊維束を電解表面処理した後実施例1と
同様にしてストランド強度を測定し結果を第2表に示し
た。
After each of the obtained carbon fiber bundles was subjected to electrolytic surface treatment, the strand strength was measured in the same manner as in Example 1, and the results are shown in Table 2.

第2表 実施例9〜14、比較例7〜8 アクリロニトリル98.8モル%とアクリル酸アンモニ
ウム1.2モル%アクリル系共重合体のジメチルスルホ
キシド(DMSO)溶液を紡糸原液として常法によりD
MSO−水系浴中に湿式紡糸し、単糸繊途1デニール、
1・−タルフィラメント数aoooのアクリル系i維束
を作成した。
Table 2 Examples 9 to 14, Comparative Examples 7 to 8 A dimethyl sulfoxide (DMSO) solution of an acrylic copolymer containing 98.8 mol% acrylonitrile and 1.2 mol% ammonium acrylate was used as a spinning stock solution and D
Wet-spun in MSO-water bath, single yarn yarn 1 denier,
An acrylic i-fiber bundle having aooo number of 1-tal filaments was prepared.

この繊維束をプリカーサとして、240℃の空気中で0
.2’a/dの張力下に耐炎化時間を15分から100
分まで変更しく耐炎化進行度の異なる〉第3表に示す8
種類の酸化繊維束を作成した。第3表には、これら8種
類の酸化繊維束の引張強伸度、比重および平衡水分率も
併せて記載した。これらの酸化m維束を窒素雰囲気中で
350〜450℃の温度領域の昇温速度を150℃/分
、450℃〜700℃の昇温速度を850℃/分で加熱
した後、最高温度が1.300℃の温度プロフィルを有
する窒素雰囲気中で、1,050℃〜1,150℃領域
における昇温速1褒を500℃/分にて加熱処理して、
炭素繊維束に転換した。
Using this fiber bundle as a precursor, we
.. Flame resistance time from 15 minutes to 100 minutes under tension of 2'a/d
8 shown in Table 3.
Different types of oxidized fiber bundles were created. Table 3 also lists the tensile strength and elongation, specific gravity, and equilibrium moisture content of these eight types of oxidized fiber bundles. After heating these oxidized m-fibers in a nitrogen atmosphere at a heating rate of 150°C/min in the temperature range of 350 to 450°C and a heating rate of 850°C/min in the temperature range of 450°C to 700°C, the maximum temperature was 1. Heat treatment in a nitrogen atmosphere with a temperature profile of 300°C at a heating rate of 500°C/min in the 1,050°C to 1,150°C range,
Converted to carbon fiber bundles.

得られた各炭素繊維束を電解表面処理し1〔後J l5
R−7601−1980(樹脂にチッソノックス221
 /3ふつ化ホウ素モノエチルアミン/アセトン=10
0/3/4使用)によりストランド強度を測定した。結
果を第3表に併せで示した。
Each obtained carbon fiber bundle was subjected to electrolytic surface treatment 1 [after J l5
R-7601-1980 (Chissonox 221 resin)
/3 boron monoethylamine fluoride/acetone = 10
Strand strength was measured using 0/3/4). The results are also shown in Table 3.

第3表Table 3

Claims (1)

【特許請求の範囲】 (1)  アクリロニトリル系重合体繊維束を210〜
300℃の酸化性雰囲気中で加熱して、少なくとも2.
89/dおよび10%以上の引張り強伸度、1.25〜
1.38の範囲内の比重および3.5〜7%範囲内の平
衡水分率を有する酸化繊維束に転換せしめ、この酸化繊
維束を最高温度が少なくとも1.200℃の不活性雰囲
気中で昇温速度を50〜b 囲内に設定して該繊維の比重が1.45に達する迄加熱
し、しかる後、さらに加熱を継続して該比重を少なくと
も1.75に到達せしめることを特徴とする優れた性能
を有するアクリル系炭素繊維束の製造方法。 (2、特許請求の範囲第1項において、比重が1.60
に達した繊維を、100〜b 分の昇温速度で比重が1.75のm雑に転換させる工程
を含む優れた性能を有するアクリル系炭素繊維束の製造
方法。 (3)特許請求の範囲第1項において酸化繊維束を炭素
繊維束に転換する工程にお【プる酸化繊維束あるいは、
合糸された酸化繊維束の集合体のトータル・デニールが
15.000デニ一ル以上である優れた性能を有するア
クリル系炭素繊維束の製造方法。
[Scope of Claims] (1) Acrylonitrile polymer fiber bundle of 210~
At least 2.
89/d and tensile strength elongation of 10% or more, 1.25 ~
The oxidized fiber bundle is converted into an oxidized fiber bundle having a specific gravity in the range of 1.38 and an equilibrium moisture content in the range of 3.5 to 7%, and the oxidized fiber bundle is heated in an inert atmosphere at a maximum temperature of at least 1.200°C. An advantage characterized in that the heating rate is set within the range of 50 to 100 b yen to heat the fibers until the specific gravity reaches 1.45, and then heating is continued to reach the specific gravity of at least 1.75. A method for producing an acrylic carbon fiber bundle having excellent performance. (2. In claim 1, the specific gravity is 1.60
A method for producing an acrylic carbon fiber bundle having excellent performance, comprising the step of converting fibers that have reached a temperature of 100 to 1.75 m to a specific gravity of 1.75 m at a heating rate of 100 to 1. (3) In the step of converting an oxidized fiber bundle into a carbon fiber bundle in claim 1,
A method for producing an acrylic carbon fiber bundle having excellent performance in which the total denier of the aggregate of combined oxidized fiber bundles is 15,000 denier or more.
JP21384082A 1982-12-08 1982-12-08 Production of acrylic carbon fiber bundle having improved properties Granted JPS59106522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21384082A JPS59106522A (en) 1982-12-08 1982-12-08 Production of acrylic carbon fiber bundle having improved properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21384082A JPS59106522A (en) 1982-12-08 1982-12-08 Production of acrylic carbon fiber bundle having improved properties

Publications (2)

Publication Number Publication Date
JPS59106522A true JPS59106522A (en) 1984-06-20
JPH0317925B2 JPH0317925B2 (en) 1991-03-11

Family

ID=16645891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21384082A Granted JPS59106522A (en) 1982-12-08 1982-12-08 Production of acrylic carbon fiber bundle having improved properties

Country Status (1)

Country Link
JP (1) JPS59106522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609540A (en) * 1984-05-18 1986-09-02 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
JPS62110924A (en) * 1985-11-11 1987-05-22 Mitsubishi Rayon Co Ltd Production of high performance carbon fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425418A (en) * 1977-07-22 1979-02-26 Hitachi Ltd Load reduction system for dc/dc converter
JPS54147222A (en) * 1978-05-08 1979-11-17 Mitsubishi Rayon Co Ltd Production of high-performance carbon fiber
JPS5663013A (en) * 1979-10-24 1981-05-29 Mitsubishi Rayon Co Ltd Preparation of carbon fiber
JPS5725419A (en) * 1980-07-16 1982-02-10 Mitsubishi Rayon Co Ltd Preparation of carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425418A (en) * 1977-07-22 1979-02-26 Hitachi Ltd Load reduction system for dc/dc converter
JPS54147222A (en) * 1978-05-08 1979-11-17 Mitsubishi Rayon Co Ltd Production of high-performance carbon fiber
JPS5663013A (en) * 1979-10-24 1981-05-29 Mitsubishi Rayon Co Ltd Preparation of carbon fiber
JPS5725419A (en) * 1980-07-16 1982-02-10 Mitsubishi Rayon Co Ltd Preparation of carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609540A (en) * 1984-05-18 1986-09-02 Mitsubishi Rayon Co., Ltd. Process for producing carbon fibers
JPS62110924A (en) * 1985-11-11 1987-05-22 Mitsubishi Rayon Co Ltd Production of high performance carbon fiber

Also Published As

Publication number Publication date
JPH0317925B2 (en) 1991-03-11

Similar Documents

Publication Publication Date Title
EP1130140B1 (en) Acrylonitril-based precursor fiber for carbon fiber and method for production thereof
US4452860A (en) Carbon fibers and process for producing the same
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
JPS6328132B2 (en)
JP2006348462A (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2011213773A (en) Polyacrylonitrile-based polymer and carbon fiber
JP2013023778A (en) Method for manufacturing carbon fiber bundle
US3993719A (en) Process for producing carbon fibers
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
US3708326A (en) Stabilization of acrylic fibers and films
JPS59106522A (en) Production of acrylic carbon fiber bundle having improved properties
US4295844A (en) Process for the thermal stabilization of acrylic fibers
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPS59106521A (en) Production of acrylic carbon yarn having improved physical properties
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JP2014125701A (en) Method of manufacturing carbon fiber bundle
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JPH02264011A (en) Acrylic fiber for graphite fibers
JP3002698B2 (en) Manufacturing method of graphite fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber