JP2004003043A - Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same - Google Patents

Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same Download PDF

Info

Publication number
JP2004003043A
JP2004003043A JP2002150549A JP2002150549A JP2004003043A JP 2004003043 A JP2004003043 A JP 2004003043A JP 2002150549 A JP2002150549 A JP 2002150549A JP 2002150549 A JP2002150549 A JP 2002150549A JP 2004003043 A JP2004003043 A JP 2004003043A
Authority
JP
Japan
Prior art keywords
fiber material
fiber
flame
treatment
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002150549A
Other languages
Japanese (ja)
Inventor
Isao Nakayama
中山 功
Michinori Higuchi
樋口 徹憲
Masashi Ise
伊勢 昌史
Tomihiro Ishida
石田 富弘
Koichi Yamaoka
山岡 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002150549A priority Critical patent/JP2004003043A/en
Publication of JP2004003043A publication Critical patent/JP2004003043A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production by which a flameproofing treatment can stably be carried out with high efficiency even when fibers are present at a high density and to provide a flameproof fiber material and a carbon fiber material having high performances. <P>SOLUTION: The flameproof fiber material has 0.07-0.17 average oxygen concentration in the fiber measured by an elementary analysis/oxygen analysis method. The method for producing the flameproof fiber material comprises subjecting an acrylic fiber material to the flameproofing treatment at 180-300°C in the presence of one or two or more kinds of compounds of an organic compound except an amine compound, a fluorine compound, siloxanes, a nitrate and a nitrite. The carbon fiber material has 0.83-0.94 ratio A1/A2 of the measured value A1 of π*/σ* on the outermost surface and the maximum value A2 in a single fiber obtained by measurement of the cross section of the single fiber according to an electron energy loss spectroscopy using a field emission type electron microscope. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、耐炎化繊維材料、炭素繊維材料、黒鉛繊維材料及びそれらの製造方法に関する。さらに詳しくは、高性能な耐炎化繊維材料、炭素繊維材料、黒鉛繊維材料であり、更には耐炎化繊維材料、炭素繊維材料、及び黒鉛繊維材料の安定的かつ高効率な製造方法に関する。
【0002】
【従来の技術】
耐炎化繊維は難燃性に優れることから耐熱性を必要とする用途で幅広く利用されている。形態としては布帛の状態で用いられることが多く、溶接作業等で飛散する高熱の鉄粉や溶接火花等から人体を保護するスパッタシート、さらには航空機等の防炎断熱材などに用いられている。
【0003】
また耐炎化繊維を不活性ガス雰囲気中で高温加熱処理して得られる炭素繊維はその力学的、化学的、電気的諸特性及び軽量性などにより、各種の用途、例えば航空機やロケットなどの航空・宇宙用航空材料、テニスラケット、ゴルフシャフト、釣竿などのスポーツ用品に広く使用され、さらに船舶、自動車などの運輸機械用途分野などにも使用されようとしている。
【0004】
これらの用途においては、炭素繊維は繊維強化複合材料の強化繊維として各種樹脂と組み合わせて用いられることが多い。従って、炭素繊維の繊維方向の強度だけでなく、樹脂との接着性など非繊維方向の強度向上も求められてきた。
【0005】
そこで、炭素繊維の表面を電解処理するなど、炭素繊維と樹脂との接着性を向上させることが試みられてきたが、このような方法では、一定以上の処理を施すと繊維方向の強度が犠牲となるため、その効果は不十分であり、繊維方向強度と非繊維方向強度を両立することは困難であった。
【0006】
また炭素繊維布帛はその電気特性を活かして、二次電池用として、電力貯蔵などに利用されるナトリウム−硫黄電池の陽極等に使われる。該用途においては、電気伝導性や化学的安定性などの特性が要求される。
【0007】
このような高性能化が要求される一方で、用途が拡大するに伴い、生産性を向上し、低コストで耐炎化繊維、炭素繊維、耐炎化繊維布帛及び炭素繊維布帛を提供することが望まれている。
【0008】
一般に、耐炎化繊維は、アクリル系繊維を前駆体繊維として熱処理等して得られるアクリル系耐炎化繊維が知られている。かかるアクリル系耐炎化繊維を製造するための耐炎化処理は、アクリル系繊維の高分子鎖を酸化すると共に、高分子鎖に結合したニトリル基を環化することによる。このように酸化・環化を進めることで繊維の耐熱性が高まり、難燃用途等で使用できる耐炎化繊維を得ることができる。また、耐炎化処理は、炭化工程での高温での熱処理に耐えうる、安定な構造を備えた繊維に転換させる目的もある。
【0009】
かかる耐炎化反応は、高分子鎖の酸化・環化反応による多量の発熱を伴う発熱反応であり、耐炎化処理の速度を高めるべく加熱温度を高くしたり、生産性を高めるべく、多量のアクリル系繊維を耐炎化工程に供給すると、繊維内の発熱量が過大となり、蓄熱現象により、反応が暴走する問題があった。
【0010】
この問題に対処するため、酸化性雰囲気での耐炎化処理よりも発熱量が小さい不活性雰囲気中のみで耐炎化処理することが考えられてきた。しかし、かかる処理のみでは、環化反応の速度が遅延化し、得られる耐炎化繊維の強度が十分でなく、その結果、得られる炭素繊維の強度特性が劣ったものとなるといった問題があった。
【0011】
耐炎化処理の高効率化のため、特公昭53−22576号公報、特公昭58−214535号公報、特開昭58−174630号公報などで、空気中での熱処理の後、さらに酸素濃度を調節した不活性雰囲気中で熱処理することによって耐炎化処理し、それを炭化処理する技術が提案されているが、かかる手段では、空気中での耐炎化反応を伴うことから、初期の発生熱が大きく、太糸条や多量の糸条を高効率で処理することは、事実上不可能であった。
【0012】
また、特開平7−292526号公報には、アクリル系繊維を酸素濃度0.01〜3容量%の不活性雰囲気中で熱処理し、次いで酸化性雰囲気中で熱処理後、炭化処理する炭素繊維の製造方法が開示されているが、かかる手段では、環化速度が遅くなることから、耐炎化処理の効率が大きく低下する欠点があった。
【0013】
さらに、特開平2−300324号公報、特開平2−300325号公報には常圧又は減圧下で、繊維を耐炎化処理した後、さらに加圧下で耐炎化処理する技術が開示されているが、かかる手段では、耐炎化処理の効率が不十分であり、また、装置が大型化する問題があった。
【0014】
さらに、特開昭59−125913には液相で耐炎化反応処理を行う技術が開示されているが、かかる手段では、フィラメント数が20、000以上になると反応が不均一に進行し、耐炎化繊維の単繊維間に多数の融着が発生するため強度が低下するという問題があった。
【0015】
加えて、耐炎化繊維布帛及び炭素繊維布帛を製造する場合には次の問題が生じる。
【0016】
一般的に、耐炎化繊維布帛は耐炎化繊維を直接布帛に加工することによって製造する。また、炭素繊維布帛は炭素繊維を直接布帛に加工するか、或いは耐炎化繊維布帛を炭化処理することによって製造する。
【0017】
しかしながら一般的に、アクリル系繊維の強度・伸度は高いものの、耐炎化繊維となると高温で化学反応を伴い環化構造が形成するため強度、伸度が低下している。さらに炭素繊維になると非常に高強度となる一方、伸度は著しく小さい脆性繊維となる。そのため、耐炎化繊維、炭素繊維を布帛に加工する際にはアクリル系繊維を布帛に加工するのに比べ、糸切れ等の工程トラブルが発生しやすい、という問題があった。
【0018】
このような問題に対し、例えば特開平7−326384号では、耐炎化繊維の前駆体繊維であるアクリル系繊維を不織布とした後、加熱酸化し、耐炎化処理を施し耐炎化不織布を得て、該耐炎化不織布を不活性雰囲気下、高温焼成し炭素繊維不織布とする発明が開示されている。アクリル系繊維は強度、伸度ともに高いため、耐炎化繊維や炭素繊維と比べ容易に不織布を作製することができる。しかしながら、不織布となったアクリル系繊維はその嵩高さのために耐炎化が容易ではない。すなわち、耐炎化処理は発熱反応であり、除熱操作が必須となるが、アクリル系繊維が不織布のように糸条密度が高い状態だと、その耐炎化処理において蓄熱しやすくなり、除熱が困難になる。したがって、低い雰囲気温度で処理し、暴走を防ぐことが必要であり、不織布の耐炎化処理に長時間要するため、工業的には生産性が著しく劣っていた。
【0019】
【発明が解決しようとする課題】
本発明の目的は、前記課題に鑑み高性能な耐炎化繊維材料、炭素繊維材料及び黒鉛繊維材料を提供し、更にこれらについて生産効率に優れた製造方法を提供せんとするものである。
【0020】
【課題を解決するための手段】
かかる本発明の目的を達成するために、本発明の耐炎化繊維材料は、次の構成を有する。すなわち、元素分析・酸素分析法で測定した繊維内平均酸素濃度(O/C)が0.07〜0.17である耐炎化繊維材料である。かかる耐炎化繊維材料を炭化処理することにより高収率で炭素繊維材料を得ることができる。本発明の炭素繊維材料は単繊維断面を電界放出型電子顕微鏡を用いて、電子エネルギー損失分光法で測定して得られるπ*/σ*の最表面測定値A1と単繊維内部最高値A2との比A1/A2が0.83〜0.94である炭素繊維材料である。
【0021】
また、上記した本発明の耐炎化繊維材料は、次の製造方法により好適に製造される。すなわち、アクリル系繊維材料を、アミン化合物を除く有機化合物、フッ素化合物、シロキサン類、硝酸塩、亜硝酸塩のうち1種又は2種以上の化合物存在下で、180〜300℃で耐炎化処理するものである。本発明において、かかるアクリル系繊維材料は、アクリル系繊維束及びアクリル系繊維布帛を含むものである。
【0022】
さらに、上記した本発明の炭素繊維材料は、前記耐炎化繊維材料を不活性雰囲気中、300℃以上2,000℃未満で炭化処理することにより好適に製造される。また、本発明の黒鉛繊維材料は前記炭素繊維材料を不活性雰囲気中、2,000℃以上3,000℃以下で熱処理することにより好適に製造される。
【0023】
【発明の実施の形態】
次に、本発明について、さらに詳しく説明する。
【0024】
本発明でいう耐炎化繊維材料、炭素繊維材料、黒鉛繊維材料には、複数の単繊維が束になった耐炎化繊維束、炭素繊維束及び黒鉛繊維束、並びに複数の単繊維を布帛状に加工した耐炎化繊維布帛、炭素繊維布帛及び黒鉛繊維布帛を含むものである。
【0025】
本発明者等は、耐炎化繊維の繊維内酸素濃度を特定の範囲とすることにより、高性能な耐炎化繊維材料を高効率で得ることができ、また該耐炎化繊維材料から炭素繊維材料を製造する際の効率も向上することを見いだした。
【0026】
また、耐炎化繊維の表面と内部において、酸素含有量の異なる特定の2重構造を有する繊維とすることにより、耐炎化繊維材料から生産される炭素繊維材料の生産性が飛躍的に向上することを見いだした。更には、かかる耐炎化繊維は特定の2重構造を有する炭素繊維を提供することを可能とすることを見いだしたものである。該炭素繊維は表面と内部の結晶化度が異なる2重構造を有するため、炭素繊維自体の強度は維持しつつ、炭素繊維と樹脂との接着性向上を可能としたものである。
【0027】
また、前駆体繊維であるアクリル系繊維材料が、多数の単繊維が集束した高密度な繊維束であったり、或いはかかるアクリル系繊維束が密集した状態で耐炎化処理される場合においても、高効率に耐炎化が進み、その結果高炭素含有率で未閉環部分が少ない構造及び高い引張強度を有する耐炎化繊維材料が安定に得られる製造方法である。
【0028】
つまり、本発明の耐炎化繊維は、元素分析・酸素分析法で測定した繊維内平均酸素濃度(O/C)が0.07〜0.17であることが重要である。より好ましくは0.08〜0.16、更に好ましくは0.1〜1.5であるのが良い。
【0029】
ここで元素分析・酸素分析法で測定した繊維内平均酸素濃度(O/C)とは、酸化進行度の指標であり、繊維内平均酸素濃度が0.07未満であると耐熱性が低くく続く炭化処理ができなくなる場合があり、0.17を超えると酸素含有量が多すぎるため後の続く炭化処理後の収率が低下する場合がある。
【0030】
ここで元素分析・酸素分析法で測定した繊維内平均酸素濃度(O/C)とは、元素分析により測定した炭素量Cと酸素分析により測定した酸素量Oの比O/Cである。
【0031】
元素分析は、有機化合物を高温に加熱して分解し、その成分元素をそれぞれ簡単な無機化合物に変えて、差動熱伝導計に導き定量する方法である。各元素含有量の算出はコンピューターにより自動的に行えるようになっている装置を用いて測定することもできる。例えば、実施例に記載した装置等を使用することができる。
【0032】
酸素分析法は有機化合物を高温に加熱して分解し、すべての酸素を一酸化炭素に変えて、非分散型分光計に導き定量する方法である。例えば、実施例に記載した装置等を使用することができる。
【0033】
尚、アクリル系耐炎化繊維は、ニトリル基が閉環した環化構造を有するが、本発明における耐炎化繊維材料は、繊維内の平均ニトリル基残存率、つまりは環化に関与しないニトリル基の残存率が0〜40%であることが好ましく、より好ましくは0〜35%、更に好ましくは0〜30%である。尚、繊維内の平均のニトリル基残存率が40%を超えると続く炭化処理後の収率が低下することがある。
【0034】
ここで、ニトリル基残存率は、赤外分光分析法を用いて熱処理前後のニトリル基の吸光度比から、例えば後述する方法によって求めることができる。
【0035】
また、本発明の耐炎化繊維は、X線光電子分光法で測定される繊維表面の平均酸素濃度O1とX線光電子分光法で測定される凍結粉砕繊維の平均酸素濃度O2の比O1/O2が1.8〜4.0であることが重要である。かかるO1/O2は1.9〜3.5がより好ましく、2.0〜3.2が更に好ましい。
【0036】
かかる平均酸素濃度の比O1/O2が1.8未満であると、2重構造性が低くいため炭化処理後の収率が低くなり、O1/O2が4.0を超えると、2重構造性が強すぎるために物性が低下する。
【0037】
ここでX線光電子分光法で測定される凍結粉砕繊維の平均酸素濃度O2は実質的に耐炎化繊維の内部酸素濃度を表すものである。かかる凍結粉砕繊維の平均酸素濃度O2は0.03〜0.10であることが好ましく、0.03〜0.09であることがより好ましく、0.03〜0.07であることが更に好ましい。かかる凍結粉砕繊維平均酸素濃度が0.03未満であると耐熱性が低くなり続く炭化処理ができなくなり、0.10を超えると続く炭化処理後の収率が低下する。
【0038】
このように、繊維内部の酸素濃度に比べて繊維表面酸素濃度が高い2重構造を有することにより耐熱性が向上し、続く炭化処理後の収率が向上する。更には後述する2重構造を有する炭素繊維を提供するものである。
【0039】
また、本発明における耐炎化繊維は、単繊維引張強度が好ましくは250〜450MPa、より好ましくは300〜450MPa、更に好ましくは350〜450MPaであるのが良い。
【0040】
本発明の耐炎化繊維の密度は耐炎化処理途上において、1.18〜1.35g/cm、好ましくは1.20〜1.35g/cmであるのが良い。また、耐炎化完了後の耐炎化繊維の密度は、1.35〜1.50g/cmであることが好ましい。耐炎化繊維の密度は耐炎化進行度の指標であり、耐炎化繊維の密度が1.35g/cm未満であると、耐炎化が十分でないため続く炭化処理ができなくなる場合があり、1.50g/cmを超えると、耐炎化が深すぎて物性が低下する場合がある。尚、密度が1.35g/cm未満の繊維であっても、防火服、断熱材、ブレーキパッド等の用途に用いることができる。
【0041】
本発明において、耐炎化繊維、炭素繊維等の原料となる前駆体繊維は、アクリル系共重合体からなるものが好ましい。かかるアクリル系共重合体は、好ましくは85モル%以上、より好ましくは90モル%以上、更に好ましくは94モル%以上のアクリロニトリルと、いわゆる耐炎化促進成分が共重合された共重合体からなるものが好ましい。かかる共重合体を重合する方法としては、特に限定されないが溶液重合法、懸濁重合法、乳化重合法等が適用できる。
【0042】
耐炎化促進成分としては、ビニル基を含有する化合物が好ましい。具体的には、アクリル酸、メタクリル酸、イタコン酸等、より好ましくは、これらの一部又は全量を、アンモニアで中和したアクリル酸、メタクリル酸、又はイタコン酸のアンモニウム塩からなる共重合体が挙げられる。その他、アリルスルホン酸金属塩、メタリルスルホン酸金属塩、アクリル酸エステル、メタクリル酸エステルやアクリルアミドなども共重合できる。
【0043】
紡糸原液としては、上記アクリル系共重合体と共に溶媒として、有機、無機いずれの溶媒も使用できるが、有機溶媒を使用するのが好ましく、具体的には、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
【0044】
紡糸方法としては、特に限定されないが湿式紡糸法、乾湿式紡糸法、乾式紡糸法、溶融紡糸法及びその他公知の方法を用いることができる。好ましくは湿式紡糸法又は乾湿式紡糸法により上述したようなアクリル系共重合体と溶媒からなる紡糸原液を口金から紡出し、凝固浴に導入して繊維を凝固せしめる方法を用いることができる。
【0045】
凝固速度や延伸方法は、目的とする耐炎化繊維材料及び炭素繊維材料の用途に合わせて適宜設定することができる。
【0046】
本発明において、前記凝固浴には、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドなどの溶媒の他に、いわゆる凝固促進成分を含ませることができる。凝固促進成分としては、前記アクリル系共重合体を溶解せず、かつ紡糸原液に用いる溶媒と相溶性があるものが好ましく使用できる。かかる凝固促進成分としては、具体的には、水を使用するのが好ましい。
【0047】
凝固浴の温度及び凝固促進成分の量は目的とする耐炎化繊維材料及び炭素繊維材料の用途に合わせて適宜設定することができる。凝固浴の温度及び凝固促進成分の量を調整することにより凝固速度をコントロールすることができる。
【0048】
凝固浴中に導入して糸条を凝固せしめた後、水洗、延伸、乾燥及び油剤付与等を経て、アクリル系繊維を得ることができる。ここで、凝固後の糸条は、水洗せずに直接延伸浴中で延伸しても良いし、溶媒を水洗除去後に浴中で延伸しても良い。また、油剤付与後、さらにスチームで延伸することもできる。
【0049】
かかる浴中延伸は、通常、30〜98℃に温調された単一又は複数の延伸浴中で行わうことができる。これら水洗浴や延伸浴の浴液は、前述した紡糸原液に用いる溶媒の含有率が、凝固浴液における溶媒の含有率を超えないことが好ましい。
【0050】
浴延伸の後、糸条に油剤を付与する場合は、シリコーン等からなる油剤を付与するのが好ましい。かかるシリコーン油剤は、変性シリコーンであることが好ましく、耐熱性の高いアミノ変性シリコーンを含有するものが更に好ましい。
【0051】
糸条の高密度化による製造コスト低減のため、アクリル系繊維束のフィラメント数は、好ましくは1,000〜3,000,000、より好ましくは12,000〜3,000,000、更に好ましくは24,000〜2,500,000、特に好ましくは36,000〜2,000,000、最も好ましくは48,000〜2,000,000であるのが良い。
【0052】
アクリル系繊維束のフィラメント数は高生産性という観点から1,000以上であることが好ましいが、3,000,000を越えると内部まで均一に耐炎化処理できないことがある。
【0053】
アクリル系繊維の単繊維繊度は、好ましくは0.56〜3.0dtex、より好ましくは0.8〜2.2dtex、更に好ましくは1.0〜1.7dtexであるのが良い。
【0054】
アクリル系繊維の単繊維繊度は高生産性の観点から0.56dtex以上であることが好ましいが、3.0dtexを越えると単繊維内部まで耐炎化処理できないことがある。
【0055】
本発明においては該アクリル系繊維材料を布帛に加工し、後述する方法により耐炎化処理及び炭化処理することもできる。
【0056】
つまり、本発明の耐炎化繊維布帛及び炭素繊維布帛は、後述する方法で得られた耐炎化繊維束及び炭素繊維束を布帛にしてもよいし、前駆体繊維であるアクリル系繊維を布帛にし、後述する方法で耐炎化処理及び炭化処理をすることもできる。アクリル系繊維を布帛にし、耐炎化処理及び炭化処理をする方法は、脆性繊維である耐炎化繊維材料や炭素繊維材料を布帛にする方法に比べ、糸切れなどの工程トラブルが少ないという点で好ましい。
【0057】
ここで布帛とは主に織物、編物、不織布のことであるが、三次元織物、多軸たて編物、レース、組紐、網なども含まれる。中でも織物及び不織布は強度、コスト面に優れるため多種の用途に用いられる。
【0058】
ここで織物とは経糸、緯糸が互いに直角又は場合によっては緯糸が斜めに走行し任意の角度で織り合わさったものでもよい。織組織としては平織、綾織、朱子織等が挙げられる。織物はシャトル織機、レピア織機、エアジェットルーム、ウオータジェットルーム等を用いて製織することができる。織物は多方向の強度に優れるという点で好ましい。従って本発明の耐炎化繊維織物は各種耐炎化、防火用途に用いられ、例えばブレーキパッドとして好ましく用いられる。また、炭素繊維織物は各種繊維強化複合材料の基材として好ましく用いることができる。例えばプリプレグ用の強化繊維基材として用いることもできるし、直接強化繊維材料に含浸させた後加熱硬化する方法、即ち、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法、レジン・インジェクション・モールディング法、レジン・トランスファー・モールディング法等の強化繊維基材としても使用できる。
【0059】
また、編物とは編針を用いて編んだもので経編や緯編等ループを有するものである。
【0060】
不織布とは文字通り「織られていない布」であり、繊維同士を様々な方法で結合させたシート状のものをいう。
【0061】
また不織布の製造方法によって、緻密なものから空隙の多いもの、柔らかいものから硬いもの、厚いものから薄いものまで適宜作ることができる。
【0062】
不織布の製造方法としては湿式、乾式いずれでもよく、スパンボンド、メルトブロー、フラッシュ紡糸、トウ開繊等の方法が好ましく用いることができる。不織布は織布に比べると強度が弱いものの、生産性が高く、労働力、設備コストの負担も少ないという利点があり、強度をそれほど必要としない用途に用いられる。 本発明の耐炎化繊維不織布は各種耐炎化、防火用途に用いられるが、中でもスパッタシートや防炎断熱材として好適に用いられる。また、本発明の炭素繊維不織布は各種電極基材として好適に用いられ、例えばナトリウム−硫黄電池の陽極材料などに好ましく用いられる。
【0063】
本発明の炭素繊維布帛は、比抵抗値が0.6Ω・cm以下が好ましく、0.6Ω・cm以下がより好ましく、0.4Ω・cm以下が更に好ましい。かかる比抵抗値が0.6Ω・cmを超えると、導電性が低すぎるために電極材料に用いることができない。尚、かかる比抵抗値は低いほど好ましいが電極材料に用いる場合には0.5Ω・cm程度であれば十分である。かかる比抵抗値は後述する炭化処理の程度や布帛単位体積当たりの炭素繊維の本数・嵩密度によりコントロールすることができる。
【0064】
本発明の耐炎化繊維材料の製造方法は、アクリル系繊維材料をアミン化合物を除く有機化合物、フッ素化合物、シロキサン類、硝酸塩、亜硝酸塩(以下、耐炎化処理剤と略記)のうち1種又は2種以上の化合物存在下で180〜300℃で耐炎化処理することを特徴とする。
【0065】
ここでいうアクリル系繊維材料とは繊維の形態は特に限定されず、単繊維が束状に集められたアクリル系繊維束でも良いし、布帛状に加工されたアクリル系繊維布帛でも良い。
【0066】
アクリル系繊維材料としてアクリル系繊維束を用いる場合、アクリル系繊維束を耐炎化処理をするに際し、アクリル系繊維束の幅1mm当たりの繊度を、高生産性の観点から、好ましくは1,000〜80,000dtex/mm、より好ましくは10,000〜75,000dtex/mm、更に好ましくは15,000〜70,000dtex/mmとして耐炎化処理するのが良い。アクリル系繊維束の幅1mm当たりの繊度が、かかる範囲より低いと生産性が低下する場合があり、高いと耐炎化処理時に暴走してしまうことがある。
【0067】
ここで、アクリル系繊維束の幅1mm当たりの繊度とは、耐炎化処理導入直前のアクリル系繊維束の繊度を、耐炎化処理導入直前のアクリル系繊維束1糸条の幅で割った値である。尚、アクリル系繊維束1糸条の幅は、走行中の繊維束の駆動を止めて、1糸条の幅をノギスを用いて長手方向に1cm間隔で5点測定し平均し求めることができる。
【0068】
またアクリル系繊維束の単位断面積当たりの繊度を、高生産性の観点から、好ましくは500〜7,500dtex/mm、より好ましくは1,000〜7,300dtex/mm、更に好ましくは2,000〜7,000dtex/mmとして耐炎化処理するのが良い。アクリル系繊維束の単位断面積当たりの繊度が、かかる範囲より低いと生産性が低下する場合があり、高いと耐炎化処理時に暴走してしまうことがある。ここで、アクリル系繊維束の単位断面積当たりの繊度とは、耐炎化処理導入直前のアクリル系繊維束の繊度を、耐炎化処理導入直前のアクリル系繊維束1糸条の断面積で割った値である。尚、アクリル系繊維束1糸条の断面積は走行する糸条の駆動を止めて、一般に知られる光電式の透過率測定器を用い、1糸条の幅方向に5点測定し、それを平均して繊維束厚みを求め、前述の方法で求めた1糸条の幅と掛け合わせたものである。
【0069】
また、耐炎化処理を行う際に、前駆体繊維束であるアクリル系繊維束を実質的に撚りをかけずにいわゆる無撚り状態で処理しても良いし、複数本の前駆体繊維束を合糸し撚りをかけて有撚状態で処理をしても良い。また、かかる有撚繊維の撚りを解く解撚工程を入れても構わない。
【0070】
アクリル系繊維材料としてアクリル系繊維布帛を用いる場合、アクリル系繊維布帛は、1枚で耐炎化処理してもよいが、2枚以上が重なった状態で耐炎化処理しても良い。処理されるアクリル系繊維布帛の単位面積当たりの総重量が20〜2,000g/mであることが好ましく、より好ましくは50〜1,500g/m、更に好ましくは70〜1,000g/mであるのが良い。アクリル系繊維布帛の単位面積当たりの総重量が、かかる範囲より低いと生産性が低下する場合があり、高いと耐炎化処理時に暴走してしまうことがある。
【0071】
耐炎化処理の雰囲気温度は、好ましくは180〜300℃、より好ましくは200〜300℃、更に好ましくは220〜300℃であるのが良い。雰囲気温度が、上記範囲より低いと、耐炎化処理剤の繊維内部への浸透が阻害され、耐炎化処理の効率が低下することがあり、上記範囲より高いと耐炎化処理時に暴走してしまうことがある。
【0072】
前記耐炎化処理剤は蒸発蒸気として耐炎化処理雰囲気中に含ませることができるし、あるいは液相として用いることもできる。ここで「蒸発蒸気」とは、耐炎化処理剤が加熱され、気化して微粒子化した状態を意味し、その一部が凝集したいわゆる湿り蒸気状態であっても良い。
【0073】
また、「蒸発蒸気を含む雰囲気」とは、アミン化合物を除く有機化合物、フッ素化合物、シロキサン類、硝酸塩、亜硝酸塩のうち1種又は2種以上の物質の飽和状態、すなわち100%蒸発蒸気雰囲気でも良いし、任意の割合で蒸発蒸気を含む雰囲気でも良く、例えば微量の空気や酸素等の酸化性ガスや窒素、ヘリウム、アルゴン等の不活性ガスが混合されても良い。
【0074】
本発明においては、耐炎化処理剤の蒸発蒸気を含む雰囲気中又は液相中のいずれか一方で耐炎化処理してもよいし、蒸発蒸気を含む雰囲気中での処理と液相中での処理を適宜組み合わせて処理しても良い。
【0075】
本発明において、耐炎化処理に要する時間は、耐炎化処理の反応速度に応じて決定することができ、好ましくは0.01〜240分、より好ましくは5〜100分、更に好ましくは10〜50分の範囲で適宜設定することができる。また、耐炎化処理の雰囲気圧力は、密閉が困難なため通常、大気圧とするのが好ましいが、加圧雰囲気で処理することにより、耐炎化処理に要する時間を短縮することができる。
【0076】
また、耐炎化処理はいわゆるバッチ処理、連続処理のいずれの方法によっても良いが、生産性の観点から連続処理が好ましい。
【0077】
また耐炎化処理の際、延伸倍率を、繊維方向物性向上の観点から、1.0を超える延伸倍率とすることが好ましく、例えば延伸倍率が1.0〜1.7であることが好ましく、1.1〜1.7であることがより好ましく、更に好ましくは1.3〜1.7であるのが良い。範囲より低いと物性が低下し、高いと耐炎化処理時に糸切れしてしまうことがある。このように安定に高延伸できる理由は、耐炎化処理剤が繊維材料全体に対して均一に伝熱するため、又は耐炎化処理剤がアクリル系繊維を可塑化するためと考えている。
【0078】
本発明で用いるアミン化合物を除く有機化合物の具体例としては、多置換アルキルベンゼン、ナフタレン、アルキルナフタレン、ビフェニル、アルキルビフェニル、水素化トリフェニル等の芳香族化合物、ホルムアミド、アセトアミド、プロピオアミド等のアミド、フェニルメチルケトン、フェニルエチルケトン、フェニルプロピルケトン、ジフェニルケトン等のケトン、フェニルメチルアルコール、フェニルエチルアルコール、フェニルプロピルアルコール等のモノアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のアルキレングリコール、グリセリン等のトリグリコール、ペンタエリトリット等のテトラグリコール以上のポリグリコール、ポリオール化合物又は、エチレングリコールのモノメチル、モノエチル、モノプロピル、モノブチル等のモノアルキルエーテル又は、エチレングリコールのモノフェニル、モノトルイル等のモノアリールエーテル、ジフェニルエーテル、アルキルフェニルエーテル、アルキルアリールエーテル等のエーテル等が挙げられる。
【0079】
また、コハク酸のジメチル、ジエチル、ジプロピル等の脂肪族カルボン酸エステル、安息香酸のメチル、エチル、プロピル、ブチル等のエステル化合物、テレフタル酸のジメチル、ジエチル、ジプロピル等の芳香族カルボン酸ジエステルやエステルグリコールも使用できる。
【0080】
さらに、チオール系化合物、ベンゼンスルホン酸、p−トルエンスルホン酸等のスルホン酸系化合物、ジメチルスルホキシド、ジエチルスルホキシド、メチルエチルスルホキシド等のスルホン化合物、スルフィン化合物、アミンオキシド系化合物、トリフェニルメチルカチオン系化合物、ニトロキシド化合物、ジクロロ−ジシアノベンゾキノン、ナフトキノン、アントラキノン、キノン、ニトロベンゼン、o−ニトロトルエン、m−ニトロトルエン、p−ニトロトルエン、ニトロキシレン、ニトロナフタレン等のニトロ化合物も使用できる。
【0081】
さらに、パラフィン系化合物、シクロパラフィンやそのアルキル置換体であるナフテン系化合物も使用できる。
【0082】
これらは、芳香族炭化水素含む熱媒、アルキルアロマ系熱媒、パラフィン系熱媒、ナフテン系熱媒等、各種有機系熱媒として知られている化合物や混合物も含む。中でも、アルキルベンゼン、アルキルナフタレン、ビフェニル、ジフェニルエーテルなどは熱媒としての使用が知られている。
【0083】
本発明に用いるフッ素化合物としては、パーフルオロポリエーテル系化合物、有機フッ素化合物や塩素置換フッ素化合物、及びポリビニリデンフルオライド化合物などを使用することもできる。
【0084】
パーフルオロポリエーテル化合物は特に限定されないが、熱媒や潤滑剤としての使用が知られているものなどを適宜用いることができる。
【0085】
有機フッ素化合物や塩素置換フッ素化合物は特に限定されないが、溶剤としての使用が知られているものなどを適宜用いることができる。
【0086】
ポリビニリデンフルオライド化合物は特に限定されないが、潤滑剤としての使用が知られているものなど適宜用いることができる。
【0087】
本発明に用いるシロキサン類としては種々のものを用いることができるが、中でもフェニルシリコーン系化合物などシリコーンとして知られる有機ポリシロキサン類は好適である。これらは、シリコーン系潤滑剤やシリコーン系熱媒として知られるものも含む。
【0088】
本発明においては硝酸カリウム、亜硝酸ナトリウム、硝酸ナトリウム及びそれらの混合物など、各種硝酸塩、亜硝酸塩も耐炎化剤として用いることができる。これらは、無機系熱媒として知られているものも含む。
【0089】
なお、本発明においては、上記したような耐炎化処理剤を2種以上混合して用いても良い。中でも、蒸発蒸気の耐熱性の観点から、芳香族化合物を用いることが好ましく、芳香族炭化水素及び/又は芳香族エーテルを用いるのが更に好ましい。
【0090】
また、耐炎化処理剤は、その一部又は全部がいわゆる酸化性化合物であると、耐炎化処理の効率が高まり好ましい。ここで、酸化性化合物とは、水素受容性或いは酸素放出性のある有機化合物をいう。例えば、スルホン化合物、スルフィン化合物、キノン、ニトロ化合物等が挙げられる。更に具体的には、「実験化学講座23、有機合成4、酸化反応」(出版社:丸善)の第6章第299頁に記載されている、ジメチルスルホキシド、テトラクロロー1,2−ベンゾキノン、ニトロベンゼン等を挙げることができる。
【0091】
これら化合物と、アクリル系繊維との親和性が強すぎることにより、繊維の溶解や糸切れが生じる場合には、アクリル系繊維の重合体骨格の一部にエチレンジメタクリレートのような3次元架橋成分を導入したり、酸化処理、紫外線処理、電子線処理等を利用して重合体成分の一部又は全部を架橋することもできる。
【0092】
本発明では、耐炎化処理後に繊維に付着している有機化合物や反応生成物は、乾燥することにより除去することができる。また、メチルアルコール、エチルアルコール、アセトン、ジメチルスルホキシド、N,Nージメチルホルムアミド、ポリエチレングリコール等の有機溶媒やそれら有機溶媒と水とを組み合わせることによって洗浄除去できる。或いは、任意の界面活性剤と水によっても洗浄除去できる。有機溶媒に溶解しない硝酸カリウム、亜硝酸ナトリウム、硝酸ナトリウムなどの化合物に関してはそれらを溶解する溶媒を用いて洗浄除去できる。
【0093】
前記洗浄の際にローラー、ガイド、ニップローラー、超音波といった物理的手法をあわせて使用することにより洗浄効率が向上する。
【0094】
本発明において、前記耐炎化処理は、実質的に酸素が存在しない環境、即ち、酸素による酸化反応が生じない程度まで酸素量を減少させた環境で行うことも可能である。
【0095】
あるいは得られる耐炎化繊維の耐熱性を向上させるため、又は、炭素繊維の物性を高めるために、前記耐炎化処理前又は前記耐炎化処理の後の繊維材料を、酸化性雰囲気中、好ましくは0〜400℃、より好ましくは100〜350℃、更に好ましくは180〜300℃で酸化処理することもできる。
【0096】
ここにいう酸化処理とは、例えば、加熱空気処理のことをいい、酸化処理の所要時間は、0.01〜60分の間とするのが好ましく、0.01〜30分の間とするのがより好ましく、0.01〜10分の間とするのが更に好ましい。かかる範囲から外れると、工程通過性が低下し、収率や得られる耐炎化繊維材料の品位が低下することがある。
【0097】
この場合、耐炎化処理と酸化処理の工程は、不連続でも連続でも構わないが、連続で処理することが生産性の点から好ましい。
【0098】
また、前記耐炎化処理中に同時に、酸化性気体を吹き込んだり、微分散させることにより180〜300℃で酸化処理することもできる。この場合、耐炎化と酸化を同時に行うことができ、工程を短縮できる点で好ましい。ここでいう酸化性気体には酸素、酸化窒素などを用いることができる。
【0099】
アクリル系繊維材料としてアクリル系繊維束を用いる場合は、酸化処理時の繊維束の幅1mm当たりの繊度を、好ましくは1,000〜80,000dtex/mm、より好ましくは10,000〜75,000dtex/mm、更に好ましくは15,000〜75,000dtex/mmとするのが良く、範囲より低いと生産性が低下し、高いと酸化処理時に暴走してしまうことがある。
【0100】
また酸化処理時の繊維束の単位断面積当たりの処理繊維重量は、高生産性の観点から、好ましくは500〜7,500dtex/mm、より好ましくは1,000〜7,500dtex/mm、更に好ましくは2,000〜7,500dtex/mmであるのが良く、範囲より低いと生産性が低下し、高いと酸化処理時に暴走してしまうことがある。
【0101】
またアクリル系繊維布帛は、1枚でも処理できるが、2枚以上が重なった状態でも良く、その単位面積当たりの総重量が、20〜2,000g/m、より好ましくは50〜1,500g/m、更に好ましくは70〜1,000g/mであるのが良く、範囲より低いと生産性が低下し、高いと酸化処理時に暴走してしまうことがある。
【0102】
本発明の炭素繊維材料は前記耐炎化繊維材料を、不活性雰囲気中、好ましくは300℃以上、2,000℃未満、より好ましくは800〜2,000℃、更に好ましくは1,000〜1,800℃、特に好ましくは1,200〜1,800℃で炭化処理することによって得ることができる。
【0103】
本発明の耐炎化繊維材料を用いることによって、前記炭化処理時の収率(以下、炭化収率と略する)は50%以上とすることが可能である。炭化収率の値が大きくなるほど、生産性が高くなり、低コストで炭素繊維材料を提供できる。また、本発明の耐炎化繊維材料は、炭化処理を施したときの炭化収率を50〜65%、更には55〜65%に高めることができる。また、不活性雰囲気中で、かつ1350℃で炭化処理したときの炭化収率が50〜65%であることが好ましく、52〜65%であることが更に好ましく、54〜65%であることが特に好ましい。
【0104】
本発明の炭素繊維材料は単繊維断面を電界放出型電子顕微鏡を用いて、電子エネルギー損失分光法で測定して得られるπ*/σ*の最表面測定値A1と単繊維内部最高値A2との比A1/A2が通常0.83〜0.94、好ましくは0.85〜0.93、より好ましくは0.87〜0.92の特性を有する。
【0105】
ここでπ*/σ*は結晶化度を表し、この値が大きいほど結晶化度が高い。つまり、本発明の炭素繊維材料は単繊維表面の結晶化度が単繊維内部の結晶化度に比して小さいことを表す。かかる構造を有することにより、単繊維最表面の結晶化度が低いために、樹脂との弾性率の差が小さくなり、樹脂との接着強度が向上する。
【0106】
また、本発明の炭素繊維材料は、広角X線回折で測定した結晶配向度π002が75〜99%であることが好ましく、80〜97%であることがより好ましい。
【0107】
この結晶配向度は広角X線回折法により求められる。X線はCuKαを用い、CuKβはニッケルフィルターによって除く。2θ=26°近傍の面指数(002)に対応した結晶ピークを円周方向にスキャンして得られる強度分布半値幅Hから次の式により計算し求めることができる。
結晶配向度π002=(180−H)/180
かかる結晶配向度が75%に満たないと物性が低下してしまう場合がある。
【0108】
また、かかる炭素繊維材料を、さらに不活性雰囲気中、2,000〜3,000℃で加熱することによって、より優れた強度特性を備えた黒鉛繊維材料とすることもできる。
【0109】
得られた炭素繊維材料、黒鉛繊維材料はその表面改質のため、電解処理することができる。電解処理に用いる電解液には、硫酸、硝酸、塩酸等の酸性溶液や、水酸化ナトリウム、水酸化カリウム、テトラエチルアンモニウムヒドロキシドといったアルカリ又はそれらの塩を水溶液として使用することができる。ここで、電解処理に要する電気量は、適用する炭素繊維材料、黒鉛繊維材料により適宜選択することができる。
【0110】
かかる電解処理により、得られる複合材料において炭素繊維材料、黒鉛繊維材料とマトリックスとの接着性が適正化でき、接着が強すぎることによる複合材料のブリトルな破壊や、繊維方向の引張強度が低下する問題や、繊維方向における引張強度は高いものの、樹脂との接着性に劣り、非繊維方向における強度特性が発現しないといった問題が解消され、得られる複合材料において、繊維方向と非繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。
【0111】
この後、得られる炭素繊維材料に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、使用する樹脂の種類応じて、樹脂との相溶性の良いサイジング剤を適宜選択することができる。
【0112】
【実施例】
以下、実施例を用いて、本発明をより具体的に説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0113】
実施例では、各物性値は以下の方法により測定した。
<耐炎化繊維材料の繊維内平均酸素濃度>
耐炎化繊維材料の繊維内平均酸素濃度は、元素分析により測定した炭素量Cと酸素分析により測定した酸素量Oの比O/Cとして求めた。
【0114】
試料である耐炎化繊維材料は測定前に真空中40℃で5時間乾燥処理をした。
【0115】
元素分析には、柳本分析工業社製、全自動元素分析装置varioELを使用し、試料分解炉温度950℃、還元炉温度500℃の条件で炭素、水素、窒素を測定した。
【0116】
酸素分析には、シーベル ヘグナー社製、HERAEUS CHN−O RAPID全自動分析装置、検出器に非分散型分光計(Binos)を使用し、試料分解炉温度1140℃、分留管温度1140℃の条件で酸素を測定した。
<ニトリル基の残存率>
耐炎化繊維材料におけるニトリル基の残存率は、アクリル系共重合体(前駆体繊維材料)のニトリル基の吸収バンド強度に対する耐炎化繊維材料のニトリル基の吸収バンドの強度比を赤外分光法により測定することで求めた。以下に測定手順の一例を示す。
1.赤外分光法用錠剤の作成
測定するアクリル系共重合体及び熱処理(耐炎化処理)によって得られた耐炎化繊維材料を液体窒素により凍結後、粉砕してそれぞれ粉末試料A及び粉末試料A’とした。また、KBr1g、フェロシアン化カリウム10mgを混合して粉末試料Bを調整した。
【0117】
かかる粉末試料を乳鉢ですりつぶしながら以下の配合比で混合して混合粉末とし、さらにプレスを用いてそれぞれ赤外分光法用錠剤を作製した。
【0118】
熱処理前試料:粉末試料A 2mg、粉末試料B10mg、KBr300mg
熱処理後試料:粉末試料A’2mg、粉末試料B10mg、KBr300mg
2.ニトリル基残存率の測定
前記赤外分光法用錠剤について、フェロシアン化カリウムの2050cm−1バンドと、ニトリル基の2250cm−1バンドの吸光度比D2250/D2050を測定した。
【0119】
吸光度比の平均値(n=3)をとり、次式よりニトリル基の残存率を求めた。
【0120】
ニトリル基残存率=熱処理後試料の吸光度比/熱処理前試料の吸光度比×100%
本実施例では、赤外分光器として、Perkin Elmer社製、Paragon1000型を用いた。
<耐炎化繊維表面の平均酸素濃度>
耐炎化繊維表面の平均酸素濃度O1は、X線光電子分光法により求めた。以下に手順の一例を示す。先ず、測定する耐炎化繊維材料を適当な長さにカットしてステンレス製の試料支持台上に拡げて並べた後、下記条件にて測定した。
【0121】
・光電子脱出角度:35度
・X線源:AlKα1,2(1486.6eV)
・試料チャンバー内真空度:1×10−8Torr
次に、測定時の帯電に伴うピークの補正のため、C1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせた。
【0122】
次いで、C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積[O1s]は、528〜540eVの範囲で直線のベースラインを引くことにより求めた。
【0123】
繊維表面の酸素濃度O1は、上記O1sピーク面積[O1s]、C1sピーク面積[C1s]の比、及び装置固有の感度補正値より、次式により求めた。
【0124】
O1=([O1s]/[C1s])/(感度補正値k)
なお、本実施例では、測定装置として米国SSI社製モデルSSX−100−206を用いた。この装置固有のC1sピーク面積に対するO1sピーク面積の感度補正値kは2.73であった。
<凍結粉砕繊維の平均酸素濃度>
測定する耐炎化繊維材料を液体窒素により凍結後、粉砕した試料を用い、上記測定方法により、その平均酸素濃度O2を求めた。
【0125】
O2=([O1s]/[C1s])/(感度補正値k)
<炭素繊維材料の結晶化度>
炭素繊維材料の結晶化度の指標として、π*/σ*を電界放出型電子顕微鏡を用いた電子エネルギー損失分光法により測定した。π*は285eV、σ*は293〜295eVのピーク強度から求めた。
【0126】
尚、本実施例では電界放出型電子顕微鏡としてHITACHI社製、HF−2210を用いた。測定条件は加速電圧200kV、試料吸収電流10−9A、計測時間60秒、ビーム径1nmφとし、炭素繊維材料の単繊維断面の最表面から中心まで数点を測定した。
<結晶配向度π002>
炭素繊維材料の結晶配向度π002は広角X線回折法により求めた。NiフィルターによりCuKβ線を除去したX線源CuKα線を用いて、2θ=26°近傍の面指数(002)に対応した結晶ピークを円周方向にスキャンして得られる強度分布半値幅Hから次の式により結晶配向度π002を計算した。
【0127】
結晶配向度π002=(180−H)/180
本実施例では、測定・分析装置として、4036A2型X線回折装置、ゴニオメータ、計数記録装置RAD−C型(いずれも理学電機(株)製)を使用した。
【0128】
他の条件は下記の通りとした。
【0129】
管電圧:40kV
管電流:20mA
<単繊維接着強度>
単繊維包埋樹脂試験片に繊維軸方向に引張力を与え、歪みを10%生じさせた後、光学顕微鏡により試験片中心部20mmの範囲における繊維破断数nを測定した。これにより平均破断繊維長lをl=20/nとして求めた。
【0130】
繊維・樹脂界面の接着強度τはτ=σ・d/2lcにより求めた。ここで、lcは臨界繊維長であり、平均破断繊維長lからlc=4l/3により求めたものである。またσは臨界繊維長での単繊維強度、dは繊維の直径である。
【0131】
尚、ここでは単繊維包埋用樹脂として、ビスフェノールA型エポキシ樹脂化合物エピコート(登録商標)828(ジャパンエポキシレジン(株)製)/ヒマ脂油変性ヘロキシ505(ジャパンエポキシレジン(株)製)/n−アミノエチルピペラジン=15部:15部:4.9部をよく混合したものを用いた。
【0132】
次に、厚さ2mm、巾10mm、長さ150mmのテフロン(登録商標)製枠の長手方向に炭素繊維単繊維を、上記混合液を枠中に含浸し、室温で約12時間、前硬化した後、100℃で120分間加熱、後硬化して単繊維包埋樹脂試験片を作製した。
<耐炎化繊維の単繊維引張強度>
四角形状の5mm幅のスリット孔を設けた紙製カードを準備し、単繊維を前記スリット孔に渡し、両端部を仮止めして、さらに瞬間接着剤を塗布した同カードの断片で、単繊維がカードから浮き上がらないようにしっかりと固定する。単繊維を固定したカードを引張試験機に取りつけ、単繊維を切らないようにカードのスリット孔の両側を切り、カード全体を水に浸漬した後、歪速度1%/分で引張試験を行った(測定サンプル数:50本以上)。
<炭素繊維束、黒鉛繊維束の引張強度及び引張弾性率>
炭素繊維束、黒鉛繊維束の引張強度及び引張弾性率はJIS R7601に従って測定した。なお、引張試験片は、次の樹脂組成物を炭素繊維束に含浸し、130℃、35分の条件で加熱硬化させて作成した。
【0133】
樹脂組成:3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキサン−カルボキシレート(100重量部)/3フッ化ホウ素モノエチルアミン(3重量部)/アセトン(4重量部)
<比抵抗値の測定>
炭素繊維布帛を2枚の銅板で挟み、布帛を圧縮しながら電気抵抗値を測定する。電気抵抗値は布帛を圧縮することにより減少するが、ある厚みより薄くなると一定となる。一定となったときの電気抵抗値と、マイクロメーターで測定したそのときの試料厚みを用い、次の式により比抵抗値を計算した。
比抵抗値(Ω・cm)=電気抵抗値(Ω)×試料断面積(cm)/試料厚み(cm)
[実施例1]
アクリロニトリル99.5モル%とイタコン酸0.5モル%からなる共重合体をジメチルスルホキシドを溶媒とする溶液重合法により重合し、さらにアンモニアガスをpHが8.5になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をアクリル系共重合体に導入し、共重合成分の含有率が22%の紡糸原液を得た。
【0134】
この紡糸原液を、40℃で、直径0.15mm、孔数700,000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条とした。
【0135】
この凝固糸条を、常法により水洗した後、温水中で3.5倍に延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与して延伸糸を得た。
【0136】
この延伸糸を、180℃の加熱ローラーを用いて、乾燥緻密化処理を行い、 29.4MPaの加圧スチーム中で、延伸することにより、製糸全延伸倍率が13倍、単繊維繊度0.9dtex、フィラメント数700,000のアクリル系繊維束を得た。
【0137】
かかるアクリル系繊維束の幅1mm当たりの繊度を30,000dtex/mm、アクリル系繊維束の単位断面積当たりの繊度を4,000dtex/mmとし、実質的に撚りを付与せずに、1.5倍に延伸しつつ、ジエチレングリコールの蒸発蒸気雰囲気中、244℃で30分間の耐炎化処理した。繊維束内温度は260℃までしか上昇せず、安定に耐炎化繊維束を得た。
【0138】
この耐炎化繊維束を、繊維束の幅1mm当たりの繊度を30,000dtex/mm、繊維束の単位断面積当たりの繊度を4,000dtex/mmとし、空気中、300℃で5分間、酸化処理し、次に不活性雰囲気中、1.04倍に延伸しつつ300〜800℃で予備炭化し、次いで不活性雰囲気中、1,400℃で炭化処理した。
【0139】
この後、硫酸水溶液中で、10クーロン/g(g:炭素繊維の重量)の陽極酸化処理を行った。この結果、良好な特性を有する炭素繊維束が得られた。
【0140】
得られた炭素繊維束を、さらに不活性雰囲気中、2,000℃で黒鉛化処理した後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行った。この結果、良好な強度特性を有する黒鉛繊維束が得られた。
[実施例2]
耐炎化処理する際のアクリル系繊維束の幅1mm当たりの繊度及び空気中で酸化処理する際の繊維束の幅1mm当たりの繊度をともに75,000dtex/mmとし、耐炎化処理する際のアクリル系繊維束の単位断面積当たりの繊度及び酸化処理する際の単位断面積当たりの繊度をともに7,300dtex/mmに変えた以外は実施例1と同様にして、耐炎化繊維束、炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は275℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束及び炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[実施例3]
耐炎化処理する際のアクリル系繊維束の幅1mm当たりの繊度及び空気中で酸化処理する際の繊維束の幅1mm当たりの繊度をともに10,000dtex/mmとし、耐炎化処理する際のアクリル系繊維束の単位断面積当たりの繊度及び酸化処理する際の単位断面積当たりの繊度をともに1,500dtex/mmに変えた以外は実施例1と同様にして、耐炎化繊維束、炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は250℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[実施例4]
実施例1と同様の方法で得られたアクリル系繊維束を、耐炎化処理するに際して、アクリル系繊維束の幅1mm当たりの繊度を90,000dtex/mmとし、また、アクリル系繊維束の単位断面積当たりの繊度を8,000dtex/mmとし、実質的に撚りを付与せずに、1.5倍に延伸しつつ、ジエチレングリコールの液相雰囲気中、220℃で耐炎化処理した。実施例1と同等の比重になるまでに50分を要したものの、引き続き、実施例1と同様の処理を行ったところ、良好な特性を示す耐炎化繊維束、炭素繊維束及び黒鉛繊維束が得られた。
[実施例5]
耐炎化処理する際の延伸倍率を1.15倍に変えた以外は実施例1と同様にして、耐炎化繊維束及び炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は265℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[実施例6]
耐炎化処理する際の延伸倍率を0.95倍に変えた以外は実施例1と同様にして、耐炎化繊維束及び炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は263℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は若干物性が低下していたものの、他の特性は良好であった。
[実施例7]
耐炎化処理剤をジエチレングリコールとニトロベンゼンの1対1混合液とした以外は実施例1と同様にして、耐炎化繊維束及び炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は263℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[実施例8]
耐炎化処理剤をジエチレングリコールとニトロベンゼンの1対1混合液とした以外は実施例2と同様にして、耐炎化繊維束、炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は277℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[実施例9]
耐炎化処理剤をパーフルオロポリエーテルとした以外は実施例1と同様にして、耐炎化繊維束、炭素繊維束及び黒鉛繊維束を得た。耐炎化処理時の繊維束内温度は273℃までしか上昇せず、安定に耐炎化繊維束を得た。得られた耐炎化繊維束、炭素繊維束及び黒鉛繊維束は良好な特性を示した。
[比較例1]
耐炎化処理する際の雰囲気を空気に、温度を200℃に変えた以外は実施例6と同様にして耐炎化処理を行った。実施例6と同等の比重になるまでに300分を要した。続く炭化処理、黒鉛化処理を行い、炭素繊維束及び黒鉛繊維束を得たものの物性は低いものであった。
[比較例2]
耐炎化処理する際の雰囲気を空気に、温度を210℃に変えた以外は実施例2と同様にして耐炎化処理を行った。実施例2と同等の比重になるまでに240分を要した。続く炭化処理、黒鉛化処理を行い、炭素繊維束及び黒鉛繊維束を得たものの物性は低いものであった。
【0141】
実施例1〜9及び比較例1、2の耐炎化処理方法を表1に、得られた耐炎化繊維、炭素繊維、黒鉛繊維の特性を表2、3にまとめて示す。表1〜3に示す通り、本発明の耐炎化繊維、炭素繊維、黒鉛繊維は良好な特性を示した。
【0142】
【表1】

Figure 2004003043
【0143】
【表2】
Figure 2004003043
【0144】
【表3】
Figure 2004003043
【0145】
[実施例10]
アクリロニトリル99.5モル%とイタコン酸0.5モル%からなる共重合体をジメチルスルホキシドを溶媒とする溶液重合法により重合し、さらにアンモニアガスをpHが8.5になるまで吹き込み、イタコン酸を中和しつつ、アンモニウム基をアクリル系共重合体に導入し、共重合成分の含有率が22%の紡糸原液を得た。
【0146】
この紡糸原液を、40℃で、直径0.15mm、孔数6、000の紡糸口金を用い、一旦空気中に吐出し、約4mmの空間を通過させた後、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条とした。
【0147】
この凝固糸条を、常法により水洗した後、温水中で3.5倍に延伸し、さらにアミノ変性シリコーン系シリコーン油剤を付与して延伸糸を得た。
【0148】
この延伸糸を、180℃の加熱ローラーを用いて、乾燥緻密化処理を行い、29.4MPaの加圧スチーム中で、延伸することにより、製糸全延伸倍率が13倍、単繊維繊度0.9dtex、単繊維本数24、000本のアクリル系繊維束を得た。
【0149】
かかるアクリル系繊維束の幅1mm当たりの繊度を20,000dtex/mm、アクリル系繊維束の単位断面積当たりの繊度を3,000dtex/mmとし、実質的に撚りを付与せずに1.5倍に延伸しつつ、ジエチレングリコールの蒸発蒸気雰囲気中、244℃で30分耐炎化処理し、良好な特性を有する耐炎化繊維束を得た。
【0150】
この耐炎化繊維束を、耐炎化処理と同様に、アクリル系繊維束の幅1mm当たりの繊度を20,000dtex/mm、アクリル系繊維束の単位断面積当たりの繊度を3,000dtex/mmとし、実質的に撚りを付与せずに、空気中、300℃で5分間処理し、次に不活性雰囲気中、1.04倍に延伸しつつ300〜800℃で予備炭化し、次いで不活性雰囲気中、1、400℃で炭化処理した。
【0151】
この後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行った。この結果、良好な特性を有する炭素繊維束が得られた。
【0152】
得られた炭素繊維束を、さらに不活性雰囲気中、2、000℃で黒鉛化処理した後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行った。この結果、良好な特性を有する黒鉛繊維束が得られた。
[実施例11]
ジエチレングリコールでの耐炎化処理を液相中に変えた以外は実施例9と同様にして、耐炎化繊維束、炭素繊維束および黒鉛繊維束を得た。得られた耐炎化繊維束、炭素繊維束および黒鉛繊維束は良好な特性を示した。
[実施例12]
ジエチレングリコールでの耐炎化処理時の延伸倍率を、1.15倍に変えた以外は実施例9と同様にして、耐炎化繊維束、炭素繊維束、および黒鉛繊維束を得た。得られた耐炎化繊維束、炭素繊維束および黒鉛繊維束は良好な特性を示した。
[実施例13]
耐炎化処理をジエチレングリコールとニトロベンゼンの1対1混合液で行った以外は実施例9と同様にして、耐炎化繊維束、炭素繊維束、および黒鉛繊維束を得た。得られた耐炎化繊維束、炭素繊維束および黒鉛繊維束は良好な特性を示した。
[実施例14、15]
被処理繊維束のフィラメント数を、表1に示すように種々変えた以外は実施例12と同様にして耐炎化繊維束、炭素繊維束及び黒鉛繊維束を得た。得られた耐炎化繊維束、炭素繊維束、及び黒鉛繊維は良好な特性を示した。
[実施例16]
耐炎化処理をパーフロロポリエーテルの液相中で行った以外は実施例9と同様にして、耐炎化繊維束、炭素繊維束、及び黒鉛繊維を得た。得られた耐炎化繊維束、炭素繊維束、及び黒鉛繊維束は良好な特性を示した。
[実施例17]
耐炎化処理での延伸を0.9倍に変えた以外は実施例9と同様にして、耐炎化繊維束、炭素繊維束、及び黒鉛繊維束を得た。得られた耐炎化繊維束の単繊維引張強度は実施例9に比べるとやや低いものであった。また、得られた炭素繊維の結晶配向度π002はやや低く、弾性率はやや低いものであった。
[比較例3]
実施例9で得られたアクリル系繊維束を、アクリル系繊維束の幅1mm当たりの繊度を20,000dtex/mm、アクリル系繊維束の単位断面積当たりの繊度を3,000dtex/mmとし、実質的に撚りを付与せずに、0.9倍に延伸しつつ、大気圧1013hPaの空気中、260℃で耐炎化処理して、耐炎化繊維束を得た。得られた耐炎化繊維のニトリル基残存率は低く、O1/O2は低かった。
【0153】
耐炎化処理後、不活性雰囲気中、1.04倍に延伸しながら、300〜800℃で予備炭化し、さらに温度1、400℃で炭化処理した。炭化処理後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行い炭素繊維束を得た。このときの炭化収率はやや低いものであった。得られた炭素繊維のA1/A2は高く、接着強度は低いものであった。
【0154】
得られた炭素繊維束を、さらに不活性雰囲気中、2、000℃で黒鉛化処理した後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行い、黒鉛繊維束を得た。
[比較例4]
フィラメント数を変えた以外は比較例3と同様にして耐炎化処理を行ったが、耐炎化処理時の内部蓄熱のため、糸切れが生じた。
【0155】
実施例10〜17及び比較例3、4の耐炎化処理方法を表4に、得られた耐炎化繊維、炭素繊維、黒鉛繊維の特性を表5、6にまとめて示す。
【0156】
【表4】
Figure 2004003043
【0157】
【表5】
Figure 2004003043
【0158】
【表6】
Figure 2004003043
【0159】
[実施例18]
実施例1と同様の方法で得られたアクリル系繊維を、エアジェット製織機を用いて、単位面積当たりの重量が200g/mの織物を作製した。このアクリル系繊維織物を4枚重ねて単位面積当たりの総重量が800g/mとしたものを、ジエチレングリコールの蒸発蒸気雰囲気中、244℃で30分耐炎化処理し、次に空気中、300℃で5分間処理し、耐炎化繊維織物を得た。この耐炎化繊維織物を、不活性雰囲気中、300〜800℃で予備炭化し、次いで不活性雰囲気中、1、400℃で炭化処理し、炭化収率54%で炭素繊維織物を得た。この後、硫酸水溶液中で、10クーロン/gの陽極酸化処理を行った。この結果、良好な特性を有する炭素繊維織物が得られた。
[実施例19]
実施例1で得られたアクリル系繊維を、よこ編機を用いて単位面積当たりの重量が200g/mの平編編物を作製した。このアクリル系繊維編物を4枚重ねて単位面積当たりの総重量が800g/mとしたものを、実施例17と同様の条件で耐炎化処理をしたところ、耐炎化繊維編物を得た。この耐炎化繊維編物を実施例17と同様の条件で炭化処理したところ、炭化収率54%で炭素繊維編物を得た。
[実施例20]
実施例1で得られたアクリル系繊維に倦縮処理を施し、切断長50mmのステープルファイバーを得た。このステープルファイバーを用い、公知の方法でウエッブを作製しこれを積層し、ニードルパンチングして、200g/mのアクリル系繊維不織布を作製した。このときのアクリル系繊維の投入量に対して、得られた不織布の収率は98%であった。このアクリル系繊維不織布を4枚重ねて単位面積当たりの総重量が800g/mとしたものを、実施例17と同様の条件で耐炎化処理をしたところ、耐炎化繊維不織布を得た。この耐炎化繊維不織布を実施例17と同様の条件で炭化処理したところ、炭化収率55%で炭素繊維不織布を得た。
[比較例5]
実施例17で得られたアクリル系繊維織物を4枚重ねて単位面積当たりの総重量が800g/mとしたものを、空気雰囲気中、220℃で加熱したところ、発火せずに耐炎化することができたが、密度が1.35g/cmを超えるまでに約200分を要した。得られた耐炎化繊維織物を、実施例17と同様の条件で炭化処理したところ、炭化収率47%で炭素繊維織物を得た。
[比較例6]
実施例1で得られたアクリル系繊維を、空気雰囲気中、240℃で加熱し120分後に密度1.35g/cmである耐炎化繊維を得た。この耐炎化繊維を用いて、実施例19と同様の条件で不織布の作製を行ったところ、耐炎化繊維の粉体化が顕著であり、耐炎化繊維の投入量に対して、得られた不織布の収率は70%と低いものであった。得られた耐炎化繊維不織布を、実施例17と同様の条件で炭化処理したところ、炭化収率50%で炭素繊維不織布を得た。
【0160】
実施例18〜20及び比較例5、6で得られた耐炎化繊維布帛の特性を表7に、炭素繊維布帛の特性を表8にまとめて示す。
【0161】
【表7】
Figure 2004003043
【0162】
【表8】
Figure 2004003043
【0163】
【発明の効果】
本発明によれば、アクリル系繊維の耐炎化処理の際、多数の単繊維が集束してなる高密度の糸条又は布帛において蓄熱され易い環化や酸化時に発生する反応熱を蒸発蒸気又は液の伝熱により効率的に除熱でき、その結果、非常に高効率に耐炎化繊維及び耐炎化繊維布帛を製造することができ、更には炭素繊維や黒鉛繊維を安定に製造することができる。
【0164】
本発明の耐炎化繊維は、耐熱性に優れ、高い引張強度を有する。また本発明の耐炎化繊維布帛は、耐熱性、機械強度に優れる。従って、本発明の耐炎化繊維及び耐炎化繊維布帛は例えば防火布、消火布、耐火カーテン、防火作業着、防災用品、耐熱充填材、摩擦材、クッション材、スパッタシート、航空機等で用いられるファイヤーブロッキングシート、セメント補強繊維などの用途に好適に使用できる。
【0165】
更には本発明の耐炎化繊維は、炭素繊維の前駆体繊維として好適に使用でき、2重構造を有する炭素繊維を提供することができる。また、耐熱性、品位に優れるため該耐炎化繊維を前駆体繊維とすることで炭化工程での収率を50〜65%、更には55〜65%に高めることができる。
【0166】
本発明の炭素繊維は、2重構造を有し、繊維方向の強度とともに、樹脂との接着性にも優れるため、繊維方向はもちろんのこと、非繊維方向の強度に優れた繊維強化複合材料の強化繊維として好適に使用できる。具体的には、ゴルフシャフト、釣竿ロッド、ラケット及びホッケースティックなどの各種スポーツ・レジャー用品、航空機用一次及び二次構造材、耐震土木補強用途、自動車、船舶などの運輸機械用途、ならびに風車、音響機器用スピーカーコーンなどの一般産業用途等に使用できる。
【0167】
また、炭素繊維布帛は優れた電気特性と機械強度を備えているため、携帯電話やパソコン筐体等の電子機器部品、燃料電池用の電極基材等、電力貯蔵などに利用される二次電池用電極材料として有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oxidized fiber material, a carbon fiber material, a graphite fiber material, and a method for producing the same. More specifically, the present invention relates to a high-performance flame-resistant fiber material, a carbon fiber material, and a graphite fiber material, and further relates to a stable and highly efficient method for producing a flame-resistant fiber material, a carbon fiber material, and a graphite fiber material.
[0002]
[Prior art]
Flame-resistant fibers are widely used in applications requiring heat resistance because of their excellent flame retardancy. As a form, it is often used in the form of a cloth, and is used as a spatter sheet for protecting the human body from high-heat iron powder or welding sparks scattered during welding work and the like, as well as flameproof insulation materials for aircraft and the like. .
[0003]
In addition, carbon fibers obtained by heat-treating oxidized fibers at a high temperature in an inert gas atmosphere can be used in various applications, such as aircraft and rockets, due to their mechanical, chemical, electrical properties, and lightness. It is widely used in aerospace materials for space, sports equipment such as tennis rackets, golf shafts, fishing rods, etc., and is about to be used in the field of transportation machinery such as ships and automobiles.
[0004]
In these applications, carbon fibers are often used in combination with various resins as reinforcing fibers of fiber-reinforced composite materials. Therefore, it has been required to improve not only the strength of the carbon fiber in the fiber direction but also the strength in the non-fiber direction such as adhesiveness to a resin.
[0005]
Therefore, attempts have been made to improve the adhesiveness between the carbon fiber and the resin, for example, by electrolytically treating the surface of the carbon fiber. However, in such a method, the strength in the fiber direction is sacrificed if a certain or more treatment is performed. Therefore, the effect was insufficient, and it was difficult to achieve both the fiber direction strength and the non-fiber direction strength.
[0006]
Carbon fiber fabrics are used for secondary batteries, such as anodes of sodium-sulfur batteries used for power storage and the like, by utilizing their electrical characteristics. In such applications, characteristics such as electrical conductivity and chemical stability are required.
[0007]
While such high performance is required, it is desired to improve productivity and provide flame-retardant fiber, carbon fiber, flame-retardant fiber cloth, and carbon fiber cloth at low cost as applications expand. It is rare.
[0008]
Generally, as the flame-resistant fiber, an acrylic flame-resistant fiber obtained by heat-treating an acrylic fiber as a precursor fiber is known. The flame-resistant treatment for producing such an acrylic flame-resistant fiber is performed by oxidizing a polymer chain of the acrylic fiber and cyclizing a nitrile group bonded to the polymer chain. By promoting the oxidation and cyclization in this manner, the heat resistance of the fiber is increased, and a flame-resistant fiber that can be used in flame-retardant applications and the like can be obtained. In addition, the purpose of the oxidation treatment is to convert the fibers into fibers having a stable structure that can withstand heat treatment at a high temperature in the carbonization step.
[0009]
Such a flame-proofing reaction is an exothermic reaction accompanied by a large amount of heat generated by the oxidation and cyclization reaction of the polymer chain, and the heating temperature is increased to increase the speed of the flame-proofing treatment, and a large amount of acrylic When the system fiber is supplied to the flame-proofing step, the calorific value in the fiber becomes excessive, and there is a problem that the reaction runs away due to the heat storage phenomenon.
[0010]
In order to cope with this problem, it has been considered that the oxidation treatment is performed only in an inert atmosphere having a smaller calorific value than the oxidation treatment in an oxidizing atmosphere. However, such treatment alone slows down the rate of the cyclization reaction, resulting in a problem that the strength of the obtained oxidized fiber is not sufficient, and as a result, the strength characteristics of the obtained carbon fiber are inferior.
[0011]
In order to increase the efficiency of the flame-resistant treatment, the oxygen concentration is further adjusted after heat treatment in air as disclosed in JP-B-53-22576, JP-B-58-214535, and JP-A-58-174630. A technique has been proposed in which a flame treatment is performed by heat treatment in an inert atmosphere, and the carbonization treatment is performed.However, since such means involves a flame reaction in air, the initial heat generated is large. It has been virtually impossible to treat thick yarns and a large amount of yarns with high efficiency.
[0012]
Japanese Patent Application Laid-Open No. Hei 7-292526 discloses a method for producing carbon fibers in which an acrylic fiber is heat-treated in an inert atmosphere having an oxygen concentration of 0.01 to 3% by volume, then heat-treated in an oxidizing atmosphere, and then carbonized. Although a method is disclosed, such a method has a drawback in that the efficiency of the oxidization treatment is greatly reduced because the cyclization rate is reduced.
[0013]
Further, JP-A-2-300324 and JP-A-2-300325 disclose a technique in which a fiber is subjected to a flame-resistant treatment under normal pressure or reduced pressure, and then further subjected to a flame-resistant treatment under pressure. With such means, there is a problem that the efficiency of the flameproofing treatment is insufficient and that the apparatus becomes large.
[0014]
Further, Japanese Patent Application Laid-Open No. Sho 59-125913 discloses a technique for performing a flame-resistant reaction treatment in a liquid phase. However, with such means, when the number of filaments exceeds 20,000, the reaction proceeds unevenly, and There is a problem that the strength is reduced due to a large number of fusions occurring between the single fibers of the fibers.
[0015]
In addition, the following problems occur when manufacturing the flame-resistant fiber fabric and the carbon fiber fabric.
[0016]
Generally, an oxidized fiber fabric is manufactured by directly processing an oxidized fiber into a fabric. Further, the carbon fiber cloth is manufactured by directly processing the carbon fiber into a cloth or by carbonizing a flame-resistant fiber cloth.
[0017]
However, in general, although the strength and elongation of the acrylic fiber are high, the oxidized fiber is reduced in strength and elongation because a cyclized structure is formed with a chemical reaction at a high temperature when the fiber is oxidized. Further, carbon fibers have very high strength, while brittle fibers have extremely low elongation. For this reason, there has been a problem that process troubles such as thread breakage are more likely to occur when processing the oxidized fiber and the carbon fiber into the fabric than when processing the acrylic fiber into the fabric.
[0018]
In order to solve such a problem, for example, in Japanese Patent Application Laid-Open No. Hei 7-326384, an acrylic fiber which is a precursor fiber of the flame-resistant fiber is formed into a nonwoven fabric, and then heated and oxidized to perform a flame-resistant treatment to obtain a flame-resistant nonwoven fabric. There is disclosed an invention in which the oxidized nonwoven fabric is fired at a high temperature in an inert atmosphere to obtain a carbon fiber nonwoven fabric. Since acrylic fibers have high strength and high elongation, nonwoven fabrics can be easily produced as compared with flame-resistant fibers and carbon fibers. However, nonwoven fabric acrylic fibers are not easily flame-resistant due to their bulkiness. That is, the oxidation treatment is an exothermic reaction, and a heat removal operation is indispensable. However, if the acrylic fiber has a high yarn density like a nonwoven fabric, heat is easily stored in the oxidation treatment, and the heat removal is reduced. It becomes difficult. Therefore, it is necessary to carry out the treatment at a low ambient temperature to prevent runaway, and it takes a long time for the flameproofing treatment of the nonwoven fabric, so that the productivity is extremely poor industrially.
[0019]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-performance flame-resistant fiber material, a carbon fiber material, and a graphite fiber material in view of the above-mentioned problems, and to provide a production method excellent in production efficiency for these materials.
[0020]
[Means for Solving the Problems]
In order to achieve the object of the present invention, the flame resistant fiber material of the present invention has the following configuration. That is, it is an oxidized fiber material having an average oxygen concentration (O / C) in a fiber of 0.07 to 0.17 measured by elemental analysis / oxygen analysis. By carbonizing such an oxidized fiber material, a carbon fiber material can be obtained at a high yield. The carbon fiber material of the present invention is obtained by measuring the outermost surface measured value A1 of π * / σ * and the highest value A2 inside the single fiber obtained by measuring the cross section of the single fiber by electron energy loss spectroscopy using a field emission electron microscope. Is a carbon fiber material having a ratio A1 / A2 of 0.83 to 0.94.
[0021]
Further, the above-described flameproofed fiber material of the present invention is suitably manufactured by the following manufacturing method. That is, the acrylic fiber material is subjected to a flame-resistant treatment at 180 to 300 ° C. in the presence of one or more compounds of an organic compound except an amine compound, a fluorine compound, a siloxane, a nitrate, and a nitrite. is there. In the present invention, such an acrylic fiber material includes an acrylic fiber bundle and an acrylic fiber cloth.
[0022]
Further, the above-mentioned carbon fiber material of the present invention is suitably produced by carbonizing the above-mentioned flame-resistant fiber material in an inert atmosphere at 300 ° C. or more and less than 2,000 ° C. Further, the graphite fiber material of the present invention is suitably produced by heat-treating the carbon fiber material in an inert atmosphere at a temperature of not less than 2,000 ° C. and not more than 3,000 ° C.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
[0024]
The flame-resistant fiber material, the carbon fiber material, and the graphite fiber material referred to in the present invention include a flame-resistant fiber bundle in which a plurality of single fibers are bundled, a carbon fiber bundle and a graphite fiber bundle, and a plurality of single fibers in a fabric form. Includes processed flame-resistant fiber cloth, carbon fiber cloth and graphite fiber cloth.
[0025]
The present inventors can obtain a high-performance flame-resistant fiber material with high efficiency by setting the oxygen concentration in the fiber of the flame-resistant fiber to a specific range, and convert the carbon fiber material from the flame-resistant fiber material with high efficiency. It has been found that the efficiency in manufacturing is also improved.
[0026]
Further, by using fibers having a specific double structure having different oxygen contents on the surface and inside of the oxidized fiber, the productivity of the carbon fiber material produced from the oxidized fiber material is dramatically improved. Was found. Furthermore, it has been found that such oxidized fibers make it possible to provide carbon fibers having a specific double structure. Since the carbon fiber has a double structure in which the crystallinity between the surface and the inside is different, it is possible to improve the adhesion between the carbon fiber and the resin while maintaining the strength of the carbon fiber itself.
[0027]
Further, even when the acrylic fiber material as the precursor fiber is a high-density fiber bundle in which a large number of single fibers are bundled, or when the acrylic fiber bundle is subjected to a flameproofing treatment in a dense state, This is a method for producing a flame-resistant fiber material having a structure with a high carbon content, a small number of unring-closed parts and a high tensile strength in a stable manner.
[0028]
That is, it is important that the oxidized fiber of the present invention has an average oxygen concentration (O / C) in the fiber of 0.07 to 0.17 measured by elemental analysis / oxygen analysis. It is more preferably from 0.08 to 0.16, and still more preferably from 0.1 to 1.5.
[0029]
Here, the average oxygen concentration in the fiber (O / C) measured by the elemental analysis / oxygen analysis method is an index of the degree of oxidation progress, and when the average oxygen concentration in the fiber is less than 0.07, the heat resistance is low. In some cases, the subsequent carbonization cannot be performed. When the content exceeds 0.17, the oxygen content is too large, and the yield after the subsequent subsequent carbonization may decrease.
[0030]
Here, the average oxygen concentration in the fiber (O / C) measured by the elemental analysis / oxygen analysis method is the ratio O / C of the carbon amount C measured by the elemental analysis and the oxygen amount O measured by the oxygen analysis.
[0031]
Elemental analysis is a method in which an organic compound is decomposed by heating it to a high temperature, and its constituent elements are converted into simple inorganic compounds, respectively, and led to a differential thermal conductivity meter for quantification. The calculation of the content of each element can also be performed using an apparatus that can be automatically performed by a computer. For example, the devices and the like described in the embodiments can be used.
[0032]
The oxygen analysis method is a method of decomposing an organic compound by heating it to a high temperature, converting all oxygen into carbon monoxide, and quantifying the oxygen by introducing it to a non-dispersive spectrometer. For example, the devices and the like described in the embodiments can be used.
[0033]
Incidentally, the acrylic oxidized fiber has a cyclized structure in which the nitrile group is closed.However, the oxidized fiber material in the present invention has an average nitrile group residual rate in the fiber, that is, a residual nitrile group not involved in the cyclization. The rate is preferably 0 to 40%, more preferably 0 to 35%, and still more preferably 0 to 30%. If the average nitrile group remaining rate in the fiber exceeds 40%, the yield after the subsequent carbonization treatment may be reduced.
[0034]
Here, the nitrile group residual ratio can be determined from the absorbance ratio of the nitrile group before and after the heat treatment by using, for example, a method described below using infrared spectroscopy.
[0035]
Further, the oxidized fiber of the present invention has a ratio O1 / O2 of the average oxygen concentration O1 of the fiber surface measured by X-ray photoelectron spectroscopy to the average oxygen concentration O2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy. It is important that it is between 1.8 and 4.0. Such O1 / O2 is more preferably from 1.9 to 3.5, even more preferably from 2.0 to 3.2.
[0036]
When the ratio O1 / O2 of the average oxygen concentration is less than 1.8, the yield after carbonization treatment is low because the double structure is low, and when the ratio O1 / O2 exceeds 4.0, the double structure is low. Is too strong, and the physical properties decrease.
[0037]
Here, the average oxygen concentration O2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy substantially represents the internal oxygen concentration of the oxidized fiber. The average oxygen concentration O2 of such a freeze-ground fiber is preferably from 0.03 to 0.10, more preferably from 0.03 to 0.09, even more preferably from 0.03 to 0.07. . If the average oxygen concentration of the freeze-ground fiber is less than 0.03, the heat resistance becomes low and the carbonization cannot be continued. If it exceeds 0.10, the yield after the subsequent carbonization decreases.
[0038]
Thus, by having a double structure in which the oxygen concentration on the fiber surface is higher than the oxygen concentration inside the fiber, the heat resistance is improved and the yield after the subsequent carbonization treatment is improved. Further, the present invention provides a carbon fiber having a double structure described later.
[0039]
Further, the oxidized fiber in the present invention preferably has a single fiber tensile strength of 250 to 450 MPa, more preferably 300 to 450 MPa, and still more preferably 350 to 450 MPa.
[0040]
The density of the oxidized fiber of the present invention is 1.18 to 1.35 g / cm during the oxidization treatment.3, Preferably 1.20 to 1.35 g / cm3It is good. The density of the oxidized fiber after completion of the oxidization is 1.35 to 1.50 g / cm.3It is preferable that The density of the oxidized fiber is an index of the degree of progress of the oxidized fiber, and the density of the oxidized fiber is 1.35 g / cm.3If it is less than 1, the subsequent carbonization treatment may not be possible due to insufficient flame resistance, and may be 1.50 g / cm3If it exceeds 3, the flame resistance may be too deep and the physical properties may be reduced. In addition, the density is 1.35 g / cm.3Even fibers of less than can be used for applications such as fire protection clothing, thermal insulation, brake pads and the like.
[0041]
In the present invention, the precursor fiber used as a raw material such as the oxidized fiber and the carbon fiber is preferably made of an acrylic copolymer. Such an acrylic copolymer is preferably composed of a copolymer obtained by copolymerizing acrylonitrile in an amount of preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 94 mol% or more, and a so-called flame retardant component. Is preferred. The method for polymerizing such a copolymer is not particularly limited, but a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and the like can be applied.
[0042]
As the flame retardant component, a compound containing a vinyl group is preferable. Specifically, acrylic acid, methacrylic acid, itaconic acid and the like, more preferably, a part or all of these, acrylic acid neutralized with ammonia, methacrylic acid, or a copolymer comprising an ammonium salt of itaconic acid No. In addition, copolymers of metal salts of allylsulfonic acid, metal salts of methallylsulfonic acid, acrylic acid esters, methacrylic acid esters and acrylamide can also be copolymerized.
[0043]
As the spinning solution, any of organic and inorganic solvents can be used as a solvent together with the acrylic copolymer, but it is preferable to use an organic solvent.Specifically, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, etc. No.
[0044]
The spinning method is not particularly limited, but a wet spinning method, a dry-wet spinning method, a dry spinning method, a melt spinning method, and other known methods can be used. Preferably, a method of spinning out a spinning solution comprising the above-mentioned acrylic copolymer and solvent from a die by a wet spinning method or a dry-wet spinning method and introducing the spinning solution into a coagulation bath to coagulate the fibers can be used.
[0045]
The solidification rate and the stretching method can be appropriately set according to the intended use of the oxidized fiber material and the carbon fiber material.
[0046]
In the present invention, the coagulation bath may contain a so-called coagulation-promoting component in addition to a solvent such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide. As the coagulation accelerating component, those which do not dissolve the acrylic copolymer and are compatible with the solvent used for the spinning dope can be preferably used. Specifically, it is preferable to use water as the coagulation promoting component.
[0047]
The temperature of the coagulation bath and the amount of the coagulation accelerating component can be appropriately set according to the intended use of the oxidized fiber material and carbon fiber material. The coagulation rate can be controlled by adjusting the temperature of the coagulation bath and the amount of the coagulation accelerating component.
[0048]
After being introduced into a coagulation bath to coagulate the yarn, an acrylic fiber can be obtained through washing, drawing, drying, oiling and the like. Here, the coagulated yarn may be stretched directly in a stretching bath without washing with water, or may be stretched in the bath after removing the solvent by washing with water. Further, after applying the oil agent, the film can be further stretched by steam.
[0049]
The in-bath stretching can be usually performed in a single or a plurality of stretching baths whose temperature is controlled at 30 to 98 ° C. It is preferable that the content of the solvent used in the above-described spinning solution does not exceed the content of the solvent in the coagulation bath solution in the bath solution of the washing bath or the stretching bath.
[0050]
When applying an oil agent to the yarn after the bath stretching, it is preferable to apply an oil agent made of silicone or the like. Such a silicone oil is preferably a modified silicone, and more preferably contains an amino-modified silicone having high heat resistance.
[0051]
The number of filaments of the acrylic fiber bundle is preferably 1,000 to 3,000,000, more preferably 12,000 to 3,000,000, and still more preferably, in order to reduce the production cost by increasing the density of the yarn. It is preferably from 24,000 to 2,500,000, particularly preferably from 36,000 to 2,000,000, and most preferably from 48,000 to 2,000,000.
[0052]
The number of filaments of the acrylic fiber bundle is preferably 1,000 or more from the viewpoint of high productivity, but if it exceeds 3,000,000, it may not be possible to uniformly perform the flameproofing treatment even inside.
[0053]
The single fiber fineness of the acrylic fiber is preferably 0.56 to 3.0 dtex, more preferably 0.8 to 2.2 dtex, and still more preferably 1.0 to 1.7 dtex.
[0054]
The single fiber fineness of the acrylic fiber is preferably 0.56 dtex or more from the viewpoint of high productivity. However, if it exceeds 3.0 dtex, the inside of the single fiber may not be subjected to the oxidation treatment.
[0055]
In the present invention, the acrylic fiber material can be processed into a fabric and subjected to a flame-proofing treatment and a carbonizing treatment by the methods described later.
[0056]
That is, the flame-resistant fiber cloth and carbon fiber cloth of the present invention may be a cloth made of the flame-resistant fiber bundle and the carbon fiber bundle obtained by the method described later, or an acrylic fiber that is a precursor fiber, and The flameproofing treatment and the carbonization treatment can also be performed by the methods described below. The method in which the acrylic fiber is made into a fabric and the flame-proofing treatment and the carbonizing treatment are performed is preferable in that the process troubles such as thread breakage are less than the method in which the flame-resistant fiber material or the carbon fiber material which is the brittle fiber is made into the fabric. .
[0057]
Here, the fabric is mainly a woven fabric, a knitted fabric, or a non-woven fabric, but also includes a three-dimensional woven fabric, a multiaxial warp knitted fabric, a lace, a braid, a net, and the like. Among them, woven and non-woven fabrics are used for various applications because of their excellent strength and cost.
[0058]
Here, the woven fabric may be one in which the warp and the weft run at right angles to each other, or in some cases, the weft runs obliquely and woven at an arbitrary angle. Plain weave, twill weave, satin weave, etc. are mentioned as a weave organization. The woven fabric can be woven using a shuttle loom, a rapier loom, an air jet loom, a water jet loom, or the like. Woven fabrics are preferred in that they have excellent multidirectional strength. Therefore, the flame-retardant fiber fabric of the present invention is used for various flame-resisting and fire-preventing applications, and is preferably used as, for example, a brake pad. Further, carbon fiber woven fabric can be preferably used as a base material of various fiber reinforced composite materials. For example, it can be used as a reinforcing fiber base material for prepreg, or a method of directly impregnating a reinforcing fiber material and then heating and curing, that is, a hand lay-up method, a filament winding method, a pultrusion method, a resin injection method. It can also be used as a reinforcing fiber base for molding methods, resin transfer molding methods, and the like.
[0059]
The knitted article is knitted using a knitting needle and has a loop such as a warp knit or a weft knit.
[0060]
Non-woven fabric is literally "non-woven fabric" and refers to a sheet-like material in which fibers are bonded to each other by various methods.
[0061]
In addition, depending on the method of manufacturing the nonwoven fabric, it can be appropriately formed from a dense material to a material having many voids, a soft material to a hard material, and a thick material to a thin material.
[0062]
As a method for producing the nonwoven fabric, any of a wet method and a dry method may be used, and methods such as spun bonding, melt blowing, flash spinning, and tow opening can be preferably used. Non-woven fabrics have lower strength than woven fabrics, but have the advantages of high productivity, low labor and equipment costs, and are used for applications that do not require much strength.炎 The flame-retardant fiber nonwoven fabric of the present invention is used for various flame-resisting and fire-prevention applications, and is particularly suitably used as a sputter sheet or a flame-proof heat insulating material. Further, the carbon fiber nonwoven fabric of the present invention is suitably used as various electrode substrates, and is preferably used, for example, as an anode material of a sodium-sulfur battery.
[0063]
The carbon fiber fabric of the present invention preferably has a specific resistance of 0.6 Ω · cm or less, more preferably 0.6 Ω · cm or less, and still more preferably 0.4 Ω · cm or less. If the specific resistance exceeds 0.6 Ω · cm, it cannot be used as an electrode material because the conductivity is too low. The lower the specific resistance value is, the more preferable it is. However, when it is used as an electrode material, about 0.5 Ω · cm is sufficient. The specific resistance value can be controlled by the degree of carbonization treatment described later and the number and bulk density of carbon fibers per unit volume of the fabric.
[0064]
The method for producing a flame-resistant fiber material of the present invention is characterized in that the acrylic fiber material is made of one or two of an organic compound excluding an amine compound, a fluorine compound, a siloxane, a nitrate, and a nitrite (hereinafter abbreviated as a flame-resistant treatment agent). It is characterized in that it is subjected to a flame resistance treatment at 180 to 300 ° C. in the presence of at least one compound.
[0065]
The acrylic fiber material here is not particularly limited in fiber form, and may be an acrylic fiber bundle in which single fibers are collected in a bundle, or an acrylic fiber fabric processed into a fabric.
[0066]
When the acrylic fiber bundle is used as the acrylic fiber material, the fineness per 1 mm of the width of the acrylic fiber bundle is preferably 1,000 to 1,000 mm from the viewpoint of high productivity when the acrylic fiber bundle is subjected to the flameproofing treatment. The flame-resistant treatment may be performed at 80,000 dtex / mm, more preferably 10,000 to 75,000 dtex / mm, and still more preferably 15,000 to 70,000 dtex / mm. If the fineness per 1 mm width of the acrylic fiber bundle is lower than the above range, the productivity may be reduced, and if the fineness is high, runaway may occur during the oxidation treatment.
[0067]
Here, the fineness per 1 mm width of the acrylic fiber bundle is a value obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the flameproofing treatment by the width of one yarn of the acrylic fiber bundle immediately before the introduction of the flameproofing treatment. is there. The width of one yarn of the acrylic fiber bundle can be determined by stopping the driving of the running fiber bundle, measuring the width of one yarn at five points at 1 cm intervals in the longitudinal direction using calipers, and calculating the average. .
[0068]
Further, the fineness per unit sectional area of the acrylic fiber bundle is preferably 500 to 7,500 dtex / mm from the viewpoint of high productivity.2, More preferably 1,000 to 7,300 dtex / mm2And more preferably 2,000 to 7,000 dtex / mm.2It is good to perform a flame-proof treatment. If the fineness per unit cross-sectional area of the acrylic fiber bundle is lower than the above range, the productivity may decrease, and if the fineness is high, runaway may occur at the time of the oxidation treatment. Here, the fineness per unit cross-sectional area of the acrylic fiber bundle is obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the oxidation treatment by the cross-sectional area of one yarn of the acrylic fiber bundle immediately before the introduction of the oxidation treatment. Value. The cross-sectional area of one yarn of the acrylic fiber bundle is measured at five points in the width direction of one yarn by stopping the driving of the running yarn and using a generally known photoelectric transmittance measuring device. On average, the fiber bundle thickness was determined and multiplied by the width of one yarn determined by the method described above.
[0069]
Further, when performing the flame-resistant treatment, the acrylic fiber bundle as the precursor fiber bundle may be treated in a so-called non-twist state without substantially twisting, or a plurality of precursor fiber bundles may be combined. The treatment may be performed in a twisted state by twisting and twisting. Further, an untwisting step for untwisting the twisted fiber may be included.
[0070]
When an acrylic fiber fabric is used as the acrylic fiber material, the acrylic fiber fabric may be subjected to a flameproofing treatment by one sheet, or may be subjected to a flameproofing treatment in a state where two or more sheets are overlapped. The total weight per unit area of the acrylic fiber fabric to be treated is 20 to 2,000 g / m.2And more preferably 50 to 1,500 g / m2, More preferably 70 to 1,000 g / m2It is good. If the total weight per unit area of the acrylic fiber fabric is lower than the above range, the productivity may be reduced, and if the total weight is high, runaway may occur during the oxidation treatment.
[0071]
The atmosphere temperature of the oxidization treatment is preferably 180 to 300 ° C, more preferably 200 to 300 ° C, and further preferably 220 to 300 ° C. If the ambient temperature is lower than the above range, the penetration of the flameproofing agent into the fiber may be inhibited, and the efficiency of the flameproofing treatment may be reduced.If the temperature is higher than the above range, runaway may occur during the flameproofing treatment. There is.
[0072]
The oxidizing agent can be contained in the oxidizing atmosphere as evaporated vapor or can be used as a liquid phase. Here, the “evaporated vapor” means a state in which the flameproofing agent is heated and vaporized into fine particles, and may be a so-called wet vapor state in which a part thereof is aggregated.
[0073]
In addition, the “atmosphere containing vaporized vapor” refers to a saturated state of one or more of organic compounds, fluorine compounds, siloxanes, nitrates, and nitrites other than amine compounds, that is, a 100% vaporized vapor atmosphere. An atmosphere containing evaporated vapor at an arbitrary ratio may be used. For example, a small amount of an oxidizing gas such as air or oxygen or an inert gas such as nitrogen, helium, or argon may be mixed.
[0074]
In the present invention, the oxidizing treatment may be performed in either the atmosphere containing the vaporized vapor of the flameproofing agent or in the liquid phase, or may be performed in the atmosphere containing the vaporized vapor and in the liquid phase. May be combined as appropriate.
[0075]
In the present invention, the time required for the oxidation treatment can be determined according to the reaction rate of the oxidation treatment, and is preferably 0.01 to 240 minutes, more preferably 5 to 100 minutes, and still more preferably 10 to 50 minutes. It can be set appropriately within the range of minutes. The atmospheric pressure of the flame-resistant treatment is usually preferably set to the atmospheric pressure because it is difficult to seal, but by performing the treatment in a pressurized atmosphere, the time required for the flame-resistant treatment can be shortened.
[0076]
Further, the flame-proofing treatment may be performed by any of so-called batch treatment and continuous treatment, but continuous treatment is preferred from the viewpoint of productivity.
[0077]
In addition, at the time of the flame-proofing treatment, the draw ratio is preferably set to a draw ratio exceeding 1.0 from the viewpoint of improving the physical properties in the fiber direction, for example, the draw ratio is preferably 1.0 to 1.7, and 1 to 1. 0.1 to 1.7, more preferably 1.3 to 1.7. If it is lower than the range, the physical properties are deteriorated, and if it is higher than the range, the yarn may be broken during the oxidation treatment. It is considered that the reason why the high-stretching can be performed stably in this manner is that the flameproofing agent uniformly transfers heat to the entire fiber material or that the flameproofing agent plasticizes the acrylic fiber.
[0078]
Specific examples of the organic compound excluding the amine compound used in the present invention include polysubstituted alkylbenzene, naphthalene, alkylnaphthalene, biphenyl, alkylbiphenyl, aromatic compounds such as hydrogenated triphenyl, amides such as formamide, acetamide, propioamide, and phenyl. Ketones such as methyl ketone, phenylethyl ketone, phenylpropyl ketone and diphenyl ketone; monoalcohols such as phenylmethyl alcohol, phenylethyl alcohol and phenylpropyl alcohol; alkylene glycols such as ethylene glycol, diethylene glycol and triethylene glycol; Glycols, polyglycols such as tetraglycol or more such as pentaerythritol, polyol compounds or ethylene glycol monomethyl, Aminoethyl, monopropyl, monoalkyl ethers such as monobutyl or monophenyl ethylene glycol monoaryl ethers such as Monotoruiru, diphenyl ether, alkyl phenyl ether, etc. ethers such as alkyl aryl ethers.
[0079]
In addition, dimethyl succinic acid, aliphatic carboxylic acid esters such as diethyl and dipropyl, benzoic acid ester compounds such as methyl, ethyl, propyl and butyl, terephthalic acid dimethyl, diethyl and dipropyl aromatic carboxylic acid diesters such as dipropyl and esters. Glycols can also be used.
[0080]
Furthermore, thiol compounds, sulfonic acid compounds such as benzenesulfonic acid and p-toluenesulfonic acid, sulfone compounds such as dimethylsulfoxide, diethylsulfoxide and methylethylsulfoxide, sulfine compounds, amine oxide compounds, and triphenylmethylcationic compounds , Nitroxide compounds, dichloro-dicyanobenzoquinone, naphthoquinone, anthraquinone, quinone, nitrobenzene, o-nitrotoluene, m-nitrotoluene, p-nitrotoluene, nitroxylene, nitronaphthalene, and other nitro compounds can also be used.
[0081]
Further, paraffin compounds, cycloparaffins and naphthene compounds which are alkyl-substituted products thereof can also be used.
[0082]
These also include compounds and mixtures known as various organic heat mediums, such as heat medium containing aromatic hydrocarbons, alkyl aroma heat medium, paraffin heat medium, and naphthene heat medium. Among them, alkylbenzene, alkylnaphthalene, biphenyl, diphenylether and the like are known to be used as a heat medium.
[0083]
As the fluorine compound used in the present invention, a perfluoropolyether compound, an organic fluorine compound, a chlorine-substituted fluorine compound, a polyvinylidene fluoride compound, or the like can also be used.
[0084]
The perfluoropolyether compound is not particularly limited, but a compound known to be used as a heat medium or a lubricant can be appropriately used.
[0085]
The organic fluorine compound and the chlorine-substituted fluorine compound are not particularly limited, but those known to be used as solvents can be used as appropriate.
[0086]
The polyvinylidene fluoride compound is not particularly limited, but a compound known to be used as a lubricant can be used as appropriate.
[0087]
Various siloxanes can be used in the present invention, and among them, organic polysiloxanes known as silicones such as phenyl silicone compounds are preferable. These include those known as silicone-based lubricants and silicone-based heat transfer media.
[0088]
In the present invention, various nitrates and nitrites such as potassium nitrate, sodium nitrite, sodium nitrate and mixtures thereof can also be used as the flame retardant. These include those known as inorganic heating media.
[0089]
In the present invention, two or more kinds of the above-mentioned oxidizing agents may be used in combination. Above all, from the viewpoint of the heat resistance of the vapor, it is preferable to use an aromatic compound, and it is more preferable to use an aromatic hydrocarbon and / or an aromatic ether.
[0090]
In addition, it is preferable that a part or all of the flame-resistant treatment agent is a so-called oxidizing compound because the efficiency of the flame-resistant treatment is increased. Here, the oxidizing compound refers to an organic compound having a hydrogen accepting property or an oxygen releasing property. For example, sulfone compounds, sulfine compounds, quinones, nitro compounds and the like can be mentioned. More specifically, dimethyl sulfoxide, tetrachloro-1,2-benzoquinone, nitrobenzene, etc., described in Chapter 6, page 299 of “Experimental Chemistry Course 23, Organic Synthesis 4, Oxidation Reaction” (publisher: Maruzen) Can be mentioned.
[0091]
When the dissolution or breakage of the fiber occurs due to too strong affinity between these compounds and the acrylic fiber, a three-dimensional cross-linking component such as ethylene dimethacrylate is added to a part of the polymer skeleton of the acrylic fiber. Or a part or all of the polymer component can be cross-linked by using an oxidation treatment, an ultraviolet treatment, an electron beam treatment, or the like.
[0092]
In the present invention, the organic compound and the reaction product adhering to the fiber after the oxidization treatment can be removed by drying. Further, it can be washed and removed by using an organic solvent such as methyl alcohol, ethyl alcohol, acetone, dimethyl sulfoxide, N, N-dimethylformamide, or polyethylene glycol, or by combining these organic solvents with water. Alternatively, it can be washed away with an arbitrary surfactant and water. Compounds such as potassium nitrate, sodium nitrite, and sodium nitrate that do not dissolve in an organic solvent can be washed away using a solvent that dissolves them.
[0093]
The cleaning efficiency is improved by using a physical method such as a roller, a guide, a nip roller, and an ultrasonic wave at the time of the cleaning.
[0094]
In the present invention, the oxidization treatment can be performed in an environment substantially free of oxygen, that is, in an environment in which the amount of oxygen is reduced to such an extent that an oxidation reaction by oxygen does not occur.
[0095]
Alternatively, in order to improve the heat resistance of the obtained oxidized fiber, or to enhance the physical properties of the carbon fiber, the fiber material before or after the oxidization treatment is placed in an oxidizing atmosphere, preferably 0%. The oxidation treatment may be performed at a temperature of from 400 to 400C, more preferably from 100 to 350C, and even more preferably from 180 to 300C.
[0096]
The oxidation treatment here means, for example, a heating air treatment, and the time required for the oxidation treatment is preferably between 0.01 and 60 minutes, and is preferably between 0.01 and 30 minutes. Is more preferable, and it is further preferable that the time is between 0.01 and 10 minutes. If the ratio is out of this range, the processability may decrease, and the yield and the quality of the obtained flame-resistant fiber material may decrease.
[0097]
In this case, the steps of the oxidation treatment and the oxidation treatment may be discontinuous or continuous, but it is preferable to perform the treatment continuously from the viewpoint of productivity.
[0098]
In addition, the oxidation treatment can be performed at 180 to 300 ° C. by simultaneously blowing or finely dispersing an oxidizing gas during the oxidation treatment. In this case, the flame resistance and the oxidation can be simultaneously performed, which is preferable in that the steps can be shortened. Oxygen, nitrogen oxide, or the like can be used as the oxidizing gas here.
[0099]
When using an acrylic fiber bundle as the acrylic fiber material, the fineness per 1 mm width of the fiber bundle at the time of the oxidation treatment is preferably 1,000 to 80,000 dtex / mm, and more preferably 10,000 to 75,000 dtex. / Mm, more preferably 15,000 to 75,000 dtex / mm. If it is lower than the range, the productivity may be reduced, and if it is higher, runaway may occur during the oxidation treatment.
[0100]
The weight of the treated fiber per unit cross-sectional area of the fiber bundle at the time of the oxidation treatment is preferably 500 to 7,500 dtex / mm from the viewpoint of high productivity.2, More preferably 1,000 to 7,500 dtex / mm2And more preferably 2,000 to 7,500 dtex / mm.2If it is lower than the range, the productivity may decrease, and if it is higher, runaway may occur during the oxidation treatment.
[0101]
The acrylic fiber cloth can be treated with one sheet, but two or more sheets may be overlapped, and the total weight per unit area is 20 to 2,000 g / m 2.2, More preferably 50 to 1,500 g / m2, More preferably 70 to 1,000 g / m2If it is lower than the range, the productivity may decrease, and if it is higher, runaway may occur during the oxidation treatment.
[0102]
The carbon fiber material of the present invention comprises the flame-resistant fiber material in an inert atmosphere, preferably at least 300 ° C, less than 2,000 ° C, more preferably 800 to 2,000 ° C, still more preferably 1,000 to 1, It can be obtained by carbonizing at 800 ° C, particularly preferably 1,200 to 1,800 ° C.
[0103]
By using the oxidized fiber material of the present invention, the yield during the carbonization treatment (hereinafter, abbreviated as the carbonization yield) can be set to 50% or more. As the value of the carbonization yield increases, the productivity increases and the carbon fiber material can be provided at low cost. In addition, the flame-resistant fiber material of the present invention can increase the carbonization yield when subjected to carbonization treatment to 50 to 65%, and further to 55 to 65%. Further, the carbonization yield when carbonized at 1350 ° C. in an inert atmosphere is preferably 50 to 65%, more preferably 52 to 65%, and more preferably 54 to 65%. Particularly preferred.
[0104]
The carbon fiber material of the present invention is obtained by measuring the outermost surface measured value A1 of π * / σ * and the highest value A2 inside the single fiber obtained by measuring the cross section of the single fiber by electron energy loss spectroscopy using a field emission electron microscope. Has a ratio A1 / A2 of usually 0.83 to 0.94, preferably 0.85 to 0.93, and more preferably 0.87 to 0.92.
[0105]
Here, π * / σ * represents the degree of crystallinity, and the larger the value, the higher the degree of crystallinity. That is, the carbon fiber material of the present invention indicates that the crystallinity on the surface of the single fiber is smaller than the crystallinity inside the single fiber. By having such a structure, since the crystallinity of the outermost surface of the single fiber is low, the difference in elastic modulus between the resin and the resin is reduced, and the adhesive strength with the resin is improved.
[0106]
Further, the carbon fiber material of the present invention preferably has a crystal orientation degree π002 measured by wide-angle X-ray diffraction of 75 to 99%, more preferably 80 to 97%.
[0107]
This degree of crystal orientation is determined by a wide-angle X-ray diffraction method. X-rays use CuKα, and CuKβ is removed by a nickel filter. It can be calculated from the half-width H of the intensity distribution obtained by scanning the crystal peak corresponding to the plane index (002) near 2θ = 26 ° in the circumferential direction by the following formula.
Crystal orientation degree π002 = (180−H) / 180
If the degree of crystal orientation is less than 75%, the physical properties may be reduced.
[0108]
Further, by further heating such a carbon fiber material at 2,000 to 3,000 ° C. in an inert atmosphere, a graphite fiber material having more excellent strength properties can be obtained.
[0109]
The obtained carbon fiber material and graphite fiber material can be electrolytically treated for surface modification. As an electrolytic solution used for the electrolytic treatment, an acidic solution such as sulfuric acid, nitric acid, or hydrochloric acid, or an alkali such as sodium hydroxide, potassium hydroxide, or tetraethylammonium hydroxide or a salt thereof can be used as an aqueous solution. Here, the amount of electricity required for the electrolytic treatment can be appropriately selected depending on the carbon fiber material and the graphite fiber material to be applied.
[0110]
By such an electrolytic treatment, the adhesiveness between the carbon fiber material, the graphite fiber material and the matrix in the obtained composite material can be optimized, and the brittle fracture of the composite material due to too strong adhesion or the tensile strength in the fiber direction decreases. Although the problem and the tensile strength in the fiber direction are high, the problem of poor adhesiveness to the resin and the lack of strength characteristics in the non-fiber direction is solved, and in the obtained composite material, in both the fiber direction and the non-fiber direction Balanced strength characteristics are developed.
[0111]
Thereafter, a sizing treatment can be performed to impart convergence to the obtained carbon fiber material. As the sizing agent, a sizing agent having good compatibility with the resin can be appropriately selected according to the type of the resin used.
[0112]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples and the like.
[0113]
In the examples, each property value was measured by the following method.
<Average oxygen concentration in fiber of oxidized fiber material>
The average oxygen concentration in the fiber of the oxidized fiber material was determined as the ratio O / C of the carbon amount C measured by elemental analysis and the oxygen amount O measured by oxygen analysis.
[0114]
Before the measurement, the sample was subjected to a drying treatment at 40 ° C. for 5 hours in a vacuum.
[0115]
For elemental analysis, carbon, hydrogen, and nitrogen were measured under the conditions of a sample decomposition furnace temperature of 950 ° C. and a reduction furnace temperature of 500 ° C., using a fully automatic element analyzer varioEL manufactured by Yanagimoto Analytical Industry Co., Ltd.
[0116]
For the oxygen analysis, a HERAEUS CHN-O RAPID fully automatic analyzer manufactured by Siebel Hegner, a non-dispersive spectrometer (Binos) was used as the detector, and the sample decomposition furnace temperature was 1140 ° C and the fractionation tube temperature was 1140 ° C. Was measured for oxygen.
<Remaining rate of nitrile group>
The residual ratio of nitrile groups in the oxidized fiber material is determined by infrared spectroscopy using the ratio of the intensity of the absorption band of the nitrile group of the oxidized fiber material to that of the acrylic copolymer (precursor fiber material). It was determined by measuring. An example of the measurement procedure will be described below.
1. Preparation of tablets for infrared spectroscopy
The acrylic copolymer to be measured and the oxidized fiber material obtained by the heat treatment (oxidation treatment) were frozen with liquid nitrogen and pulverized to obtain powder sample A and powder sample A ', respectively. Powder sample B was prepared by mixing 1 g of KBr and 10 mg of potassium ferrocyanide.
[0117]
The powder sample was mixed at the following mixing ratio while being ground in a mortar to obtain a mixed powder, and tablets for infrared spectroscopy were produced using a press.
[0118]
Sample before heat treatment: powder sample A @ 2 mg, powder sample B 10 mg, KBr 300 mg
Sample after heat treatment: powder sample A '2 mg, powder sample B 10 mg, KBr 300 mg
2. Measurement of residual rate of nitrile group
With respect to the tablet for infrared spectroscopy, the absorbance ratio D2250 / D2050 of the 2050 cm-1 band of potassium ferrocyanide and the 2250 cm-1 band of the nitrile group was measured.
[0119]
The average value of the absorbance ratio (n = 3) was taken, and the residual rate of the nitrile group was determined from the following equation.
[0120]
Nitrile group remaining rate = absorbance ratio of sample after heat treatment / absorbance ratio of sample before heat treatment × 100%
In this example, Paragon 1000 manufactured by Perkin @ Elmer was used as the infrared spectroscope.
<Average oxygen concentration on the surface of the oxidized fiber>
The average oxygen concentration O1 on the surface of the oxidized fiber was determined by X-ray photoelectron spectroscopy. An example of the procedure is shown below. First, the flame-resistant fiber material to be measured was cut into an appropriate length, spread on a stainless steel sample support, and measured under the following conditions.
[0121]
-Photoelectron escape angle: 35 degrees
・ X-ray source: AlKα1,2 (1486.6 eV)
・ Degree of vacuum in sample chamber: 1 × 10−8 Torr
Next, in order to correct the peak accompanying the charging at the time of measurement, the binding energy value B.I. E. FIG. Was adjusted to 284.6 eV.
[0122]
Next, the C1s peak area [C1s] was obtained by drawing a linear base line in the range of 282 to 296 eV, and the O1s peak area [O1s] was obtained by drawing a linear base line in the range of 528 to 540 eV. .
[0123]
The oxygen concentration O1 on the fiber surface was determined by the following equation from the ratio of the O1s peak area [O1s], the C1s peak area [C1s], and the sensitivity correction value unique to the apparatus.
[0124]
O1 = ([O1s] / [C1s]) / (sensitivity correction value k)
In this example, a model SSX-100-206 manufactured by SSI USA was used as a measuring device. The sensitivity correction value k of the O1s peak area with respect to the C1s peak area unique to this apparatus was 2.73.
<Average oxygen concentration of frozen ground fiber>
After the oxidized fiber material to be measured was frozen with liquid nitrogen, the pulverized sample was used, and the average oxygen concentration O2 was determined by the above-described measurement method.
[0125]
O2 = ([O1s] / [C1s]) / (sensitivity correction value k)
<Crystallinity of carbon fiber material>
As an index of the crystallinity of the carbon fiber material, π * / σ * was measured by electron energy loss spectroscopy using a field emission electron microscope. π * was determined from the peak intensity at 285 eV, and σ * was determined from the peak intensity at 293 to 295 eV.
[0126]
In this example, HF-2210 manufactured by HITACHI was used as a field emission electron microscope. Measurement conditions were as follows: acceleration voltage 200 kV, sample absorption current 10-9A, the measurement time was 60 seconds, the beam diameter was 1 nmφ, and several points were measured from the outermost surface to the center of the cross section of the single fiber of the carbon fiber material.
<Crystal orientation degree π002>
The degree of crystal orientation π002 of the carbon fiber material was determined by a wide-angle X-ray diffraction method. Using an X-ray source CuKα ray from which CuKβ rays have been removed by a Ni filter, a crystal peak corresponding to a plane index (002) near 2θ = 26 ° is scanned in the circumferential direction and the intensity distribution half width H obtained from The degree of crystal orientation π002 was calculated by the following equation.
[0127]
Crystal orientation degree π002 = (180−H) / 180
In this example, a 4036A2 type X-ray diffractometer, goniometer, and counting and recording device RAD-C (all manufactured by Rigaku Denki Co., Ltd.) were used as the measurement / analysis devices.
[0128]
Other conditions were as follows.
[0129]
Tube voltage: 40 kV
Tube current: 20 mA
<Single fiber adhesive strength>
Tensile force was applied to the single-fiber-embedded resin test piece in the fiber axis direction to generate a strain of 10%, and then the number of fiber breaks n in a range of 20 mm in the center of the test piece was measured by an optical microscope. Thereby, the average broken fiber length 1 was determined as l = 20 / n.
[0130]
The adhesive strength τ at the fiber-resin interface was determined by τ = σ · d / 2lc. Here, lc is the critical fiber length, which is obtained from the average broken fiber length 1 by lc = 4l / 3. Σ is the single fiber strength at the critical fiber length, and d is the fiber diameter.
[0131]
Here, as the resin for embedding a single fiber, bisphenol A type epoxy resin compound Epicoat (registered trademark) 828 (manufactured by Japan Epoxy Resin Co., Ltd.) / Castor oil-modified heloxy 505 (manufactured by Japan Epoxy Resin Co., Ltd.) / N A mixture of -aminoethylpiperazine = 15 parts: 15 parts: 4.9 parts was used.
[0132]
Next, a carbon fiber single fiber was impregnated into the Teflon (registered trademark) frame having a thickness of 2 mm, a width of 10 mm, and a length of 150 mm in the longitudinal direction of the frame, and precured at room temperature for about 12 hours. Thereafter, the resultant was heated at 100 ° C. for 120 minutes and post-cured to prepare a single fiber embedded resin test piece.
<Single fiber tensile strength of oxidized fiber>
A paper card provided with a square 5 mm wide slit hole is prepared, a single fiber is passed through the slit hole, both ends are temporarily fixed, and a single piece of the same card is further coated with an instant adhesive. Is firmly fixed so that it does not rise from the card. The card on which the single fiber was fixed was attached to a tensile tester, the both sides of the slit hole of the card were cut so as not to cut the single fiber, the entire card was immersed in water, and a tensile test was performed at a strain rate of 1% / min. (Number of measurement samples: 50 or more).
<Tensile strength and tensile modulus of carbon fiber bundle and graphite fiber bundle>
The tensile strength and tensile modulus of the carbon fiber bundle and the graphite fiber bundle were measured according to JIS R7601. The tensile test piece was prepared by impregnating a carbon fiber bundle with the following resin composition and heating and curing at 130 ° C. for 35 minutes.
[0133]
Resin composition: 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexane-carboxylate (100 parts by weight) / boron trifluoride monoethylamine (3 parts by weight) / acetone (4 parts by weight)
<Measurement of specific resistance value>
The carbon fiber fabric is sandwiched between two copper plates, and the electrical resistance is measured while compressing the fabric. The electric resistance value is reduced by compressing the cloth, but becomes constant when the cloth is thinner than a certain thickness. Using the electrical resistance value at a constant value and the sample thickness at that time measured with a micrometer, the specific resistance value was calculated by the following equation.
Specific resistance value (Ω · cm) = Electric resistance value (Ω) x Sample cross-sectional area (cm2) / Sample thickness (cm)
[Example 1]
A copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid is polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent, and ammonia gas is further blown until the pH becomes 8.5, and itaconic acid is added. While neutralizing, an ammonium group was introduced into the acrylic copolymer to obtain a spinning solution having a copolymer component content of 22%.
[0134]
This spinning stock solution was discharged into the air at 40 ° C. using a spinneret having a diameter of 0.15 mm and a number of holes of 700,000 once, passed through a space of about 4 mm, and then controlled at 35 ° C. at 35 ° C. A coagulated yarn was formed by a dry-wet spinning method in which the mixture was introduced into a coagulation bath comprising an aqueous solution of sulfoxide.
[0135]
The coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone-based silicone oil agent to obtain a drawn yarn.
[0136]
The drawn yarn is dried and densified using a heating roller at 180 ° C. By drawing in 29.4 MPa pressure steam, an acrylic fiber bundle having a total draw ratio of 13 times, a single fiber fineness of 0.9 dtex, and a number of filaments of 700,000 was obtained.
[0137]
The fineness per 1 mm width of the acrylic fiber bundle is 30,000 dtex / mm, and the fineness per unit sectional area of the acrylic fiber bundle is 4,000 dtex / mm.2The film was subjected to a flameproofing treatment at 244 ° C. for 30 minutes in a diethylene glycol evaporation steam atmosphere while being stretched 1.5 times without substantially imparting twist. The temperature inside the fiber bundle rose only to 260 ° C., and a flame-resistant fiber bundle was stably obtained.
[0138]
This flame-resistant fiber bundle was prepared to have a fineness per 1 mm width of the fiber bundle of 30,000 dtex / mm and a fineness per unit sectional area of the fiber bundle of 4,000 dtex / mm.2Oxidation treatment in air at 300 ° C. for 5 minutes, then pre-carbonization at 300 to 800 ° C. while stretching 1.04 times in an inert atmosphere, and then at 1,400 ° C. in an inert atmosphere Carbonized.
[0139]
Thereafter, anodizing treatment of 10 coulomb / g (g: weight of carbon fiber) was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber bundle having good characteristics was obtained.
[0140]
The obtained carbon fiber bundle was further graphitized at 2,000 ° C. in an inert atmosphere, and then anodized at 10 coulomb / g in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good strength characteristics was obtained.
[Example 2]
The fineness per 1 mm width of the acrylic fiber bundle at the time of oxidation treatment and the fineness per 1 mm width of the fiber bundle at the time of oxidation treatment in air are both 75,000 dtex / mm. The fineness per unit cross-sectional area of the fiber bundle and the fineness per unit cross-sectional area during the oxidation treatment are both 7,300 dtex / mm.2In the same manner as in Example 1 except for changing to the above, an oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 275 ° C., and the oxidation-resistant fiber bundle was stably obtained. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good properties.
[Example 3]
The fineness per 1 mm width of the acrylic fiber bundle at the time of the oxidation treatment and the fineness per 1 mm width of the fiber bundle at the time of the oxidation treatment in the air are set to 10,000 dtex / mm. The fineness per unit cross-sectional area of the fiber bundle and the fineness per unit cross-sectional area during the oxidation treatment are both 1,500 dtex / mm.2In the same manner as in Example 1 except for changing to the above, an oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 250 ° C., and the oxidation-resistant fiber bundle was stably obtained. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[Example 4]
When the acrylic fiber bundle obtained in the same manner as in Example 1 was subjected to a flameproofing treatment, the fineness per 1 mm width of the acrylic fiber bundle was set to 90,000 dtex / mm, and the acrylic fiber bundle was cut into unit pieces. Fineness per area of 8,000 dtex / mm2The film was subjected to a flameproofing treatment at 220 ° C. in a liquid phase atmosphere of diethylene glycol while being stretched 1.5 times without substantially imparting twist. Although it took 50 minutes for the specific gravity to become equivalent to that of Example 1, the same treatment as in Example 1 was continuously performed. As a result, the oxidized fiber bundle, the carbon fiber bundle, and the graphite fiber bundle exhibiting good characteristics were obtained. Obtained.
[Example 5]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 1, except that the stretching ratio during the oxidization treatment was changed to 1.15. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 265 ° C., and the oxidation-resistant fiber bundle was stably obtained. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[Example 6]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 1, except that the draw ratio at the time of the oxidization treatment was changed to 0.95. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 263 ° C., and the oxidation-resistant fiber bundle was stably obtained. Although the physical properties of the obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle were slightly deteriorated, other characteristics were good.
[Example 7]
A flameproof fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the flameproofing agent was a 1: 1 mixture of diethylene glycol and nitrobenzene. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 263 ° C., and the oxidation-resistant fiber bundle was stably obtained. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
Example 8
A flameproof fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 2 except that the flameproofing agent was a 1: 1 mixture of diethylene glycol and nitrobenzene. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 277 ° C., and the oxidation-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[Example 9]
A flame-retardant fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the oxidizing agent was perfluoropolyether. The temperature inside the fiber bundle at the time of the oxidation treatment increased only to 273 ° C., and the oxidation-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[Comparative Example 1]
The oxidization treatment was performed in the same manner as in Example 6, except that the atmosphere for the oxidization treatment was changed to air and the temperature was changed to 200 ° C. It took 300 minutes for the specific gravity to become equivalent to that of Example 6. Subsequent carbonization and graphitization were performed to obtain a carbon fiber bundle and a graphite fiber bundle, but the physical properties were low.
[Comparative Example 2]
The flame resistance treatment was performed in the same manner as in Example 2 except that the atmosphere during the flame resistance treatment was changed to air and the temperature was changed to 210 ° C. It took 240 minutes for the specific gravity to become equivalent to that of Example 2. Subsequent carbonization and graphitization were performed to obtain a carbon fiber bundle and a graphite fiber bundle, but the physical properties were low.
[0141]
Table 1 shows the oxidizing treatment methods of Examples 1 to 9 and Comparative Examples 1 and 2, and Tables 2 and 3 collectively show the properties of the obtained oxidizing fibers, carbon fibers, and graphite fibers. As shown in Tables 1 to 3, the oxidized fiber, carbon fiber, and graphite fiber of the present invention exhibited good characteristics.
[0142]
[Table 1]
Figure 2004003043
[0143]
[Table 2]
Figure 2004003043
[0144]
[Table 3]
Figure 2004003043
[0145]
[Example 10]
A copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid is polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent, and ammonia gas is further blown until the pH becomes 8.5, and itaconic acid is added. While neutralizing, an ammonium group was introduced into the acrylic copolymer to obtain a spinning solution having a copolymer component content of 22%.
[0146]
This spinning dope was discharged into air at 40 ° C. using a spinneret having a diameter of 0.15 mm and a number of holes of 6,000 once, passed through a space of about 4 mm, and then controlled at 35 ° C. at 35 ° C. A coagulated yarn was formed by a dry-wet spinning method in which the mixture was introduced into a coagulation bath comprising an aqueous solution of sulfoxide.
[0147]
The coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone-based silicone oil agent to obtain a drawn yarn.
[0148]
The drawn yarn is dried and densified using a heating roller at 180 ° C., and drawn in a pressure steam of 29.4 MPa, so that the total drawing ratio of the drawn yarn is 13 times and the single fiber fineness is 0.9 dtex. Thus, an acrylic fiber bundle having 24,000 single fibers was obtained.
[0149]
The fineness per 1 mm width of the acrylic fiber bundle is 20,000 dtex / mm, and the fineness per unit sectional area of the acrylic fiber bundle is 3,000 dtex / mm.2While being stretched 1.5 times without substantially imparting twist, a flame-resistant treatment was performed at 244 ° C. for 30 minutes in an evaporative vapor atmosphere of diethylene glycol to obtain a flame-resistant fiber bundle having good characteristics.
[0150]
In the same manner as the flame-resistant treatment, the oxidized fiber bundle has a fineness of 20,000 dtex / mm per 1 mm width of the acrylic fiber bundle, and a fineness of 3,000 dtex / mm per unit cross-sectional area of the acrylic fiber bundle.2And treated in air at 300 ° C. for 5 minutes without substantially imparting twist, and then pre-carbonized at 300 to 800 ° C. in an inert atmosphere while stretching 1.04 times, and then inert. Carbonization was performed at 1,400 ° C. in an atmosphere.
[0151]
Thereafter, an anodic oxidation treatment of 10 coulomb / g was performed in a sulfuric acid aqueous solution. As a result, a carbon fiber bundle having good characteristics was obtained.
[0152]
The obtained carbon fiber bundle was further graphitized at 2,000 ° C. in an inert atmosphere, and then anodized at 10 coulomb / g in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good characteristics was obtained.
[Example 11]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9, except that the oxidization treatment with diethylene glycol was changed to the liquid phase. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good properties.
[Example 12]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9 except that the draw ratio during the oxidation treatment with diethylene glycol was changed to 1.15 times. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good properties.
Example 13
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9 except that the oxidization treatment was performed with a 1: 1 mixture of diethylene glycol and nitrobenzene. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good properties.
[Examples 14 and 15]
An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 12, except that the number of filaments of the fiber bundle to be treated was variously changed as shown in Table 1. The resulting oxidized fiber bundle, carbon fiber bundle, and graphite fiber exhibited good properties.
[Example 16]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber were obtained in the same manner as in Example 9 except that the oxidization treatment was performed in the liquid phase of perfluoropolyether. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good properties.
[Example 17]
An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9 except that the stretching in the oxidization treatment was changed to 0.9 times. The single fiber tensile strength of the obtained oxidized fiber bundle was slightly lower than that of Example 9. Further, the degree of crystal orientation π002 of the obtained carbon fiber was slightly low, and the elastic modulus was slightly low.
[Comparative Example 3]
The fineness of the acrylic fiber bundle obtained in Example 9 per 1 mm width of the acrylic fiber bundle was 20,000 dtex / mm, and the fineness per unit sectional area of the acrylic fiber bundle was 3,000 dtex / mm.2The material was subjected to a flame-resistant treatment at 260 ° C. in air at an atmospheric pressure of 1013 hPa while being stretched 0.9 times without substantially imparting a twist, to obtain a flame-resistant fiber bundle. The obtained flame-resistant fiber had a low residual ratio of nitrile groups and a low O1 / O2.
[0153]
After the oxidation treatment, the carbonization was performed at 300 to 800 ° C. while stretching 1.04 times in an inert atmosphere, and the carbonization was further performed at 1,400 ° C. After the carbonization treatment, anodizing treatment at 10 coulomb / g was performed in a sulfuric acid aqueous solution to obtain a carbon fiber bundle. The carbonization yield at this time was somewhat low. A1 / A2 of the obtained carbon fiber was high, and adhesion strength was low.
[0154]
The obtained carbon fiber bundle was further graphitized at 2,000 ° C. in an inert atmosphere, and then anodized at 10 coulomb / g in an aqueous sulfuric acid solution to obtain a graphite fiber bundle.
[Comparative Example 4]
The oxidization treatment was performed in the same manner as in Comparative Example 3 except that the number of filaments was changed. However, yarn breakage occurred due to internal heat storage during the oxidization treatment.
[0155]
Table 4 shows the oxidizing treatment methods of Examples 10 to 17 and Comparative Examples 3 and 4, and Tables 5 and 6 collectively show the properties of the obtained oxidizing fibers, carbon fibers, and graphite fibers.
[0156]
[Table 4]
Figure 2004003043
[0157]
[Table 5]
Figure 2004003043
[0158]
[Table 6]
Figure 2004003043
[0159]
[Example 18]
The weight per unit area of the acrylic fiber obtained in the same manner as in Example 1 was 200 g / m 2 using an air jet weaving machine.2Was produced. The total weight per unit area is 800 g / m2Was subjected to a flame-resistant treatment at 244 ° C. for 30 minutes in a vapor atmosphere of diethylene glycol, and then treated at 300 ° C. for 5 minutes in air to obtain a flame-resistant fiber fabric. This oxidized fiber woven fabric was pre-carbonized at 300 to 800 ° C. in an inert atmosphere and then carbonized at 1,400 ° C. in an inert atmosphere to obtain a carbon fiber woven fabric with a carbonization yield of 54%. Thereafter, an anodic oxidation treatment of 10 coulomb / g was performed in a sulfuric acid aqueous solution. As a result, a carbon fiber woven fabric having good characteristics was obtained.
[Example 19]
The acrylic fiber obtained in Example 1 was weighed at 200 g / m 2 using a weft knitting machine.2Was manufactured. The total weight per unit area is 800 g / m2Was subjected to a flame-proof treatment under the same conditions as in Example 17 to obtain a flame-resistant fiber knitted fabric. When this flame-resistant fiber knitted article was carbonized under the same conditions as in Example 17, a carbon fiber knitted article was obtained with a carbonization yield of 54%.
[Example 20]
The acrylic fiber obtained in Example 1 was subjected to crimping treatment to obtain a staple fiber having a cut length of 50 mm. Using this staple fiber, a web is produced by a known method, and the web is laminated, and needle-punched to obtain a web of 200 g / m 2.2Was prepared. At this time, the yield of the obtained nonwoven fabric was 98% with respect to the input amount of the acrylic fiber. When this acrylic fiber nonwoven fabric is laminated four times, the total weight per unit area is 800 g / m2Was subjected to a flame-proof treatment under the same conditions as in Example 17, to obtain a flame-resistant nonwoven fabric. This non-woven fabric was subjected to carbonization under the same conditions as in Example 17 to obtain a carbon fiber non-woven fabric with a carbonization yield of 55%.
[Comparative Example 5]
Four acrylic fiber woven fabrics obtained in Example 17 were stacked and the total weight per unit area was 800 g / m.2When heated at 220 ° C. in an air atmosphere, it was possible to achieve flame resistance without firing, but the density was 1.35 g / cm.3It took about 200 minutes to exceed. When the obtained flame-resistant fiber woven fabric was carbonized under the same conditions as in Example 17, a carbon fiber woven fabric was obtained with a carbonization yield of 47%.
[Comparative Example 6]
The acrylic fiber obtained in Example 1 was heated at 240 ° C. in an air atmosphere, and after 120 minutes, the density was 1.35 g / cm.3Was obtained. When a nonwoven fabric was produced using this flame-resistant fiber under the same conditions as in Example 19, powderization of the flame-resistant fiber was remarkable. Was as low as 70%. When the obtained flame-resistant nonwoven fabric was carbonized under the same conditions as in Example 17, a carbon fiber nonwoven fabric was obtained with a carbonization yield of 50%.
[0160]
Table 7 summarizes the characteristics of the oxidized fiber fabrics obtained in Examples 18 to 20 and Comparative Examples 5 and 6, and Table 8 summarizes the characteristics of the carbon fiber fabrics.
[0161]
[Table 7]
Figure 2004003043
[0162]
[Table 8]
Figure 2004003043
[0163]
【The invention's effect】
According to the present invention, during the flame-resistant treatment of acrylic fibers, the heat of reaction generated during cyclization or oxidation, which is likely to be stored in high-density yarns or fabrics in which a large number of single fibers are bundled, is evaporated vapor or liquid. , Heat can be efficiently removed by the heat transfer, and as a result, the flame-resistant fiber and the flame-resistant fiber cloth can be produced with extremely high efficiency, and further, the carbon fiber and the graphite fiber can be produced stably.
[0164]
The oxidized fiber of the present invention has excellent heat resistance and high tensile strength. Further, the flame-resistant fiber fabric of the present invention is excellent in heat resistance and mechanical strength. Accordingly, the flame-retardant fiber and the flame-retardant fiber fabric of the present invention are used, for example, in fire-retardant cloths, fire-extinguishing cloths, fire-resistant curtains, fire-protective work clothes, fire-prevention articles, heat-resistant fillers, friction materials, cushioning materials, spatter sheets, aircraft, etc. It can be suitably used for applications such as blocking sheets and cement reinforcing fibers.
[0165]
Furthermore, the oxidized fiber of the present invention can be suitably used as a precursor fiber of a carbon fiber, and can provide a carbon fiber having a double structure. Further, since the heat-resistant fiber is excellent in quality, the yield in the carbonization step can be increased to 50 to 65%, and further to 55 to 65% by using the oxidized fiber as the precursor fiber.
[0166]
The carbon fiber of the present invention has a double structure and, in addition to the strength in the fiber direction, has excellent adhesiveness to the resin, so that the fiber reinforced composite material having excellent strength not only in the fiber direction but also in the non-fiber direction is used. It can be suitably used as a reinforcing fiber. Specifically, various sports and leisure goods such as golf shafts, fishing rod rods, rackets and hockey sticks, primary and secondary structural materials for aircraft, seismic civil engineering reinforcement applications, transportation machinery applications such as automobiles and ships, wind turbines, acoustics It can be used for general industrial applications such as equipment speaker cones.
[0167]
In addition, since carbon fiber fabrics have excellent electrical properties and mechanical strength, secondary batteries used for power storage, such as electronic equipment parts such as mobile phones and personal computer housings, electrode base materials for fuel cells, etc. It is useful as an electrode material for use.

Claims (20)

元素分析・酸素分析法で測定した繊維内平均酸素濃度が0.07〜0.17である耐炎化繊維材料。An oxidized fiber material having an average oxygen concentration in the fiber of 0.07 to 0.17 measured by elemental analysis / oxygen analysis. 赤外分光分析法で測定した繊維内の平均ニトリル基残存率が0〜40%である耐炎化繊維材料。An oxidized fiber material having an average nitrile group residual ratio in the fiber of 0 to 40% as measured by infrared spectroscopy. X線光電子分光法で測定される繊維表面の平均酸素濃度O1とX線光電子分光法で測定される凍結粉砕繊維の平均酸素濃度O2の比O1/O2が1.8〜4.0である耐炎化繊維材料。Flame resistance in which the ratio O1 / O2 of the average oxygen concentration O1 of the fiber surface measured by X-ray photoelectron spectroscopy to the average oxygen concentration O2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy is 1.8 to 4.0. Fiber material. 布帛の形態を有する請求項1〜3のいずれかに記載の耐炎化繊維材料。The flame-resistant fiber material according to any one of claims 1 to 3, which has a form of a fabric. アクリル系繊維材料を、アミン化合物を除く有機化合物、フッ素化合物、シロキサン類、硝酸塩、亜硝酸塩のうち1種又は2種以上の化合物存在下で、180〜300℃で耐炎化処理することを特徴とする耐炎化繊維材料の製造方法。The acrylic fiber material is subjected to a flame-resistant treatment at 180 to 300 ° C. in the presence of one or more compounds of an organic compound except an amine compound, a fluorine compound, a siloxane, a nitrate, and a nitrite. Method for producing a flame-resistant fiber material. 前記耐炎化処理後のアクリル系繊維材料を、酸化性雰囲気中、0〜400℃で酸化処理することを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。The method for producing an oxidized fiber material according to claim 5, wherein the acrylic fiber material after the oxidization treatment is oxidized at 0 to 400C in an oxidizing atmosphere. 前記耐炎化処理中のアクリル系繊維材料を、同時に酸化性雰囲気中で、180〜300℃で酸化処理することを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。The method for producing a flame-resistant fiber material according to claim 5, wherein the acrylic fiber material undergoing the flame-resistance treatment is simultaneously oxidized at 180 to 300C in an oxidizing atmosphere. 前記耐炎化処理前のアクリル系繊維材料を、酸化性雰囲気中で、0〜400℃で酸化処理することを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。The method for producing an oxidized fiber material according to claim 5, wherein the acrylic fiber material before the oxidization treatment is oxidized at 0 to 400C in an oxidizing atmosphere. 前記アミン化合物を除く有機化合物が、芳香族化合物、アミド化合物、ケトン化合物、モノアルコール化合物、アルキレングリコール化合物、ポリグリコール化合物、ポリオール化合物、エーテル化合物、エステル化合物、スルホン化合物、スルフィン化合物、ニトロキシド化合物、ニトロ化合物、パラフィン系化合物、ナフテン系化合物から選ばれる少なくとも1種の有機化合物であることを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。Organic compounds other than the amine compound include aromatic compounds, amide compounds, ketone compounds, monoalcohol compounds, alkylene glycol compounds, polyglycol compounds, polyol compounds, ether compounds, ester compounds, sulfone compounds, sulfine compounds, nitroxide compounds, and nitro compounds. The method for producing an oxidized fiber material according to claim 5, wherein the compound is at least one organic compound selected from a compound, a paraffinic compound, and a naphthenic compound. 前記フッ素化合物が、パーフルオロポリエーテル系化合物、塩素置換フッ素化合物、ポリビニリデンフルオライド化合物から選ばれる少なくとも1種であることを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。The method according to claim 5, wherein the fluorine compound is at least one selected from a perfluoropolyether compound, a chlorine-substituted fluorine compound, and a polyvinylidene fluoride compound. 前記シロキサン類がフェニルシリコーン系化合物、ポリシロキサン系化合物から選ばれる少なくとも1種であることを特徴とする請求項5に記載の耐炎化繊維材料の製造方法。The method for producing an oxidized fiber material according to claim 5, wherein the siloxane is at least one selected from a phenyl silicone compound and a polysiloxane compound. アクリル系繊維材料がアクリル系繊維束であることを特徴とする請求項5〜11のいずれかに記載の耐炎化繊維材料の製造方法。The method for producing an oxidized fiber material according to any one of claims 5 to 11, wherein the acrylic fiber material is an acrylic fiber bundle. アクリル系繊維束の幅1mm当たりの繊度を1,000〜80,000dtex/mmとして耐炎化処理することを特徴とする請求項12に記載の耐炎化繊維材料の製造方法。The method for producing a flame-resistant fiber material according to claim 12, wherein the acrylic fiber bundle is subjected to a flame-proof treatment with a fineness per 1 mm width of 1,000 to 80,000 dtex / mm. アクリル系繊維束の単位断面積当たりの繊度を500〜7,500dtex/mmとして耐炎化処理することを特徴とする請求項12に記載の耐炎化繊維材料の製造方法。Method for producing a flame-resistant fiber material according to claim 12, characterized in that the processing flameproofing fineness per unit sectional area of the acrylic fiber bundle as 500~7,500dtex / mm 2. アクリル系繊維束の延伸倍率を1.1〜1.7として耐炎化処理することを特徴とする請求項12に記載の耐炎化繊維材料の製造方法。The method for producing a flame-resistant fiber material according to claim 12, wherein the acrylic fiber bundle is subjected to a flame-proof treatment with a draw ratio of 1.1 to 1.7. アクリル系繊維材料がアクリル系繊維布帛であることを特徴とする請求項5〜11のいずれかに記載の耐炎化繊維材料の製造方法。The method for producing an oxidized fiber material according to any one of claims 5 to 11, wherein the acrylic fiber material is an acrylic fiber cloth. 単繊維断面を電界放出型電子顕微鏡を用いて、電子エネルギー損失分光法で測定して得られるπ*/σ*の最表面測定値A1と単繊維内部最高値A2との比A1/A2が0.83〜0.94である炭素繊維材料。The ratio A1 / A2 between the outermost surface measured value A1 of π * / σ * obtained by measuring the cross section of the single fiber by electron energy loss spectroscopy using a field emission electron microscope and the highest value A2 inside the single fiber is 0. 0.83 to 0.94. 布帛の形態を有する請求項17に記載の炭素繊維材料。The carbon fiber material according to claim 17, which has a form of a fabric. 請求項5に記載の製造方法で得られた耐炎化繊維材料を、不活性雰囲気中、300℃以上2,000℃未満で炭化処理する炭素繊維材料の製造方法。A method for producing a carbon fiber material, comprising subjecting the oxidized fiber material obtained by the production method according to claim 5 to a carbonization treatment in an inert atmosphere at a temperature of 300 ° C or more and less than 2,000 ° C. 請求項19に記載の製造方法で得られた炭素繊維材料を、不活性雰囲気中、2,000〜3,000℃で黒鉛化処理する黒鉛繊維材料の製造方法。A method for producing a graphite fiber material, wherein the carbon fiber material obtained by the production method according to claim 19 is graphitized at 2,000 to 3,000 ° C in an inert atmosphere.
JP2002150549A 2001-05-24 2002-05-24 Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same Pending JP2004003043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150549A JP2004003043A (en) 2001-05-24 2002-05-24 Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001155172 2001-05-24
JP2001186017 2001-06-20
JP2002099715 2002-04-02
JP2002150549A JP2004003043A (en) 2001-05-24 2002-05-24 Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004003043A true JP2004003043A (en) 2004-01-08

Family

ID=30449473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150549A Pending JP2004003043A (en) 2001-05-24 2002-05-24 Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004003043A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250814A (en) * 2003-02-19 2004-09-09 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber spun yarn
WO2005080448A1 (en) * 2004-02-20 2005-09-01 Toray Industries, Inc. Solution containing flame-resistant polymer and carbon molding
JP2006283225A (en) * 2005-03-31 2006-10-19 Toho Tenax Co Ltd Method for producing flame-proofed fiber and carbon fiber
WO2007018136A1 (en) * 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
TWI408267B (en) * 2010-03-19 2013-09-11
US9084992B2 (en) 2010-03-30 2015-07-21 Fujifilm Corporation Process for producing a nitrogen-containing carbon alloy
KR101607648B1 (en) * 2015-09-03 2016-03-30 제이케이케미칼 (주) Mortar for joint of inclined road
JP2018528331A (en) * 2015-06-30 2018-09-27 エスジーエル・カーボン・エスイー Process for the preparation of carbon felt electrodes for redox flow batteries
WO2022030854A1 (en) 2020-08-04 2022-02-10 효성첨단소재 주식회사 Polyacrylonitrile-based flame-retardant fiber, carbon fiber, and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250814A (en) * 2003-02-19 2004-09-09 Toho Tenax Co Ltd Polyacrylonitrile-based oxidized fiber spun yarn
US8043693B2 (en) 2004-02-20 2011-10-25 Toray Industries, Inc. Solution containing flame-resistant polymer and carbon molding
WO2005080448A1 (en) * 2004-02-20 2005-09-01 Toray Industries, Inc. Solution containing flame-resistant polymer and carbon molding
JP4853283B2 (en) * 2004-02-20 2012-01-11 東レ株式会社 Flame resistant polymer-containing solution and carbon molded product
US7655716B2 (en) 2004-02-20 2010-02-02 Toray Industries, Inc. Solution containing flame-resistant polymer and carbon molding
JP2006283225A (en) * 2005-03-31 2006-10-19 Toho Tenax Co Ltd Method for producing flame-proofed fiber and carbon fiber
JPWO2007018136A1 (en) * 2005-08-09 2009-02-19 東レ株式会社 Flame resistant fiber, carbon fiber and method for producing them
US7976945B2 (en) 2005-08-09 2011-07-12 Toray Industires, Inc. Flame resistant fiber, carbon fiber and production method thereof
WO2007018136A1 (en) * 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
CN101243215B (en) * 2005-08-09 2012-02-22 东丽株式会社 Flame-resistant fiber, carbon fiber, and processes for the production of both
TWI406983B (en) * 2005-08-09 2013-09-01 Toray Industries Flame resistance, carbon fiber and method for producing the same
TWI408267B (en) * 2010-03-19 2013-09-11
US9084992B2 (en) 2010-03-30 2015-07-21 Fujifilm Corporation Process for producing a nitrogen-containing carbon alloy
JP2012184535A (en) * 2011-02-18 2012-09-27 Toray Ind Inc Carbon fiber base material and method for producing the same
JP2018528331A (en) * 2015-06-30 2018-09-27 エスジーエル・カーボン・エスイー Process for the preparation of carbon felt electrodes for redox flow batteries
KR101607648B1 (en) * 2015-09-03 2016-03-30 제이케이케미칼 (주) Mortar for joint of inclined road
WO2022030854A1 (en) 2020-08-04 2022-02-10 효성첨단소재 주식회사 Polyacrylonitrile-based flame-retardant fiber, carbon fiber, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2018145541A (en) Carbon fiber bundle and method for production of the same
JP2018145540A (en) Method for production of carbon fiber bundle
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2014101605A (en) Method of manufacturing carbon fiber
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP5662113B2 (en) Carbon fiber surface treatment method
JP3890770B2 (en) Carbon fiber bundle and manufacturing method thereof
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP2004270095A (en) Flame-resistant short fiber, flame-resistant fiber fabric and method for producing those
EP0100410B1 (en) High strength and high elongation carbon fiber bundle and process for producing the same
CN113597484B (en) Carbon fiber bundle and method for producing same
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2001248025A (en) Method for producing carbon fiber
WO2002095100A1 (en) Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2004300601A (en) Flame resistant fiber fabric, carbon fiber fabric and method for producing them
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2005113305A (en) Flameproof fiber, carbon fiber and method for producing them
JP2003268651A (en) Flameretardant woven fabric, carbonized woven fabric, and method for producing of them
JP7360244B2 (en) Carbon fiber manufacturing method and carbon fiber