WO2002095100A1 - Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof - Google Patents

Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof Download PDF

Info

Publication number
WO2002095100A1
WO2002095100A1 PCT/JP2002/004994 JP0204994W WO02095100A1 WO 2002095100 A1 WO2002095100 A1 WO 2002095100A1 JP 0204994 W JP0204994 W JP 0204994W WO 02095100 A1 WO02095100 A1 WO 02095100A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
flame
fiber material
resistant
treatment
Prior art date
Application number
PCT/JP2002/004994
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Nakayama
Tetsunori Higuchi
Masafumi Ise
Tomihiro Ishida
Koichi Yamaoka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Publication of WO2002095100A1 publication Critical patent/WO2002095100A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • Flame-resistant fiber material carbon fiber material, graphite fiber material and their manufacturing method
  • the present invention relates to an oxidized fiber material, a carbon fiber material, a graphite fiber material, and a method for producing the same. More specifically, the present invention relates to a high-performance flame-resistant fiber material, a carbon fiber material, and a graphite fiber material, and further relates to a stable and highly efficient method for producing a flame-resistant fiber material, a carbon fiber material, and a graphite fiber material.
  • Flame resistant fibers are widely used in applications requiring heat resistance because of their excellent flame retardancy. As a form, it is often used in the form of a fabric, and it is used as a spatter sheet to protect the human body from high-heat iron powder or welding sparks scattered during welding work, etc., and also as a flameproof insulation material for aircraft etc. Used.
  • carbon fibers obtained by heat-treating oxidized fibers at high temperatures in an inert gas atmosphere are used in various applications, such as aircraft and rockets, due to their mechanical, chemical and electrical properties and lightness. It is widely used for space aviation materials, tennis rackets, golf shafts, fishing rods and other sporting goods, and is also about to be used in transportation equipment such as ships and automobiles.
  • carbon fibers are often used in combination with various resins as reinforcing fibers of fiber-reinforced composite materials. Therefore, the strength of carbon fiber in the fiber direction.
  • non-fiber directions such as adhesiveness to resin. Therefore, attempts have been made to improve the adhesiveness between the carbon fiber and the resin, for example, by electrolytically treating the surface of the carbon fiber. Because of the cost, the effect was insufficient, and it was difficult to achieve both fiber-direction strength and non-fiber direction strength.
  • carbon fiber fabrics are used for secondary batteries, such as anodes of sodium-sulfur batteries used for power storage, etc., utilizing their electrical properties. In such applications, properties such as electrical conductivity and chemical stability are required.
  • an acryl-based flame-resistant fiber obtained by heat treatment using an acrylic fiber as a precursor fiber is known.
  • the flame-resistant treatment for producing such an acryl-based flame-resistant fiber is performed by oxidizing a polymer chain of the acrylic fiber and cyclizing a nitrile group bonded to the polymer chain. By promoting the oxidation and cyclization in this way, the heat resistance of the fiber is increased, and a flame-resistant fiber that can be used in flame-retardant applications can be obtained.
  • the purpose of the oxidation treatment is to convert the fiber into a fiber having a stable structure that can withstand heat treatment at a high temperature in the carbonization process.
  • Such a flame-proofing reaction is an exothermic reaction accompanied by a large amount of heat generated by the oxidation and cyclization reaction of the polymer chain, and a large amount of heat is required to increase the heating temperature to increase the speed of the flame-proofing treatment and to increase the productivity.
  • the acrylic fiber was supplied to the flame-proofing process, the amount of heat generated in the fiber became excessive, and there was a problem that the heat storage phenomenon caused the reaction to run away.
  • Japanese Patent Publication No. Sho 53-22557, Japanese Patent Publication No. 58-2144535, Japanese Patent Publication No. 58-17464 In the gazette, heat treatment in the air After the treatment, a technique has been proposed in which a flame treatment is performed by heat treatment in an inert atmosphere with an adjusted oxygen concentration, and then the carbonization treatment is performed. As a result, the heat generated in the initial stage was large, and it was virtually impossible to treat thick yarns and large amounts of yarns with high efficiency.
  • Japanese Patent Application Laid-Open No. 7-292526 discloses that acryl-based fibers are heat-treated in an inert atmosphere having an oxygen concentration of 0.01 to 3% by volume, and then heat-treated in an oxidizing atmosphere. Although a method for producing a carbon fiber to be treated is disclosed, such a method has a drawback that the efficiency of the oxidation treatment is greatly reduced because the cyclization rate is reduced. Further, JP-A-2-300324 and JP-A-2-300325 disclose that a fiber is subjected to a flame-resistant treatment under normal pressure or reduced pressure, and then further subjected to flame-resistance under pressure. Although the technology for processing is disclosed, there is a problem that the efficiency of the anti-oxidation treatment is insufficient and the apparatus becomes large in size.
  • Japanese Patent Application Laid-Open No. 59-125139 discloses a technique for performing a flame-resistant reaction treatment in a liquid phase.
  • the number of filaments becomes 20 or more than 0000.
  • the reaction proceeded unevenly and a large number of fusions occurred between the single fibers of the oxidized fiber, resulting in a decrease in strength.
  • an oxidized fiber fabric is manufactured by directly processing an oxidized fiber into a fabric.
  • the carbon fiber cloth is manufactured by directly processing the carbon fiber into the cloth or by carbonizing the flame-resistant fiber cloth.
  • Japanese Patent Application Laid-Open No. 7-32638-4 discloses that an acrylic fiber, which is a precursor fiber of a flame-resistant fiber, is made into a nonwoven fabric, and then heated and oxidized to perform a flame-resistance treatment.
  • the invention discloses an invention in which a carbon fiber nonwoven fabric is obtained by applying a high temperature nonwoven fabric to a nonwoven fabric by applying a high temperature treatment under an inert atmosphere.
  • Acrylic fibers have both high strength and high elongation, so that nonwoven fabrics can be produced more easily than flame-resistant fibers or carbon fibers.
  • nonwoven fabric acrylic fibers are not easily flame-resistant due to their bulkiness.
  • the oxidation treatment is an exothermic reaction, and a heat removal operation is indispensable.
  • the acrylic fiber has a high yarn density such as a nonwoven fabric, heat is easily stored in the oxidation treatment, and the heat removal is performed. Heat becomes difficult. Therefore, it is necessary to treat at a low ambient temperature to prevent runaway, and it takes a long time for the flameproofing treatment of the nonwoven fabric, so that the productivity was extremely poor industrially.
  • An object of the present invention is to provide a high-productivity, high-performance flame-resistant fiber material, carbon fiber material, and graphite fiber material in view of the above problems.
  • the flame-resistant fiber material, the carbon fiber material, and the black forceps fiber material referred to in the present invention include a flame-resistant fiber bundle, a carbon fiber bundle and a graphite fiber bundle in which a plurality of single fibers are bundled, and a plurality of single fibers. Includes flame-resistant fiber fabric, carbon fiber fabric and graphite fiber fabric processed into a shape.
  • the flame-resistant fiber material of the present invention has the following configuration. That is, the average oxygen concentration in the fiber measured by elemental analysis and oxygen analysis (o
  • a carbon fiber material can be obtained at a high yield by carbonizing such a flame-resistant fiber material.
  • the carbon fiber material of the present invention is obtained by measuring the cross section of a single fiber using a field emission electron microscope by electron energy loss spectroscopy and measuring the outermost surface value A1 of 7T * / ⁇ * and the highest value A inside the single fiber.
  • the carbon fiber material having a ratio A 1 ZA 2 of 0.83 to 0.94.
  • the above-described flameproofed fiber material of the present invention is suitably manufactured by the following manufacturing method. That is, the acrylic fiber material contains one or more compounds selected from organic compounds other than amine compounds, fluorine compounds, siloxanes, nitrates, and nitrites. In the presence, it is subjected to a flameproofing treatment at 180 to 300 ° C.
  • such an acryl-based fiber material includes an acryl-based fiber bundle and an acryl-based fiber cloth.
  • the above-mentioned carbon fiber material of the present invention is suitably produced by carbonizing the oxidized fiber material in an inert atmosphere at a temperature of at least 300 and less than 2,000. Further, the graphite fiber material of the present invention is suitably produced by heat-treating the carbon fiber material in an inert atmosphere at a temperature of not less than 2,000 ° C. and not more than 3,000 ° C.
  • the present inventors can obtain a high-performance flame-resistant fiber material with a high efficiency by setting the oxygen concentration in the fiber of the flame-resistant fiber to a specific range, and convert the carbon fiber material from the flame-resistant fiber material. It has been found that the efficiency in manufacturing is also improved.
  • the acrylic fiber material which is the precursor fiber is a high-density fiber bundle in which a large number of single fibers are bundled, or when the acryl-based fiber bundle is subjected to flame-resistant treatment in a dense state, This is a method for producing a flame-resistant fiber material having a high carbon content, a structure having a small number of unclosed rings, and a high tensile strength.
  • the oxidized fiber of the present invention has an average in-fiber measured by elemental analysis and oxygen analysis. It is important that (O / C) is between 0.07 and 0.17. More preferably, it is from 0.08 to 0.16, and still more preferably from 0.1 to: 1.5.
  • the average oxygen concentration in the fiber (O / C) measured by elemental analysis and oxygen analysis is an index of the degree of oxidation progress. If the average oxygen concentration in the fiber is less than 0.07, the heat resistance is low. Subsequent carbonization may not be possible, and if it exceeds 0.17, the yield after the subsequent carbonization may be reduced because the oxygen content is too large.
  • the average oxygen concentration (O / C) in the fiber measured by elemental analysis and oxygen analysis is the ratio OZC between the carbon content C measured by elemental analysis and the oxygen content 0 measured by oxygen analysis.
  • Elemental analysis is a method in which an organic compound is heated to a high temperature to decompose it, and its constituent elements are converted into simple inorganic compounds, respectively, and led to a differential thermal conductivity meter for quantification.
  • the calculation of the content of each element can also be performed by using a paddle that can be automatically performed by a computer.
  • the devices and the like described in the embodiments can be used.
  • Oxygen analysis is a method in which organic compounds are decomposed by heating to high temperature, all oxygen is converted to carbon monoxide, and the resulting quantity is led to a non-dispersive spectrometer for determination.
  • the devices and the like described in the embodiments can be used.
  • the acrylic oxidized fiber has a cyclized structure in which a nitrile group is closed.
  • the oxidized fiber material of the present invention has an average residual rate of nitrile groups in the fiber, that is, nitrile which is not involved in cyclization.
  • the residual ratio of the group is preferably 0 to 40%, more preferably 0 to 35%, and still more preferably 0 to 30%.
  • the nitrile group residual ratio can be determined from the absorbance ratio of the nitrile group before and after the heat treatment using infrared spectroscopy, for example, by the method described below.
  • the oxidized fiber of the present invention has a ratio of the average oxygen concentration O 1 of the fiber surface measured by X-ray photoelectron spectroscopy to the average oxygen concentration ⁇ 2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy. It is important that 02 be between 1.8 and 4.0.
  • O 1 ZO 2 is more preferably from 1.9 to 3.5, even more preferably from 2.0 to 3.2.
  • the average oxygen concentration O 2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy substantially represents the internal oxygen concentration of the oxidized fiber.
  • the average oxygen concentration ⁇ 2 of such a freeze-ground fiber is preferably from 0.3 to 0.10, more preferably from 0.03 to 0.09, more preferably from 0.03 to 0.09. More preferably, it is 0.7. If the average oxygen concentration of the frozen and ground fiber is less than 0.03, the heat resistance becomes low and the carbonization cannot be continued. If it exceeds 0.10, the yield after the subsequent carbonization decreases. Thus, by having a double structure in which the oxygen concentration on the fiber surface is higher than the oxygen concentration inside the fiber, the heat resistance is improved and the yield after the subsequent carbonization treatment is improved. Further, the present invention provides a carbon fiber having a double structure described later.
  • the oxidized fiber of the present invention has a single fiber tensile strength of preferably 250 to 450 MPa, more preferably 300 to 450 MPa, and still more preferably 350 to 450 MPa. It is good.
  • Density of oxidized fiber of the present invention in the oxidization process developing, 1. 1 8 ⁇ 1. 3 5 g Zcm 3, preferably 1.2 0 - 1. and even better at 3 5 gZ cm 3.
  • the density of the oxidized fiber after completion of the oxidization is preferably 1.35 to 1.50 gZ cm 3 .
  • Density of oxidized fiber is an index of flame resistant progress, if the density of oxidized fiber is less than 1. 3 5 g / cm 3, ing impossible carbonizing followed for flame resistance is not sufficient If it exceeds 1.50 g / cm 3 , flame resistance may be too deep and physical properties may be reduced.
  • even fibers having a density of less than 1.35 gZ cm 3 can be used for applications such as fire protection clothing, heat insulating materials, and brake pads.
  • the precursor fiber used as a raw material such as the oxidized fiber and the carbon fiber is preferably made of an acryl-based copolymer.
  • an acrylic copolymer is preferably a copolymer obtained by copolymerizing 85% by mole or more, more preferably 90% by mole or more, and still more preferably 94% by mole or more of acrylonitrile with a so-called flame retardant component.
  • the method for polymerizing such a copolymer is not particularly limited, but a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be applied.
  • a compound containing a vinyl group is preferable.
  • Acrylic acid, methacrylic acid, itaconic acid, and the like, more preferably, a copolymer comprising an ammonium salt of acrylic acid, methacrylic acid, or itaconic acid in which a part or all of these are neutralized with ammonia are exemplified.
  • metal salts of aryl sulfonic acid, metal salts of methallyl sulfonic acid, acrylic acid esters, methacrylic acid ester acrylamide, and the like can also be copolymerized.
  • any of an organic solvent and an inorganic solvent can be used as a solvent together with the above-mentioned acrylic copolymer, but it is preferable to use an organic solvent, specifically, dimethyl sulfoxide, dimethylformamide, Dimethyl acetate amide and the like.
  • the spinning method is not particularly limited, but a wet spinning method, a dry-wet spinning method, a dry spinning method, a melt spinning method, and other known methods can be used.
  • a method of spinning a spinning solution comprising the acryl-based copolymer and a solvent as described above from a die by a wet spinning method or a dry-wet spinning method, and introducing the spinning solution into a coagulation bath to coagulate the fibers can be used.
  • the solidification rate and the stretching method can be appropriately set according to the intended use of the oxidized fiber material and the carbon fiber material.
  • the coagulation bath may contain a so-called coagulation-promoting component in addition to a solvent such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide.
  • a solvent such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide.
  • the coagulation accelerating component those which do not dissolve the acrylic copolymer and are compatible with the solvent used for the spinning dope can be preferably used.
  • a coagulation promoting component specifically, it is preferable to use water.
  • the temperature of the coagulation bath and the amount of the coagulation accelerating component can be appropriately set in accordance with the intended use of the oxidized fiber material and carbon fiber material.
  • the coagulation rate can be controlled by adjusting the temperature of the coagulation bath and the amount of the coagulation accelerating component.
  • an acrylic fiber After being introduced into a coagulation bath to coagulate the yarn, an acrylic fiber can be obtained through water washing, stretching, drying, oiling and the like.
  • the coagulated yarn may be drawn directly without being washed with water or drawn in a bath after the solvent is removed by washing with water. Also, after applying the oil agent, it can be further stretched by steam.
  • stretching is usually performed in a single or multiple stretching baths controlled at 30 to 98 ° C.
  • Bath liquid of the washing bath and stretching bath, applying the content of the solvent are use in the spinning solution described above is, after it is preferred £ bath stretching does not exceed the content of the solvent in the coagulation bath, an oil on yarn
  • an oil agent made of silicone or the like is preferable to apply.
  • the silicone oil is preferably a modified silicone, and more preferably contains an amino-modified silicone having high heat resistance.
  • the number of filaments of the acryl-based fiber bundle is preferably from 1,000 to 3,000,000, more preferably 1,200,000. ⁇ 3,000,000, more preferably 24,000 ⁇ 2,500,000, particularly preferably 36,000 ⁇ 2,000, 000, Most preferably, it is 48,000 to 2,000,000.
  • the number of filaments in the acrylic fiber bundle is preferably at least 1,000 from the viewpoint of high productivity. However, if it exceeds 3,000, 000, the inside may not be uniformly flame-proofed. .
  • the single fiber fineness of the acrylic fiber is preferably 0.56 to 3.O dtex, more preferably 0.8 to 2.2 dte X, and still more preferably 1.0 to 1.7 dtex. .
  • the single fiber fineness of the acryl-based fiber is preferably 0.56 dtex or more from the viewpoint of high productivity. However, if it exceeds 3.0 dtex, it may not be possible to perform the flame-resistant treatment to the inside of the single fiber. '
  • the acryl-based fiber material can be processed into a fabric and subjected to a flame-proofing treatment and a carbonizing treatment by a method described later.
  • the flame-resistant fiber fabric and the carbon fiber fabric of the present invention may be formed by fabricating the flame-resistant fiber bundle and the carbon fiber bundle obtained by the method described below, or by converting the acryl-based fiber that is the precursor fiber into a fabric.
  • Flameproofing treatment and carbonization treatment can also be performed by the methods described below.
  • the method of fabricating acrylic fiber and performing the flame-proofing treatment and carbonization treatment has fewer process troubles such as yarn breakage than the method of fabricating the flame-resistant fiber material or carbon fiber material which is brittle fiber. Is preferred.
  • the fabric is mainly a woven fabric, a knitted fabric, or a nonwoven fabric, but also includes a three-dimensional woven fabric, a multiaxially knitted fabric, a lace, a braid, a net, and the like.
  • woven and non-woven fabrics are strong and cost It is used for various purposes because of its excellent surface.
  • the woven fabric may be one in which the warp and the weft run at right angles to each other, or in some cases, the weft runs obliquely and woven at an arbitrary angle.
  • Examples of the weave organization include plain weave, twill weave, and satin weave.
  • the woven fabric can be woven by using a shuttle loom, a rapier loom, an air jet loom, a jet mill, or the like. Woven fabrics are preferred because they have excellent multidirectional strength. Therefore, the flame-retardant fiber fabric of the present invention is used for various flame-resisting and fire-preventing applications, and is preferably used as a brake pad, for example. Further, carbon fiber woven fabric can be preferably used as a base material of various fiber reinforced composite materials.
  • it can be used as a reinforcing fiber base material for pre-predator, or it can be directly impregnated into a reinforcing fiber material and then heat-cured, that is, a hand lay-up method, a filament, a winding method, a pulling method. It can also be used as a reinforcing fiber base for resin, injection and molding methods, and resin, transfer and molding methods.
  • the knitted fabric is a fabric knitted using a braid and has a loop such as a warp knit or a weft knit.
  • Non-woven fabric is literally “non-woven fabric” and refers to a sheet-like material in which fibers are bonded together in various ways.
  • the nonwoven fabric can be appropriately formed from a dense material to a material having many voids, a soft material to a hard material, and a thick material to a thin material.
  • the method for producing the nonwoven fabric may be any of a wet method and a dry method, and methods such as spun pond, melt blowing, flash spinning, and tow opening can be preferably used.
  • nonwoven fabric strength than the fabric is weak, high productivity, labor, it has the advantage that even less of a burden of equipment cost, oxidized fiber of c present invention for use in applications that do not require much strength
  • Nonwoven fabrics are used for various types of flame resistance and fire prevention applications, and are particularly suitable for use as spatter sheets and flameproof insulation materials.
  • the carbon fiber nonwoven fabric of the present invention is suitably used as various electrode substrates, and is preferably used, for example, as an anode material of a sodium sulfur battery.
  • the specific resistance value of the carbon fiber fabric of the present invention is preferably 0.6 ⁇ ⁇ cm or less, more preferably 0.6 ⁇ ⁇ cm or less, and further preferably 0.4 ⁇ ⁇ cm or less. Such a relative If the resistance exceeds 0.6 ⁇ ⁇ cm, it cannot be used as an electrode material because the conductivity is too low. It is to be noted that the lower the specific resistance value is, the more preferable it is.
  • the specific resistance value can be controlled by the degree of carbonization treatment described below, the number of carbon fibers per unit volume of the fabric, and the bulk density.
  • the method for producing a flame-resistant fiber material according to the present invention is characterized in that the acrylic fiber material comprises one or two of an organic compound other than an amine compound, a fluorine compound, a siloxane, a nitrate, and a nitrite (hereinafter abbreviated as a flame-stabilizing agent). It is characterized in that it is subjected to a flameproofing treatment at 180 to 300 ° C. in the presence of at least one kind of compound.
  • the form of the acryl-based fiber material is not particularly limited, and may be an acryl-based fiber bundle in which single fibers are collected in a bundle or an acryl-based fiber fabric processed into a fabric.
  • the fineness per 1 mm width of the acryl-based fiber bundle is preferably set to 1,0 from the viewpoint of high productivity when the acryl-based fiber bundle is subjected to the flame-resistant treatment. 0 0 to 80, OOO dtex / mm, more preferably 10, 00 0 to 75, 00 dte X Zmm, more preferably 15, 00 0 to 70, OOO dtex / mm It is good to perform a flame-proof treatment. If the fineness per 1 mm width of the acryl-based fiber bundle is lower than the above range, productivity may decrease, and if it is higher, runaway may occur during the oxidation treatment.
  • the fineness per 1 mm width of the acrylic fiber bundle is a value obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the anti-oxidation treatment by the width of one yarn of the acrylic fiber bundle immediately before the introduction of the anti-oxidation treatment. It is.
  • the width of one acrylic fiber bundle is averaged by stopping the driving of the running fiber bundle, measuring the width of one yarn with calipers at five points at 1 cm intervals in the longitudinal direction, and calculating the average. be able to.
  • the fineness per unit cross-sectional area of the acrylic fiber bundle is preferably from 500 to 7,500 dtex / mm 2 , more preferably from 1,000 to 7, from the viewpoint of high productivity. It is preferable to carry out the flame-proof treatment at 300 dte X / mm 2 , more preferably at 2,000 to 7,000 dtex / mm 2 .
  • the fineness per unit cross-sectional area of the acryl-based fiber bundle is lower. If it is lower than this range, the productivity may decrease. May be done.
  • the fineness per unit cross-sectional area of the acrylic fiber bundle is obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the oxidation treatment by the cross-sectional area of one yarn of the acrylic fiber bundle immediately before the introduction of the oxidation treatment. Value.
  • the cross-sectional area of one yarn of the acrylic fiber bundle was measured at five points in the width direction of one yarn by stopping the driving of the running yarn and using a commonly known photoelectric transmittance measuring device. On average, the fiber bundle thickness was determined and multiplied by the width of one yarn determined by the method described above.
  • the acrylic fiber bundle which is the precursor fiber bundle may be treated in a so-called non-twist state without substantially burning, or a plurality of precursor fiber bundles may be treated.
  • the yarn may be twisted and twisted for treatment in a twisted state. Further, an untwisting step for unburning the twisted fiber may be included.
  • the acryl-based fiber cloth When using an acryl-based fiber cloth as the acryl-based fiber material, the acryl-based fiber cloth may be subjected to the flame-proofing treatment in one sheet, or may be subjected to the flame-proof treatment in a state where two or more sheets are overlapped.
  • the total weight per unit area of the acryl-based fiber fabric to be treated is preferably 20 to 2,000 g / m 2 , more preferably 50 to 1,500 g / m 2 , and Preferably, it is 70 to 1,000 g Zm 2 . If the total weight per unit area of the acryl-based fiber fabric is lower than the above range, the productivity may be reduced, and if the total weight is higher, runaway may occur during the oxidation treatment.
  • the ambient temperature of the oxidization treatment is preferably 180 to 300 ° C., more preferably 200 to 300 ° C., and further preferably 220 to 300 ° C. If the ambient temperature is lower than the above range, the penetration of the flame retardant into the fiber may be hindered and the efficiency of the flame retardant treatment may be reduced. If the ambient temperature is higher than the above range, runaway occurs during the flame retardant treatment. There is.
  • the oxidizing agent can be contained in the oxidizing atmosphere as evaporated vapor, or can be used as a liquid phase.
  • the “evaporated vapor” means a state in which the oxidizing agent is heated and vaporized into fine particles, and may be a so-called wet vapor state in which a part thereof is aggregated.
  • the "atmosphere containing vaporized vapor” refers to the saturated state of one or more of organic compounds, fluorine compounds, siloxanes, nitrates, and nitrites, excluding amine compounds, that is, 100%.
  • Evaporation steam atmosphere may be used.
  • a slight amount of an oxidizing gas such as air or oxygen or an inert gas such as nitrogen, helium, or argon may be mixed.
  • the oxidizing treatment may be carried out either in the atmosphere containing vaporized vapor of the oxidizing agent or in the liquid phase, or in the liquid phase with the treatment in the atmosphere containing vaporized vapor. May be combined as appropriate.
  • the time required for the oxidation treatment can be determined according to the reaction rate of the oxidation treatment, preferably 0.01 to 240 minutes, more preferably 5 to 100 minutes, and furthermore Preferably, it can be appropriately set in the range of 10 to 50 minutes.
  • the atmospheric pressure of the oxidization treatment is usually preferably set to the atmospheric pressure because it is difficult to seal, but by performing the treatment in a pressurized atmosphere, the time required for the oxidization treatment can be shortened.
  • the oxidation treatment may be performed by any of so-called batch processing and continuous processing, but continuous processing is preferable from the viewpoint of productivity.
  • the draw ratio is preferably set to a draw ratio exceeding 1.0 from the viewpoint of improving the physical properties in the fiber direction, for example, the draw ratio is preferably 1.0 to 1.7, It is more preferably from 1.1 to 1.7, and still more preferably from 1.3 to 1.7. If it is lower than the range, the physical properties are deteriorated, and if it is higher, the yarn may be broken during the flame-proofing treatment. It is considered that the reason why the high drawing can be performed stably is that the flameproofing agent uniformly transfers heat to the entire fiber material, or that the flameproofing agent plasticizes the acryl-based fiber.
  • organic compound other than the amine compound used in the present invention include aromatic compounds such as polysubstituted alkylbenzene, naphthalene, alkylnaphthalene, biphenyl, alkylbiphenyl and triphenyl hydride, formamide, acetoamide, and pioamide.
  • ketones such as phenylmethyl ketone, phenylethyl ketone, phenylpropyl ketone, and diphenylketone
  • monoalcohols such as phenylmethyl alcohol, phenylethyl alcohol, and phenylpropyl alcohol
  • ethylene glycol diethylene glycol , Triethylene glycol and other alkylene glycol
  • Rico Monoalkyl ethers such as monomethyl, monoethyl, monopropyl, monobutyl and the like, and monoaryl ethers such as ethylene glycol monophenyl and monotolyl, diphenyl ethers, alkylphenyl ethers and alkylaryl esters and the like.
  • aliphatic carboxylic acid esters such as dimethyl succinate, getyl and dipropyl
  • ester compounds such as methyl, ethyl, propyl and butyl benzoate
  • aromatic sulfonic acid such as dimethyl terephthalate, getyl and dipropyl Diesters and ester glycols can also be used.
  • thiol compounds such as benzenesulfonic acid and P-toluenesulfonic acid
  • sulfone compounds such as dimethyl sulfoxide, getyl sulfoxide, and methylethyl sulfoxide
  • sulfin compounds such as amine oxide compounds, and triphenylmethyl cation
  • Nitro compounds such as nitro compounds, nitroxide compounds, dichlorodicyanobenzoquinone, naphthoquinone, anthraquinone, quinone, nitrobenzene, o-nitrotoluene, m-nitrotoluene, p-nitrotoluene, nitroxylene, and nitronaphthalene are also used. it can.
  • paraffinic compounds cycloparaffins and naphthenic compounds which are alkyl-substituted products thereof can also be used.
  • heating media such as heating media containing aromatic hydrocarbons, alkylaromatic heating media, paraffinic heating media, and naphthenic heating media.
  • alkylbenzene, alkylnaphthalene, biphenyl, diphenyl ether and the like are known to be used as a heat medium.
  • fluorine compound used in the present invention a perfluoropolyether compound, an organic fluorine compound, a chlorine-substituted fluorine compound, a polyvinylidene fluoride compound, or the like can also be used.
  • the perfluoropolyether compound is not particularly limited, but a compound known to be used as a heat medium lubricant can be used as appropriate.
  • the organic fluorine compound and the chlorine-substituted fluorine compound are not particularly limited, but those known to be used as a solvent can be appropriately used.
  • the polyvinylidene fluoride compound is not particularly limited, but may be used as a lubricant. Any of known applications can be used as appropriate.
  • siloxanes can be used as the siloxane used in the present invention, and among them, organic boryl siloxanes known as silicones such as phenylsilicone compounds are preferable. These include those known as silicone-based lubricants and silicone-based heat transfer media.
  • various nitrates and nitrites such as potassium nitrate, sodium nitrite, sodium nitrate and mixtures thereof can also be used as the flame retardant. These include those known as inorganic heating media.
  • two or more kinds of the above-mentioned oxidizing agents may be used in combination.
  • an aromatic compound from the viewpoint of the heat resistance of the evaporated vapor, it is preferable to use an aromatic compound, and it is more preferable to use an aromatic hydrocarbon and / or an aromatic ether.
  • the oxidizing compound is a so-called oxidizing compound, because the efficiency of the oxidizing treatment increases.
  • the oxidizing compound means an organic compound having a hydrogen accepting property or an oxygen releasing property.
  • a sulfone compound, a sulfin compound, a quinone, a nitro compound and the like can be mentioned. More specifically, dimethyl sulfoxide, tetrachloro-1,2,2, described in Chapter 6, page 299 of “Experimental Chemistry Course 23, Organic Synthesis 4, Oxidation Reaction” (publisher: Maruzen) — Benzoquinone, benzene and the like.
  • a part of the polymer skeleton of acryl-based fibers may have a three-dimensional structure such as ethylene dimethacrylate.
  • a part or all of the polymer component can be cross-linked by introducing a cross-linking component, or by using an oxidation treatment, an ultraviolet treatment, an electron beam treatment or the like.
  • organic compounds and reaction products adhering to the fibers after the oxidization treatment can be removed by drying.
  • an organic solvent such as methyl alcohol, ethyl alcohol, acetone, dimethyl sulfoxide, N, N-dimethylformamide, polyethylene dalicol, or a combination of such an organic solvent and water.
  • an organic solvent such as methyl alcohol, ethyl alcohol, acetone, dimethyl sulfoxide, N, N-dimethylformamide, polyethylene dalicol, or a combination of such an organic solvent and water.
  • an optional surfactant and water Alternatively, it can be washed away with an optional surfactant and water.
  • Potassium nitrate, sodium nitrite, sodium nitrate not soluble in organic solvents Compounds such as the compounds can be washed away using a solvent that dissolves them.
  • the cleaning efficiency is improved by using physical methods such as a roller, a guide, a nip roller, and an ultrasonic wave at the time of the cleaning.
  • the oxidation treatment may be performed in an environment in which substantially no oxygen is present, that is, in an environment in which the amount of oxygen is reduced to such an extent that an oxidation reaction by oxygen does not occur.
  • the fiber material before or after the oxidization treatment is preferably placed in an oxidizing atmosphere.
  • the oxidation treatment can be carried out at 0 to 400 ° C., more preferably at 100 to 350 ° C., and even more preferably at 180 to 300 ° C.
  • the oxidation treatment here means, for example, a heated air treatment, and the required time for the oxidation treatment is preferably between 0.01 to 60 minutes, and between 0.01 and 30 minutes. The time is more preferably between 0.01 and 10 minutes. If the ratio is out of the range, the processability may decrease, and the yield and the quality of the obtained flame-resistant fiber material may decrease. '
  • the steps of the oxidation treatment and the oxidation treatment may be discontinuous or continuous, but continuous treatment is preferred from the viewpoint of productivity.
  • the oxidation treatment can be performed at 180 to 300 ° C. by blowing or finely dispersing an oxidizing gas at the same time as the oxidation treatment.
  • flame resistance and oxidation can be performed simultaneously, which is preferable in that the process can be shortened.
  • Oxygen, nitrogen oxide, or the like can be used as the oxidizing gas here.
  • the fineness per 1 mm of the width of the fiber bundle at the time of the oxidation treatment is preferably 1.0000 to 80, OOO dtex Zmm, more preferably 10%. , 000-750, 000 dtex xmm, more preferably, 15, 000-75, 000 dtex / mm. If it is too high, runaway may occur during the oxidation treatment.
  • the weight of the treated fiber per unit cross-sectional area of the fiber bundle during the oxidation treatment is preferably 500 to 7,500 dtex / mm 2 , more preferably 1,000, from the viewpoint of high productivity.
  • ⁇ 7,500 dte xZmm 2 more preferably, 2,000 ⁇ 7,500 dt may in the range of e xZmm 2, reduced low and productivity than the range, it may result in high runaway during the oxidation process.
  • Acrylic fiber fabrics can be treated with one sheet, but two or more sheets may be overlapped, and the total weight per unit area is preferably 20 to 2,000 g / m 2 . Should be 50 to 1,500 g / m 2 , more preferably 70 to 1,1 and OOO gZm 2. If it is lower than the range, the productivity will decrease. It can happen.
  • the oxidized fiber material is prepared in an inert atmosphere, preferably at least 300 ° C., less than 2,000 ° C., and more preferably 800 to 2,000 ° C. C, more preferably 1,000 to 1,800 ° C., particularly preferably 1,200 to 1,800.
  • the yield during the carbonization treatment (hereinafter abbreviated as the carbonization yield) can be set to 50% or more.
  • the flame-resistant fiber material of the present invention can increase the carbonization yield when subjected to carbonization treatment to 50 to 65%, and more preferably to 55 to 65%.
  • the carbonization yield is preferably 50 to 65%, more preferably 52 to 65%, It is particularly preferred that it is between 54 and 65%.
  • the outermost surface measurement value A 1 of ⁇ * / ⁇ * obtained by measuring the cross section of a single fiber by electron energy loss spectroscopy using a field emission
  • the ratio A 1 ZA 2 to the value A 2 is usually 0.883 to 0.94, preferably 0.85 to 0.93, and more preferably 0.87 to 0.92. .
  • 7T * / ⁇ * represents the degree of crystallinity, and the larger the value, the higher the degree of crystallinity.
  • the carbon fiber material of the present invention indicates that the crystallinity on the surface of the single fiber is smaller than the crystallinity inside the single fiber.
  • the degree of crystal orientation 7t 002 measured by wide-angle X-ray diffraction is preferably from 75 to 99%, more preferably from 80 to 97%.
  • This degree of crystal orientation is determined by a wide-angle X-ray diffraction method.
  • the degree of crystal orientation is less than 75%, the physical properties may be reduced. Further, the carbon fiber material may be further heated to 2,000 to 3,000 in an inert atmosphere to obtain a graphite fiber material having more excellent strength characteristics.
  • the obtained carbon fiber material and graphite fiber material can be electrolytically treated for surface modification.
  • an acidic solution such as sulfuric acid, nitric acid, or hydrochloric acid
  • an aqueous solution such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, or a salt thereof.
  • the amount of electricity required for the electrolytic treatment can be appropriately selected depending on the carbon fiber material and the graphite fiber material to be applied.
  • the adhesion between the carbon fiber material and the graphite fiber material and the matrix can be optimized, and the brittle fracture of the composite material due to too strong adhesion, and the tensile strength in the fiber direction can be achieved. And the problem of poor tensile strength in the fiber direction, but poor adhesion to the resin and no strength characteristics in the non-fiber direction is solved. The strength characteristics balanced in both directions are developed.
  • a sizing treatment can be performed to impart convergence to the obtained carbon fiber material.
  • a sizing agent a sizing agent having good compatibility with the resin can be appropriately selected according to the type of the resin used.
  • each physical property value was measured by the following method.
  • the average oxygen concentration in the fiber of the oxidized fiber material was obtained as the ratio OZC between the carbon amount C measured by elemental analysis and the oxygen amount 0 measured by oxygen analysis.
  • HE RAEUS C HN-ORAPID fully automatic analyzer manufactured by Sebel Hegner, using a non-dispersive spectrometer (Bin 0 s) as the detector, sample decomposition furnace temperature 1 140, fractionated fractionation Oxygen was measured at a tube temperature of 1 140 ° C.
  • the residual ratio of nitrile groups in the oxidized fiber material is determined by measuring the ratio of the absorption band intensity of the nitrile group of the oxidized fiber material to the absorption band intensity of the nitrile group of the acrylic copolymer (precursor fiber material). It was determined by measuring by spectroscopy. An example of the measurement procedure is shown below.
  • the acrylic copolymer to be measured and the oxidized fiber material obtained by the heat treatment (oxidation treatment) were frozen with liquid nitrogen and pulverized to obtain powder sample A and powder sample A, respectively.
  • Powder sample B was prepared by mixing KB rlg and 1 Omg of potassium ferrocyanide.
  • the powder sample was mixed in the following mixing ratio while being ground in a mortar to obtain a mixed powder, and tablets for infrared spectroscopy were prepared using a press.
  • Sample before heat treatment powder sample A 2 mg, powder sample B 1 Omg, KBr 300 mg
  • Sample after heat treatment powder sample A '2 mg, powder sample B 1 Omg, KB r 30 Omg
  • the ferrocyanation force The absorbance ratio D2250 / D2500 of the band and the nitrile group at 2250 cm-1 band was measured.
  • the average oxygen concentration ⁇ 1 on the surface of the oxidized fiber was determined by X-ray photoelectron spectroscopy. An example of the procedure is shown below. First, the flame-resistant fiber material to be measured was cut into an appropriate length, spread on a stainless steel sample support, and then measured under the following conditions.
  • the binding energy value BE of the main peak of C 1 s was adjusted to 284.6 eV.
  • the C ls peak area [C ls] is obtained by drawing a straight-line base line in the range of 282 to 2996 eV, and the ⁇ ls peak area [O ls] is 5 28 to It was determined by drawing a linear baseline in the range of 540 eV.
  • the oxygen concentration O 1 on the fiber surface was determined by the following equation from the ratio of the above ⁇ 1 s peak area [O ls], C 1 s peak area [C ls], and the sensitivity correction value unique to the apparatus.
  • a model SSX-100-206 manufactured by US SSI was used as a measuring device.
  • the sensitivity correction value k of the ⁇ 1 s peak area with respect to the C 1 s peak area unique to this device was 2.73.
  • the average oxygen concentration O 2 was determined by the above-described measurement method.
  • ⁇ * / ⁇ * was measured by electron energy loss spectroscopy using a field emission electron microscope. ⁇ * was determined from the peak intensity at 285 eV, and * was determined from the peak intensity at 293 to 295 eV.
  • HF-2210 manufactured by HI TACH I was used as a field emission electron microscope. Measurement conditions were an acceleration voltage 2 0 0 kV, the sample absorption current .1 0 _ 9 A, measurement time 6 0 seconds, and the beam diameter l nm ⁇ , several points to centered from the outermost surface of the single fiber cross-section of the carbon fiber material It was measured.
  • a measuring / analyzing apparatus was used: a 4036 A2 type X-ray diffractometer, a goniometer-evening, a counting recorder RAD-C type (both manufactured by Rigaku Denki Co., Ltd.). Other conditions were as follows.
  • the bond strength at the fiber-resin interface was determined by: ⁇ ⁇ d / 21c.
  • is the single fiber strength at the critical fiber length, and d is the fiber diameter.
  • a carbon fiber single fiber is impregnated in the longitudinal direction of a Teflon (registered trademark) frame having a thickness of 2 mm, a width of 10 mm, and a length of 150 mm into the frame, and the mixture is impregnated at room temperature. After pre-curing for about 12 hours, it was heated at 100 ° C. for 120 minutes and post-cured to prepare a single fiber embedded resin test piece.
  • the tensile strength and tensile modulus of the carbon fiber bundle and graphite fiber bundle were measured according to JIS R7601.
  • the tensile test piece was prepared by impregnating a carbon fiber bundle with the following resin composition and curing by heating under the conditions of 130 ⁇ and 35 minutes.
  • Resin composition 3,4-epoxycyclohexyl methyl 3,4-epoxycyclohexyl monohexyl propyloxylate (100 parts by weight)
  • the carbon fiber fabric is sandwiched between two copper plates, and the electrical resistance is measured while compressing the fabric.
  • the electrical resistance value decreases by compressing the fabric, but becomes constant when the thickness becomes smaller than a certain thickness.
  • the specific resistance value was calculated by the following formula.
  • a copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid is polymerized by a solution polymerization method using dimethylsulfoxide as a solvent. Ammonia gas was blown into the acryl-based copolymer while neutralizing the itaconic acid while injecting a gas until the pH reached 8.5, and a spinning stock solution having a copolymer component content of 22% was obtained. .
  • This spinning stock solution was discharged into the air once at 40 ° C using a spinneret with a diameter of 0.15 mm and a number of holes of 700,000, and after passing through a space of about 4 mm,
  • the coagulated yarn was formed by a dry-wet spinning method in which the mixture was introduced into a coagulation bath consisting of an aqueous solution of 35% dimethyl sulfoxide controlled in step 3.
  • the coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone-based silicone oil agent to obtain a drawn yarn.
  • the drawn yarn is dried and densified using a heating roller at 180, and drawn in a pressure steam of 29.4 MPa, so that the total drawing ratio of the yarn is 13 times, An acryl-based fiber bundle with a single fiber fineness of 0.9 dtex and a filament count of 700,000 was obtained.
  • the oxidized fiber bundle a width of 1 fineness per mm 3 0, OOO dtex Zmm, the fineness per unit sectional area of the fiber bundles 4, 0 0 0 dtex / mm 2 of fiber bundles, in air, 3 Oxidation treatment at 00 ° C for 5 minutes, then pre-carbonizing at 300 to 800 ° C while stretching 1.04 times in an inert atmosphere, then 1, 40 in an inert atmosphere Carbonized at 0 ° C.
  • the obtained carbon fiber bundle was further graphitized at 2,000 in an inert atmosphere, and then anodized at 10 Coulomb Zg in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good strength characteristics was obtained. .
  • Both the fineness per 1 mm width of the acrylic fiber bundle when oxidizing and the fineness per lmm width of the fiber bundle when oxidizing in air are set to 75, OOO dtex / mm. except for changing the Akuriru system together 7 fineness per unit cross-sectional area at the time of fineness and oxidation per unit sectional area of the fiber bundle, 3 0 0 dte xZmm 2 when in the same manner as in example 1, flame resistant Fiber bundles, carbon fiber bundles and graphite fiber bundles were obtained. The temperature inside the fiber bundle during the oxidation treatment rose only to 275 ° C, and the oxidation-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • Both the fineness per 1 mm width of the acryl-based fiber bundle during the oxidation treatment and the fineness per 1 mm width of the fiber bundle during the oxidation treatment in air are set to 10 and OOO dte xZ mm, respectively. and except for changing both 1, 5 0 0 dtex / mm 2 ⁇ Z fineness per unit cross-sectional area at the time of fineness and oxidation per unit cross-sectional area of Akuriru fiber bundle at the time of the in the same manner as in example 1
  • an oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained.
  • the temperature inside the fiber bundle at the time of the flame treatment increased only to 250, and the flame-resistant fiber bundle was stably obtained.
  • the obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • the fineness per 1 mm width of the acrylic fiber bundle was set to 90,000 dtex / mm, and the fineness per unit sectional area of the acrylic fiber bundle 8, and OOO dte xZ mm 2, without imparting twist to substantially while stretched 5 times 1.
  • the sample was subjected to oxidization at 20 ° C. Although it took 50 minutes for the specific gravity to become equivalent to that of Example 1, the same treatment as in Example 1 was continued, and the oxidized fiber bundle, carbon fiber bundle, and graphite showing good characteristics were obtained. A fiber bundle was obtained.
  • An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 1, except that the draw ratio for the oxidization treatment was changed to 1.15 times.
  • the temperature inside the fiber bundle during the oxidation treatment increased only to 26.5, and the oxidation-resistant fiber bundle was obtained stably. Obtained flame resistance
  • the carbonized fiber bundle, the carbon fiber bundle and the graphite fiber bundle showed good properties.
  • An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the draw ratio in the oxidization treatment was changed to 0.95.
  • the temperature inside the fiber bundle during the oxidation treatment increased only to 263, and the oxidation-resistant fiber bundle was obtained stably.
  • the physical properties of the obtained oxidized fiber bundle, carbon fiber bundle and blackened fiber bundle were slightly reduced, other characteristics were good.
  • a flame-resistant fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the flame-resistant treatment agent was a one-to-one mixed solution of diethylene dalicol and nitrobenzene.
  • the temperature inside the fiber bundle during the flame-resistant treatment rose only to 263 ° C, and the flame-resistant fiber bundle was stably obtained.
  • the obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good characteristics.
  • An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 2 except that the oxidizing agent was a 1: 1 mixture of diethylene glycol and ditrobenzene. The temperature in the bundle rose only to 277, and a flame-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the oxidizing agent was perfluoropolyether.
  • the temperature inside the fiber bundle during the oxidation treatment increased only to 273 ° C, and the oxidation-resistant fiber bundle was obtained stably.
  • the resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • the flame resistance treatment was carried out in the same manner as in Example 2 except that the atmosphere during the flame resistance treatment was changed to air and the temperature was changed to 21.0 ° C. It took 240 minutes for the specific gravity to become equivalent to that of Example 2. Subsequent carbonization and graphitization treatments yielded carbon fiber bundles and graphite fiber bundles, but the physical properties were low.
  • Example 2 Same as above Same as above 75000 7300 Same as above 275
  • Example 3 Same as above Same as above Same as above 10000 1500 Same as above 250
  • Example 4 Same as above -yi Tyrenko's 2-reel 220 90000 8000 Same as above 270
  • a copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid was polymerized by a solution polymerization method using dimethylsulfoxide as a solvent, and ammonia gas was further blown until ⁇ became 8.5. While neutralizing, an ammonium group was introduced into the acryl-based copolymer to obtain a spinning stock solution having a copolymer component content of 22%.
  • this spinning stock solution was temporarily discharged into the air, passed through a space of about 4 mm, and then controlled at 3 ° C.
  • a coagulated yarn was formed by a dry-wet spinning method in which the coagulated yarn was introduced into a coagulation bath composed of an aqueous solution of 35% dimethyl sulfoxide.
  • the coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone silicone oil agent to obtain a drawn yarn.
  • the drawn yarn is dried and densified using a heating roller at 180 ° C, and drawn in a pressurized steam of 29.4 MPa, so that the total drawing ratio of the yarn is 13 times.
  • An acrylic fiber bundle having a single fiber fineness of 0.9 dte X, a single fiber count of 24, and a single fiber count of 0.0 was obtained.
  • the fineness of the acrylic fiber bundle per 1 mm width was set to 20.000 dtex / mm, and the fineness per unit cross-sectional area of the acrylic fiber bundle was determined.
  • Precarbonization was performed at 0 to 800 ° C, and then carbonization was performed at 1,400 ⁇ in an inert atmosphere.
  • anodizing treatment of 10 coulombs Zg was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber bundle having good characteristics was obtained.
  • the obtained carbon fiber bundle was further graphitized at 2,000 ⁇ in an inert atmosphere, and then anodized at 10 coulomb / g in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good characteristics was obtained.
  • An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 9, except that the oxidization treatment with diethylene dalicol was changed to the liquid phase.
  • the obtained flame-resistant fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9, except that the draw ratio during the oxidization treatment with diethylene glycol was changed to 1.15.
  • the resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • Oxidation treatment was performed with a 1: 1 mixture of diethylene glycol and ditrobenzene. Except for the above, an oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
  • An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 12 except that the number of filaments of the fiber bundle to be treated was variously changed as shown in Table 1.
  • the resulting oxidized fiber bundle, carbon fiber bundle, and graphite fiber exhibited good properties.
  • An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber were obtained in the same manner as in Example 9 except that the oxidization treatment was performed in the liquid phase of perfluoropolyether.
  • the resulting oxidized fiber bundle, carbon fiber bundle, and graphite fiber bundle exhibited good characteristics.
  • An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9 except that the stretching in the oxidization treatment was changed to 0.9 times.
  • the single fiber tensile strength of the obtained oxidized fiber bundle was slightly lower than that of Example 9.
  • the degree of crystal orientation ⁇ 002 of the obtained carbon fiber was slightly low, and the elastic modulus was slightly low.
  • the acrylic fiber bundle obtained in Example 9 was set to have a fineness per unit width of 1 mm of the acrylic fiber bundle of 200,000 dtex / mm and a fineness per unit cross-sectional area of the acrylic fiber bundle of 3,0. 0 0 dtex ZMM 2 and then, without imparting twist to substantially zero. while stretched nine times in air at atmospheric pressure 1 0 1 3 h P a, is treated oxidization with 2 6 0 ° C Thus, an oxidized fiber bundle was obtained. The residual rate of nitrile groups in the obtained flame-resistant fiber was low, and O 1 / O 2 was low.
  • the carbonization was carried out at 300 to 800 ⁇ in an inert atmosphere while being stretched 1.04 times, and the carbonization treatment was carried out at a temperature of 1,400X.
  • anodization was performed at 10 coulomb / g in a sulfuric acid aqueous solution to obtain a carbon fiber bundle.
  • the carbonization yield at this time was somewhat low.
  • A1ZA2 of the obtained carbon fiber was high, and the bonding strength was low.
  • the obtained carbon fiber bundle is further graphitized at 2,000 in an inert atmosphere. After that, anodizing treatment of 10 coulomb / g was performed in a sulfuric acid aqueous solution to obtain a graphite fiber bundle.
  • the acryl fiber obtained in the same manner as in Example 1 was used to fabricate a woven fabric having a weight per unit area of 200 gZm 2 using an air jet loom.
  • Four acrylic fiber woven fabrics each having a total weight per unit area of 800 g / m 2 were subjected to a flameproofing treatment at 244 for 30 minutes in a diethylene glycol evaporation steam atmosphere.
  • the mixture was treated at 300 ° C. for 5 minutes in the air to obtain an oxidized fiber woven fabric.
  • This oxidized fiber woven fabric is pre-carbonized at 300 to 800 ° C in an inert atmosphere, then carbonized at 1,400 ° C in an inert atmosphere, and carbonized at a carbonization yield of 54%.
  • a fiber fabric was obtained. Thereafter, an anodic oxidation treatment of 10 coulomb / g was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber woven fabric having good characteristics was obtained.
  • a flat knitted fabric having a weight per unit area of 200 gZm 2 was prepared from the acrylic fiber obtained in Example 1 using a weft knitting machine. 4 layers of this acryl fiber knitted fabric When the total weight per unit area was set to 800 g Zm 2 and subjected to a flame-proof treatment under the same conditions as in Example 17, a flame-resistant fiber knit was obtained. This flame-resistant fiber knitted product was carbonized under the same conditions as in Example 17 to obtain a carbon fiber knitted product with a carbonization yield of 54%.
  • the acryl-based fiber obtained in Example 1 was subjected to crimping treatment to obtain a staple fiber having a cut length of 50 mm.
  • a web was produced by a known method, and the web was laminated and punched with a $ 21 dollar to produce an acrylic fiber nonwoven fabric of 200 g Zm 2 .
  • the yield of the obtained nonwoven fabric was 98% with respect to the input amount of the acrylic fiber.
  • Four acryl-based fiber non-woven fabrics each having a total weight per unit area of 800 g Zm 2 were subjected to a flame-proof treatment under the same conditions as in Example 17; Obtained. This flame-resistant fiber nonwoven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber nonwoven fabric with a carbonization yield of 55%.
  • Example 1 7 When those total weight per unit area overlapping four to Akuriru fiber fabric obtained in Example 1 7 is a 8 0 0 g Zm 2, in an air atmosphere and heated in 2 2 0 ° C, Although flame resistance could be achieved without firing, it took about 200 minutes for the density to exceed 1.35 cm 3 .
  • the obtained oxidized fiber woven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber woven fabric with a carbonization yield of 47%.
  • Example 1 The acrylic fiber obtained in Example 1 was heated at 240 ° C. in an air atmosphere, and after 120 minutes, an oxidized fiber having a density of 1.35 g Z cm s was obtained. Using this oxidized fiber, a nonwoven fabric was prepared under the same conditions as in Example 19, and the powder of the oxidized fiber was remarkable. The yield of nonwoven fabric was as low as 70%. The obtained flame-resistant fiber nonwoven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber nonwoven fabric with a carbonization yield of 50%.
  • Table 1 shows the oxidizing treatment methods of Examples 1 to 9 and Comparative Examples 1 and 2, and Tables 2 and 3 collectively show the properties of the obtained oxidizing fiber, carbon fiber and graphite fiber. As shown in Tables 1-3, The oxidized fiber, carbon fiber and graphite fiber of the present invention showed good properties.
  • Table 4 shows the flameproofing treatment methods of Examples 10 to 17 and Comparative Examples 3 and 4, and Tables 5 and 6 summarize the properties of the obtained flameproofed fibers, carbon fibers, and graphite fibers.
  • Table 7 shows the properties of the oxidized fiber cloth obtained in Examples 18 to 20 and Comparative Examples 5 and 6, and Table 8 shows the properties of the carbon fiber cloth.
  • the reaction heat generated during cyclization or oxidation which is likely to be stored in a high-density yarn or fabric formed by bundling a large number of single fibers during the flame-resistant treatment of an acrylic fiber, is evaporated vapor or liquid.
  • the heat can be efficiently removed by the heat transfer, and as a result, the flame-resistant fiber and the flame-resistant fiber fabric can be manufactured with extremely high efficiency, and furthermore, the carbon fiber and the graphite fiber can be manufactured stably. .
  • the oxidized fiber of the present invention has excellent heat resistance and high tensile strength. Further, the flame-resistant fiber fabric of the present invention is excellent in heat resistance and mechanical strength. Accordingly, the flame-retardant fiber and the flame-retardant fiber cloth of the present invention are, for example, fire-resistant cloth, fire-extinguishing cloth, fire-resistant cloth, fire-resistant work clothes, disaster-prevention goods, heat-resistant filler, friction material, cushion material, spatter sheet, aircraft, etc. It can be suitably used for applications such as fire-blocking sheets and cement-reinforcing fibers.
  • the oxidized fiber of the present invention can be suitably used as a precursor fiber of carbon fiber,
  • a carbon fiber having a double structure can be provided.
  • the flame-resistant fiber is used as a precursor fiber because of its excellent heat resistance and quality, the yield in the carbonization step can be increased to 50 to 65%, and further to 55 to 65%.
  • the carbon fiber of the present invention has a double structure, and is excellent not only in the fiber direction but also in the non-fiber direction because it has excellent strength in the fiber direction and excellent adhesion to the resin. It can be suitably used as a reinforcing fiber of the material.
  • various sports and leisure equipment such as golf shafts, fishing rod rods, rackets and hockey sticks, primary and secondary structural materials for aircraft, seismic civil engineering reinforcement applications, transportation machinery applications such as automobiles and ships, and wind turbines It can be used for general industrial applications such as a speaker and a cone for audio equipment.
  • carbon fiber fabrics have excellent electrical properties and mechanical strength, they can be used for electronic equipment parts such as mobile phones and personal computer housings, electrode base materials for fuel cells, etc. It is useful as a battery electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

A flame-resistant fiber material which has an average oxygen concentration in the interior of the fiber of 0.07 to 0.17 as measured by the elemental analysis-oxygen analysis method, an average survival rate for nitrile groups of 0 to 40 % as measured by the infrared spectroscopy, and a ratio (O1/O2) of an average oxygen concentration (O1) of the surface of the fiber to an average oxygen concentration (O2) of a frozen and pulverized fiber, as measured by the X-ray photoelectron spectroscopy, of 1.8 to 4.0; a method for producing the flame-resistant fiber material which comprises subjecting an acrylic fiber material to a treatment for enhancing flame resistance in the presence of one or more compounds of an organic compound except an amine at 180 to 300 ˚C, a fluorine-containing compound, a siloxane, a nitrate, and a nitride; and a method for producing a carbon fiber material which comprises subjecting the above flame-resistant fiber to a carbonization treatment at a temperature not lower than 300˚C and lower than 2000 ˚C in an inert atmosphere.

Description

明細書  Specification
耐炎化繊維材料、 炭素繊維材料、 黒鉛繊維材料及びそれらの製造方法 Flame-resistant fiber material, carbon fiber material, graphite fiber material and their manufacturing method
技術分野 Technical field
本発明は、 耐炎化繊維材料、 炭素繊維材料、 黒鉛繊維材料及びそれらの製造方 法に関する。 さらに詳しくは、 高性能な耐炎化繊維材料、 .炭素繊維材料、 黒鉛繊 維材料であり、 更には耐炎化繊維材料、 炭素繊維材料、 及び黒鉛繊維材料の安定 的かつ高効率な製造方法に関する。 The present invention relates to an oxidized fiber material, a carbon fiber material, a graphite fiber material, and a method for producing the same. More specifically, the present invention relates to a high-performance flame-resistant fiber material, a carbon fiber material, and a graphite fiber material, and further relates to a stable and highly efficient method for producing a flame-resistant fiber material, a carbon fiber material, and a graphite fiber material.
背景技術 Background art
耐炎化繊維は難燃性に優れることから耐熱性を必要とする用途で幅広く利用さ れている。 形態としては布帛の状態で用いられることが多く、 溶接作業等で飛散 する高熱の鉄粉や溶接火花等から人体を保護するスパッ夕シ一ト、 さらには航空 機等の防炎断熱材などに用いられている。 Flame resistant fibers are widely used in applications requiring heat resistance because of their excellent flame retardancy. As a form, it is often used in the form of a fabric, and it is used as a spatter sheet to protect the human body from high-heat iron powder or welding sparks scattered during welding work, etc., and also as a flameproof insulation material for aircraft etc. Used.
また耐炎化繊維を不活性ガス雰囲気中で高温加熱処理して得られる炭素繊維は その力学的、 化学的、 電気的諸特性及び軽量性などにより、 各種の用途、 例えば 航空機やロケットなどの航空 ·宇宙用航空材料、 テニスラケッ ト、 ゴルフシャフ ト、 釣竿などのスポーツ用品に広く使用され、 さらに船舶、 自動車などの運輸機 械用途分野などにも使用されようとしている。  In addition, carbon fibers obtained by heat-treating oxidized fibers at high temperatures in an inert gas atmosphere are used in various applications, such as aircraft and rockets, due to their mechanical, chemical and electrical properties and lightness. It is widely used for space aviation materials, tennis rackets, golf shafts, fishing rods and other sporting goods, and is also about to be used in transportation equipment such as ships and automobiles.
これらの用途においては、 炭素繊維は繊維強化複合材料の強化繊維として各種 樹脂と組み合わせて用いられることが多い。 従って、 炭素繊維の繊維方向の強度 だけでなく、 樹脂との接着性など非繊維方向の強度向上も求められてきた。 そこで、 炭素繊維の表面を電解処理するなど、 炭素繊維と樹脂との接着性を向 上させることが試みられてきたが、 このような方法では、 一定以上の処理を施す と繊維方向の強度が犠牲となるため、 その効果は不十分であり、 繊維方向強度と 非繊維方向強度を両立することは困難であった。 In these applications, carbon fibers are often used in combination with various resins as reinforcing fibers of fiber-reinforced composite materials. Therefore, the strength of carbon fiber in the fiber direction In addition, there has been a demand for improvement in strength in non-fiber directions such as adhesiveness to resin. Therefore, attempts have been made to improve the adhesiveness between the carbon fiber and the resin, for example, by electrolytically treating the surface of the carbon fiber. Because of the cost, the effect was insufficient, and it was difficult to achieve both fiber-direction strength and non-fiber direction strength.
また炭素繊維布帛はその電気特性を活かして、 二次電池用として、 電力貯蔵な どに利用されるナトリゥムー硫黄電池の陽極等に使われる。 該用途においては、 電気伝導性や化学的安定性などの特性が要求される。  Also, carbon fiber fabrics are used for secondary batteries, such as anodes of sodium-sulfur batteries used for power storage, etc., utilizing their electrical properties. In such applications, properties such as electrical conductivity and chemical stability are required.
このような高性能化が要求される一方で、,用途が拡大するに伴い、 生産性を向 上し、 低コストで耐炎化繊維、 炭素繊維、 耐炎化繊維布帛及び炭素繊維布帛を提 供することが望まれている。  While such high performance is required, with the expansion of applications, it is necessary to improve productivity and provide flame-retardant fiber, carbon fiber, flame-retardant fiber cloth and carbon fiber cloth at low cost. Is desired.
一般に、 耐炎化繊維は、 アクリル系繊維を前駆体繊維として熱処理等して得ら れるァクリル系耐炎化繊維が知られている。 かかるァクリル系耐炎化繊維を製造 するための耐炎化処理は、 アクリル系繊維の高分子鎖を酸化すると共に、 高分子 鎖に結合した二トリル基を環化することによる。 このように酸化 ·環化を進める ことで繊維の耐熱性が高まり、 難燃用途等で使用できる耐炎化繊維を得ることが できる。 また、 耐炎化処理は、 炭化工程での高温での熱処理に耐えうる、 安定な 構造を備えた繊維に転換させる目的もある。  Generally, as the flame-resistant fiber, an acryl-based flame-resistant fiber obtained by heat treatment using an acrylic fiber as a precursor fiber is known. The flame-resistant treatment for producing such an acryl-based flame-resistant fiber is performed by oxidizing a polymer chain of the acrylic fiber and cyclizing a nitrile group bonded to the polymer chain. By promoting the oxidation and cyclization in this way, the heat resistance of the fiber is increased, and a flame-resistant fiber that can be used in flame-retardant applications can be obtained. The purpose of the oxidation treatment is to convert the fiber into a fiber having a stable structure that can withstand heat treatment at a high temperature in the carbonization process.
かかる耐炎化反応は、 高分子鎖の酸化 ·環化反応による多量の発熱を伴う発熱 反応であり、 耐炎化処理の速度を高めるべく加熱温度を高くしたり、 生産性を高 めるべく、 多量のアクリル系繊維を耐炎化工程に供給すると、 繊維内の発熱量が 過大となり、 蓄熱現象により、 反応が暴走する問題があった。  Such a flame-proofing reaction is an exothermic reaction accompanied by a large amount of heat generated by the oxidation and cyclization reaction of the polymer chain, and a large amount of heat is required to increase the heating temperature to increase the speed of the flame-proofing treatment and to increase the productivity. When the acrylic fiber was supplied to the flame-proofing process, the amount of heat generated in the fiber became excessive, and there was a problem that the heat storage phenomenon caused the reaction to run away.
この問題に対処するため、 酸化性雰囲気での耐炎化処理よりも発熱量が小さい 不活性雰囲気中のみで耐炎化処理することが考えられてきた。 しかし、 かかる処 理のみでは、 環化反応の速度が遅延化し、 得られる耐炎化繊維の強度が十分でな く、 その結果、 得られる炭素繊維の強度特性が劣ったものとなるといつた問題が あった。  To cope with this problem, it has been considered to perform the oxidation treatment only in an inert atmosphere, which generates less heat than the oxidation treatment in an oxidizing atmosphere. However, such a treatment alone slows down the rate of the cyclization reaction, and the strength of the obtained oxidized fiber is not sufficient. As a result, the strength characteristics of the obtained carbon fiber are deteriorated. there were.
耐炎化処理の高効率化のため、 特公昭 5 3— 2 2 5 7 6号公報、 特公昭 5 8— 2 1 4 5 3 5号公報、 特開昭 5 8— 1 7 4 6 3 0号公報などで、 空気中での熱処 理の後、 さらに酸素濃度を調節した不活性雰囲気中で熱処理することによって耐 炎化処理し、 それを炭化処理する技術が提案されているが、 かかる手段では、 空 気中での耐炎化反応を伴うことから、 初期の発生熱が大きく、 太糸条ゃ多量の糸 条を高効率で処理することは、 事実上不可能であった。 In order to increase the efficiency of the flame-resistant treatment, Japanese Patent Publication No. Sho 53-22557, Japanese Patent Publication No. 58-2144535, Japanese Patent Publication No. 58-17464 In the gazette, heat treatment in the air After the treatment, a technique has been proposed in which a flame treatment is performed by heat treatment in an inert atmosphere with an adjusted oxygen concentration, and then the carbonization treatment is performed. As a result, the heat generated in the initial stage was large, and it was virtually impossible to treat thick yarns and large amounts of yarns with high efficiency.
また、 特開平 7— 2 9 2 5 2 6号公報には、 ァクリル系繊維を酸素濃度 0 . 0 1〜 3容量%の不活性雰囲気中で熱処理し、 次いで酸化性雰囲気中で熱処理後、 炭化処理する炭素繊維の製造方法が開示されているが、 かかる手段では、 環化速 度が遅くなることから、 耐炎化処理の効率が大きく低下する欠点があった。 さらに、 特開平 2— 3 0 0 3 2 4号公報、 特開平 2 - 3 0 0 3 2 5号公報には 常圧又は減圧下で、 繊維を耐炎化処理した後、 さらに加圧下で耐炎化処理する技 術が開示されているが、 かかる手段では、 耐炎化処理の効率が不十分であり、 ま た、 装置が大型化する問題があった。  Japanese Patent Application Laid-Open No. 7-292526 discloses that acryl-based fibers are heat-treated in an inert atmosphere having an oxygen concentration of 0.01 to 3% by volume, and then heat-treated in an oxidizing atmosphere. Although a method for producing a carbon fiber to be treated is disclosed, such a method has a drawback that the efficiency of the oxidation treatment is greatly reduced because the cyclization rate is reduced. Further, JP-A-2-300324 and JP-A-2-300325 disclose that a fiber is subjected to a flame-resistant treatment under normal pressure or reduced pressure, and then further subjected to flame-resistance under pressure. Although the technology for processing is disclosed, there is a problem that the efficiency of the anti-oxidation treatment is insufficient and the apparatus becomes large in size.
さらに、 特開昭 5 9— 1 2 5 9 1 3には液相で耐炎化反応処理を行う技術が開 示されているが、 かかる手段では、 フィラメント数が 2 0、 0 0 0以上になると 反応が不均一に進行し、 耐炎化繊維の単繊維間に多数の融着が発生するため強度 が低下するという問題があった。  Further, Japanese Patent Application Laid-Open No. 59-125139 discloses a technique for performing a flame-resistant reaction treatment in a liquid phase. However, with such a method, if the number of filaments becomes 20 or more than 0000, There was a problem that the reaction proceeded unevenly and a large number of fusions occurred between the single fibers of the oxidized fiber, resulting in a decrease in strength.
加えて、 耐炎化繊維布帛及び炭素繊維布帛を製造する場合には次の問題が生じ る。  In addition, the following problems occur when manufacturing the flame-resistant fiber fabric and the carbon fiber fabric.
一般的に、 耐炎化繊維布帛は耐炎化繊維を直接布帛に加工することによって製 造する。 また、 炭素繊維布帛は炭素繊維を直接布帛に加工す ¾か、 或いは耐炎化 繊維布帛を炭化処理することによって製造する。  Generally, an oxidized fiber fabric is manufactured by directly processing an oxidized fiber into a fabric. Further, the carbon fiber cloth is manufactured by directly processing the carbon fiber into the cloth or by carbonizing the flame-resistant fiber cloth.
しかしながら一般的に、 アクリル系.繊維の強度 ·伸度は高いものの、 耐炎化繊 維となると高温で化学反応を伴い環化構造が形成するため強度、 伸度が低下して いる。 さらに炭素繊維になると非常に高強度となる一方、 伸度は著しく小さい脆 性繊維となる。 そのため、 耐炎化繊維、 炭素繊維を布帛に加工する際にはァクリ ル系繊維を布帛に加工するのに比べ、 糸切れ等の工程トラブルが発生しやすい、 という問題があった。  However, in general, the strength and elongation of acrylic fibers are high, but the strength and elongation of flame-resistant fibers are reduced due to the formation of cyclized structures accompanied by chemical reactions at high temperatures. Further, carbon fibers have very high strength, while brittle fibers have extremely low elongation. For this reason, there has been a problem that, when processing the flame-resistant fiber or the carbon fiber into the fabric, a process trouble such as thread breakage is more likely to occur than when the acryl-based fiber is processed into the fabric.
このような問題に対し、 例えば特開平 7— 3 2 6 3 8 4号では、 耐炎化繊維の 前駆体繊維であるアクリル系繊維を不織布とした後、 加熱酸化し、 耐炎化処理を 施し耐炎化不織布を得て、 該耐炎化不織布を不活性雰囲気下、 高温焼成し炭素繊 維不織布とする発明が開示されている。 アクリル系繊維は強度、 伸度ともに高い ため、 耐炎化繊維や炭素繊維と比べ容易に不織布を作製することができる。 しか しながら、 不織布となったアクリル系繊維はその嵩高さのために耐炎化が容易で はない。 すなわち、 耐炎化処理は発熱反応であり、 除熱操作が必須となるが、 ァ クリル系繊維が不織布のように糸条密度が高い状態だと、 その耐炎化処理におい て蓄熱しやすくなり、 除熱が困難になる。 したがって、 低い雰囲気温度で処理し. 暴走を防ぐことが必要であり、 不織布の耐炎化処理に長時間要するため、 工業的 には生産性が著しく劣っていた。 In response to such a problem, for example, Japanese Patent Application Laid-Open No. 7-32638-4 discloses that an acrylic fiber, which is a precursor fiber of a flame-resistant fiber, is made into a nonwoven fabric, and then heated and oxidized to perform a flame-resistance treatment. The invention discloses an invention in which a carbon fiber nonwoven fabric is obtained by applying a high temperature nonwoven fabric to a nonwoven fabric by applying a high temperature treatment under an inert atmosphere. Acrylic fibers have both high strength and high elongation, so that nonwoven fabrics can be produced more easily than flame-resistant fibers or carbon fibers. However, nonwoven fabric acrylic fibers are not easily flame-resistant due to their bulkiness. In other words, the oxidation treatment is an exothermic reaction, and a heat removal operation is indispensable. However, if the acrylic fiber has a high yarn density such as a nonwoven fabric, heat is easily stored in the oxidation treatment, and the heat removal is performed. Heat becomes difficult. Therefore, it is necessary to treat at a low ambient temperature to prevent runaway, and it takes a long time for the flameproofing treatment of the nonwoven fabric, so that the productivity was extremely poor industrially.
発明の開示 Disclosure of the invention
本発明の目的は、 前記課題に鑑み高生産性で高性能な耐炎化繊維材料、 炭素繊 維材料、 黒鉛繊維材料を提供せんとするものである。 本発明でいう耐炎化繊維材 料、 炭素繊維材料、 黒鉗繊維材料には、 複数の単繊維が束になった耐炎化繊維束、 炭素繊維束及び黒鉛繊維束、 並びに複数の単繊維を布帛状に加工した耐炎化繊維 布帛、 炭素繊維布帛及び黒鉛繊維布帛を含むものである。 An object of the present invention is to provide a high-productivity, high-performance flame-resistant fiber material, carbon fiber material, and graphite fiber material in view of the above problems. The flame-resistant fiber material, the carbon fiber material, and the black forceps fiber material referred to in the present invention include a flame-resistant fiber bundle, a carbon fiber bundle and a graphite fiber bundle in which a plurality of single fibers are bundled, and a plurality of single fibers. Includes flame-resistant fiber fabric, carbon fiber fabric and graphite fiber fabric processed into a shape.
かかる本発明の目的を達成するために、 本発明の耐炎化繊維材料は、 次の構成 を有する。 すなわち、 元素分析 ·酸素分析法で測定した繊維内平均酸素濃度 (o In order to achieve the object of the present invention, the flame-resistant fiber material of the present invention has the following configuration. That is, the average oxygen concentration in the fiber measured by elemental analysis and oxygen analysis (o
Z C ) が 0 . 0 7〜 0 . 1 7である耐炎化繊維材料である。 かかる耐炎化繊維材 料を炭化処理することにより高収率で炭素繊維材料を得ることができる。 本発明 の炭素繊維材料は単繊維断面を電界放出型電子顕微鏡を用いて、 電子エネルギー 損失分光法で測定して得られる 7T * / σ *の最表面測定値 A 1と単繊維内部最高 値 A 2との比 A 1 Z A 2が 0 . 8 3〜 0 . 9 4である炭素繊維材料である。 ZC) is 0.07 to 0.17. A carbon fiber material can be obtained at a high yield by carbonizing such a flame-resistant fiber material. The carbon fiber material of the present invention is obtained by measuring the cross section of a single fiber using a field emission electron microscope by electron energy loss spectroscopy and measuring the outermost surface value A1 of 7T * / σ * and the highest value A inside the single fiber. The carbon fiber material having a ratio A 1 ZA 2 of 0.83 to 0.94.
また、 上記した本発明の耐炎化繊維材料は、 次の製造方法により好適に製造さ れる。 すなわち、 アクリル系繊維材料を、 ァミン化合物を除く有機化合物、 フッ 素化合物、 シロキサン類、 硝酸塩、 亜硝酸塩のうち 1種又は 2種以上の化合物存 在下で、 1 8 0〜3 0 0 °Cで耐炎化処理するものである。 本発明において、 かか るァクリル系繊維材料は、 ァクリル系繊維束及びァクリル系繊維布帛を含むもの である。 Further, the above-described flameproofed fiber material of the present invention is suitably manufactured by the following manufacturing method. That is, the acrylic fiber material contains one or more compounds selected from organic compounds other than amine compounds, fluorine compounds, siloxanes, nitrates, and nitrites. In the presence, it is subjected to a flameproofing treatment at 180 to 300 ° C. In the present invention, such an acryl-based fiber material includes an acryl-based fiber bundle and an acryl-based fiber cloth.
さらに、 上記した本発明の炭素繊維材料は、 前記耐炎化繊維材料を不活性雰囲 気中、 3 0 0 以上 2, 0 0 0で未満で炭化処理することにより好適に製造され る。 また、 本発明の黒鉛繊維材料は前記炭素繊維材料を不活性雰囲気中、 2, 0 0 0 °C以上 3 , 0 0 0 °C以下で熱処理することにより好適に製造される。  Further, the above-mentioned carbon fiber material of the present invention is suitably produced by carbonizing the oxidized fiber material in an inert atmosphere at a temperature of at least 300 and less than 2,000. Further, the graphite fiber material of the present invention is suitably produced by heat-treating the carbon fiber material in an inert atmosphere at a temperature of not less than 2,000 ° C. and not more than 3,000 ° C.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明について、 さらに詳しく説明する。 Next, the present invention will be described in more detail.
本発明者等は、 耐炎化繊維の繊維内酸素濃度を特定の範囲とすることにより、 高性能な耐炎化繊維材料を高効率で得ることができ、 また該耐炎化繊維材料から 炭素繊維材料を製造する際の効率も向上することを見いだした。  The present inventors can obtain a high-performance flame-resistant fiber material with a high efficiency by setting the oxygen concentration in the fiber of the flame-resistant fiber to a specific range, and convert the carbon fiber material from the flame-resistant fiber material. It has been found that the efficiency in manufacturing is also improved.
また、 耐炎化繊維の表面と内部において、 酸素含有量の異なる特定の 2重構造 を有する繊維とすることにより、 耐炎化繊維材料から生産される炭素繊維材料の 生産性が飛躍的に向上することを見いだした。 更には、 かかる耐炎化繊維は特定 の 2重構造を有する炭素繊維を提供することを可能とすることを見いだしたもの である。 該炭素繊維は表面と内部の結晶化度が異なる 2重構造を有するため、 炭 素繊維自体の強度は維持しつつ、 炭素繊維と樹脂との接着性向上を可能としたも のである。  Also, by using fibers having a specific double structure with different oxygen contents on the surface and inside of the oxidized fiber, the productivity of the carbon fiber material produced from the oxidized fiber material is dramatically improved. Was found. Furthermore, it has been found that such an oxidized fiber makes it possible to provide a carbon fiber having a specific double structure. Since the carbon fiber has a double structure in which the crystallinity between the surface and the inside is different, it is possible to improve the adhesiveness between the carbon fiber and the resin while maintaining the strength of the carbon fiber itself.
また、 前駆体繊維であるアクリル系繊維材料が、 多数の単繊維が集束した高密 度な繊維束であったり、 或いはかかるァクリル系繊維束が密集した状態で耐炎化 処理される場合においても、 高効率に耐炎化が進み、 その結果高炭素含有率で未 閉環部分が少ない構造及び高い引張強度を有する耐炎化繊維材料が安定に得られ る製造方法である。  Further, even when the acrylic fiber material which is the precursor fiber is a high-density fiber bundle in which a large number of single fibers are bundled, or when the acryl-based fiber bundle is subjected to flame-resistant treatment in a dense state, This is a method for producing a flame-resistant fiber material having a high carbon content, a structure having a small number of unclosed rings, and a high tensile strength.
つまり、 本発明の耐炎化繊維は、 元素分析 ·酸素分析法で測定した繊維内平均 (O/C) が 0. 0 7〜0. 1 7であることが重要である。 より好まし くは 0. 08〜 0. 1 6、 更に好ましくは 0. 1〜: 1. 5であるのが良い。 ここで元素分析,酸素分析法で測定した繊維内平均酸素濃度 (O/C) とは、 酸化進行度の指標であり、 繊維内平均酸素濃度が 0. 07未満であると耐熱性が 低くく続く炭化処理ができなくなる場合があり、 0. 1 7を超えると酸素含有量 が多すぎるため後の続く炭化処理後の収率が低下する場合がある。 In other words, the oxidized fiber of the present invention has an average in-fiber measured by elemental analysis and oxygen analysis. It is important that (O / C) is between 0.07 and 0.17. More preferably, it is from 0.08 to 0.16, and still more preferably from 0.1 to: 1.5. The average oxygen concentration in the fiber (O / C) measured by elemental analysis and oxygen analysis is an index of the degree of oxidation progress. If the average oxygen concentration in the fiber is less than 0.07, the heat resistance is low. Subsequent carbonization may not be possible, and if it exceeds 0.17, the yield after the subsequent carbonization may be reduced because the oxygen content is too large.
ここで元素分析 ·酸素分析法で測定した繊維内平均酸素濃度 (O/C) とは、 元素分析により測定した炭素量 Cと酸素分析により測定した酸素量 0の比 OZC である。  Here, the average oxygen concentration (O / C) in the fiber measured by elemental analysis and oxygen analysis is the ratio OZC between the carbon content C measured by elemental analysis and the oxygen content 0 measured by oxygen analysis.
元素分析は、 有機化合物を高温に加熱'して分解し、 その成分元素をそれぞれ簡 単な無機化合物に変えて、 差動熱伝導計に導き定量する方法である。 各元素含有 量の算出はコンピュータ一により自動的に行えるようになつている装匱を用いて 測定することもできる。 例えば、 実施例に記載した装置等を使用することができ る。  Elemental analysis is a method in which an organic compound is heated to a high temperature to decompose it, and its constituent elements are converted into simple inorganic compounds, respectively, and led to a differential thermal conductivity meter for quantification. The calculation of the content of each element can also be performed by using a paddle that can be automatically performed by a computer. For example, the devices and the like described in the embodiments can be used.
酸素分析法は有機化合物を高温に加熱して分解し、 すべての酸素を一酸化炭素 に変えて、 非分散型分光計に導き定量する方法である。 例えば、 実施例に記載し た装置等を使用することができる。  Oxygen analysis is a method in which organic compounds are decomposed by heating to high temperature, all oxygen is converted to carbon monoxide, and the resulting quantity is led to a non-dispersive spectrometer for determination. For example, the devices and the like described in the embodiments can be used.
尚、 アクリル系耐炎化繊維は、 二トリル基が閉環した環化構造を有するが、 本 発明における耐炎化繊維材料は、 繊維内の平均二トリル基残存率、 つまりは環化 に関与しない二トリル基の残存率が 0〜 40 %であることが好ましく、 より好ま しくは 0〜3 5 %、 更に好ましくは 0 ~ 30 %である。 尚、 繊維内の平均のニト リル基残存率が 40 %を超えると続く炭化処理後の収率が低下することがある。 ここで、 二トリル基残存率は、 赤外分光分析法を用いて熱処理前後の二トリル 基の吸光度比から、 例えば後述する方法によって求めることができる。  Incidentally, the acrylic oxidized fiber has a cyclized structure in which a nitrile group is closed. However, the oxidized fiber material of the present invention has an average residual rate of nitrile groups in the fiber, that is, nitrile which is not involved in cyclization. The residual ratio of the group is preferably 0 to 40%, more preferably 0 to 35%, and still more preferably 0 to 30%. When the average residual ratio of nitrile groups in the fiber exceeds 40%, the yield after the subsequent carbonization treatment may decrease. Here, the nitrile group residual ratio can be determined from the absorbance ratio of the nitrile group before and after the heat treatment using infrared spectroscopy, for example, by the method described below.
また、 本発明の耐炎化繊維は、 X線光電子分光法で測定される繊維表面の平均 酸素濃度 O 1と X線光電子分光法で測定される凍結粉砕繊維の平均酸素濃度〇 2 の比 01/02が 1. 8〜4. 0であることが重要である。 かかる O 1 ZO 2は 1. 9 ~ 3. 5がより好ましく、 2. 0〜3. 2が更に好ましい。  Further, the oxidized fiber of the present invention has a ratio of the average oxygen concentration O 1 of the fiber surface measured by X-ray photoelectron spectroscopy to the average oxygen concentration 〇 2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy. It is important that 02 be between 1.8 and 4.0. Such O 1 ZO 2 is more preferably from 1.9 to 3.5, even more preferably from 2.0 to 3.2.
かかる平均酸素濃度の比〇 1 ZO 2が 1. 8未満であると、 2重構造性が低く いため炭化処理後の収率が低くなり、 〇 1 Z〇 2が.4. 0を超えると、 2重構造 性が強すぎるために物性が低下する。 When the ratio of the average oxygen concentration 〇 1 ZO 2 is less than 1.8, the double structure is low. Therefore, the yield after carbonization treatment is low, and when 〇1Z〇2 exceeds 4.4.0, the physical properties are degraded because the double structure is too strong.
ここで X線光電子分光法で測定される凍結粉砕繊維の平均酸素濃度 O 2は実質 的に耐炎化繊維の内部酸素濃度を表すものである。 かかる凍結粉砕繊維の平均酸 素濃度〇 2は 0. 0 3〜0. 1 0であることが好ましく、 0. 0 3~ 0. 0 9で' あることがより好ましく、 0. 0 3〜 0. 0 7であることが更に好ましい。 かか る凍結粉碎繊維平均酸素濃度が 0. 0 3未満であると耐熱性が低くなり続く炭化 処理ができなくなり、 0. 1 0を超えると続く炭化処理後の収率が低下する。 このように、 繊維内部の酸素濃度に比べて繊維表面酸素濃度が高い 2重構造を 有することにより耐熱性が向上し、 続く炭化処理後の収率が向上する。 更には後 述する 2重構造を有する炭素繊維を提供するものである。  Here, the average oxygen concentration O 2 of the freeze-ground fiber measured by X-ray photoelectron spectroscopy substantially represents the internal oxygen concentration of the oxidized fiber. The average oxygen concentration 〇2 of such a freeze-ground fiber is preferably from 0.3 to 0.10, more preferably from 0.03 to 0.09, more preferably from 0.03 to 0.09. More preferably, it is 0.7. If the average oxygen concentration of the frozen and ground fiber is less than 0.03, the heat resistance becomes low and the carbonization cannot be continued. If it exceeds 0.10, the yield after the subsequent carbonization decreases. Thus, by having a double structure in which the oxygen concentration on the fiber surface is higher than the oxygen concentration inside the fiber, the heat resistance is improved and the yield after the subsequent carbonization treatment is improved. Further, the present invention provides a carbon fiber having a double structure described later.
また、 本発明における耐炎化繊維は、 単繊維引張強度が好ましくは 2 5 0〜4 5 0 MP a、 より好ましくは 3 0 0 ~45 0MP a、 更に好ましくは 3 5 0〜4 5 0 MP aであるのが良い。  Further, the oxidized fiber of the present invention has a single fiber tensile strength of preferably 250 to 450 MPa, more preferably 300 to 450 MPa, and still more preferably 350 to 450 MPa. It is good.
本発明の耐炎化繊維の密度は耐炎化処理途上において、 1. 1 8〜 1. 3 5 g Zcm3、 好ましくは 1. 2 0~ 1. 3 5 gZ c m3であるのが良い。 また、 耐炎 化完了後の耐炎化繊維の密度は、 1. 3 5〜 1. 5 0 gZ c m3であることが好ま しい。 耐炎化繊維の密度は耐炎化進行度の指標であり、 耐炎化繊維の密度が 1. 3 5 g/ cm3未満であると、 耐炎化が十分でないため続く炭化処理ができなくな る場合があり、 1. 5 0 g/ c m3を超えると、 耐炎化が深すぎて物性が低下する 場合がある。 尚、 密度が 1. 3 5 gZ c m3未満の繊維であっても、 防火服、 断熱 材、 ブレーキパッド等の用途に用いることができる。 Density of oxidized fiber of the present invention in the oxidization process developing, 1. 1 8~ 1. 3 5 g Zcm 3, preferably 1.2 0 - 1. and even better at 3 5 gZ cm 3. The density of the oxidized fiber after completion of the oxidization is preferably 1.35 to 1.50 gZ cm 3 . Density of oxidized fiber is an index of flame resistant progress, if the density of oxidized fiber is less than 1. 3 5 g / cm 3, ing impossible carbonizing followed for flame resistance is not sufficient If it exceeds 1.50 g / cm 3 , flame resistance may be too deep and physical properties may be reduced. In addition, even fibers having a density of less than 1.35 gZ cm 3 can be used for applications such as fire protection clothing, heat insulating materials, and brake pads.
本発明において、 耐炎化繊維、 炭素繊維等の原料となる前駆体繊維は、 ァクリ ル系共重合体からなるものが好ましい。 かかるアクリル系共重合体は、 好ましく は 8 5モル%以上、 より好ましくは 9 0モル%以上、 更に好ましくは 94モル% 以上のアクリロニトリルと、 いわゆる耐炎化促進成分が共重合された共重合体か らなるものが好ましい。 かかる共重合体を重合する方法としては、 特に限定され ないが溶液重合法、 懸濁重合法、 乳化重合法等が適用できる。  In the present invention, the precursor fiber used as a raw material such as the oxidized fiber and the carbon fiber is preferably made of an acryl-based copolymer. Such an acrylic copolymer is preferably a copolymer obtained by copolymerizing 85% by mole or more, more preferably 90% by mole or more, and still more preferably 94% by mole or more of acrylonitrile with a so-called flame retardant component. Are preferred. The method for polymerizing such a copolymer is not particularly limited, but a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be applied.
耐炎化促進成分としては、 ビニル基を含有する化合物が好ましい。 具体的には、 アクリル酸、 メタクリル酸、 ィタコン酸等、 より好ましくは、 これらの一部又は 全量を、 アンモニアで中和したアクリル酸、 メタクリル酸、 又はィタコン酸のァ ンモニゥム塩からなる共重合体が挙げられる。 その他、 ァリルスルホン酸金属塩、 メタリルスルホン酸金属塩、 アクリル酸エステル、 メタクリル酸エステルゃァク リルアミ ドなども共重合できる。 As the flame retardant component, a compound containing a vinyl group is preferable. In particular, Acrylic acid, methacrylic acid, itaconic acid, and the like, more preferably, a copolymer comprising an ammonium salt of acrylic acid, methacrylic acid, or itaconic acid in which a part or all of these are neutralized with ammonia, are exemplified. In addition, metal salts of aryl sulfonic acid, metal salts of methallyl sulfonic acid, acrylic acid esters, methacrylic acid ester acrylamide, and the like can also be copolymerized.
紡糸原液としては、 上記アクリル系共重合体と共に溶媒として、 有機、 無機い ずれの溶媒も使用できるが、 有機溶媒を使用するのが好ましく、 具体的には、 ジ メチルスルホキシド、 ジメチルホルムアミ ド、 ジメチルァセ卜アミ ド等が挙げら れる。  As the spinning solution, any of an organic solvent and an inorganic solvent can be used as a solvent together with the above-mentioned acrylic copolymer, but it is preferable to use an organic solvent, specifically, dimethyl sulfoxide, dimethylformamide, Dimethyl acetate amide and the like.
紡糸方法としては、 特に限定されないが湿式紡糸法、 乾湿式紡糸法、 乾式紡糸 法、 溶融紡糸法及びその他公知の方法を用いることができる。 好ましくは湿式紡 糸法又は乾湿式紡糸法により上述したようなァクリル系共重合体と溶媒からなる 紡糸原液を口金から紡出し、 凝固浴に導入して繊維を凝固せしめる方法を用いる ことができる。  The spinning method is not particularly limited, but a wet spinning method, a dry-wet spinning method, a dry spinning method, a melt spinning method, and other known methods can be used. Preferably, a method of spinning a spinning solution comprising the acryl-based copolymer and a solvent as described above from a die by a wet spinning method or a dry-wet spinning method, and introducing the spinning solution into a coagulation bath to coagulate the fibers can be used.
凝固速度や延伸方法は、 目的とする耐炎化繊維材料及び炭素繊維材料の用途に 合わせて適宜設定することができる。  The solidification rate and the stretching method can be appropriately set according to the intended use of the oxidized fiber material and the carbon fiber material.
本発明において、 前記凝固浴には、 ジメチルスルホキシド、 ジメチルホルムァ ミ ド、 ジメチルァセトアミ ドなどの溶媒の他に、 いわゆる凝固促進成分を含ませ ることができる。 凝固促進成分としては、 前記アクリル系共重合体を溶解せず、 かつ ,紡糸原液に用いる溶媒と相溶性があるものが好ましく使用できる。 かかる凝 固促進成分としては、 具体的には、 水を使用するのが好ましい。  In the present invention, the coagulation bath may contain a so-called coagulation-promoting component in addition to a solvent such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide. As the coagulation accelerating component, those which do not dissolve the acrylic copolymer and are compatible with the solvent used for the spinning dope can be preferably used. As such a coagulation promoting component, specifically, it is preferable to use water.
凝固浴の温度及び凝固促進成分の量は目的とする耐炎化繊維材料及'び炭素繊維 材料の用途に合わせて適宜設定することができる。 凝固浴の温度及び凝固促進成 分の量を調整することにより凝固速度をコントロールすることができる。  The temperature of the coagulation bath and the amount of the coagulation accelerating component can be appropriately set in accordance with the intended use of the oxidized fiber material and carbon fiber material. The coagulation rate can be controlled by adjusting the temperature of the coagulation bath and the amount of the coagulation accelerating component.
凝固浴中に導入して糸条を凝固せしめた後、 水洗、 ,延伸、 乾燥及び油剤付与等 を経て、 アクリル系繊維を得ることができる。 ここで、 凝固後の糸条は、 水洗せ ずに直接延伸き中で延伸しても良いし、 溶媒を水洗除去後に浴中で延伸しても良 い。 また、 油剤付与後、 さらにスチームで延伸することもできる。  After being introduced into a coagulation bath to coagulate the yarn, an acrylic fiber can be obtained through water washing, stretching, drying, oiling and the like. Here, the coagulated yarn may be drawn directly without being washed with water or drawn in a bath after the solvent is removed by washing with water. Also, after applying the oil agent, it can be further stretched by steam.
かかる浴中.延伸は、 通常、 3 0〜 9 8 °Cに温調された単一又は複数の延伸浴中 で行わうことができる。 これら水洗浴や延伸浴の浴液は、 前述した紡糸原液に用 いる溶媒の含有率が、 凝固浴液における溶媒の含有率を超えないことが好ましい £ 浴延伸の後、 糸条に油剤を付与する場合は、 シリコーン等からなる油剤を付与 するのが好ましい。 かかるシリコーン油剤は、 変性シリコーンであることが好ま しく、 耐熱性の高いアミノ変性シリコーンを含有するものが更に好ましい。 In such a bath, stretching is usually performed in a single or multiple stretching baths controlled at 30 to 98 ° C. Can be done at Bath liquid of the washing bath and stretching bath, applying the content of the solvent are use in the spinning solution described above is, after it is preferred £ bath stretching does not exceed the content of the solvent in the coagulation bath, an oil on yarn In this case, it is preferable to apply an oil agent made of silicone or the like. The silicone oil is preferably a modified silicone, and more preferably contains an amino-modified silicone having high heat resistance.
糸条の高密度化による製造コスト低減のため、 ァクリル系繊維束のフィラメン ト数は、 好ましくは 1, 0 0 0〜 3, 0 0 0, 0 0 0、 より好ましくは 1 2, 0 0 0〜3, 0 0 0 , 0 0 0、 更に好ましくは 24, 0 0 0〜 2 , 5 0 0, 0 0 0, 特に好ましくは 3 6, 0 0 0〜 2, 0 0 0 , 0 0 0、 最も好ましくは 48, 0 0 0〜 2, 0 0 0, 0 0 0であるのが良い。  In order to reduce the production cost by increasing the density of the yarn, the number of filaments of the acryl-based fiber bundle is preferably from 1,000 to 3,000,000, more preferably 1,200,000. ~ 3,000,000, more preferably 24,000 ~ 2,500,000, particularly preferably 36,000 ~ 2,000, 000, Most preferably, it is 48,000 to 2,000,000.
アクリル系繊維束のフィラメント数は高生産性という観点から 1 , 0 0 0以上 であることが好ましいが、 3, 0 0 0, 0 0 0を越えると内部まで均一に耐炎化 処理できないことがある。  The number of filaments in the acrylic fiber bundle is preferably at least 1,000 from the viewpoint of high productivity. However, if it exceeds 3,000, 000, the inside may not be uniformly flame-proofed. .
アクリル系繊維の単繊維繊度は、 好ましくは 0. 5 6〜3. O d t e x、 より 好ましくは 0. 8〜2. 2 d t e X、 更に好ましくは 1. 0~ 1. 7 d t e xで あるのが良い。  The single fiber fineness of the acrylic fiber is preferably 0.56 to 3.O dtex, more preferably 0.8 to 2.2 dte X, and still more preferably 1.0 to 1.7 dtex. .
ァクリル系繊維の単繊維繊度は高生産性の観点から 0. 5 6 d t e x以上であ ることが好ましいが、 3. 0 d t e Xを越えると単繊維内部まで耐炎化処理でき ないことがある。 '  The single fiber fineness of the acryl-based fiber is preferably 0.56 dtex or more from the viewpoint of high productivity. However, if it exceeds 3.0 dtex, it may not be possible to perform the flame-resistant treatment to the inside of the single fiber. '
本発明においては該ァクリル系繊維材料を布帛に加工し、 後述する方法により 耐炎化処理及び炭化処理することもできる。  In the present invention, the acryl-based fiber material can be processed into a fabric and subjected to a flame-proofing treatment and a carbonizing treatment by a method described later.
つまり、 本発明の耐炎化繊維布帛及び炭素繊維布帛は、 後述する方法で得られ た耐炎化繊維束及び炭素繊維束を布帛にしてもよいし、 前駆体繊維であるァクリ ル系繊維を布帛にし、 後述する方法で耐炎化処理及び炭化処理をすることもでき る。 アクリル系繊維を布帛にし、 耐炎化処理及び炭化処理をする方法は、 脆性繊 維である耐炎化繊維材料や炭素繊維材料を布帛にする方法に比べ、 糸切れ,などの 工程トラブルが少ないという点で好ましい。  In other words, the flame-resistant fiber fabric and the carbon fiber fabric of the present invention may be formed by fabricating the flame-resistant fiber bundle and the carbon fiber bundle obtained by the method described below, or by converting the acryl-based fiber that is the precursor fiber into a fabric. Flameproofing treatment and carbonization treatment can also be performed by the methods described below. The method of fabricating acrylic fiber and performing the flame-proofing treatment and carbonization treatment has fewer process troubles such as yarn breakage than the method of fabricating the flame-resistant fiber material or carbon fiber material which is brittle fiber. Is preferred.
ここで布帛とは主に織物、 編物、 不織布のことであるが、 三次元織物、 多軸た て編物、 レース、 組紐、 網なども含まれる。 中でも織物及び不織布は強度、 コス ト面に優れるため多種の用途に用いられる。 Here, the fabric is mainly a woven fabric, a knitted fabric, or a nonwoven fabric, but also includes a three-dimensional woven fabric, a multiaxially knitted fabric, a lace, a braid, a net, and the like. Among them, woven and non-woven fabrics are strong and cost It is used for various purposes because of its excellent surface.
ここで織物とは経糸、 緯糸が互いに直角又は場合によっては緯糸が斜めに走行 し任意の角度で織り合わさつたものでもよい。 織組織としては平織、 綾織、 朱子 織等が挙げられる。 織物はシャトル織機、 レピア織機、 エアジェットルーム、 ゥ ォ一夕ジエツ トル一ム等を用いて製織することができる。 織物は多方向の強度に 優れるという点で好ましい。 従って本発明の耐炎化繊維織物は各種耐炎化、 防火 用途に用いられ、 例えばブレーキパッドとして好ましく用いられる。 また、 炭素 繊維織物は各種繊維強化複合材料の基材として好ましく用いることができる。 例 えばプリプレダ用の強化繊維基材として用いることもできるし、 直接強化繊維材 料に含浸させた後加熱硬化する方法、 即ち、 ハンド · レイアップ法、 フィラメン ト , ワインデイング法、 プルトル一ジョン法、 レジン ·インジェクション · モー ルディング法、 レジン · トランスファー · モールディング法等の強化繊維基材と しても使用できる。  Here, the woven fabric may be one in which the warp and the weft run at right angles to each other, or in some cases, the weft runs obliquely and woven at an arbitrary angle. Examples of the weave organization include plain weave, twill weave, and satin weave. The woven fabric can be woven by using a shuttle loom, a rapier loom, an air jet loom, a jet mill, or the like. Woven fabrics are preferred because they have excellent multidirectional strength. Therefore, the flame-retardant fiber fabric of the present invention is used for various flame-resisting and fire-preventing applications, and is preferably used as a brake pad, for example. Further, carbon fiber woven fabric can be preferably used as a base material of various fiber reinforced composite materials. For example, it can be used as a reinforcing fiber base material for pre-predator, or it can be directly impregnated into a reinforcing fiber material and then heat-cured, that is, a hand lay-up method, a filament, a winding method, a pulling method. It can also be used as a reinforcing fiber base for resin, injection and molding methods, and resin, transfer and molding methods.
また、 編物とは編釙を用いて編んだもので経編や緯編等ループを有するもので ある。  The knitted fabric is a fabric knitted using a braid and has a loop such as a warp knit or a weft knit.
不織布とは文字通り 「織られていない布」 であり、 繊維同士を様々な方法で結 合させたシート状のものをいう。  Non-woven fabric is literally “non-woven fabric” and refers to a sheet-like material in which fibers are bonded together in various ways.
また不織布の製造方法によって、 緻密なものから空隙の多いもの、 柔らかいも のから硬いもの、 厚いものから薄いものまで適宜作ることができる。  Also, depending on the method of manufacturing the nonwoven fabric, it can be appropriately formed from a dense material to a material having many voids, a soft material to a hard material, and a thick material to a thin material.
不織布の製造方法としては湿式、 乾式いずれでもよく、 スパンポンド、 メルト ブロー、 フラッシュ紡糸、 トウ開繊等の方法が好ましく用いることができる。 不 織布は織布に比べると強度が弱いものの、 生産性が高く、 労働力、 設備コストの 負担も少ないという利点があり、 強度をそれほど必要としない用途に用いられる c 本発明の耐炎化繊維不織布は各種耐炎化、 防火用途に用いられるが、 中でもス パッタシートや防炎断熱材として好適に用いられる。 また、 本発明の炭素繊維不 織布は各種電極基材として好適に用いられ、 例えばナトリゥムー硫黄電池の陽極 材料などに好ましく用いられる。 The method for producing the nonwoven fabric may be any of a wet method and a dry method, and methods such as spun pond, melt blowing, flash spinning, and tow opening can be preferably used. Although nonwoven fabric strength than the fabric is weak, high productivity, labor, it has the advantage that even less of a burden of equipment cost, oxidized fiber of c present invention for use in applications that do not require much strength Nonwoven fabrics are used for various types of flame resistance and fire prevention applications, and are particularly suitable for use as spatter sheets and flameproof insulation materials. Further, the carbon fiber nonwoven fabric of the present invention is suitably used as various electrode substrates, and is preferably used, for example, as an anode material of a sodium sulfur battery.
本発明の炭素繊維布帛は、 比抵抗値が 0 . 6 Ω · c m以下が好ましく、 0 . 6 Ω · c m以下がより好ましく、 0 . 4 Ω · c m以下が更に好ましい。 かかる比抵 抗値が 0. 6 Ω · cmを超えると、 導電性が低すぎるために電極材料に用いるこ とができない。 尚、 かかる比抵抗値は低いほど好ましいが電極材料に用いる場合 には 0. 5 Ω · c m程度であれば十分である。 かかる比抵抗値は後述する炭化処 理の程度ゃ布帛単位体積当たりの炭素繊維の本数 ·嵩密度によりコントロールす ることができる。 The specific resistance value of the carbon fiber fabric of the present invention is preferably 0.6 Ω · cm or less, more preferably 0.6 Ω · cm or less, and further preferably 0.4 Ω · cm or less. Such a relative If the resistance exceeds 0.6 Ω · cm, it cannot be used as an electrode material because the conductivity is too low. It is to be noted that the lower the specific resistance value is, the more preferable it is. The specific resistance value can be controlled by the degree of carbonization treatment described below, the number of carbon fibers per unit volume of the fabric, and the bulk density.
本発明の耐炎化繊維材料の製造方法は、 アクリル系繊維材料をァミン化合物を 除く有機化合物、 フッ素化合物、 シロキサン類、 硝酸塩、 亜硝酸塩 (以下、 耐炎 化処理剤と略記) のうち 1種又は 2種以上の化合物存在下で 1 8 0〜3 0 0 °Cで 耐炎化処理することを特徴とする。  The method for producing a flame-resistant fiber material according to the present invention is characterized in that the acrylic fiber material comprises one or two of an organic compound other than an amine compound, a fluorine compound, a siloxane, a nitrate, and a nitrite (hereinafter abbreviated as a flame-stabilizing agent). It is characterized in that it is subjected to a flameproofing treatment at 180 to 300 ° C. in the presence of at least one kind of compound.
ここでいぅァクリル系繊維材料とは繊維の形態は特に限定されず、 単繊維が束 状に集められたァクリル系繊維束でも良いし、 布帛状に加工されたァクリル系繊 維布帛でも良い。  Here, the form of the acryl-based fiber material is not particularly limited, and may be an acryl-based fiber bundle in which single fibers are collected in a bundle or an acryl-based fiber fabric processed into a fabric.
ァクリル系繊維材料としてァクリル系繊維束を用いる場合、 ァクリル系繊維束 を耐炎化処理をするに際し、 アクリル系繊維束の幅 1 mm当たりの繊度を、 高生 産性の観点から、 好ましくは 1, 0 0 0〜 8 0, O O O d t e x/mm、 より好 ましくは 1 0 , 0 0 0〜 7 5, 0 0 0 d t e X Zmm、 更に好ましくは 1 5 , 0 0 0〜7 0, O O O d t e x /mmとして耐炎化処理するのが良い。 ァクリル系 繊維束の幅 1 mm当たりの繊度が、 かかる範囲より低いと生産性が低下する場合 があり、 高いと耐炎化処理時に暴走してしまうことがある。  When an acryl-based fiber bundle is used as the acryl-based fiber material, the fineness per 1 mm width of the acryl-based fiber bundle is preferably set to 1,0 from the viewpoint of high productivity when the acryl-based fiber bundle is subjected to the flame-resistant treatment. 0 0 to 80, OOO dtex / mm, more preferably 10, 00 0 to 75, 00 dte X Zmm, more preferably 15, 00 0 to 70, OOO dtex / mm It is good to perform a flame-proof treatment. If the fineness per 1 mm width of the acryl-based fiber bundle is lower than the above range, productivity may decrease, and if it is higher, runaway may occur during the oxidation treatment.
ここで、 アクリル系繊維束の幅 1 mm当たりの繊度とは、 耐炎化処理導入直前 のァクリル系繊維束の繊度を、 耐炎化処理導入直前のァクリル系繊維束 1糸条の 幅で割った値である。 尚、 アクリル系繊維束 1糸条の幅は、 走行中の繊維束の駆 動を止めて、 1糸条の幅をノギスを用いて長手方向に 1 c m間隔で 5点測定し平 均し求めることができる。  Here, the fineness per 1 mm width of the acrylic fiber bundle is a value obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the anti-oxidation treatment by the width of one yarn of the acrylic fiber bundle immediately before the introduction of the anti-oxidation treatment. It is. The width of one acrylic fiber bundle is averaged by stopping the driving of the running fiber bundle, measuring the width of one yarn with calipers at five points at 1 cm intervals in the longitudinal direction, and calculating the average. be able to.
またアクリル系繊維束の単位断面積当たりの繊度を、 高生産性の観点から、 好 ましくは 5 0 0〜7, 5 0 0 d t e x/mm2、 より好ましくは 1 , 0 0 0〜 7, 3 0 0 d t e X /mm2、 更に好ましくは 2 , 0 0 0〜7, O O O d t e x/mm 2として耐炎化処理するのが良い。 ァクリル系繊維束の単位断面積当たりの繊度が. かかる範囲より低いと生産性が低下する場合があり、 高いと耐炎化処理時に暴走 してしまうことがある。 ここで、 アクリル系繊維束の単位断面積当たりの繊度と は、 耐炎化処理導入直前のアクリル系繊維束の繊度を、 耐炎化処理導入直前のァ クリル系繊維束 1糸条の断面積で割った値である。 尚、 アクリル系繊維束 1糸条 の断面積は走行する糸条の駆動を止めて、 一般に知られる光電式の透過率測定器 を用い、 1糸条の幅方向に 5点測定し、 それを平均して繊維束厚みを求め、 前述 の方法で求めた 1糸条の幅と掛け合わせたものである。 The fineness per unit cross-sectional area of the acrylic fiber bundle is preferably from 500 to 7,500 dtex / mm 2 , more preferably from 1,000 to 7, from the viewpoint of high productivity. It is preferable to carry out the flame-proof treatment at 300 dte X / mm 2 , more preferably at 2,000 to 7,000 dtex / mm 2 . The fineness per unit cross-sectional area of the acryl-based fiber bundle is lower. If it is lower than this range, the productivity may decrease. May be done. Here, the fineness per unit cross-sectional area of the acrylic fiber bundle is obtained by dividing the fineness of the acrylic fiber bundle immediately before the introduction of the oxidation treatment by the cross-sectional area of one yarn of the acrylic fiber bundle immediately before the introduction of the oxidation treatment. Value. The cross-sectional area of one yarn of the acrylic fiber bundle was measured at five points in the width direction of one yarn by stopping the driving of the running yarn and using a commonly known photoelectric transmittance measuring device. On average, the fiber bundle thickness was determined and multiplied by the width of one yarn determined by the method described above.
また、 耐炎化処理を行う際に、 前駆体繊維束であるアクリル系繊維束を実質的 に燃りをかけずにいわゆる無撚り状態で処理しても良いし、 複数本の前駆体繊維 束を合糸し撚り.をかけて有撚状態で処理をしても良い。 また、 かかる有撚繊維の 燃りを解く解撚工程を入れても構わない。  Further, when performing the flame-resistant treatment, the acrylic fiber bundle which is the precursor fiber bundle may be treated in a so-called non-twist state without substantially burning, or a plurality of precursor fiber bundles may be treated. The yarn may be twisted and twisted for treatment in a twisted state. Further, an untwisting step for unburning the twisted fiber may be included.
ァクリル系繊維材料としてァクリル系繊維布帛を用いる場合、 ァクリル系繊維 布帛は、 1枚で耐炎化処理してもよいが、 2枚以上が重なった状態で耐炎化処理 しても良い。 処理されるァクリル系繊維布帛の単位面積当たりの総重量が 2 0〜 2, 0 0 0 g / m 2であることが好ましく、 より好ましくは 5 0 ~ 1, 5 0 0 g / m 2 、 更に好ましくは 7 0〜1, 0 0 0 g Zm 2であるのが良い。 ァクリル系繊維 布帛の単位面積当たりの総重量が、 かかる範囲より低いと生産性が低下する場合 があり、 高いと耐炎化処理時に暴走してしまうことがある。 When using an acryl-based fiber cloth as the acryl-based fiber material, the acryl-based fiber cloth may be subjected to the flame-proofing treatment in one sheet, or may be subjected to the flame-proof treatment in a state where two or more sheets are overlapped. The total weight per unit area of the acryl-based fiber fabric to be treated is preferably 20 to 2,000 g / m 2 , more preferably 50 to 1,500 g / m 2 , and Preferably, it is 70 to 1,000 g Zm 2 . If the total weight per unit area of the acryl-based fiber fabric is lower than the above range, the productivity may be reduced, and if the total weight is higher, runaway may occur during the oxidation treatment.
耐炎化処理の雰囲気温度は、 好ましくは 1 8 0 ~ 3 0 0 °C、 より好ましくは 2 0 0〜3 0 0 °C、 更に好ましくは 2 2 0〜3 0 O であるのが良い。 雰囲気温度 が、 上記範囲より低いと、 耐炎化処理剤の繊維内部への浸透が阻害され、 耐炎化 処理の効率が低下することがあり、 上記範囲より高いと耐炎化処理時に暴走して しまうことがある。  The ambient temperature of the oxidization treatment is preferably 180 to 300 ° C., more preferably 200 to 300 ° C., and further preferably 220 to 300 ° C. If the ambient temperature is lower than the above range, the penetration of the flame retardant into the fiber may be hindered and the efficiency of the flame retardant treatment may be reduced.If the ambient temperature is higher than the above range, runaway occurs during the flame retardant treatment. There is.
前記耐炎化処理剤は蒸発蒸気として耐炎化処理雰囲気中に含ませることができ るし、 あるいは液相として用いることもできる。 ここで 「蒸発蒸気」 とは、 耐炎 化処理剤が加熱され、 気化して微粒子化した状態を意味し、 その一部が凝集した いわゆる湿り蒸気状態であっても良い。  The oxidizing agent can be contained in the oxidizing atmosphere as evaporated vapor, or can be used as a liquid phase. Here, the “evaporated vapor” means a state in which the oxidizing agent is heated and vaporized into fine particles, and may be a so-called wet vapor state in which a part thereof is aggregated.
また、 「蒸発蒸気を含む雰囲気」 とは、 ァミン化合物を除く有機化合物、 フッ 素化合物、 シロキサン類、 硝酸塩、 亜硝酸塩のうち 1種又は 2種以上の物質の飽 和状態、 すなわち 1 0 0 %蒸発蒸気雰囲気でも良いし、 任意の割合で蒸発蒸気を 含む雰囲気でも良く、 例えば微量の空気や酸素等の酸化性ガスや窒素、 ヘリウム、 アルゴン等の不活性ガスが混合されても良い。 The "atmosphere containing vaporized vapor" refers to the saturated state of one or more of organic compounds, fluorine compounds, siloxanes, nitrates, and nitrites, excluding amine compounds, that is, 100%. Evaporation steam atmosphere may be used. For example, a slight amount of an oxidizing gas such as air or oxygen or an inert gas such as nitrogen, helium, or argon may be mixed.
本発明においては、 耐炎化処理剤の蒸発蒸気を含む雰囲気中又は液相中のいず れか一方で耐炎化処理してもよいし、 蒸発蒸気を含む雰囲気中での処理と液相中 での処理を適宜組み合わせて処理しても良い。  In the present invention, the oxidizing treatment may be carried out either in the atmosphere containing vaporized vapor of the oxidizing agent or in the liquid phase, or in the liquid phase with the treatment in the atmosphere containing vaporized vapor. May be combined as appropriate.
本発明において、 耐炎化処理に要する時間は、 耐炎化処理の反応速度に応じて 決定することができ、 好ましくは 0 . 0 1〜 2 4 0分、 より好ましくは 5〜 1 0 0分、 更に好ましくは 1 0〜 5 0分の範囲で適宜設定することができる。 また、 耐炎化処理の雰囲気圧力は、 密閉が困難なため通常、 大気圧とするのが好ましい が、 加圧雰囲気で処理することにより、 耐炎化処理に要する時間を短縮すること ができる。  In the present invention, the time required for the oxidation treatment can be determined according to the reaction rate of the oxidation treatment, preferably 0.01 to 240 minutes, more preferably 5 to 100 minutes, and furthermore Preferably, it can be appropriately set in the range of 10 to 50 minutes. The atmospheric pressure of the oxidization treatment is usually preferably set to the atmospheric pressure because it is difficult to seal, but by performing the treatment in a pressurized atmosphere, the time required for the oxidization treatment can be shortened.
また、 耐炎化処理はいわゆるバッチ処理、 連続処理のいずれの方法によっても 良いが、 生産性の観点から連続処理が好ましい。  Further, the oxidation treatment may be performed by any of so-called batch processing and continuous processing, but continuous processing is preferable from the viewpoint of productivity.
また耐炎化処理の際、 延伸倍率を、 繊維方向物性向上の観点から、 1 . 0を超 える延伸倍率とすることが好ましく、 例えば延伸倍率が 1 . 0〜 1 . 7であるこ とが好ましく、 1 . 1〜 1 . 7であることがより好ましく、 更に好ましくは 1 . 3〜 1 . 7であるのが良い。 範囲より低いと物性が低下し、 高いと耐炎化処理時 に糸切れしてしまうことがある。 このように安定に高延伸できる理由は、 耐炎化 処理剤が繊維材料全体に対して均一に伝熱するため、 又は耐炎化処理剤がァクリ ル系繊維を可塑化するためと考えている。  Further, at the time of the flame-resistant treatment, the draw ratio is preferably set to a draw ratio exceeding 1.0 from the viewpoint of improving the physical properties in the fiber direction, for example, the draw ratio is preferably 1.0 to 1.7, It is more preferably from 1.1 to 1.7, and still more preferably from 1.3 to 1.7. If it is lower than the range, the physical properties are deteriorated, and if it is higher, the yarn may be broken during the flame-proofing treatment. It is considered that the reason why the high drawing can be performed stably is that the flameproofing agent uniformly transfers heat to the entire fiber material, or that the flameproofing agent plasticizes the acryl-based fiber.
本発明で用いるァミン化合物を除く有機化合物の具体例としては、 多置換アル キルベンゼン、 ナフタレン、 アルキルナフタレン、 ビフエニル、 アルキルビフエ ニル、 水素化トリフヱニル等の芳香族化合物、 ホルムアミ ド、 ァセトアミ ド、 プ 口ピオアミ ド等のアミ ド、 フエ二ルメチルケトン、 フエ二ルェチルケトン、 フエ ニルプロピルケトン、 ジフエ二ルケトン等のケトン、 フエニルメチルアルコール、 フエニルエチルアルコール、 フエニルプロピルアルコ一ル等のモノアルコール、 エチレングリコール、 ジエチレングリコール、 トリエチレングリコール等のアル キレングリコール、 グリセリン等のトリダリコール、 ペン夕エリ トリット等のテ トラダリコール以上のポリグリコール、 ポリオール化合物又は、 エチレングリコ ールのモノメチル、 モノェチル、 モノプロピル、 モノブチル等のモノアルキルェ —テル又は、 エチレングリコールのモノフエニル、 モノ トルィル等のモノァリー ルエーテル、 ジフエニルエーテル、 アルキルフエニルエーテル、 アルキルァリー ルェ一テル等のエーテル等が挙げられる。 Specific examples of the organic compound other than the amine compound used in the present invention include aromatic compounds such as polysubstituted alkylbenzene, naphthalene, alkylnaphthalene, biphenyl, alkylbiphenyl and triphenyl hydride, formamide, acetoamide, and pioamide. Such as amides, ketones such as phenylmethyl ketone, phenylethyl ketone, phenylpropyl ketone, and diphenylketone; monoalcohols such as phenylmethyl alcohol, phenylethyl alcohol, and phenylpropyl alcohol; ethylene glycol; diethylene glycol , Triethylene glycol and other alkylene glycols, glycerin and other tridalicols, and Pentra Elytrit and other tetraglycols and higher polyglycols, polyol compounds, and ethylene glycol. Rico Monoalkyl ethers such as monomethyl, monoethyl, monopropyl, monobutyl and the like, and monoaryl ethers such as ethylene glycol monophenyl and monotolyl, diphenyl ethers, alkylphenyl ethers and alkylaryl esters and the like. .
また、 コハク酸のジメチル、 ジェチル、 ジプロピル等の脂肪族カルボン酸エス テル、 安息香酸のメチル、 ェチル、 プロピル、 ブチル等のエステル化合物、 テレ フタル酸のジメチル、 ジェチル、 ジプロピル等の芳香族力ルポン酸ジエステルや エステルグリコールも使用できる。  In addition, aliphatic carboxylic acid esters such as dimethyl succinate, getyl and dipropyl, ester compounds such as methyl, ethyl, propyl and butyl benzoate, and aromatic sulfonic acid such as dimethyl terephthalate, getyl and dipropyl Diesters and ester glycols can also be used.
さらに、 チオール系化合物、 ベンゼンスルホン酸、 P—トルエンスルホン酸等 のスルホン酸系化合物、 ジメチルスルホキシド、 ジェチルスルホキシド、 メチル ェチルスルホキシド等のスルホン化合物、 スルフィン化合物、 アミンォキシド系 化合物、 トリフエ二ルメチルカチオン系化合物、 ニトロキシド化合物、 ジクロロ ージシァノベンゾキノン、 ナフトキノン、 アン卜ラキノン、 キノン、 ニトロベン ゼン、 o —二トロトルエン、 m—ニトロトルエン、 p—ニトロトルエン、 ニトロ キシレン、 ニトロナフタレン等のニト口化合物も使用できる。  Further, thiol compounds, sulfonic acid compounds such as benzenesulfonic acid and P-toluenesulfonic acid, sulfone compounds such as dimethyl sulfoxide, getyl sulfoxide, and methylethyl sulfoxide, sulfin compounds, amine oxide compounds, and triphenylmethyl cation Nitro compounds such as nitro compounds, nitroxide compounds, dichlorodicyanobenzoquinone, naphthoquinone, anthraquinone, quinone, nitrobenzene, o-nitrotoluene, m-nitrotoluene, p-nitrotoluene, nitroxylene, and nitronaphthalene are also used. it can.
さらに、 パラフィン系化合物、 シクロパラフィンやそのアルキル置換体である ナフテン系化合物も使用できる。  Further, paraffinic compounds, cycloparaffins and naphthenic compounds which are alkyl-substituted products thereof can also be used.
これらは、 芳香族炭化水素含む熱媒、 アルキルァロマ系熱媒、 パラフィン系熱 媒、 ナフテン系熱媒等、 各種有機系熱媒として知られている化合物や混合物も含 む。 中でも、 アルキルベンゼン、 アルキルナフタレン、 ビフエニル、 ジフエニル エーテルなどは熱媒としての使用が知られている。  These also include compounds and mixtures known as various organic heating media, such as heating media containing aromatic hydrocarbons, alkylaromatic heating media, paraffinic heating media, and naphthenic heating media. Among them, alkylbenzene, alkylnaphthalene, biphenyl, diphenyl ether and the like are known to be used as a heat medium.
本発明に用いるフッ素化合物としては、 パーフルォロポリエーテル系化合物、 有機フッ素化合物や塩素置換フッ素化合物、 及びポリビニリデンフルオラィ ド化 合物などを使用することもできる。  As the fluorine compound used in the present invention, a perfluoropolyether compound, an organic fluorine compound, a chlorine-substituted fluorine compound, a polyvinylidene fluoride compound, or the like can also be used.
パ一フルォロポリエーテル化合物は特に限定されないが、 熱媒ゃ潤滑剤として の使用が知られているものなどを適宜用いることができる。  The perfluoropolyether compound is not particularly limited, but a compound known to be used as a heat medium lubricant can be used as appropriate.
有機フッ素化合物や塩素置換フッ素化合物は特に限定されないが、 溶剤として の使用が知られているものなどを適宜用いることができる。  The organic fluorine compound and the chlorine-substituted fluorine compound are not particularly limited, but those known to be used as a solvent can be appropriately used.
ポリビニリデンフルオラィ ド化合物は特に限定されないが、 潤滑剤としての使 用が知られているものなど適宜用いることができる。 The polyvinylidene fluoride compound is not particularly limited, but may be used as a lubricant. Any of known applications can be used as appropriate.
本発明に用いるシロキサン類としては種々のものを用いることができるが、 中 でもフエ二ルシリコーン系化合物などシリコーンとして知られる有機ボリシロキ サン類は好適で る。 これらは、 シリコーン系潤滑剤やシリコーン系熱媒として 知られるものも含む。  Various siloxanes can be used as the siloxane used in the present invention, and among them, organic boryl siloxanes known as silicones such as phenylsilicone compounds are preferable. These include those known as silicone-based lubricants and silicone-based heat transfer media.
本発明においては硝酸カリウム、 亜硝酸ナトリウム、 硝酸ナトリウム及びそれ ら©混合物など、 各種硝酸塩、 亜硝酸塩も耐炎化剤として用いることができる。 これらは、 無機系熱媒として知られてい,るものも含む。  In the present invention, various nitrates and nitrites such as potassium nitrate, sodium nitrite, sodium nitrate and mixtures thereof can also be used as the flame retardant. These include those known as inorganic heating media.
なお、 本発明においては、 上記したような耐炎化処理剤を 2種以上混合して用 いても良い。 中でも、 蒸発蒸気の耐熱性の観点から、 芳香族化合物を用いること が好ましく、 芳香族炭化水素及び/又は芳香族エーテルを用いるのが更に好まし い。  In the present invention, two or more kinds of the above-mentioned oxidizing agents may be used in combination. Above all, from the viewpoint of the heat resistance of the evaporated vapor, it is preferable to use an aromatic compound, and it is more preferable to use an aromatic hydrocarbon and / or an aromatic ether.
また、 耐炎化処理剤は、 その一部又は全部がいわゆる酸化性化合物であると、 耐炎化処理の効率が高まり好ましい。 ここで、 酸化性化合物とは、 水素受容性或 いは酸素放出性のある有機化合物をいう。 例えば、 スルホン化合物、 スルフィ ン 化合物、 キノ.ン、 ニトロ化合物等が挙げられる。 更に具体的には、 「実験化学講 座 2 3、 有機合成 4、 酸化反応」 (出版社:丸善) の第 6章第 2 9 9頁に記載さ れている、 ジメチルスルホキシド、 テトラクロロー 1 , 2—ベンゾキノン、 ニト 口ベンゼン等を挙げることができる。  In addition, it is preferable that part or all of the oxidizing compound is a so-called oxidizing compound, because the efficiency of the oxidizing treatment increases. Here, the oxidizing compound means an organic compound having a hydrogen accepting property or an oxygen releasing property. For example, a sulfone compound, a sulfin compound, a quinone, a nitro compound and the like can be mentioned. More specifically, dimethyl sulfoxide, tetrachloro-1,2,2, described in Chapter 6, page 299 of “Experimental Chemistry Course 23, Organic Synthesis 4, Oxidation Reaction” (publisher: Maruzen) — Benzoquinone, benzene and the like.
これら化合物と、 アクリル系繊維との親和性が強すぎることにより、 繊維の溶 解や糸,切れが生じる場合には、 ァクリル系繊維の重合体骨格の一部にエチレンジ メタクリレー卜のような 3次元架橋成分を導入したり、 酸化処理、 紫外線処理、 電子線処理等を利用して重合体成分の一部又は全部を架橋することもできる。 本発明では、 耐炎化処理後に繊維に付着している有機化合物や反応生成物は、 乾燥することにより除去することができる。 また、 メチルアルコール、 ェチルァ ルコール、 アセトン、 ジメチルスルホキシド、 N , N—ジメチルホルムアミ ド、 ポリエチレンダリコール等の有機溶媒やそれら有機溶媒と水とを組み合わせるこ とによって洗浄除去できる。 或いは、 任意の界面活性剤と水によっても洗浄除去 できる。 有機溶媒に溶解しない硝酸カリウム、 亜硝酸ナトリウム、 硝酸ナトリウ ムなどの化合物に関してはそれらを溶解する溶媒を用いて洗浄除去できる。 If the dissolution of fibers, yarn, or breakage occurs due to too strong an affinity between these compounds and acrylic fibers, a part of the polymer skeleton of acryl-based fibers may have a three-dimensional structure such as ethylene dimethacrylate. A part or all of the polymer component can be cross-linked by introducing a cross-linking component, or by using an oxidation treatment, an ultraviolet treatment, an electron beam treatment or the like. In the present invention, organic compounds and reaction products adhering to the fibers after the oxidization treatment can be removed by drying. Further, it can be washed and removed by using an organic solvent such as methyl alcohol, ethyl alcohol, acetone, dimethyl sulfoxide, N, N-dimethylformamide, polyethylene dalicol, or a combination of such an organic solvent and water. Alternatively, it can be washed away with an optional surfactant and water. Potassium nitrate, sodium nitrite, sodium nitrate not soluble in organic solvents Compounds such as the compounds can be washed away using a solvent that dissolves them.
前記洗浄の際にローラー、 ガイ ド、 ニップローラ一、 超音波といった物理的手 法をあわせて使用することにより洗浄効率が向上する。  The cleaning efficiency is improved by using physical methods such as a roller, a guide, a nip roller, and an ultrasonic wave at the time of the cleaning.
本発明において、 前記耐炎化処理は、 実質的に酸素が存在しない環境、 即ち、 酸素による酸化反応が生じない程度まで酸素量を減少させた環境で行うことも可 能である。  In the present invention, the oxidation treatment may be performed in an environment in which substantially no oxygen is present, that is, in an environment in which the amount of oxygen is reduced to such an extent that an oxidation reaction by oxygen does not occur.
あるいは得られる耐炎化繊維の耐熱性を向上させるため、 又は、 炭素繊維の物 性を高めるために、 前記耐炎化処理前又は前記耐炎化処理の後の繊維材料を、 酸 化性雰囲気中、 好ましくは 0 ~ 40 0 °C、 より好ましくは 1 0 0〜3 5 0 °C、 更 に好ましくは 1 8 0〜3 0 0 で酸化処理することもできる。  Alternatively, in order to improve the heat resistance of the obtained oxidized fiber, or to enhance the physical properties of the carbon fiber, the fiber material before or after the oxidization treatment is preferably placed in an oxidizing atmosphere. The oxidation treatment can be carried out at 0 to 400 ° C., more preferably at 100 to 350 ° C., and even more preferably at 180 to 300 ° C.
ここにいう酸化処理とは、 例えば、 加熱空気処理のことをいい、 酸化処理の所 要時間は、 0. 0 1〜 6 0分の間とするのが好ましく、 0. 0 1 ~ 3 0分の間と するのがより好ましく、 0. 0 1〜 1 0分の間とするのが更に好ましい。 かかる 範囲から外れると、 工程通過性が低下し、 収率や得られる耐炎化繊維材料の品位 が低下することがある。 '  The oxidation treatment here means, for example, a heated air treatment, and the required time for the oxidation treatment is preferably between 0.01 to 60 minutes, and between 0.01 and 30 minutes. The time is more preferably between 0.01 and 10 minutes. If the ratio is out of the range, the processability may decrease, and the yield and the quality of the obtained flame-resistant fiber material may decrease. '
この場合、 耐炎化処理と酸化処理の工程は、 不連続でも連続でも構わないが、 連続で処理することが生産性の点から好ましい。  In this case, the steps of the oxidation treatment and the oxidation treatment may be discontinuous or continuous, but continuous treatment is preferred from the viewpoint of productivity.
また、 前記耐炎化処理中に同時に、 酸化性気体を吹き込んだり、 微分散させる ことにより 1 8 0〜 3 0 0 °Cで酸化処理することもできる。 この場合、 耐炎化と 酸化を同時に行うことができ、 工程を短縮できる点で好ましい。 ここでいう酸化 ' 性気体には酸素、 酸化窒素などを用いるこ ,とができる。  In addition, the oxidation treatment can be performed at 180 to 300 ° C. by blowing or finely dispersing an oxidizing gas at the same time as the oxidation treatment. In this case, flame resistance and oxidation can be performed simultaneously, which is preferable in that the process can be shortened. Oxygen, nitrogen oxide, or the like can be used as the oxidizing gas here.
ァクリル系繊維材料としてァクリル系繊維束を用いる場合は、 酸化処理時の繊 維束の幅 1 mm当たりの繊度を、 好ましくは 1, 0 0 0〜 8 0, O O O d t e x Zmm、 より好ましくは 1 0 , 0 0 0〜 7 5, 0 0 0 d t e xZmm、 更に好ま しくは 1 5, 0 0 0 - 7 5 , 0 0 0 d t e x/mmとするのが良く、 範囲より低 いと生産性が低下し、 高いと酸化処理時に暴走してしまうことがある。  When an acryl-based fiber bundle is used as the acryl-based fiber material, the fineness per 1 mm of the width of the fiber bundle at the time of the oxidation treatment is preferably 1.0000 to 80, OOO dtex Zmm, more preferably 10%. , 000-750, 000 dtex xmm, more preferably, 15, 000-75, 000 dtex / mm. If it is too high, runaway may occur during the oxidation treatment.
また酸化処理時の繊維束の単位断面積当たりの処理繊維重量は、 高生産性の観 点から、 好ましくは 5 0 0〜7, 5 0 0 d t e x/mm2, より好ましくは 1 , 0 0 0〜7 , 5 0 0 d t e xZmm2、 更に好ましくは 2, 0 0 0〜7 , 5 0 0 d t e xZmm2であるのが良く、 範囲より低いと生産性が低下し、 高いと酸化処理時 に暴走してしまうことがある。 The weight of the treated fiber per unit cross-sectional area of the fiber bundle during the oxidation treatment is preferably 500 to 7,500 dtex / mm 2 , more preferably 1,000, from the viewpoint of high productivity. ~ 7,500 dte xZmm 2 , more preferably, 2,000 ~ 7,500 dt may in the range of e xZmm 2, reduced low and productivity than the range, it may result in high runaway during the oxidation process.
またアクリル系繊維布帛は、 1枚でも処理できるが、 2枚以上が重なった状態 でも良く、 その単位面積当たりの総重量が、 2 0~ 2, 0 0 0 g/m2 、 より好 ましくは 5 0 ~ 1 , 5 0 0 g/m2 、 更に好ましくは 7 0〜: 1 , O O O gZm2で あるのが良く、 範囲より低いと生産性が低下し、 高いと酸化処理時に暴走してし まうことがある。 Acrylic fiber fabrics can be treated with one sheet, but two or more sheets may be overlapped, and the total weight per unit area is preferably 20 to 2,000 g / m 2 . Should be 50 to 1,500 g / m 2 , more preferably 70 to 1,1 and OOO gZm 2. If it is lower than the range, the productivity will decrease. It can happen.
本発明の炭素繊維材料は前記耐炎化繊維材料を、 不活性雰囲気中、 好ましくは 3 0 0 °C以上、 2, 0 0 0 °C未満、 より好ましくは 8 0 0 ~2 , 0 0 0 °C、 更に 好ましくは 1 , 0 0 0~ 1, 8 0 0 °C、 特に好ましくは 1 , 2 0 0~ 1 , 8 0 0 で炭化処理することによって得ることができる。  In the carbon fiber material of the present invention, the oxidized fiber material is prepared in an inert atmosphere, preferably at least 300 ° C., less than 2,000 ° C., and more preferably 800 to 2,000 ° C. C, more preferably 1,000 to 1,800 ° C., particularly preferably 1,200 to 1,800.
本発明の耐炎化繊維材料を用いることによって、 前記炭化処理時の収率 (以下、 炭化収率と略する) は 5 0 %以上とすることが可能である。 炭化収率の値が大き くなるほど、 生産性が高くなり、 低コストで炭素繊維材料を提供できる。 また、 本発明の耐炎化繊維材料は、 炭化処理を施したときの炭化収率を 5 0〜 6 5 %、 更には 5 5〜 6 5 %に高めることができる。 また、 不活性雰囲気中で、 かつ 1 3 5 0 °Cで炭化処理したときの炭化収率が 5 0〜 6 5 %であることが好ましく、 5 2〜6 5 %であることが更に好ましく、 54〜 6 5 %であることが特に好ましい。 本発明の炭素繊維材料は単繊維断面を電界放出型電子顕微鏡を用いて、 電子ェ ネルギ一損失分光法で測定して得られる π */σ *の最表面測定値 A 1と単繊維 内部最高値 A 2との比 A 1 ZA 2が通常 0 · 8 3〜0. 94、 好ましくは 0. 8 5 ~ 0. 9 3、 'より好ましくは 0. 8 7〜 0. 9 2の特性を有する。  By using the oxidized fiber material of the present invention, the yield during the carbonization treatment (hereinafter abbreviated as the carbonization yield) can be set to 50% or more. The higher the carbonization yield, the higher the productivity and the lower the cost of the carbon fiber material. Further, the flame-resistant fiber material of the present invention can increase the carbonization yield when subjected to carbonization treatment to 50 to 65%, and more preferably to 55 to 65%. Further, in an inert atmosphere, and when the carbonization treatment at 135 ° C., the carbonization yield is preferably 50 to 65%, more preferably 52 to 65%, It is particularly preferred that it is between 54 and 65%. In the carbon fiber material of the present invention, the outermost surface measurement value A 1 of π * / σ * obtained by measuring the cross section of a single fiber by electron energy loss spectroscopy using a field emission The ratio A 1 ZA 2 to the value A 2 is usually 0.883 to 0.94, preferably 0.85 to 0.93, and more preferably 0.87 to 0.92. .
ここで 7T */σ *は結晶化度を表し、 この値が大きいほど結晶化度が高い。 つ まり、 本発明の炭素繊維材料は単繊維表面の結晶化度が単繊維内部の結晶化度に 比して小さいことを表す。 かかる構造を有することにより、 単繊維最表面の結晶 化度が低いために、 樹脂との弾性率の差が小さくなり、 樹脂との接着強度が向上 する。  Here, 7T * / σ * represents the degree of crystallinity, and the larger the value, the higher the degree of crystallinity. In other words, the carbon fiber material of the present invention indicates that the crystallinity on the surface of the single fiber is smaller than the crystallinity inside the single fiber. By having such a structure, since the crystallinity of the outermost surface of the single fiber is low, the difference in elastic modulus from the resin is reduced, and the adhesive strength with the resin is improved.
また、 本発明の炭素繊維材料は、 広角 X線回折で測定した結晶配向度 7t 0 0 2 が 7 5 ~ 9 9 %であることが好ましく、 8 0〜9 7 %であることがより好ましい。 この結晶配向度は広角 X線回折法により求められる。 X線は C u Κ αを用い、 C u K j3はニッケルフィルターによって除く。 2 Θ = 2 6 ° 近傍の面指数 ( 0 0 2 ) に対応した結晶ピークを円周方向にスキャンして得られる強度分布半値幅 H から次の式により計算し求めることができる。 In the carbon fiber material of the present invention, the degree of crystal orientation 7t 002 measured by wide-angle X-ray diffraction is preferably from 75 to 99%, more preferably from 80 to 97%. This degree of crystal orientation is determined by a wide-angle X-ray diffraction method. X-rays use Cu Κ α, and Cu K j3 is removed by a nickel filter. It can be calculated from the half-width H of the intensity distribution obtained by scanning the crystal peak corresponding to the plane index (002) near 2Θ = 26 ° in the circumferential direction by the following equation.
結晶配向度 π 0 0 2 = ( 1 8 0 — H ) Z 1 8 0 Crystal orientation degree π 0 0 2 = (1 8 0 — H) Z 18 0
かかる結晶配向度が 7 5 %に満たないと物性が低下してしまう場合がある。 また、 かかる炭素繊維材料を、 さらに不活性雰囲気中、 2, 0 0 0〜 3 , 0 0 o xで加熱することによって、 より優れた強度特性を備えた黒鉛繊維材料とする ごともできる。  If the degree of crystal orientation is less than 75%, the physical properties may be reduced. Further, the carbon fiber material may be further heated to 2,000 to 3,000 in an inert atmosphere to obtain a graphite fiber material having more excellent strength characteristics.
得られた炭素繊維材料、 黒鉛繊維材料はその表面改質のため、 電解処理するこ とができる。 電解処理に用いる電解液には、 硫酸、 硝酸、 塩酸等の酸性溶液や、 水酸化ナトリウム、 水酸化カリウム、 テトラエチルアンモニゥムヒドロキシドと いったアル力リ又はそれらの塩を水溶液として使用することができる。 ここで、 電解処理に要,する電気量は、 適用する炭素繊維材料、 黒鉛繊維材料により適宜選 択することができる。  The obtained carbon fiber material and graphite fiber material can be electrolytically treated for surface modification. For the electrolytic solution used for the electrolytic treatment, use an acidic solution such as sulfuric acid, nitric acid, or hydrochloric acid, or an aqueous solution such as sodium hydroxide, potassium hydroxide, tetraethylammonium hydroxide, or a salt thereof. Can be. Here, the amount of electricity required for the electrolytic treatment can be appropriately selected depending on the carbon fiber material and the graphite fiber material to be applied.
かかる電解処理により、 得られる複合材料において炭素繊維材料、 黒鉛繊 ϋ材 料とマトリックスとの接着性が適正化でき、 接着が強すぎることによる複合材料 のブリ トルな破壊や、 繊維方向の引張強度が低下する問題や、 繊維方向における 引張強度は高いものの、 樹脂との接着性に劣り、 非繊維方向における強度特性が 発現しないといった問題が解消され、 得られる複合材料において、 繊維方向と非 繊維方向の両方向にバランスのとれた強度特性が発現されるようになる。  By such electrolytic treatment, in the obtained composite material, the adhesion between the carbon fiber material and the graphite fiber material and the matrix can be optimized, and the brittle fracture of the composite material due to too strong adhesion, and the tensile strength in the fiber direction can be achieved. And the problem of poor tensile strength in the fiber direction, but poor adhesion to the resin and no strength characteristics in the non-fiber direction is solved. The strength characteristics balanced in both directions are developed.
この後、 得られる炭素繊維材料に集束性を付与するため、 サイジング処理をす ることもできる。 サイジング剤には、 使用する樹脂の種類応じて、 樹脂との相溶 性の良いサイジング剤を適宜選択することができる。  Thereafter, a sizing treatment can be performed to impart convergence to the obtained carbon fiber material. As the sizing agent, a sizing agent having good compatibility with the resin can be appropriately selected according to the type of the resin used.
実施例 以下、 実施例を用いて、 本発明をより具体的に説明するが、 本発明はこれらの 実施例等によりなんら限定されるものではない。 Example Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples and the like.
実施例では、 各物性値は以下の方法により測定した。  In the examples, each physical property value was measured by the following method.
<耐炎化繊維材料の繊維内平均酸素濃度 > <Average oxygen concentration in the fiber of the oxidized fiber material>
耐炎化繊維材料の繊維内平均酸素濃度は、 元素分析により測定した炭素量 Cと 酸素分析により測定した酸素量 0の比 OZCとして求めた。  The average oxygen concentration in the fiber of the oxidized fiber material was obtained as the ratio OZC between the carbon amount C measured by elemental analysis and the oxygen amount 0 measured by oxygen analysis.
試料である耐炎化繊維材料は測定前に真空中 40でで 5時間乾燥処理をした。 元素分析には、 柳本分析工業社製、 全自動元素分析装置 V a r i o E Lを使用' し、 試料分解炉温度 9 5 0 °C、 還元炉温度 5 0 0 °Cの条件で炭素、 水素、 窒素を 測定した。  The sample, the flame-resistant fiber material, was dried in a vacuum at 40 for 5 hours before measurement. For elemental analysis, a fully automatic elemental analyzer Vario EL manufactured by Yanagimoto Kagaku Kogyo Co., Ltd. was used.Carbon, hydrogen, and nitrogen were used at a sample decomposition furnace temperature of 950 ° C and a reduction furnace temperature of 500 ° C. Was measured.
酸素分析には、 シーベル ヘグナー社製、 HE RAEUS C HN - O R A P I D全自動分析装置、 検出器に非分散型分光計 (B i n 0 s ) を使用し、 試料 分解炉温度 1 1 40 、.分留管温度 1 1 40 °Cの条件で酸素を測定した。  For oxygen analysis, HE RAEUS C HN-ORAPID fully automatic analyzer manufactured by Sebel Hegner, using a non-dispersive spectrometer (Bin 0 s) as the detector, sample decomposition furnace temperature 1 140, fractionated fractionation Oxygen was measured at a tube temperature of 1 140 ° C.
<二トリル基の残存率 > <Residual rate of nitrile group>
耐炎化繊維材料における二トリル基の残存率は、 アクリル系共重合体 (前駆体 繊維材料) の二トリル基の吸収バンド強度に対する耐炎化繊維材料の二トリル基 の吸収バンドの強度比を赤外分光法により測定することで求めた。 以下に測定手 順の一例を示す。  The residual ratio of nitrile groups in the oxidized fiber material is determined by measuring the ratio of the absorption band intensity of the nitrile group of the oxidized fiber material to the absorption band intensity of the nitrile group of the acrylic copolymer (precursor fiber material). It was determined by measuring by spectroscopy. An example of the measurement procedure is shown below.
1. 赤外分光法用錠剤の作成  1. Preparation of tablets for infrared spectroscopy
測定するアクリル系共重合体及び熱処理 (耐炎化処理) によって得られた耐炎 化繊維材料を液体窒素により凍結後、 粉砕してそれぞれ粉末試料 A及び粉末試料 A, とした。 また、 KB r l g、 フエロシアン化カリウム 1 Omgを混合して粉 末試料 Bを調整した。  The acrylic copolymer to be measured and the oxidized fiber material obtained by the heat treatment (oxidation treatment) were frozen with liquid nitrogen and pulverized to obtain powder sample A and powder sample A, respectively. Powder sample B was prepared by mixing KB rlg and 1 Omg of potassium ferrocyanide.
かかる粉末試料を乳鉢ですりつぶしながら以下の配合比で混合して混合粉末と し、 さらにプレスを用いてそれぞれ赤外分光法用錠剤を作製した。  The powder sample was mixed in the following mixing ratio while being ground in a mortar to obtain a mixed powder, and tablets for infrared spectroscopy were prepared using a press.
熱処理前試料:粉末試料 A 2mg、 粉末試料 B 1 Omg, KB r 3 0 0mg 熱処理後試料:粉末試料 A' 2mg、 粉末試料 B 1 Omg、 KB r 3 0 Omg Sample before heat treatment: powder sample A 2 mg, powder sample B 1 Omg, KBr 300 mg Sample after heat treatment: powder sample A '2 mg, powder sample B 1 Omg, KB r 30 Omg
2. ニ卜リル基残存率の測定 2. Measurement of residual rate of nitrile group
前記赤外分光法用錠剤について、 フエロシアン化力リゥムの 2 0 5 0 cm— 1 バンドと、 ニトリル基の 2 2 5 0 c m— 1バンドの吸光度比 D 2 2 5 0 /D 2 0 5 0を測定した。 Regarding the tablet for infrared spectroscopy, the ferrocyanation force The absorbance ratio D2250 / D2500 of the band and the nitrile group at 2250 cm-1 band was measured.
吸光度比の平均値 (n = 3) をとり、 次式より二トリル基の残存率を求めた。 二トリル基残存率 =熱処理後試料の吸光度比 Z熱処理前試料の吸光度比 X 1 0 0 %  The average value of the absorbance ratios (n = 3) was taken, and the residual ratio of nitrile groups was determined by the following equation. Residual rate of nitrile group = Absorbance ratio of sample after heat treatment Z Absorbance ratio of sample before heat treatment X 100%
本実施例では、 赤外分光器として、 P e r k i n E l me r社製、 P a r a g o n 1 0 0 0型を用いた。  In this example, a Paragon 100 model manufactured by PerkinElmer, Inc. was used as the infrared spectrometer.
<耐炎化繊維表面の平均酸素濃度 > <Average oxygen concentration on the surface of the oxidized fiber>
耐炎化繊維表面の平均酸素濃度〇 1は、 X線光電子分光法により求めた。 以下 に手順の一例を示す。 先ず、 測定する耐炎化繊維材料を適当な長さにカットして ステンレス製の試料支持台上に拡げて並べた後、 下記条件にて測定した。  The average oxygen concentration 〇1 on the surface of the oxidized fiber was determined by X-ray photoelectron spectroscopy. An example of the procedure is shown below. First, the flame-resistant fiber material to be measured was cut into an appropriate length, spread on a stainless steel sample support, and then measured under the following conditions.
•光電子脱出角度: 3 5度  • Photoelectron escape angle: 35 degrees
- 線源: 1 《 1, 2 ( 148 6. 6 e V)  -Source: 1 << 1, 2 (1486.6 eV)
•試料チヤンバー内真空度: l X 1 0 _ 8 T o r r  • Degree of vacuum in the sample chamber: l X 10 -8 T Or r
次に、 測定時の帯電に伴うピークの補正のため、 C 1 sの主ピークの結合エネ ルギ一値 B. E . を 2 84. 6 e Vに合わせた。  Next, in order to correct the peak due to charging during measurement, the binding energy value BE of the main peak of C 1 s was adjusted to 284.6 eV.
次いで、 C l s ピーク面積 [C l s ] は、 2 8 2〜2 9 6 e Vの範囲で直線の ベースラインを引くことにより求め、 〇 l s ピ一ク面積 [O l s ] は、 5 2 8〜 540 e Vの範囲で直線のベースラインを引くことにより求めた。  Next, the C ls peak area [C ls] is obtained by drawing a straight-line base line in the range of 282 to 2996 eV, and the 〇 ls peak area [O ls] is 5 28 to It was determined by drawing a linear baseline in the range of 540 eV.
繊維表面の酸素濃度 O 1は、 上記〇 1 s ピーク面積 [O l s ] 、 C 1 s ピーク 面積 [C l s ] の比、 及び装置固有の感度補正値より、 次式により求めた。  The oxygen concentration O 1 on the fiber surface was determined by the following equation from the ratio of the above 〇1 s peak area [O ls], C 1 s peak area [C ls], and the sensitivity correction value unique to the apparatus.
01 = ( [O l s ] / [C l s ] ) / (感度補正値 k)  01 = ([O l s] / [C l s]) / (sensitivity correction value k)
なお、 本実施例では、 測定装置として米国 S S I社製モデル SSX-100- 206を用い た。 この装置固有の C 1 s ピーク面積に対する〇 1 s ピーク面積の感度補正値 k は 2. 7 3であった。  In this example, a model SSX-100-206 manufactured by US SSI was used as a measuring device. The sensitivity correction value k of the 〇 1 s peak area with respect to the C 1 s peak area unique to this device was 2.73.
<凍結粉砕繊維の平均酸素濃度 > <Average oxygen concentration of frozen ground fiber>
測定する耐炎化繊維材料を液体窒素により凍結後, 粉砕した試料を用い、 上記 測定方法により、 その平均酸素濃度 O 2を求めた。  After the oxidized fiber material to be measured was frozen with liquid nitrogen and crushed, the average oxygen concentration O 2 was determined by the above-described measurement method.
02 = ( [O l s ] / [C l s ] ) / (感度補正値 k) <炭素繊維材料の結晶化度 > 02 = ([Ols] / [Cls]) / (sensitivity correction value k) <Crystallinity of carbon fiber material>
炭素繊維材料の結晶化度の指標として、 π * / σ *を電界放出型電子顕微鏡を 用いた電子エネルギー損失分光法により測定した。 π *は 2 8 5 e V、 び *は 2 9 3〜 2 9 5 e Vのピーク強度から求めた。  As an index of the crystallinity of the carbon fiber material, π * / σ * was measured by electron energy loss spectroscopy using a field emission electron microscope. π * was determined from the peak intensity at 285 eV, and * was determined from the peak intensity at 293 to 295 eV.
尚、 本実施例では電界放出型電子顕微鏡として H I TACH I社製、 H F— 2 2 1 0を用いた。 測定条件は加速電圧 2 0 0 kV、 試料吸収電流.1 0 _9A、 計測 時間 6 0秒、 ビーム径 l nm^とし、 炭素繊維材料の単繊維断面の最表面から中 心まで数点を測定した。 In this example, HF-2210 manufactured by HI TACH I was used as a field emission electron microscope. Measurement conditions were an acceleration voltage 2 0 0 kV, the sample absorption current .1 0 _ 9 A, measurement time 6 0 seconds, and the beam diameter l nm ^, several points to centered from the outermost surface of the single fiber cross-section of the carbon fiber material It was measured.
<結晶配向度 π 0 0 2 > <Crystal orientation degree π 0 0 2>
炭素繊維材料の結晶配向度 7t 0 0 2は広角 X線回折法により求めた。 N i フィ ルターにより C u K /3線を除去した X線源 C u K a線を用いて、 2 0 = 2 6 ° 近 傍の面指数 ( 0 0 2 ) に対応した結晶ピークを円周方向にスキャンして得られる 強度分布半値幅 Hから次の式により結晶配向度 π 0 0 2を計算した。  The degree of crystal orientation 7t002 of the carbon fiber material was determined by a wide-angle X-ray diffraction method. Using the X-ray source Cu K a line from which the Cu K / 3 line has been removed by the Ni filter, the crystal peak corresponding to the plane index (002) near 20 = 26 ° From the intensity distribution half width H obtained by scanning in the direction, the degree of crystal orientation π 002 was calculated by the following equation.
結晶配向度 Τ 0 0 2 = ( 1 8 0— Η) Ζ 1 8 0  Crystal orientation Τ 0 0 2 = (1 8 0— Η) Ζ 1 8 0
本実施例では、 測定 ·分析装置として、 4 0 3 6 A 2型 X線回折装置、 ゴニオメ —夕、 計数記録装置 RAD— C型 (いずれも理学電機 (株) 製) を使用した。 他の条件は下記の通りとした。 In this example, a measuring / analyzing apparatus was used: a 4036 A2 type X-ray diffractometer, a goniometer-evening, a counting recorder RAD-C type (both manufactured by Rigaku Denki Co., Ltd.). Other conditions were as follows.
管電圧: 4 0 k V  Tube voltage: 40 kV
管電流 : 2 0 mA  Tube current: 20 mA
<単繊維接着強度 > <Single fiber adhesive strength>
単繊維包埋樹脂試験片に繊維軸方向に引張力を与え、 歪みを 1 0 %生じさせた 後、 光学顕微鏡により試験片中心部 2 0 mmの範囲における繊維破断数 nを測定 した。 これにより平均破断繊維長 1 を 1 = 2 O Znとして求めた。  Tensile force was applied to the single-fiber-embedded resin test piece in the fiber axis direction to generate a strain of 10%, and then the number of fiber breaks n in a range of 20 mm in the center of the test piece was measured by an optical microscope. Thus, the average broken fiber length 1 was determined as 1 = 2 O Zn.
繊維 ·樹脂界面の接着強度てはて = σ · d/ 2 1 cにより求めた。 ここで、 1 cは臨界繊維長であり、 平均破断繊維長 1から 1 c = 4 1 Z 3により求めたもの である。 また σは臨界繊維長での単繊維強度、 dは繊維の直径である。  The bond strength at the fiber-resin interface was determined by: σ · d / 21c. Here, 1 c is the critical fiber length, which is determined from the average broken fiber length 1 to 1 c = 41 Z 3. Σ is the single fiber strength at the critical fiber length, and d is the fiber diameter.
尚、 ここでは単繊維包埋用樹脂として、 ビスフエノール A型エポキシ樹脂化合 物ェピコート (登録商標) 8 2 8 (ジャパンエポキシレジン (株) 製) /ヒマ脂油 変性へロキシ 5 0 5 (ジャパンエポキシレジン (株) 製) /n-アミノエチルピペラ ジン = 1 5部: 1 5部: 4 . 9部をよく混合したものを用いた。 , 次に、 厚さ 2 mm、 巾 1 0 mm、 長さ 1 5 0 mmのテフロン (登録商標) 製枠 の長手方向に炭素繊維単繊維を、 上記混合液を枠中に含浸し、 室温で約 1 2時間、 前硬化した後、 1 0 0 °Cで 1 2 0分間加熱、 後硬化して単繊維包埋樹脂試験片を 作製した。 Here, as a resin for embedding a single fiber, bisphenol A-type epoxy resin compound Epicoat (registered trademark) 828 (manufactured by Japan Epoxy Resin Co., Ltd.) / N-aminoethyl pipera Gin = 15 parts: 15 parts: A mixture of 4.9 parts was used. Next, a carbon fiber single fiber is impregnated in the longitudinal direction of a Teflon (registered trademark) frame having a thickness of 2 mm, a width of 10 mm, and a length of 150 mm into the frame, and the mixture is impregnated at room temperature. After pre-curing for about 12 hours, it was heated at 100 ° C. for 120 minutes and post-cured to prepare a single fiber embedded resin test piece.
<耐炎化繊維の単繊維引張強度 >  <Single fiber tensile strength of oxidized fiber>
四角形状の 5 mm幅のスリット孔を設けた紙製カードを準備し、 単繊維を前記 スリット孔に渡し、 両端部を仮止めして、 さらに瞬間接着剤を塗布した同カード の断片で、 単繊維がカードから浮き上がらないようにしつかりと固定する。 単繊 維を固定したカードを引張試験機に取りつけ、 単繊維を切らないようにカードの スリット孔の両側を切り、 カード全体を水に浸漬した後、 歪速度 1 % 分で引張 試験を行った (測定サンプル数: 5 0本以上) 。  Prepare a rectangular paper card with a 5 mm wide slit hole, pass a single fiber to the slit hole, temporarily fix both ends, and apply a single piece of the same card with the instant adhesive applied. Secure the fiber so that it does not rise from the card. The card to which the single fiber was fixed was attached to a tensile tester, the both sides of the slit hole of the card were cut so as not to cut the single fiber, the entire card was immersed in water, and a tensile test was performed at a strain rate of 1%. (Number of measurement samples: 50 or more).
<炭素繊維束、 黒鉛繊維束の引張強度及び引張弾性率 > <Tensile strength and tensile modulus of carbon fiber bundle and graphite fiber bundle>
' 炭素繊維束、 黒鉛繊維束の引張強度及び引張弾性率は J I S R7601に従って測定し た。 なお、 引張試験片は、 次の樹脂組成物を炭素繊維束に含浸し、 130^、 35分の 条件で加熱硬化させて作成した。  '' The tensile strength and tensile modulus of the carbon fiber bundle and graphite fiber bundle were measured according to JIS R7601. The tensile test piece was prepared by impregnating a carbon fiber bundle with the following resin composition and curing by heating under the conditions of 130 ^ and 35 minutes.
樹脂組成: 3, 4一エポキシシク口へキシルメチルー 3 , 4一エポキシーシク 口へキサン一力ルポキシレート ( 1 0 0重量部) Z 3フッ化ホウ素モノエチルァ ミン (3重量部) /アセトン (4重量部)  Resin composition: 3,4-epoxycyclohexyl methyl 3,4-epoxycyclohexyl monohexyl propyloxylate (100 parts by weight) Z3 Boron fluoride monoethylamine (3 parts by weight) / acetone (4 parts by weight)
く比抵抗値の測定〉 Measurement of specific resistance>
炭素繊維布帛を 2枚の銅板で挟み、 布帛を圧縮しながら電気抵抗値を測定する。 電気抵抗値は布帛を圧縮することにより減少するが、 ある厚みより薄くなると一 定となる。 一定となったときの電気抵抗値と、 マイクロメーターで測定したその ときの試料厚みを用い、 次の式により比抵抗値を計算した。  The carbon fiber fabric is sandwiched between two copper plates, and the electrical resistance is measured while compressing the fabric. The electrical resistance value decreases by compressing the fabric, but becomes constant when the thickness becomes smaller than a certain thickness. Using the electrical resistance value when it became constant and the sample thickness at that time measured with a micrometer, the specific resistance value was calculated by the following formula.
比抵抗値 (Ω · c m ) =電気抵抗値 (Ω ) X試料断面積 (c m 2 ) Z試料厚み (c m) Specific resistance (Ω · cm) = Electric resistance (Ω) X Sample cross-sectional area (cm 2 ) Z Sample thickness (cm)
[実施例 1 ]  [Example 1]
アクリロニトリル 9 9 . 5モル%とィタコン酸 0 . 5モル%からなる共重合体 をジメチルスルホキシドを溶媒とする溶液重合法により重合し、 さらにアンモニ ァガスを pHが 8. 5になるまで吹き込み、 ィタコン酸を中和しつつ、 アンモニ ゥム基をァクリル系共重合体に導入し、 共重合成分の含有率が 2 2 %の紡糸原液 を得た。 A copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid is polymerized by a solution polymerization method using dimethylsulfoxide as a solvent. Ammonia gas was blown into the acryl-based copolymer while neutralizing the itaconic acid while injecting a gas until the pH reached 8.5, and a spinning stock solution having a copolymer component content of 22% was obtained. .
この紡糸原液を、 40 °Cで、 直径 0. 1 5 mm、 孔数 7 0 0, 0 0 0の紡糸口 金を用い、 一旦空気中に吐出し、 約 4mmの空間を通過させた後、 3でにコント ロールした 3 5 %ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿 式紡糸法により凝固糸条とした。  This spinning stock solution was discharged into the air once at 40 ° C using a spinneret with a diameter of 0.15 mm and a number of holes of 700,000, and after passing through a space of about 4 mm, The coagulated yarn was formed by a dry-wet spinning method in which the mixture was introduced into a coagulation bath consisting of an aqueous solution of 35% dimethyl sulfoxide controlled in step 3.
この凝固糸条を、 常法により水洗した後、 温水中で 3. 5倍に延伸し、 さらに アミノ変性シリコーン系シリコーン油剤を付与して延伸糸を得た。  The coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone-based silicone oil agent to obtain a drawn yarn.
この延伸糸を、 1 8 0での加熱ローラーを用いて、 乾燥緻密化処理を行い、 2 9. 4 M P aの加圧スチーム中で、 延伸することにより、 製糸全延伸倍率が 1 3 倍、 単繊維繊度 0. 9 d t e x、 フィラメント数 7 0 0, 0 0 0のァクリル系繊 維束を得た。  The drawn yarn is dried and densified using a heating roller at 180, and drawn in a pressure steam of 29.4 MPa, so that the total drawing ratio of the yarn is 13 times, An acryl-based fiber bundle with a single fiber fineness of 0.9 dtex and a filament count of 700,000 was obtained.
かかるァクリル系繊維束の幅 1 mm当たりの繊度を 3 0 , 0 0 0 d t e x/m m、 アクリル系繊維束の単位断面積当たりの繊度を 4, 0 0 0 d t e x/mm2と し、 実質的に撚りを付与せずに、 1. 5倍に延伸しつつ、 ジエチレングリコール の蒸発蒸気雰囲気中、 244でで 3 0分間の耐炎化処理した。 繊維束内温度は 2 6 0°Cまでしか上昇せず、 安定に耐炎化繊維束を得た。 The fineness of width 1 per mm of such Akuriru fiber bundle 3 0, 0 0 0 dtex / mm, 4 a fineness per unit sectional area of the acrylic fiber bundle, 0 0 0 a dtex / mm 2, substantially Without imparting twist, the film was subjected to a flame resistance treatment at 244 for 30 minutes in an evaporative vapor atmosphere of diethylene glycol while being stretched 1.5 times. The temperature inside the fiber bundle only rose to 260 ° C, and a stabilized flame-resistant fiber bundle was obtained.
この耐炎化繊維束を、 繊維束の幅 1 mm当たりの繊度を 3 0, O O O d t e x Zmm、 繊維束の単位断面積当たりの繊度を 4, 0 0 0 d t e x/mm2とし、 空 気中、 3 0 0 °Cで 5分間、 酸化処理し、 次に不活性雰囲気中、 1. 04倍に延伸 しつつ 3 0 0〜 8 0 0 °Cで予備炭化し、 次いで不活性雰囲気中、 1 , 40 0 °Cで 炭化処理した。 The oxidized fiber bundle, a width of 1 fineness per mm 3 0, OOO dtex Zmm, the fineness per unit sectional area of the fiber bundles 4, 0 0 0 dtex / mm 2 of fiber bundles, in air, 3 Oxidation treatment at 00 ° C for 5 minutes, then pre-carbonizing at 300 to 800 ° C while stretching 1.04 times in an inert atmosphere, then 1, 40 in an inert atmosphere Carbonized at 0 ° C.
この後、 硫酸水溶液中で、 1 0クーロン/ g (g :炭素繊維の重量) の陽極酸 化処理を行った。 この結果、 良好な特性を有する炭素繊維束が得られた。  Thereafter, anodizing treatment of 10 coulomb / g (g: weight of carbon fiber) was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber bundle having good characteristics was obtained.
得られた炭素繊維束を、 さらに不活性雰囲気中、 2, 0 0 0でで黒鉛化処理し た後、 硫酸水溶液中で、 1 0クーロン Zgの陽極酸化処理を行った。 この結果、 良好な強度特性を有する黒鉛繊維束が得られた。 .  The obtained carbon fiber bundle was further graphitized at 2,000 in an inert atmosphere, and then anodized at 10 Coulomb Zg in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good strength characteristics was obtained. .
[実施例 2] 耐炎化処理する際のアクリル系繊維束の幅 1 mm当たりの繊度及び空気中で酸 化処理する際の繊維束の幅 lmm当たりの繊度をともに 7 5, O O O d t e x/ mmとし、 耐炎化処理する際のァクリル系繊維束の単位断面積当たりの繊度及び 酸化処理する際の単位断面積当たりの繊度をともに 7 , 3 0 0 d t e xZmm2に 変えた以外は実施例 1と同様にして、 耐炎化繊維束、 炭素繊維束及び黒鉛繊維束 を得た。 耐炎化処理時の繊維束内温度は 2 7 5 °Cまでしか上昇せず、 安定に耐炎 化繊維束を得た。 得られた耐炎化繊維束及び炭素繊維束及び黒鉛繊維束は良好な 特性を示した。 [Example 2] Both the fineness per 1 mm width of the acrylic fiber bundle when oxidizing and the fineness per lmm width of the fiber bundle when oxidizing in air are set to 75, OOO dtex / mm. except for changing the Akuriru system together 7 fineness per unit cross-sectional area at the time of fineness and oxidation per unit sectional area of the fiber bundle, 3 0 0 dte xZmm 2 when in the same manner as in example 1, flame resistant Fiber bundles, carbon fiber bundles and graphite fiber bundles were obtained. The temperature inside the fiber bundle during the oxidation treatment rose only to 275 ° C, and the oxidation-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 3]  [Example 3]
耐炎化処理する際のァクリル系繊維束の幅 1 mm当たりの繊度及び空気中で酸 化処理する際の繊維束の幅 1 mm当たりの繊度をともに 1 0, O O O d t e xZ mmとし、 耐炎化処理する際のァクリル系繊維束の単位断面積当たりの繊度及び 酸化処理する際の単位断面積当たりの繊度をともに 1 , 5 0 0 d t e x/mm2\Z 変えた以外は実施例 1と同様にして、 耐炎化繊維束、 炭素繊維束及び黒鉛繊維束 を得た。 炎化処理時の繊維束内温度は 2 5 0でまでしか上昇せず、 安定に耐炎 化繊維束を得た。 得られた耐炎化繊維束、 炭素繊維束及び黒鉛繊維束は良好な特 性を示した。 Both the fineness per 1 mm width of the acryl-based fiber bundle during the oxidation treatment and the fineness per 1 mm width of the fiber bundle during the oxidation treatment in air are set to 10 and OOO dte xZ mm, respectively. and except for changing both 1, 5 0 0 dtex / mm 2 \ Z fineness per unit cross-sectional area at the time of fineness and oxidation per unit cross-sectional area of Akuriru fiber bundle at the time of the in the same manner as in example 1 Thus, an oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained. The temperature inside the fiber bundle at the time of the flame treatment increased only to 250, and the flame-resistant fiber bundle was stably obtained. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 4]  [Example 4]
実施例 1と同様の方法で得られたアクリル系繊維束を、 耐炎化処理するに際し て、 アクリル系繊維束の幅 1 mm当たりの繊度を 9 0 , 0 0 0 d t e x/mmと し、 また、 アクリル系繊維束の単位断面積当たりの繊度を 8, O O O d t e xZ mm2とし、 実質的に撚りを付与せずに、 1. 5倍に延伸しつつ、 ジエチレンダリ コールの液相雰囲気中、 2 2 0 °Cで耐炎化処理した。 実施例 1と同等の比重にな るまでに 5 0分を要したものの、 引き続き、 実施例 1と同様の処理を行ったとこ ろ、 良好な特性を示す耐炎化繊維束、 炭素繊維束及び黒鉛繊維束が得られた。 When the acrylic fiber bundle obtained in the same manner as in Example 1 was subjected to a flame-resistant treatment, the fineness per 1 mm width of the acrylic fiber bundle was set to 90,000 dtex / mm, and the fineness per unit sectional area of the acrylic fiber bundle 8, and OOO dte xZ mm 2, without imparting twist to substantially while stretched 5 times 1., in the liquid phase atmosphere of diethylene Dali call, 2 The sample was subjected to oxidization at 20 ° C. Although it took 50 minutes for the specific gravity to become equivalent to that of Example 1, the same treatment as in Example 1 was continued, and the oxidized fiber bundle, carbon fiber bundle, and graphite showing good characteristics were obtained. A fiber bundle was obtained.
[実施例 5]  [Example 5]
耐炎化処理する際の延伸倍率を 1. 1 5倍に変えた以外は実施例 1と同様にし て、 耐炎化繊維束及び炭素繊維束及び黒鉛繊維束を得た。 耐炎化処理時の繊維束 内温度は 2 6 5でまでしか上昇せず、 安定に耐炎化繊維束を得た。 得られた耐炎 化繊維束、 炭素繊維束及び黒鉛繊維束は良好な特性を示した。 An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 1, except that the draw ratio for the oxidization treatment was changed to 1.15 times. The temperature inside the fiber bundle during the oxidation treatment increased only to 26.5, and the oxidation-resistant fiber bundle was obtained stably. Obtained flame resistance The carbonized fiber bundle, the carbon fiber bundle and the graphite fiber bundle showed good properties.
[実施例 6 ]  [Example 6]
耐炎化処理する際の延伸倍率を 0 . 9 5倍に変えた以外は実施例 1と同様にし て、 耐炎化繊維束及び炭素繊維束及び黒鉛繊維束を得た。 耐炎化処理時の繊維束 内温度は 2 6 3でまでしか上昇せず、 安定に耐炎化繊維束を得た。 得られた耐炎 化繊維束、 炭素繊維束及び黒鋭繊維束は若干物性が低下していたものの、 他の特 性は良好であった。  An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the draw ratio in the oxidization treatment was changed to 0.95. The temperature inside the fiber bundle during the oxidation treatment increased only to 263, and the oxidation-resistant fiber bundle was obtained stably. Although the physical properties of the obtained oxidized fiber bundle, carbon fiber bundle and blackened fiber bundle were slightly reduced, other characteristics were good.
[実施例 7 ]  [Example 7]
耐炎化処理剤をジエチレンダリコールとニトロベンゼンの 1対 1混合液とした 以外は実施例 1と同様にして、 耐炎.化繊維束及び炭素繊維束及び黒鉛繊維束を得 た。 耐炎化処理時の繊維束内温度は 2 6 3 °Cまでしか上昇せず、 安定に耐炎化繊 維束を得た。 得られた耐炎化繊維束、 炭素繊維束及び黒鉛繊維束は良好な特性を T した。  A flame-resistant fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the flame-resistant treatment agent was a one-to-one mixed solution of diethylene dalicol and nitrobenzene. The temperature inside the fiber bundle during the flame-resistant treatment rose only to 263 ° C, and the flame-resistant fiber bundle was stably obtained. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle exhibited good characteristics.
[実施例 8 ]  [Example 8]
耐炎化処理剤をジエチレングリコールと二トロベンゼンの 1対 1混合液とした 以外は実施例 2と同様にして、 耐炎化繊維束、 炭素繊維束及び黒鉛繊維束を得た < 耐炎化処理時の繊維束内温度は 2 7 7 までしか上昇せず、 安定に耐炎化繊維束 を得た。 得られた耐炎化繊維束、 炭素繊維束及び黒鉛繊維束は良好な特性を示し た。  An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 2 except that the oxidizing agent was a 1: 1 mixture of diethylene glycol and ditrobenzene. The temperature in the bundle rose only to 277, and a flame-resistant fiber bundle was obtained stably. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 9 ]  [Example 9]
耐炎化処理剤をパ一フルォロポリエーテルとした以外は実施例 1と同様にして, 耐炎化繊維束、 炭素繊維束及び黒鉛繊維束を得た。 耐炎化処理時の繊維束内温度 は 2 7 3 °Cまでしか上昇せず、 安定に耐炎化繊維束を得た。 得られた耐炎化繊維 束、 炭素繊維束及び黒鉛繊維束は良好な特性を示した。  An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 1 except that the oxidizing agent was perfluoropolyether. The temperature inside the fiber bundle during the oxidation treatment increased only to 273 ° C, and the oxidation-resistant fiber bundle was obtained stably. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[比較例 1 ]  [Comparative Example 1]
耐炎化処理する際の雰囲気を空気に、 温度を 2 0 O :に変えた以外は実施例 6 と同様にして耐炎化処理を行った。 実施例 6と同等の比重になるまでに 3 0 0分 を要した。 続く炭化処理、 黒鉛化処理を行い、 炭素繊維束及び黒鉛繊維束を得た ものの物性は低いものであった。 [比較例 2] The flame resistance treatment was carried out in the same manner as in Example 6, except that the atmosphere for the flame resistance treatment was changed to air and the temperature was changed to 20 O :. It took 300 minutes for the specific gravity to become equivalent to that of Example 6. Subsequent carbonization and graphitization treatments yielded carbon fiber bundles and graphite fiber bundles, but the physical properties were low. [Comparative Example 2]
耐炎化処理する際の雰棚気を空気に、 温度を 2 1.0 °Cに変えた以外は実施例 2 と同様にして耐炎化処理を行った。 実施例 2と同等の比重になるまでに 240分 を要した。 続く炭化処理、 黒鉛化処理を行い、 炭素繊維束及び黒鉛繊維束を得た ものの物性は低いものであった。  The flame resistance treatment was carried out in the same manner as in Example 2 except that the atmosphere during the flame resistance treatment was changed to air and the temperature was changed to 21.0 ° C. It took 240 minutes for the specific gravity to become equivalent to that of Example 2. Subsequent carbonization and graphitization treatments yielded carbon fiber bundles and graphite fiber bundles, but the physical properties were low.
表 1  table 1
フィラメント 耐炎化処理  Filament oxidation treatment
 number
(本/束) 処理雰囲気 処理幅 1mm 処理面積 Imm2 延伸倍率 処理時、 織 cc) 当たりの搽度 当たりの蠑度 維束内温度 (dtex/mm) (dtex/mm!) (¾) 実施例 1 700000 シ ·Ιチレンク'リコ- * 244 30000 4000 1.5 260 (Present / bundle) during treatment atmosphere processing width 1mm processing area Imm 2 draw ratio processing,蠑度維束in temperature per搽度woven cc) per (dtex / mm) (dtex / mm!) (¾) Example 1 700000 Ι レ ン Ι レ ン ク Rico-* 244 30000 4000 1.5 260
(蒸気)  (Steam)
実施例 2 同上 同上 同上 75000 7300 同上 275 実施例 3 同上 同上 同上 10000 1500 同上 250 実施例 4 同上 -yiチレンク 'リ 3-ル 220 90000 8000 同上 270  Example 2 Same as above Same as above 75000 7300 Same as above 275 Example 3 Same as above Same as above Same as above 10000 1500 Same as above 250 Example 4 Same as above -yi Tyrenko's 2-reel 220 90000 8000 Same as above 270
(液相)  (Liquid phase)
実施例 5 同上 ·* Iチレンク'リコ-ル 244 30000 4000 1.15 265  Example 5 Same as above. ** Ichirenk's recall 244 30000 4000 1.15 265
(蒸気)  (Steam)
実施例 6 同上 同上 同上 同上 同上 0.9 263 実施例 7 同上 ·>* Iチレンク 'リコール 同上 同上 同上 1.5 263  Example 6 Same as above Same as above Same as above Same as above 0.9 263 Example 7 Same as above Same as above
/ニトロへ'ンセ'ン  / Nitroheinsen
= 1/1 (蒸気)  = 1/1 (steam)
実施例 8 同上 シ' Iチレンク'リコ-ル 同上 同上 同上 1.5 277  Example 8 Same as above.
/二ト π ンセ'ン  / Nito π
= 1/1 (蒸気)  = 1/1 (steam)
実施例 9 同上 Λ· -7ΡΠ*'リエ-テ 同上 同上 同上 同上 273  Example 9 Same as above Λ · -7ΡΠ * 'Riete Same as above Same as above Same as above 273
* (液相〉  * (Liquid phase)
比較例 1 同上 空気 200 同上 同上 0.9 280 比較例 2 同上 同上 210 5000 1000 同上 278 表 2 Comparative Example 1 Same as above Air 200 Same as above 0.9 280 Comparative Example 2 Same as above 210 5000 1000 Same as above 278 Table 2
Figure imgf000029_0001
Figure imgf000029_0001
* 1 O 1 :搽維表面平均酸素濃度 * 1 O 1: Fiber surface average oxygen concentration
* 2 O 2 :凍結粉砕緣維平均酸素濃度 * 2 O 2: average oxygen concentration of frozen and ground fiber
表 3 Table 3
Figure imgf000030_0001
Figure imgf000030_0001
* 1 A 1 : π * / σ *の 表面測定値  * 1 A1: Surface measurement value of π * / σ *
* 2 A 2 : 7C */σ *の単蠑锥内部最 値  * 2 A2: Simple extension of 7C * / σ * 锥 internal maximum
[実施例 1 0] '  [Example 10] '
アクリロニトリル 9 9. 5モル%とィタコン酸 0. 5モル%からなる共重合体 をジメチルスルホキシドを溶媒とする溶液重合法により重合し、 さらにアンモニ ァガスを ρΗが 8. 5になるまで吹き込み、 ィタコン酸を中和しつつ、 アンモニ ゥム基をァクリル系共重合体に導入し、 共重合成分の含有率が 2 2 %の紡糸原液 を得た。  A copolymer consisting of 99.5 mol% of acrylonitrile and 0.5 mol% of itaconic acid was polymerized by a solution polymerization method using dimethylsulfoxide as a solvent, and ammonia gas was further blown until ρΗ became 8.5. While neutralizing, an ammonium group was introduced into the acryl-based copolymer to obtain a spinning stock solution having a copolymer component content of 22%.
この紡糸原液を、 40でで、 直径 1 5mm、 孔数 6、 0 0 0の紡糸口金を 用い、 一旦空気中に吐出し、 約 4mmの空間を通過させた後、 3°Cにコントロー ルした 3 5 %ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡 糸法により凝固糸条とした。  Using a spinneret with a diameter of 15 mm, a number of holes of 6, and a number of holes of 00, this spinning stock solution was temporarily discharged into the air, passed through a space of about 4 mm, and then controlled at 3 ° C. A coagulated yarn was formed by a dry-wet spinning method in which the coagulated yarn was introduced into a coagulation bath composed of an aqueous solution of 35% dimethyl sulfoxide.
この凝固糸条を、 常法により水洗した後、 温水中で 3. 5倍に延伸し、 さらに ァミノ変性シリコーン系シリコーン油剤を付与して延伸糸を得た。 この延伸糸を、 1 8 0 °Cの加熱ローラ一を用いて、 乾燥緻密化処理を行い、 2 9. 4MP aの加圧スチーム中で、 延伸することにより、 製糸全延伸倍率が 1 3 倍、 単繊維繊度 0. 9 d t e X、 単繊維本数 24、 0 0 0本のアクリル系繊維束 を得た。 The coagulated yarn was washed with water by a conventional method, stretched 3.5 times in warm water, and further applied with an amino-modified silicone silicone oil agent to obtain a drawn yarn. The drawn yarn is dried and densified using a heating roller at 180 ° C, and drawn in a pressurized steam of 29.4 MPa, so that the total drawing ratio of the yarn is 13 times. An acrylic fiber bundle having a single fiber fineness of 0.9 dte X, a single fiber count of 24, and a single fiber count of 0.0 was obtained.
かかるァクリル系繊維束の幅 1 mm当たりの繊度を 2 0 , 0 0 0 d t e x/m m、 アクリル系繊維束の単位断面積当たりの繊度を 3 , O O O d t e xZmm2と し、 実質的に撚りを付与せずに 1. 5倍に延伸しつつ、 ジエチレングリコールの 蒸発蒸気雰囲気中、 244 で 3 0分耐炎化処理し、 良好な特性を有する耐炎化 繊維束を得た。 The fineness of width 1 per mm of such Akuriru fiber bundle 2 0, 0 0 0 dtex / mm, a fineness per unit sectional area of the acrylic fiber bundle 3, and OOO dte xZmm 2, applying twists to substantially Without elongation, it was subjected to a flame-resistance treatment at 244 for 30 minutes in an evaporative steam atmosphere of diethylene glycol while being stretched 1.5 times, to obtain a flame-resistant fiber bundle having good properties.
この耐炎化繊維束を、 耐炎化処理と同様に、 アクリル系繊維束の幅 1 mm当た りの繊度を 2 0, 0 0 0 d t e x/mm, アクリル系繊維束の単位断面積当たり の繊度を 3 , 00 0 d t e xZmm2とし、 実質的に撚りを付与せずに、 空気中、 3 0 0 °Cで 5分間処理し、 次に不活性雰囲気中、 1. 04倍に延伸しつつ 3 0 0 〜 8 0 0 °Cで予備炭化し、 次いで不活性雰囲気中、 1、 4 0 0 ^で炭化処理した。 この後、 硫酸水溶液中で、 1 0クーロン Zgの陽極酸化処理を行った。 この結 果、 良好な特性を有する炭素繊維束が得られた。 In the same manner as in the flame-proof treatment, the fineness of the acrylic fiber bundle per 1 mm width was set to 20.000 dtex / mm, and the fineness per unit cross-sectional area of the acrylic fiber bundle was determined. 3, 00 0 dte xZmm 2 and then, without imparting twist to the substantially air, 3 treated 0 0 ° C for 5 min, then in an inert atmosphere, 1.3 while stretched 04 times 0 Precarbonization was performed at 0 to 800 ° C, and then carbonization was performed at 1,400 ^ in an inert atmosphere. Thereafter, anodizing treatment of 10 coulombs Zg was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber bundle having good characteristics was obtained.
得られた炭素繊維束を、 さらに不活性雰囲気中、 2、 0 0 0 ^で黒鉛化処理し た後、 硫酸水溶液中で、 1 0クーロン/ gの陽極酸化処理を行った。 この結果、 良好な特性を有する黒鉛繊維束が得られた。 ,  The obtained carbon fiber bundle was further graphitized at 2,000 ^ in an inert atmosphere, and then anodized at 10 coulomb / g in an aqueous sulfuric acid solution. As a result, a graphite fiber bundle having good characteristics was obtained. ,
[実施例 1 1 ]  [Example 11]
ジエチレンダリコールでの耐炎化処理を液相中に変えた以外は実施例 9と同様 にして、 耐炎化繊維束、 炭素繊維束および黒鉛繊維束を得た。 得られた耐炎化繊 維束、 炭素繊維束および黒鉛繊維束は良好な特性を示した。  An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 9, except that the oxidization treatment with diethylene dalicol was changed to the liquid phase. The obtained flame-resistant fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 1 2 ]  [Example 12]
ジエチレングリコールでの耐炎化処理時の延伸倍率を、 1. 1 5倍に変えた以 外は実施例 9と同様にして、 耐炎化繊維束、 炭素繊維束、 および黒鉛繊維束を得 た。 得られた耐炎化繊維束、 炭素繊維束および黒鉛繊維束は良好な特性を示した。  An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9, except that the draw ratio during the oxidization treatment with diethylene glycol was changed to 1.15. The resulting oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 1 3 ]  [Example 13]
耐炎化処理をジエチレングリコールと二トロベンゼンの 1対 1混合液で行った 以外は実施例 9と同様にして、 耐炎化繊維束、 炭素繊維束、 および黒鉛繊維束を 得た。 得られた耐炎化繊維束、 炭素繊維束および黒鉛繊維束は良好な特性を示し た。 Oxidation treatment was performed with a 1: 1 mixture of diethylene glycol and ditrobenzene. Except for the above, an oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9. The obtained oxidized fiber bundle, carbon fiber bundle and graphite fiber bundle showed good characteristics.
[実施例 1 4、 1 5 ]  [Examples 14 and 15]
被処理繊維束のフィラメント数を、 表 1に示すように種々変えた以外は実施例 1 2と同様にして耐炎化繊維束、 炭素繊維束及び黒鉛繊維束を得た。 得られた耐 炎化繊維束、 炭素繊維束、 及び黒鉛繊維は良好な特性を示した。  An oxidized fiber bundle, a carbon fiber bundle and a graphite fiber bundle were obtained in the same manner as in Example 12 except that the number of filaments of the fiber bundle to be treated was variously changed as shown in Table 1. The resulting oxidized fiber bundle, carbon fiber bundle, and graphite fiber exhibited good properties.
[実施例 1 6 ]  [Example 16]
耐炎化処理をパ一フロロポリェ一テルの液相中で行った以外は実施例 9と同様 にして、 耐炎化繊維束、 炭素繊維束、 及び黒鉛繊維を得た。 得られた耐炎化繊維 束、 炭素繊維束、 及び黒鉛繊維束は良好な特性を示した。  An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber were obtained in the same manner as in Example 9 except that the oxidization treatment was performed in the liquid phase of perfluoropolyether. The resulting oxidized fiber bundle, carbon fiber bundle, and graphite fiber bundle exhibited good characteristics.
[実施例 1 7 ]  [Example 17]
耐炎化処理での延伸を 0 . 9倍に変えた以外は実施例 9と同様にして、 耐炎化 繊維束、 炭素繊維束、 及び黒鉛繊維束を得た。 得られた耐炎化繊維束の単繊維引 張強度は実施例 9に比べるとやや低いものであった。 また、 得られた炭素繊維の 結晶配向度 π 0 0 2はやや低く、 弾性率はやや低いものであった。  An oxidized fiber bundle, a carbon fiber bundle, and a graphite fiber bundle were obtained in the same manner as in Example 9 except that the stretching in the oxidization treatment was changed to 0.9 times. The single fiber tensile strength of the obtained oxidized fiber bundle was slightly lower than that of Example 9. The degree of crystal orientation π 002 of the obtained carbon fiber was slightly low, and the elastic modulus was slightly low.
[比較例 3 ]  [Comparative Example 3]
実施例 9で得られたアクリル系繊維束を、 アクリル系繊維束の幅 1 mm当たり の繊度を 2 0, 0 0 0 d t e x /mm , アクリル系繊維束の単位断面積当たりの 繊度を 3, 0 0 0 d t e x Zmm 2とし、 実質的に撚りを付与せずに、 0 . 9倍に 延伸しつつ、 大気圧 1 0 1 3 h P aの空気中、 2 6 0 °Cで耐炎化処理して、 耐炎 化繊維束を得た。 得られた耐炎化繊維の二トリル基残存率は低く、 O 1 / O 2は 低かった。 The acrylic fiber bundle obtained in Example 9 was set to have a fineness per unit width of 1 mm of the acrylic fiber bundle of 200,000 dtex / mm and a fineness per unit cross-sectional area of the acrylic fiber bundle of 3,0. 0 0 dtex ZMM 2 and then, without imparting twist to substantially zero. while stretched nine times in air at atmospheric pressure 1 0 1 3 h P a, is treated oxidization with 2 6 0 ° C Thus, an oxidized fiber bundle was obtained. The residual rate of nitrile groups in the obtained flame-resistant fiber was low, and O 1 / O 2 was low.
耐炎化処理後、 不活性雰囲気中、 1 . 0 4倍に延伸しながら、 3 0 0〜8 0 0 ^で予備炭化し、 さらに温度 1、 4 0 0 Xで炭化処理した。 炭化処理後、 硫酸水 溶液中で、 1 0クーロン/ gの陽極酸化処理を行い炭素繊維束を得た。 このとき の炭化収率はやや低いものであった。 得られた炭素繊維の A 1 Z A 2は高く、 接 着強度は低いものであった。  After the oxidation treatment, the carbonization was carried out at 300 to 800 ^ in an inert atmosphere while being stretched 1.04 times, and the carbonization treatment was carried out at a temperature of 1,400X. After the carbonization, anodization was performed at 10 coulomb / g in a sulfuric acid aqueous solution to obtain a carbon fiber bundle. The carbonization yield at this time was somewhat low. A1ZA2 of the obtained carbon fiber was high, and the bonding strength was low.
得られた炭素繊維束を、 さらに不活性雰囲気中、 2、 0 0 0 で黒鉛化処理し た後、 硫酸水溶液中で、 1 0クーロン/ gの陽極酸化処理を行い、 黒鉛繊維束を, 得た。 The obtained carbon fiber bundle is further graphitized at 2,000 in an inert atmosphere. After that, anodizing treatment of 10 coulomb / g was performed in a sulfuric acid aqueous solution to obtain a graphite fiber bundle.
[比較例 4]  [Comparative Example 4]
フィラメント数を変えた以外は比較例 3と同様にして耐炎化処理を行ったが、 耐炎化処理時の内部蓄熱のため、 糸切れが生じた。 表 4  Except that the number of filaments was changed, the flame resistance treatment was performed in the same manner as in Comparative Example 3, but the yarn was broken due to internal heat storage during the flame resistance treatment. Table 4
フイラ ト 耐炎化処理  Filtration Flameproofing treatment
 number
(本/束) 処理雰囲気 処理幅 1mm 処理面積 IranT 延伸倍率 処理時、 蠑 当たりの織度 当たリの域度 維束内温度 (dt ex/ram) (dt ex/mm2) CC) 実施例 24000 シ' Iチレンク 'リコ- A 244 20000 3000 1.5 265 (Books / bunch) Processing atmosphere Processing width 1mm Processing area IranT Stretching ratio During processing, weaving degree per squash area Area of wrapper temperature inside bundle (dt ex / ram) (dt ex / mm 2 ) CC) Example 24000 'I-Chilenk リ Rico-A 244 20000 3000 1.5 265
10 (蒸気)  10 (steam)
実施例 同上 シ' Iチレンク'リコ-ル 同上 同上 同上 同上 260  Example Same as above.
11 (液相)  11 (liquid phase)
実施例 同上 シ' Iチレンク'リコ-ル 同上 同上 同上 1.15 263  Example Same as above. I 'Ichirenk' Rikoru Same as above Same as above 1.15 263
12 (蒸気)  12 (steam)
実施例 同上 シシ' Iチレンク 'リコール 同上 同上 同上 1.5 265  Example Same as above Shishi 'Ichirenk' Recall Same as above Same as above 1.5 265
13 /ニトロへ'ンセ ·ン  13 / Nitrohe
= 1/1 (蒸気)  = 1/1 (steam)
実施例 48000 同上 同上 同上 同上 同上 267  Example 48000 Same as above Same as above Same as above Same as above 267
14  14
実施例 96000 同上 同上 同上 同上 同上 272  Example 96000 Same as above Same as above Same as above Same as above 272
15  Fifteen
実施例 同上 'Λ· -フロロ! リエ-テル 260 同上 同上 同上 274  Example Same as above 'Λ · -Fluoro! Rie-Tel 260 Same as above Same as above 274
16 (液相)  16 (liquid phase)
実施例 24000 シシ' Iチレンク'リコ-ル 244 同上 同上 0.9 255  Example 24000 Shishi 'I Chirenku' Recall 244 Same as above 0.9 255
17 /二ト π ンセ'ン  17/2 π π
= 1/1 (蒸気  = 1/1 (steam
比較例 24000 空気 260 同上 同上 0.9 275  Comparative Example 24000 Air 260 Same as above 0.9 275
3  Three
比皎例 48000 同上 260 同上 同上 0.9 279  Example of relatives 48000 Same as above 260 Same as above Same as above 0.9 279
4 表 5 Four Table 5
Figure imgf000034_0001
Figure imgf000034_0001
* 1 O 1 :緝椎表面平均酸素濃度 * 1 O 1: average oxygen concentration on the surface of the nipple
* 2 02 :凍結粉碎蠛維平均酸素濃度 * 2 02: Frozen ground fiber average oxygen concentration
表 6 Table 6
Figure imgf000035_0001
Figure imgf000035_0001
* 1 A 1 : re *Ζσ *の最表面測定値  * 1 A 1: re * Ζσ * outermost surface measured value
* 2 A 2 : 7C *Ζσ *の単蠓維内部最高値 * 2 A 2: 7C * Ζσ * single fiber internal maximum value
[実施例 1 8] [Example 18]
実施例 1と同様の方法で得られたァクリル系繊維を、 ェアジエツト製織機を用 いて、 単位面積当たりの重量が 2 0 0 gZm2の織物を作製した。 このアクリル系 繊維織物を 4枚重ねて単位面積当たりの総重量が 8 0 0 g/m2としたものを、 ジ エチレングリコールの蒸発蒸気雰囲気中、 244でで 3 0分耐炎化処理し、 次に 空気中、 3 00 °Cで 5分間処理し、 耐炎化繊維織物を得た。 この耐炎化繊維織物 を、 不活性雰囲気中、 3 0 0 ~ 8 0 0 °Cで予備炭化し、 次いで不活性雰囲気中、 1、 40 0 °Cで炭化処理し、 炭化収率 54 %で炭素繊維織物を得た。 この後、 硫 酸水溶液中で、 1 0クーロン/ gの陽極酸化処理を行った。 この結果、 良好な特 性を有する炭素繊維織物が得られた。 The acryl fiber obtained in the same manner as in Example 1 was used to fabricate a woven fabric having a weight per unit area of 200 gZm 2 using an air jet loom. Four acrylic fiber woven fabrics each having a total weight per unit area of 800 g / m 2 were subjected to a flameproofing treatment at 244 for 30 minutes in a diethylene glycol evaporation steam atmosphere. The mixture was treated at 300 ° C. for 5 minutes in the air to obtain an oxidized fiber woven fabric. This oxidized fiber woven fabric is pre-carbonized at 300 to 800 ° C in an inert atmosphere, then carbonized at 1,400 ° C in an inert atmosphere, and carbonized at a carbonization yield of 54%. A fiber fabric was obtained. Thereafter, an anodic oxidation treatment of 10 coulomb / g was performed in an aqueous sulfuric acid solution. As a result, a carbon fiber woven fabric having good characteristics was obtained.
[実施例 1 9]  [Example 19]
実施例 1で得られたアクリル系繊維を、 よこ編機を用いて単位面積当たりの重 量が 2 0 0 gZm2の平編編物を作製した。 このァクリル系繊維編物を 4枚重ねて 単位面積当たりの総重量が 8 0 0 g Zm 2としたものを、 実施例 1 7と同様の条件 で耐炎化処理をしたところ、 耐炎化繊維編物を得た。 この耐炎化繊維編物を実施 例 1 7と同様の条件で炭化処理したところ、 炭化収率 5 4 %で炭素繊維編物を得 た。 A flat knitted fabric having a weight per unit area of 200 gZm 2 was prepared from the acrylic fiber obtained in Example 1 using a weft knitting machine. 4 layers of this acryl fiber knitted fabric When the total weight per unit area was set to 800 g Zm 2 and subjected to a flame-proof treatment under the same conditions as in Example 17, a flame-resistant fiber knit was obtained. This flame-resistant fiber knitted product was carbonized under the same conditions as in Example 17 to obtain a carbon fiber knitted product with a carbonization yield of 54%.
[実施例 2 0 ]  [Example 20]
実施例 1で得られたァクリル系繊維に倦縮処理を施し、 切断長 5 0 mmのステ 一プルファイバーを得た。 このステ一プルファイバーを用い、 公知の方法でゥェ ッブを作製しこれを積層し、 二一ドルパンチングして、 2 0 0 g Zm 2のアクリル 系繊維不織布を作製した。 このときのアクリル系繊維の投入量に対して、 得られ た不織布の収率は 9 8 %であった。 このァクリル系繊維不織布を 4枚重ねて単位 面積当たりの総重量が 8 0 0 g Zm 2としたものを、 実施例 1 7と同様の条件で耐 炎化処理をしたところ、 耐炎化繊維不織布を得た。 この耐炎化繊維不織布を実施 例 1 7と同様の条件で炭化処理したところ、 炭化収率 5 5 %で炭素繊維不織布を 得た。 The acryl-based fiber obtained in Example 1 was subjected to crimping treatment to obtain a staple fiber having a cut length of 50 mm. Using the staple fiber, a web was produced by a known method, and the web was laminated and punched with a $ 21 dollar to produce an acrylic fiber nonwoven fabric of 200 g Zm 2 . At this time, the yield of the obtained nonwoven fabric was 98% with respect to the input amount of the acrylic fiber. Four acryl-based fiber non-woven fabrics each having a total weight per unit area of 800 g Zm 2 were subjected to a flame-proof treatment under the same conditions as in Example 17; Obtained. This flame-resistant fiber nonwoven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber nonwoven fabric with a carbonization yield of 55%.
[比較例 5 ]  [Comparative Example 5]
実施例 1 7で得られたァクリル系繊維織物を 4枚重ねて単位面積当たりの総重 量が 8 0 0 g Zm 2としたものを、 空気雰囲気中、 2 2 0 °Cで加熱したところ、 発 火せずに耐炎化することができたが、 密度が 1 . 3 5 c m 3を超えるまでに約 2 0 0分を要した。 得られた耐炎化繊維織物を、 実施例 1 7と同様の条件で炭化 処理したところ、 炭化収率 4 7 %で炭素繊維織物を得た。 When those total weight per unit area overlapping four to Akuriru fiber fabric obtained in Example 1 7 is a 8 0 0 g Zm 2, in an air atmosphere and heated in 2 2 0 ° C, Although flame resistance could be achieved without firing, it took about 200 minutes for the density to exceed 1.35 cm 3 . The obtained oxidized fiber woven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber woven fabric with a carbonization yield of 47%.
[比較例 6 ]  [Comparative Example 6]
実施例 1で得られたアクリル系繊維を、 空気雰囲気中、 2 4 0 °Cで加熱し 1 2 0分後に密度 1 . 3 5 g Z c m sである耐炎化繊維を得た。 この耐炎化繊維を用い て、 実施例 1 9と同様の条件で不織布の作製を行ったところ、 耐炎化繊維の粉体 化が顕著であり、 耐炎化繊維の投入量に対して、 得られた不織布の収率は 7 0 % と低いものであった。 得られた耐炎化繊維不織布を、 実施例 1 7と同様の条件で 炭化処理したところ、 炭化収率 5 0 %で炭素繊維不織布を得た。 The acrylic fiber obtained in Example 1 was heated at 240 ° C. in an air atmosphere, and after 120 minutes, an oxidized fiber having a density of 1.35 g Z cm s was obtained. Using this oxidized fiber, a nonwoven fabric was prepared under the same conditions as in Example 19, and the powder of the oxidized fiber was remarkable. The yield of nonwoven fabric was as low as 70%. The obtained flame-resistant fiber nonwoven fabric was carbonized under the same conditions as in Example 17 to obtain a carbon fiber nonwoven fabric with a carbonization yield of 50%.
実施例 1〜 9及び比較例 1、 2の耐炎化処理方法を表 1に、 得られた耐炎化繊 維、 炭素繊維、 黒鉛繊維の特性を表 2、 3にまとめて示す。 表 1〜 3に示す通り、 本発明の耐炎化繊維、 炭素繊維、 黒鉛繊維は良好な特性を示した。 Table 1 shows the oxidizing treatment methods of Examples 1 to 9 and Comparative Examples 1 and 2, and Tables 2 and 3 collectively show the properties of the obtained oxidizing fiber, carbon fiber and graphite fiber. As shown in Tables 1-3, The oxidized fiber, carbon fiber and graphite fiber of the present invention showed good properties.
実施例 1 0 ~ 1 7及び比較例 3、 4の耐炎化処理方法を表 4に、 得られた耐炎化 繊維、 炭素繊維、 黒鉛繊維の特性を表 5、 6にまとめて示す。 Table 4 shows the flameproofing treatment methods of Examples 10 to 17 and Comparative Examples 3 and 4, and Tables 5 and 6 summarize the properties of the obtained flameproofed fibers, carbon fibers, and graphite fibers.
また、 実施例 1 8〜 2 0及び比較例 5、 6で得られた耐炎化繊維布帛の特性を 表 7に、 炭素繊維布帛の特性を表 8にまとめて示す。  Table 7 shows the properties of the oxidized fiber cloth obtained in Examples 18 to 20 and Comparative Examples 5 and 6, and Table 8 shows the properties of the carbon fiber cloth.
table
Figure imgf000037_0001
Figure imgf000037_0001
* 1 0 1 蠛锥表面平均酸素濃度  * 1 0 1 蠛 锥 Surface average oxygen concentration
# 2 O 2 凍結粉砕蠑維平均酸素濃度 # 2 O 2 Freeze-crushed fiber average oxygen concentration
表 8 Table 8
Figure imgf000037_0002
Figure imgf000037_0002
* 1 A 1 : 7t */σ *の最表面測定値  * 1 A 1: Outermost surface measured value of 7t * / σ *
* 2 Α 2 : π #/σ *' 産業上の利用可能性 * 2 Α 2: π # / σ * ' Industrial applicability
本発明によれば、 アクリル系繊維の耐炎化処理の際、 多数の単繊維が集束して なる高密度の糸条又は布帛において蓄熱され易い環化や酸化時に発生する反応熱 を蒸発蒸気又は液の伝熱により効率的に除熱でき、 その結果、 非常に高効率に耐 炎化繊維及び耐炎化繊維布帛を製造することができ、 更には炭素繊維や黒鉛繊維 を安定に製造することができる。 According to the present invention, the reaction heat generated during cyclization or oxidation, which is likely to be stored in a high-density yarn or fabric formed by bundling a large number of single fibers during the flame-resistant treatment of an acrylic fiber, is evaporated vapor or liquid. The heat can be efficiently removed by the heat transfer, and as a result, the flame-resistant fiber and the flame-resistant fiber fabric can be manufactured with extremely high efficiency, and furthermore, the carbon fiber and the graphite fiber can be manufactured stably. .
本発明の耐炎化繊維は、 耐熱性に優れ、 高い引張強度を有する。 また本発明の 耐炎化繊維布帛は、 耐熱性、 機械強度に優れる。 従って、 本発明の耐炎化繊維及 び耐炎化繊維布帛は例えば防火布、 消火布、 耐火力一テン、 防火作業着、 防災用 品、 耐熱充填材、 摩擦材、 クッション材、 スパッタシート、 航空機等で用いられ るフアイャ一ブロッキングシート、 セメント補強繊維などの用途に好適に使用で きる。  The oxidized fiber of the present invention has excellent heat resistance and high tensile strength. Further, the flame-resistant fiber fabric of the present invention is excellent in heat resistance and mechanical strength. Accordingly, the flame-retardant fiber and the flame-retardant fiber cloth of the present invention are, for example, fire-resistant cloth, fire-extinguishing cloth, fire-resistant cloth, fire-resistant work clothes, disaster-prevention goods, heat-resistant filler, friction material, cushion material, spatter sheet, aircraft, etc. It can be suitably used for applications such as fire-blocking sheets and cement-reinforcing fibers.
更には本発明の耐炎化繊維は、 炭素繊維の前駆体繊維として好適に使用でき、 Furthermore, the oxidized fiber of the present invention can be suitably used as a precursor fiber of carbon fiber,
2重構造を有する炭素繊維を提供することができる。 また、 耐熱性、 品位に優れ るため該耐炎化繊維を前駆体繊維とすることで炭化工程での収率を 5 0 - 6 5 % , 更には 5 5〜 6 5 %に高めることができる。 A carbon fiber having a double structure can be provided. In addition, since the flame-resistant fiber is used as a precursor fiber because of its excellent heat resistance and quality, the yield in the carbonization step can be increased to 50 to 65%, and further to 55 to 65%.
本発明の炭素繊維は、 2重構造を有し、 繊維方向の強度とともに、 樹脂との接 着性にも優れるため、 繊維方向はもちろんのこと、 非繊維方向の強度に優れた繊 維強化複合材料の強化繊維として好適に使用できる。 具体的には、 ゴルフシャフ ト、 釣竿ロッド、 ラケット及びホッケースティックなどの各種スポーツ · レジャ —用品、 航空機用一次及び二次構造材、 耐震土木補強用途、 自動車、 船舶などの 運輸機械用途、 ならびに風車、 音響機器用スピーカ一コーンなどの一般産業用途 等に使用できる。  The carbon fiber of the present invention has a double structure, and is excellent not only in the fiber direction but also in the non-fiber direction because it has excellent strength in the fiber direction and excellent adhesion to the resin. It can be suitably used as a reinforcing fiber of the material. Specifically, various sports and leisure equipment such as golf shafts, fishing rod rods, rackets and hockey sticks, primary and secondary structural materials for aircraft, seismic civil engineering reinforcement applications, transportation machinery applications such as automobiles and ships, and wind turbines It can be used for general industrial applications such as a speaker and a cone for audio equipment.
また、 炭素繊維布帛は優れた電気特性と機械強度を備えているため、 携帯電話 やパソコン筐体等の電子機器部品、 燃料電池用の電極基材等、 電力貯蔵などに利 用される二次電池用電極材料として有用である。  In addition, since carbon fiber fabrics have excellent electrical properties and mechanical strength, they can be used for electronic equipment parts such as mobile phones and personal computer housings, electrode base materials for fuel cells, etc. It is useful as a battery electrode material.

Claims

請求の範囲 The scope of the claims
1. 元素分析 ·酸素分析法で測定した繊維内平均酸素濃度が 0. 0 7 ~0. 1 7 である耐炎化繊維材料。 1. Elemental analysis · Flame-resistant fiber material whose average oxygen concentration in the fiber measured by oxygen analysis is 0.07 to 0.17.
2. 赤外分光分析法で測定した繊維内の平均二トリル基残存率が 0 ~ 40 %であ る耐炎化繊維材料。 . 2. An oxidized fiber material having an average rate of residual nitrile groups in the fiber of 0 to 40% as measured by infrared spectroscopy. .
3. X線光電子分光法で測定される繊維表面の平均酸素濃度 O 1と X線光電子分 光法で測定される凍結粉砕繊維の平均酸素濃度 O 2の比 O 1 / O 2が 1. 8〜 4 · 0である耐炎化繊維材料。 ' 3. The ratio O 1 / O 2 of the average oxygen concentration O 1 of the fiber surface measured by X-ray photoelectron spectroscopy O 1 to the average oxygen concentration O 2 of the frozen ground fiber measured by X-ray photoelectron spectroscopy is 1.8 Flame-resistant fiber material which is ~ 4.0. '
4. 布帛の形態を有する請求項 1〜 3のいずれかに記載の耐炎化繊維材料。 4. The flame-resistant fiber material according to any one of claims 1 to 3, which has a form of a fabric.
5. アクリル系繊維材料を、 ァミン化合物を除く有機化合物、 フッ素化合物、 シ ロキサン類、 硝酸塩、 亜硝酸塩のうち 1種又は 2種以上の化合物存在下で、 1 8 0〜 3 0 0 °Cで耐炎化処理することを特徴とする耐炎化繊維材料の製造方法。 5. The acrylic fiber material is treated at 180 to 300 ° C in the presence of one or more of organic compounds, fluorine compounds, siloxanes, nitrates and nitrites excluding amine compounds. A method for producing a flame-resistant fiber material, which comprises performing a flame-resistant treatment.
6. 前記耐炎化処理後のアクリル系繊維材料を、 酸化性雰囲気中、 0〜40 0で で酸化処理することを特徴とする請求項 5に記載の耐炎化繊維材料の製造方法。 6. The method for producing a flame-resistant fiber material according to claim 5, wherein the acrylic fiber material after the flame-resistance treatment is oxidized at 0 to 400 in an oxidizing atmosphere.
7. 前記耐炎化処理中のアクリル系繊維材料を、 同時に酸化性雰囲気中で、 1 8 0〜 3 0 0 °Cで酸化処理することを特徴とする請求項 5に記載の耐炎化繊維材料 の製造方法。 7. The flame-resistant fiber material according to claim 5, wherein the acrylic fiber material during the flame-resistance treatment is simultaneously oxidized at 180 to 300 ° C. in an oxidizing atmosphere. Production method.
8. 前記耐炎化処理前のアクリル系繊維材料を、 酸化性雰囲気中で、 0〜4 0 0 °Cで酸化処理することを特徴とする請求項 5に記載の耐炎化繊維材料の製造方法。 8. The acrylic fiber material before the flame-proof treatment is treated in an oxidizing atmosphere in the range of 0 to 400 The method for producing a flame-resistant fiber material according to claim 5, wherein the oxidation treatment is performed at a temperature of ° C.
9. 前記アミン化合物を除く有機化合物が、 芳香族化合物、 アミ ド化合物、 ケト ン化合物、 モノアルコール化合物、 アルキレングリコ一ル化合物、 ポリグリコー ル化合物, ポリオール化合物、 エーテル化合物、 エステル化合物、 スルホン化合 物、 スルフィン化合物、 二トロキシド化合物、 二卜口化合物、 パラフィン系化合 物、 ナフテン系化合物から選ばれる少なくとも 1種の有機化合物であることを特 徴とする請求項 5に記載の耐炎化繊維材料の製造方法。 9. Organic compounds other than the amine compound include aromatic compounds, amide compounds, ketone compounds, monoalcohol compounds, alkylene glycol compounds, polyglycol compounds, polyol compounds, ether compounds, ester compounds, sulfone compounds, The method for producing a flame-retardant fiber material according to claim 5, characterized in that it is at least one organic compound selected from a sulfine compound, a nitroxide compound, a nitric compound, a paraffin compound, and a naphthene compound. .
1 0. 前記フッ素化合物が、 パーフルォロポリエーテル系化合物、 塩素置換フッ 素化合物、 ポリビニリデンフルオラィ ド化合物から選ばれる少な.くとも 1種であ ることを特徴とする請求項 5に記載の耐炎化繊維材料の製造方法。 10. The method according to claim 5, wherein the fluorine compound is at least one selected from a perfluoropolyether compound, a chlorine-substituted fluorine compound, and a polyvinylidene fluoride compound. A method for producing the flame-resistant fiber material according to the above.
1 1. 前記シロキサン類がフエ二ルシリコーン系化合物、 ポリシロキサン系化合 物から選ばれる少なくとも 1種であることを特徴とする請求項 5に記載の耐炎化 繊維材料の製造方法。 11. The method for producing a flame-retardant fiber material according to claim 5, wherein the siloxane is at least one selected from a phenylsilicone compound and a polysiloxane compound.
1 2. ァクリル系繊維材料がァクリル系繊維束であることを特徴とする請求項 5 〜 1 1のいずれかに記載の耐炎化繊維材料の製造方法。 12. The method for producing an oxidized fiber material according to any one of claims 5 to 11, wherein the acryl-based fiber material is an acryl-based fiber bundle.
1 3. アクリル系繊維束の幅 1 mm当たりの繊度を 1 , 000~80, 0 0 0 d t e xZmmとして耐炎化処理することを特徴とする請求項 1 2に記載の耐炎化 繊維材料の製造方法。 13. The method for producing a flame-resistant fiber material according to claim 12, wherein the acrylic fiber bundle is subjected to a flame-resistant treatment with a fineness per 1 mm width of 1,000 to 80,000 dtex x mm. .
14. アクリル系繊維束の単位断面積当たりの繊度を 500 ~ 7 , 5 0 0 d t e x/mm2として耐炎化処理することを特徵とする請求項 1 2に記載の耐炎化繊維. 材料の製造方法。 14. acrylic fiber 500 to a fineness per unit cross-sectional area of the bundle 7, 5 0 0 oxidized fiber according to claim 1 2, as dtex / mm 2 to process oxidization and Toku徵. Material production method of .
1 5. アクリル系繊維束の延伸倍率を 1. 1〜 1. 7として耐炎化処理すること を特徴とする請求項 1 2に記載の耐炎化繊維材料の製造方法。 1 5. Acrylic fiber bundle with draw ratio of 1.1 to 1.7 must be flameproofed The method for producing an oxidized fiber material according to claim 12, wherein:
1 6. ァクリル系繊維材料がァクリル系繊維布帛であることを特徴とする請求項 5- 1 1のいずれかに記載の耐炎化繊維材料の製造方法。 1 6. The method for producing a flame-resistant fiber material according to any one of claims 5 to 11, wherein the acryl-based fiber material is an acryl-based fiber cloth.
1 7. 単繊維断面を電界放出型電子顕微鏡を用いて、 電子エネルギー損失分光法 で測定して得られる 7t *Ζσ *の最表面測定値 A 1と単繊維内部最高値 A 2との 比 A 1ZA2が 0. 8 3〜0. 94である炭素繊維材料。 1 7. The ratio A between the outermost surface measurement value A 1 of 7t * Ζσ * and the maximum value A 2 inside the single fiber obtained by measuring the cross section of the single fiber by electron energy loss spectroscopy using a field emission electron microscope A carbon fiber material wherein 1ZA2 is 0.83-0.94.
1 8. 布帛の形態を有する請求項 1 7に記載の炭素繊維材料。 18. The carbon fiber material according to claim 17, which has a form of a fabric.
1 9. 請求項 5に記載の製造方法で得られた耐炎化繊維材料を、 不活性雰囲気中. 30 0 °C以上 2, 000 X:未満で炭化処理する炭素繊維材料の製造方法。 1 9. A method for producing a carbon fiber material, comprising subjecting the oxidized fiber material obtained by the production method according to claim 5 to carbonization at 300 ° C. or more and less than 2,000 X in an inert atmosphere.
20. 請求項 1 9に記載の製造方法で得られた炭素繊維材料を、 不活性雰囲気中. 2 , 000 - 3, 0 0 0 °Cで黒鉛化処理する黒鉛繊維材料の製造方法。 20. A method for producing a graphite fiber material, wherein the carbon fiber material obtained by the production method according to claim 19 is graphitized in an inert atmosphere at 2,000 to 3,000 ° C.
PCT/JP2002/004994 2001-05-24 2002-05-23 Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof WO2002095100A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001155172 2001-05-24
JP2001-155172 2001-05-24
JP2001186017 2001-06-20
JP2001-186017 2001-06-20

Publications (1)

Publication Number Publication Date
WO2002095100A1 true WO2002095100A1 (en) 2002-11-28

Family

ID=26615626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004994 WO2002095100A1 (en) 2001-05-24 2002-05-23 Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof

Country Status (1)

Country Link
WO (1) WO2002095100A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137117A (en) * 2018-07-11 2019-01-04 中复神鹰碳纤维有限责任公司 The method of the low swelling capacity polyacrylonitrile as-spun fibre of dry-jet wet-spinning
CN113793987A (en) * 2021-09-17 2021-12-14 中国科学技术大学 High-performance intrinsic non-combustible lithium battery electrolyte taking lithium nitrate as lithium salt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737214B1 (en) * 1969-12-27 1972-09-19
GB1540905A (en) * 1975-11-28 1979-02-21 Monsanto Co Process for the production of infusible and flameresistant acrylic fibres
JPS5473999A (en) * 1977-11-16 1979-06-13 Toray Industries Treating agent for fiber baking
US4259307A (en) * 1979-01-26 1981-03-31 Sumitomo Chemical Company, Limited Process for producing carbon fibers
JPS61167020A (en) * 1985-01-16 1986-07-28 Asahi Chem Ind Co Ltd Flameproofing yarn

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4737214B1 (en) * 1969-12-27 1972-09-19
GB1540905A (en) * 1975-11-28 1979-02-21 Monsanto Co Process for the production of infusible and flameresistant acrylic fibres
JPS5473999A (en) * 1977-11-16 1979-06-13 Toray Industries Treating agent for fiber baking
US4259307A (en) * 1979-01-26 1981-03-31 Sumitomo Chemical Company, Limited Process for producing carbon fibers
JPS61167020A (en) * 1985-01-16 1986-07-28 Asahi Chem Ind Co Ltd Flameproofing yarn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137117A (en) * 2018-07-11 2019-01-04 中复神鹰碳纤维有限责任公司 The method of the low swelling capacity polyacrylonitrile as-spun fibre of dry-jet wet-spinning
CN109137117B (en) * 2018-07-11 2021-05-04 中复神鹰碳纤维股份有限公司 Method for dry-jet wet-spinning low-swelling degree polyacrylonitrile nascent fiber
CN113793987A (en) * 2021-09-17 2021-12-14 中国科学技术大学 High-performance intrinsic non-combustible lithium battery electrolyte taking lithium nitrate as lithium salt

Similar Documents

Publication Publication Date Title
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
CN101583747A (en) Method for production of carbonized cloth, and carbonized cloth produced by the method
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JPWO2019244830A1 (en) Carbon fiber and method for producing the same
JP2014101605A (en) Method of manufacturing carbon fiber
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP5561446B1 (en) Carbon fiber bundle manufacturing method and carbon fiber bundle
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
WO2002095100A1 (en) Flame-resistant fiber material, carbon fiber material, graphite fiber material and method for production thereof
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2012102439A (en) Surface treatment method of carbon fiber
JP6846868B2 (en) Method for manufacturing carbon fiber and carbon fiber with sizing agent attached
JP2023146344A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2001248025A (en) Method for producing carbon fiber
JP2004300601A (en) Flame resistant fiber fabric, carbon fiber fabric and method for producing them
JP2008169493A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2004270095A (en) Flame-resistant short fiber, flame-resistant fiber fabric and method for producing those
EP0100410B1 (en) High strength and high elongation carbon fiber bundle and process for producing the same
JP2013181264A (en) Carbon fiber bundle
WO2020195476A1 (en) Carbon fiber bundle and production method thereof
JP2010111957A (en) Carbon fiber, composite material, and method for producing carbon fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase