JP2010047865A - Carbon fiber for composite material and composite material produced by using the same - Google Patents

Carbon fiber for composite material and composite material produced by using the same Download PDF

Info

Publication number
JP2010047865A
JP2010047865A JP2008212566A JP2008212566A JP2010047865A JP 2010047865 A JP2010047865 A JP 2010047865A JP 2008212566 A JP2008212566 A JP 2008212566A JP 2008212566 A JP2008212566 A JP 2008212566A JP 2010047865 A JP2010047865 A JP 2010047865A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
tensile strength
fiber
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008212566A
Other languages
Japanese (ja)
Inventor
Taro Oyama
太郎 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2008212566A priority Critical patent/JP2010047865A/en
Publication of JP2010047865A publication Critical patent/JP2010047865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber having improved surface characteristics, strength and elastic modulus and giving a composite material having high composite characteristics, especially high open hole tensile strength. <P>SOLUTION: The carbon fiber for composite materials has tensile strength of ≥6,000 MPa, elastic modulus of ≥340 GPa and surface oxygen concentration of 7-17%, and gives a composite material having open hole tensile strength of ≥600 MPa using the carbon fiber. More preferably, the carbon fiber has a BET specific surface area of 0.65-2.5 m<SP>2</SP>/g measured by krypton adsorption, and an intensity ratio (D/G) of 1.00-1.25 wherein D is intensity of D band developing near 1,350 cm<SP>-1</SP>and G is intensity of G band developing near 1,580 cm<SP>-1</SP>of a Raman spectrum. The composite material produced using such carbon fiber has excellent open hole tensile strength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、航空機用等の複合材料に好適に使用される炭素繊維と、それを用いた複合材料に関する。 The present invention relates to a carbon fiber suitably used for a composite material for aircraft and the like, and a composite material using the carbon fiber.

近年、炭素繊維を強化繊維として用いた複合材料は、軽く、高強度等の優れた機械的特性を有するので、航空機等の複合材料として多く用いられてきている。これらの複合材料は、例えば、強化繊維にマトリックス樹脂が含浸された中間製品であるプリプレグから、加熱・加圧といった成形・加工工程を経て成形される。従って、所望の複合材料を得るためには、それぞれに最適の材料あるいは成形・加工手段を採用する必要があり、強化繊維である炭素繊維にも色々な特性が要求される。 In recent years, composite materials using carbon fibers as reinforcing fibers are light and have excellent mechanical properties such as high strength, and thus have been widely used as composite materials for aircraft and the like. These composite materials are molded, for example, from a prepreg, which is an intermediate product in which a reinforcing fiber is impregnated with a matrix resin, through molding and processing steps such as heating and pressing. Therefore, in order to obtain a desired composite material, it is necessary to adopt an optimum material or molding / processing means for each, and various properties are also required for carbon fibers which are reinforcing fibers.

例えば、航空機用の複合材料においては、重要な物性の一つとして有孔引張強度(Open Hole
Tensile、OHT)があり、この値が高いものほど望ましいとされている。炭素繊維は一般的に、弾性率が上がるに従って脆性も上がるため、わずかな表面欠陥であってもその部分が破断開始点となり、強度に著しい影響を及ぼす。このように炭素繊維の表面欠陥が引張強度に悪影響を及ぼすため、高弾性且つ高強度というコンポジット特性を有する優れた複合材料を得るのは非常に難しい。従来、中〜高弾性の炭素繊維では、電解酸化や気相酸化による表面処理を強めに行い、エッチングによる繊維の表面欠陥の除去を行うことが行われている。しかしながら、表面処理を強めにすると、炭素繊維の表面酸素濃度(O/C)が上昇するにつれマトリックス樹脂との接着が過剰になり、応力の分散能力が低下するため、結果的に有孔引張強度が低下するという問題がある。
For example, in aircraft composite materials, one of the important physical properties is perforated tensile strength (Open Hole
Tensile, OHT), and the higher this value, the better. In general, carbon fibers are more brittle as the elastic modulus increases, so even a slight surface defect becomes a starting point of breakage, which significantly affects the strength. As described above, since the surface defects of the carbon fibers adversely affect the tensile strength, it is very difficult to obtain an excellent composite material having composite properties of high elasticity and high strength. Conventionally, in a medium to high elasticity carbon fiber, surface treatment by electrolytic oxidation or gas phase oxidation is strengthened, and surface defects of the fiber are removed by etching. However, if the surface treatment is strengthened, as the surface oxygen concentration (O / C) of the carbon fiber increases, the adhesion to the matrix resin becomes excessive and the stress dispersibility decreases, resulting in a porous tensile strength. There is a problem that decreases.

その他にも、炭素繊維表面とマトリックス樹脂との接着性が高いもの同士を複合化し、マトリックス樹脂と炭素繊維をより均一に分散することで、複合材料の強度、弾性、耐衝撃性等を向上させる試みは、従来から色々と提案されている(例えば、特許文献1〜6参照)。しかしながら、従来の炭素繊維は、航空機等に使用される高いコンポジット特性、特に、高い有孔引張特性を有する複合材料を得るためには、まだその性能が十分ではなかった。
特開平5−214614号公報 特開平10−25627号公報 特開平11−217734号公報 特開2003−73932号公報 特開2005−133274号公報 特開2004−277192号公報
In addition, by combining materials with high adhesion between the carbon fiber surface and the matrix resin, and dispersing the matrix resin and the carbon fiber more uniformly, the strength, elasticity, impact resistance, etc. of the composite material are improved. Various attempts have been proposed in the past (see, for example, Patent Documents 1 to 6). However, the performance of conventional carbon fibers has not yet been sufficient to obtain a composite material having high composite properties used for aircraft and the like, in particular, high porous tensile properties.
JP-A-5-214614 Japanese Patent Laid-Open No. 10-25627 JP-A-11-217734 JP2003-73932A JP 2005-133274 A JP 2004-277192 A

本発明の課題は、従来のものよりも高いコンポジット特性、特に、高い有孔引張特性を有する複合材料を得ることができる、表面特性や強度や弾性率が向上した炭素繊維を提供することにある。 An object of the present invention is to provide a carbon fiber with improved surface characteristics, strength, and elastic modulus, which can obtain a composite material having higher composite characteristics than conventional ones, particularly high perforated tensile characteristics. .

本発明者は、高いコンポジット特性、特に有孔引張強度(OHT)に優れた複合材料を得るために、炭素繊維の表面酸素濃度(O/C)や比表面積値に着目し、鋭意研究を行った結果、表面酸素濃度や比表面積値を適正な値に管理することで複合材料の特に有孔引張強度を向上させることができること等を知見し、本発明に到達した。 In order to obtain a composite material having high composite properties, particularly excellent porous tensile strength (OHT), the present inventor has conducted extensive research focusing on the surface oxygen concentration (O / C) and specific surface area value of carbon fiber. As a result, the inventors have found that by controlling the surface oxygen concentration and the specific surface area to appropriate values, particularly the porous tensile strength of the composite material can be improved, and the present invention has been achieved.

本発明のうち請求項1に記載された発明は、炭素繊維の引張強度が6000MPa以上、弾性率が340GPa以上、表面酸素濃度が7〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度が600MPa以上の複合材料用炭素繊維である。 Among the present inventions, the invention described in claim 1 uses a carbon fiber having a tensile strength of 6000 MPa or more, an elastic modulus of 340 GPa or more, and a surface oxygen concentration of 7 to 17%. It is a carbon fiber for composite materials in which the porous tensile strength of the composite material is 600 MPa or more.

請求項2に記載された発明は、炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあり、且つ、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲にある請求項1記載の複合材料用炭素繊維である。 In the invention described in claim 2, the specific surface area value according to the BET method by krypton adsorption of carbon fibers is in the range of 0.65 to 2.5 m 2 / g, and in the vicinity of 1350 cm −1 of the Raman spectrum. The carbon fiber for a composite material according to claim 1, wherein the intensity ratio D / G of the D band that appears and the G band that appears in the vicinity of 1580 cm -1 is in the range of 1.00 to 1.25.

請求項3項に記載された発明は、炭素繊維の引張強度が6000MPa以上、弾性率が340GPa以上、表面酸素濃度が7〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度が600MPa以上の炭素繊維とマトリックス樹脂とからなる複合材料である。 In the invention described in claim 3, the tensile strength of the carbon fiber is 6000 MPa or more, the elastic modulus is 340 GPa or more, the surface oxygen concentration is in the range of 7 to 17%, and the composite material using the carbon fiber is It is a composite material comprising a carbon fiber having a porous tensile strength of 600 MPa or more and a matrix resin.

そして、請求項4に記載された発明は、炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあり、且つ、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲にある請求項3記載の複合材料である。 In the invention described in claim 4, the specific surface area value in the BET method by krypton adsorption of carbon fibers is in the range of 0.65 to 2.5 m 2 / g, and 1350 cm −1 of the Raman spectrum. The composite material according to claim 3, wherein the intensity ratio D / G of the D band appearing in the vicinity and the G band appearing in the vicinity of 1580 cm -1 is in the range of 1.00 to 1.25.

本発明の炭素繊維は、高い強度と弾性率を有すると共に、表面酸素濃度が適度の範囲にあるので、マトリックス樹脂との接着性が中庸であり、その結果、この炭素繊維を用いた複合材料は優れた有孔引張強度を有する。従って、本発明の炭素繊維とマトリックス樹脂とからなる複合材料は、航空宇宙分野や自動車分野等において安全性が高く、且つ、軽量な複合材料として利用できる。 Since the carbon fiber of the present invention has high strength and elastic modulus and the surface oxygen concentration is in an appropriate range, the adhesiveness with the matrix resin is moderate. As a result, the composite material using this carbon fiber is Excellent perforated tensile strength. Therefore, the composite material composed of the carbon fiber and the matrix resin of the present invention can be used as a highly safe and lightweight composite material in the aerospace field, the automobile field, and the like.

本発明は、炭素繊維の引張強度が6000MPa、好ましくは6100MPa以上、弾性率が340GPa、好ましくは343GPa以上、表面酸素濃度(O/C)が7〜17%、好ましくは10〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度(OHT)が600MPa、好ましくは700MPa以上の複合材料用炭素繊維である。 In the present invention, the tensile strength of the carbon fiber is 6000 MPa, preferably 6100 MPa or more, the elastic modulus is 340 GPa, preferably 343 GPa, and the surface oxygen concentration (O / C) is 7 to 17%, preferably 10 to 17%. In addition, the composite material using the carbon fiber has a porous tensile strength (OHT) of 600 MPa, preferably 700 MPa or more.

有孔引張強度の高い炭素繊維強化複合材料を得るためには、従来は、強度と弾性率が中程度の炭素繊維、例えば、強度が5680MPa、弾性率が294GPa程度のものを用いて、有孔引張強度が600〜700MPa程度のものが得られていた。しかし、航空機の分野においては、機体の軽量化を主目的に、より高性能の複合材料が要求されるようになった。この要求に答えるために、高強度と高弾性率を両立させる炭素繊維の開発が行われているが、弾性率を増加させるのに伴い、炭素繊維の伸度が低下するために、得られた複合材料の有孔引張強度は低下するという問題があった。 In order to obtain a carbon fiber reinforced composite material having a high porous tensile strength, conventionally, a carbon fiber having a medium strength and elastic modulus, for example, a material having a strength of about 5680 MPa and a modulus of elasticity of about 294 GPa is used. Those having a tensile strength of about 600 to 700 MPa were obtained. However, in the field of aircraft, higher performance composite materials have been required mainly for the purpose of reducing the weight of the aircraft. In order to respond to this requirement, development of carbon fiber that achieves both high strength and high elastic modulus has been carried out, but it was obtained because the elongation of carbon fiber decreased as the elastic modulus increased. There was a problem that the porous tensile strength of the composite material was lowered.

本発明では、炭素繊維の破断開始点となる部分を除去することによって炭素繊維の脆弱化を防ぐと共に、炭素繊維の表面状態をコントロールすることで、繊維とマトリックス樹脂との接着性を一定の範囲に調整し、その結果、複合材料の特に有孔引張強度の向上を図るものである。 In the present invention, the carbon fiber is prevented from becoming brittle by removing the portion that becomes the break start point of the carbon fiber, and the adhesion between the fiber and the matrix resin is controlled within a certain range by controlling the surface state of the carbon fiber. As a result, it is intended to improve particularly the porous tensile strength of the composite material.

本発明において、有孔引張強度とは、炭素繊維の複合材料の積層板を用いて、EN6035に準じた試験法によって測定される。孔を含む構造体の基礎強度値として航空機材料の分野で良く用いられる評価物性であり、衝撃後圧縮強度(CAI)と同様に、複合材料の損傷許容性値の目安として用いられるものである。測定法については実施例の項で説明する。 In the present invention, the perforated tensile strength is measured by a test method according to EN 6035 using a laminate of carbon fiber composite material. It is an evaluation physical property that is often used in the field of aircraft materials as a basic strength value of a structure including a hole, and is used as a measure of a damage tolerance value of a composite material, similar to a compressive strength after impact (CAI). The measuring method will be described in the section of the examples.

本発明において表面酸素濃度とは、X線光電子分光器により測定される炭素繊維のO/C値を意味し、O/C値が7〜17%、好ましくは10〜17%の範囲にある必要がある。O/C値が7%未満の場合は、炭素繊維とマトリックス樹脂との接着性が低すぎ、得られる複合材料の有孔引張強度が600未満のものしか得られない。一方、O/C値が17%を超えると、マトリックス樹脂との接着性が強すぎ、コンポジットにした際に、炭素繊維の脆性が強く影響し、やはり有孔引張強度が600未満のものしか得られないので不適当である。 In the present invention, the surface oxygen concentration means an O / C value of carbon fiber measured by an X-ray photoelectron spectrometer, and the O / C value needs to be in a range of 7 to 17%, preferably 10 to 17%. There is. When the O / C value is less than 7%, the adhesion between the carbon fiber and the matrix resin is too low, and the resulting composite material has only a porous tensile strength of less than 600. On the other hand, if the O / C value exceeds 17%, the adhesiveness with the matrix resin is too strong, and when made into a composite, the brittleness of the carbon fiber is strongly influenced, and only those having a porous tensile strength of less than 600 are obtained. It is inappropriate because it is not possible.

本発明の炭素繊維としては、更に、炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあるものが好ましい。クリプトン吸着によるBET法での比表面積値とは、炭素繊維の表面状態を示す値であり、吸着占有面積の判明しているガス分子をサンプルに吸着させ、その際の単分子層吸着量の値を用い、次の式によって算出される。 As the carbon fiber of the present invention, one having a specific surface area value in the range of 0.65 to 2.5 m 2 / g by BET method by krypton adsorption of the carbon fiber is further preferable. The specific surface area value in the BET method by krypton adsorption is a value indicating the surface state of the carbon fiber, and gas molecules whose adsorption occupation area is known are adsorbed to the sample, and the value of the monomolecular layer adsorption amount at that time Is calculated by the following equation.

S=([Vm×N×Acs]M)/w
S:比表面積
Vm:単分子層吸着量
N:アボガドロ定数
Acs:吸着断面積
M:分子量
w:サンプル重量
S = ([Vm × N × Acs] M) / w
S: Specific surface area Vm: Monolayer adsorption amount N: Avogadro constant Acs: Adsorption cross section M: Molecular weight w: Sample weight

本発明の炭素繊維は、この比表面積値が0.65〜2.5m/gにあるものが好ましいが、より好ましくは、1.3〜2.4m/gの範囲である。この値は、具体的には、炭素繊維表面の表面処理によるエッチング作用の程度によって変化する。即ち、クリプトン吸着によるBET法での比表面積値は、表面処理によるエッチング作用により生じ、かかる指標の値が増加するにつれ、炭素繊維の表面積が増加し、また凹凸差が増加する。また、表面処理によるエッチングは、前記表面酸素濃度にも影響する。 The carbon fiber of the present invention preferably has a specific surface area value of 0.65 to 2.5 m 2 / g, and more preferably 1.3 to 2.4 m 2 / g. Specifically, this value varies depending on the degree of etching effect by the surface treatment of the carbon fiber surface. That is, the specific surface area value in the BET method by krypton adsorption is caused by the etching action by the surface treatment, and as the index value increases, the surface area of the carbon fiber increases and the unevenness difference increases. Etching by surface treatment also affects the surface oxygen concentration.

また、本発明の炭素繊維は、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲のものが好ましく、より好ましくは1.05〜1.20の範囲にあるものである。このD/Gは表面処理の度合いによって変化する。即ち、このD/Gの値が高いと、表面処理により炭素繊維表面のグラファイトが酸化され、結晶性が低くなったことを意味し、この結晶性の低くなった部分が集中すると、表面欠陥となるため強度が低下する。 The carbon fiber of the present invention preferably has an intensity ratio D / G of a D band appearing near 1350 cm −1 and a G band appearing near 1580 cm −1 in the Raman spectrum in the range of 1.00 to 1.25. More preferably, it is in the range of 1.05-1.20. This D / G varies depending on the degree of surface treatment. That is, when the value of D / G is high, it means that the graphite on the surface of the carbon fiber is oxidized by the surface treatment, and the crystallinity is lowered. Therefore, the strength decreases.

炭素繊維の表面処理(エッチング処理)の方法・手段としては、薬液を用いる液相酸化、電解液溶液中で炭素繊維を陽極として処理する電解酸化、気相状態でのプラズマ処理などによる気相酸化等がある。例えば、電解酸化によりエッチング処理を行うと、炭素繊維の表面欠陥となる焼成工程で生じた脆弱部が、エッチングにより優先的に取り除かれ炭素繊維自体の強度が向上する。また、脆弱部の除去に伴い繊維表面に細かな凹凸が生じ、炭素繊維の表面積が広がり、炭素繊維とマトリックス樹脂間に十分な接触を得ることができるようになる。更に、マトリックス樹脂との親和性を向上させる効果を有する、カルボキシル基や水酸基等の官能基が導入される。それらの結果、アンカー効果により炭素繊維とマトリックス樹脂との接着性が向上する。一方、表面処理が過度になされると、逆に、削れ過ぎた部分が新たなクラックやボイドなどの物理的欠陥となり、炭素繊維の破断開始点となる。従って、最適な表面状態を形成させるためには、適度なエッチングが必要である。 Methods and means for carbon fiber surface treatment (etching treatment) include liquid phase oxidation using chemicals, electrolytic oxidation using carbon fiber as an anode in an electrolytic solution, and vapor phase oxidation by plasma treatment in a gas phase. Etc. For example, when the etching process is performed by electrolytic oxidation, the fragile portion generated in the firing step that becomes the surface defect of the carbon fiber is preferentially removed by the etching, and the strength of the carbon fiber itself is improved. Further, with the removal of the fragile portion, fine irregularities are generated on the fiber surface, the surface area of the carbon fiber is increased, and sufficient contact can be obtained between the carbon fiber and the matrix resin. Furthermore, a functional group such as a carboxyl group or a hydroxyl group having an effect of improving the affinity with the matrix resin is introduced. As a result, the adhesion between the carbon fiber and the matrix resin is improved by the anchor effect. On the other hand, if the surface treatment is excessively performed, the excessively scraped portion becomes a physical defect such as a new crack or void, and becomes a starting point for breaking the carbon fiber. Accordingly, in order to form an optimum surface state, appropriate etching is necessary.

本発明の炭素繊維は、例えば、以下の方法により製造することができる。 The carbon fiber of the present invention can be produced, for example, by the following method.

[前駆体繊維]
本発明において、炭素繊維の製造方法に用いる前駆体繊維としては、ピッチ系繊維、アクリル系繊維等従来公知のものが何ら制限なく使用できる。その中でもアクリル系繊維が好ましく、広角X線回折(回折角17°)による配向度が90.5%以下のアクリル系繊維がより好ましい。具体的にはアクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合した紡糸溶液を紡糸して、炭素繊維原料とする。紡糸方法としては、湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、樹脂との接着性を考慮すると、湿式紡糸方法がより好ましい。また、凝固した後は、水洗・乾燥・延伸して炭素繊維原料とすることが好ましい。
[Precursor fiber]
In the present invention, as the precursor fiber used in the carbon fiber production method, conventionally known fibers such as pitch fibers and acrylic fibers can be used without any limitation. Among them, acrylic fibers are preferable, and acrylic fibers having an orientation degree by wide-angle X-ray diffraction (diffraction angle 17 °) of 90.5% or less are more preferable. Specifically, a spinning solution obtained by polymerizing a monomer containing 90% by mass or more, preferably 95% by mass or more of acrylonitrile is spun to obtain a carbon fiber raw material. As the spinning method, either a wet or dry wet spinning method can be used, but considering the adhesiveness to the resin, the wet spinning method is more preferable. Moreover, after solidifying, it is preferable to wash with water, dry and stretch to obtain a carbon fiber raw material.

[耐炎化処理]
得られた前駆体繊維は、引き続き加熱空気中200〜280℃、好ましくは、240〜250℃の温度範囲内で耐炎化処理される。この時の処理は、一般的に、延伸倍率0.85〜1.30の範囲で処理されるが、高強度・高弾性率の炭素繊維を得るためには、0.95以上がより好ましい。この耐炎化処理は、繊維密度1.3〜1.5g/cmの耐炎化繊維とするものであり、耐炎化時の糸にかかる張力は特に限定されるものではない。
[Flame resistance treatment]
The obtained precursor fiber is subsequently flameproofed in a temperature range of 200 to 280 ° C., preferably 240 to 250 ° C. in heated air. The treatment at this time is generally carried out in the range of a draw ratio of 0.85 to 1.30, but 0.95 or more is more preferable in order to obtain a carbon fiber with high strength and high elastic modulus. This flameproofing treatment is to make a flameproof fiber having a fiber density of 1.3 to 1.5 g / cm 3 , and the tension applied to the yarn at the time of flameproofing is not particularly limited.

[第一炭素化処理]
上記耐炎化繊維を、不活性雰囲気中で、第一炭素化工程において、300〜900℃、好ましくは、300〜550℃の温度範囲内で、1.03〜1.06の延伸倍率で一次延伸処理し、次いで0.9〜1.01の延伸倍率で二次延伸処理して、繊維密度1.40〜1.70g/cmの第一炭素化処理繊維を得る。第一炭素化工程において、一次延伸処理では、耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲、同繊維の密度が1.5g/cmに達するまでの範囲で、1.03〜1.06の延伸倍率で延伸処理を行うのが好ましい。二次延伸処理においては、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける範囲で、0.9〜1.01倍の延伸倍率で延伸処理を行うのが好ましい。かかる条件を採用すると、結晶が成長することなく、緻密化され、ボイドの生成も抑制でき、最終的に高い緻密性を有した高強度炭素繊維を得ることができる。上記第一炭素化工程は、一つの炉若しくは二つ以上の炉で、連続的若しくは別々に処理することができる。
[First carbonization treatment]
In the first carbonization step, the flame-resistant fiber is primarily stretched at a stretching ratio of 1.03 to 1.06 within a temperature range of 300 to 900 ° C., preferably 300 to 550 ° C., in the first carbonization step. Next, a secondary stretch treatment is performed at a draw ratio of 0.9 to 1.01 to obtain a first carbonized fiber having a fiber density of 1.40 to 1.70 g / cm 3 . In the first carbonization step, in the primary stretching treatment, the range from the time when the elastic modulus of the flameproof fiber decreases to a minimum value until it increases to 9.8 GPa, until the density of the fiber reaches 1.5 g / cm 3. In this range, it is preferable to perform the stretching treatment at a stretching ratio of 1.03 to 1.06. In the secondary stretching process, it is preferable to perform the stretching process at a stretching ratio of 0.9 to 1.01 within a range in which the density of the fiber after the primary stretching process continues to rise during the secondary stretching process. When such conditions are employed, the crystals are densified without growing, the formation of voids can be suppressed, and finally high-strength carbon fibers having high density can be obtained. The first carbonization step can be performed continuously or separately in one furnace or two or more furnaces.

[第二炭素化処理]
上記第一炭素化処理繊維を、不活性雰囲気中で、第二炭素化工程において800〜2100℃、好ましくは、1000〜1450℃の温度範囲内で、同工程を一次処理と二次処理とに分けて延伸処理して、第二炭素化処理繊維を得る。一次処理では、第一炭素化処理繊維の密度が一次処理中上昇し続ける範囲、同繊維の窒素含有量が10質量%以上の範囲で、同繊維を延伸処理するのが好ましい。二次処理においては、一次処理繊維の密度が変化しない又は低下する範囲で、同繊維を延伸処理するのが好ましい。第二炭素化処理繊維の伸度は2.0%以上、より好ましくは2.2%以上である。また、第二炭素化処理繊維の直径は、5〜6.5μmであるのが好ましい。また、これら焼成工程は、単一設備で連続して処理することも、数個の設備で連続して処理することも可能であり、特に限定されるものではない。
[Second carbonization treatment]
The first carbonized fiber is subjected to a primary treatment and a secondary treatment in an inert atmosphere within a temperature range of 800 to 2100 ° C., preferably 1000 to 1450 ° C., in the second carbonization step. Separately, it is stretched to obtain a second carbonized fiber. In the primary treatment, it is preferable to stretch the fiber in a range where the density of the first carbonized fiber continues to increase during the primary treatment, and in a range where the nitrogen content of the fiber is 10% by mass or more. In the secondary treatment, it is preferable to stretch the fiber in a range where the density of the primary treated fiber does not change or decreases. The elongation of the second carbonized fiber is 2.0% or more, more preferably 2.2% or more. Moreover, it is preferable that the diameter of a 2nd carbonization processing fiber is 5-6.5 micrometers. Moreover, these baking processes can be processed continuously with a single facility or with several facilities, and are not particularly limited.

[第三炭素化処理]
第三炭素化処理においては、上記第二炭素化処理繊維を1500〜2100℃、好ましくは、1650〜1950℃で更に炭素化又は黒鉛化処理する。
[Third carbonization treatment]
In the third carbonization treatment, the second carbonization-treated fiber is further carbonized or graphitized at 1500 to 2100 ° C, preferably 1650 to 1950 ° C.

[表面処理]
上記第三炭素化処理繊維は、引き続いて表面処理を施こされる。表面処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、電解処理による表面処理が好ましい。表面処理において用いる電解液としては、無機酸、無機酸塩等を用いることができるが、硫酸、硝酸、塩酸等の無機酸がより好ましい。これらの電解液の濃度が1〜25質量%、温度が10〜80℃、より好ましくは20〜50℃の範囲内で、繊維1gあたり10〜2000クーロン、より好ましくは100〜500クーロンの電気量で化学的・電気的酸化処理を行うのがよい。電気量を大きくすることで、エッチング量が増え、脆弱部の除去が進むが、電気量が大きすぎると、エッチング過剰により逆に表面に欠陥を作り出すこととなり、繊維強度が低下するため好ましくない。また、電気量が小さすぎると、脆弱部の除去が不十分で繊維強度が低下するため好ましくない。
[surface treatment]
The third carbonized fiber is subsequently subjected to a surface treatment. For the surface treatment, a gas phase or a liquid phase treatment can be used, but surface treatment by electrolytic treatment is preferable from the viewpoint of easy process control and productivity. As the electrolytic solution used in the surface treatment, an inorganic acid, an inorganic acid salt, or the like can be used, but an inorganic acid such as sulfuric acid, nitric acid, or hydrochloric acid is more preferable. The amount of these electrolytes is 1 to 25% by mass, the temperature is 10 to 80 ° C., more preferably 20 to 50 ° C., and the amount of electricity is 10 to 2000 coulombs per 1 g of fiber, more preferably 10 to 500 coulombs. It is better to carry out chemical and electrical oxidation treatment. By increasing the amount of electricity, the amount of etching increases and the removal of the fragile portion proceeds. However, if the amount of electricity is too large, defects will be created on the surface due to excessive etching, which is not preferable because the fiber strength decreases. On the other hand, if the amount of electricity is too small, the removal of the fragile portion is insufficient and the fiber strength decreases, which is not preferable.

電解液として硝酸を用いると、炭素繊維のグラファイト構造の層間に硝酸が入り込み反応するため、より効率的にエッチングを行うことができるので好ましい。この場合、グラファイト構造の層間部分で電解酸化反応が起こることで層間に隙間ができ、この隙間は結晶子サイズの大きい、電気抵抗の低い部分に沿って起こると考えられる。そして、電解処理に伴い、表層は電気二重層に覆われてしまい、界面部分の電気抵抗値は高くなる。かかる理由で、低い電気量では極表層部分までしか電解処理されないと考えられる。 It is preferable to use nitric acid as the electrolytic solution because nitric acid enters and reacts between the layers of the carbon fiber graphite structure, so that etching can be performed more efficiently. In this case, an electrolytic oxidation reaction takes place in the interlayer part of the graphite structure, so that a gap is formed between the layers. This gap is considered to occur along a part having a large crystallite size and a low electrical resistance. Then, along with the electrolytic treatment, the surface layer is covered with the electric double layer, and the electric resistance value of the interface portion becomes high. For this reason, it is considered that the electrolytic treatment is performed only up to the extreme surface layer portion with a low amount of electricity.

[サイジング処理]
上記表面処理繊維は、引き続いてサイジング処理を施こされる。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
[Sizing process]
The surface-treated fiber is subsequently subjected to sizing treatment. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

上記のような工程を経ることによって、本発明の、炭素繊維、即ち、引張強度が6000MPa以上、弾性率が340GPa以上、表面酸素濃度が7〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度が600MPa以上の複合材料用炭素繊維、更には、炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあり、且つ、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲にある複合材料用炭素繊維が得られる。具体的な製造条件については実施例で説明する。 By passing through the above steps, the carbon fiber of the present invention, that is, the tensile strength is 6000 MPa or more, the elastic modulus is 340 GPa or more, the surface oxygen concentration is in the range of 7 to 17%, and the carbon fiber is Carbon fiber for composite material having a porous tensile strength of 600 MPa or more of the composite material used, and the specific surface area value by BET method by krypton adsorption of carbon fiber is in the range of 0.65 to 2.5 m 2 / g. There is obtained a carbon fiber for a composite material having an intensity ratio D / G of D band appearing in the vicinity of 1350 cm −1 of the Raman spectrum and G band appearing in the vicinity of 1580 cm −1 of 1.00 to 1.25. It is done. Specific manufacturing conditions will be described in Examples.

本発明の他の態様は、上記のごとくして得られた本発明の炭素繊維を強化繊維として用い、これとマトリックス樹脂とから得られる複合材料である。本発明において複合材料とは、例えば、炭素繊維と各種マトリックス樹脂とから、ホットメルト法、フィラメントワインディング法等の公知の各種の方法で製造されるプリプレグ、中間成形品又は成形品等を意味する。 Another aspect of the present invention is a composite material obtained by using the carbon fiber of the present invention obtained as described above as a reinforcing fiber and a matrix resin. In the present invention, the composite material means, for example, a prepreg, an intermediate molded product or a molded product produced from carbon fiber and various matrix resins by various known methods such as a hot melt method and a filament winding method.

炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、これらを、例えば、直交に積層したもの、繊維材料を織編物や不織布等の布帛に成形したもの、ストランド状のもの、多軸織物等を全て含む。繊維の形態としては、長繊維状モノフィラメントあるいはこれらを束にしたものが好ましく使用される。 Carbon fiber is usually used as a sheet-like reinforcing fiber material. The sheet-like material is a material in which fiber materials are arranged in a sheet shape in one direction, these are laminated in an orthogonal manner, a fiber material is formed into a fabric such as a woven or knitted fabric or a non-woven fabric, or a strand-like material. All things, including multi-axis fabrics. As the fiber form, long fiber monofilaments or bundles of these are preferably used.

本発明において用いられるマトリックス樹脂は、特に限定されない。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。 The matrix resin used in the present invention is not particularly limited. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having an acetylene terminal, and polyimide resin having a nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.

また、マトリックス樹脂として用いられる熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。 Examples of the thermoplastic resin used as the matrix resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, and polyarylene. Examples thereof include oxide, thermoplastic polyimide, polyamide, polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, and polybenzimidazole.

複合材料中に占めるマトリックス樹脂の含有率は、10〜90重量%、好ましくは20〜60重量%、更に好ましくは25〜45重量%である。複合材料としては、実施例で詳述する方法で測定を行った、有孔引張強度が600MPa以上、更には700MPa以上のものが好ましい。 The content of the matrix resin in the composite material is 10 to 90% by weight, preferably 20 to 60% by weight, and more preferably 25 to 45% by weight. As the composite material, those having a perforated tensile strength of 600 MPa or more, more preferably 700 MPa or more, measured by the method described in detail in Examples, are preferable.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。実施例における各種物性値の測定方法は下記のとおりである。 Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this. The measuring method of various physical property values in the examples is as follows.

炭素繊維の表面酸素濃度(O/C)は、次の手順に従ってXPS(ESCA)によって求めることができる。炭素繊維をカットしてステンレス製の試料支持台上に拡げて並べた後、光電子脱出角度を90度に設定し、X線源としてMgKαを用い、試料チャンバー内を1×10−6Paの真空度に保つ。測定時の帯電に伴うピークの補正として、まずC1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせる。O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求め、C1sピーク面積は、282〜292eVの範囲で直線のベースラインを引くことにより求める。炭素繊維表面の表面酸素濃度O/Cは、上記O1sピーク面積とC1sピーク面積の比で計算して求められる。 The surface oxygen concentration (O / C) of the carbon fiber can be determined by XPS (ESCA) according to the following procedure. After cutting the carbon fibers and spreading them on a stainless steel sample support table, the photoelectron escape angle was set to 90 degrees, MgKα was used as the X-ray source, and the inside of the sample chamber was vacuumed at 1 × 10 −6 Pa. Keep it up. As correction of the peak accompanying charging during measurement, first, the binding energy value B. of the main peak of C1s. E. Is adjusted to 284.6 eV. The O1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV, and the C1s peak area is obtained by drawing a straight base line in the range of 282 to 292 eV. The surface oxygen concentration O / C on the surface of the carbon fiber is determined by calculating the ratio of the O1s peak area to the C1s peak area.

炭素繊維のクリプトンガス吸着によるBET法比表面積は、炭素繊維を長さ1m程度に切り出したものを使用し、BET理論に従ってBETプロットの約0.1〜0.25の相対圧域を解析し算出した。ガス吸着に際しては、ユアサアイオニクス(株)社製全自動ガス吸着装置「AUTOSORB - 1」を使用し、下記条件により行った。 The BET specific surface area of carbon fiber by krypton gas adsorption is calculated by analyzing the relative pressure range of about 0.1 to 0.25 in the BET plot according to the BET theory using carbon fiber cut to about 1 m in length. did. For gas adsorption, a fully automatic gas adsorption device “AUTOSORB-1” manufactured by Yuasa Ionics Co., Ltd. was used under the following conditions.

吸着ガス:Kr
死容積:He
吸着温度:77K(液体窒素温度)
測定範囲:相対圧(P/Po)= 0.05−0.3
P:測定圧、Po:Krの飽和蒸気圧
Adsorption gas: Kr
Dead volume: He
Adsorption temperature: 77K (liquid nitrogen temperature)
Measuring range: Relative pressure (P / Po) = 0.05-0.3
P: Measurement pressure, Po: Kr saturated vapor pressure

ラマン分光装置は、ジョバン・イボン社製シングル顕微鏡レーザーラマン分光装置T64000を使用した。励起光源としてAr+レーザー(λ=514.5nm)を用い、出力は20mWあった。得られたチャートより、ベースライン補正をし、1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドをピーク分離し、各バンドのピーク強度を求め強度比D/Gを計算した。同様の測定を3回繰り返し、その平均値を求めた。 As the Raman spectroscope, a single microscope laser Raman spectroscope T64000 manufactured by Joban Yvon was used. An Ar + laser (λ = 514.5 nm) was used as an excitation light source, and the output was 20 mW. From the resulting chart, a baseline correction, and peak separation the G band appearing in the vicinity of D band and 1580 cm -1 appearing near 1350 cm -1, was calculated peak intensity determined intensity ratio D / G of each band. The same measurement was repeated three times, and the average value was obtained.

OHTの測定には、サイジングを行った後の炭素繊維及び東邦テナックス社製エポキシ樹脂(No.133)樹脂を使用し、炭素繊維目付け270g/m、樹脂含有率33%の一方向性プリプレグを作製し、[+45°/0°/−45°/90°]2sの擬似等方に積層した。積層した供試体(サンプル)を180℃、2時間で硬化させた後、中心部にφ6.35mmの孔を開け、30×280×4.3mmの供試体(サンプル)を作製した。 For the measurement of OHT, carbon fiber after sizing and epoxy resin (No. 133) resin manufactured by Toho Tenax Co., Ltd. are used, and a unidirectional prepreg with a carbon fiber basis weight of 270 g / m 2 and a resin content of 33% is used. It was fabricated and laminated in a pseudo isotropic direction of [+ 45 ° / 0 ° / −45 ° / 90 °] 2s . After the laminated specimen (sample) was cured at 180 ° C. for 2 hours, a hole having a diameter of 6.35 mm was formed in the center portion to prepare a specimen (sample) having a size of 30 × 280 × 4.3 mm.

供試体(サンプル)は各試験片の寸法測定後、試験機(島津製作所製オートグラフAG−100TB型)のクロスヘッド速度を2.0mm/minとし、供試体の破断まで荷重を負荷した。 The specimen (sample) was subjected to measurement of the dimensions of each test piece, and the load was applied until the specimen was broken at a crosshead speed of 2.0 mm / min of a tester (Autograph AG-100TB type manufactured by Shimadzu Corporation).

炭素繊維の樹脂含浸ストランド強度と弾性率は、JIS・R・7608に規定された方法により測定した。炭素繊維のサイジング剤の除去は、アセトンを用い3時間のソックスレー処理によって行い、そののち繊維を風乾した。密度は、アルキメデス法により測定し、試料繊維はアセトン中にて脱気処理し測定した。 The resin-impregnated strand strength and elastic modulus of carbon fiber were measured by the method defined in JIS R 7608. The carbon fiber sizing agent was removed by Soxhlet treatment with acetone for 3 hours, and then the fiber was air-dried. The density was measured by the Archimedes method, and the sample fiber was measured after degassing in acetone.

[実施例1]
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を、常法により湿式紡糸し、水洗・オイリング・乾燥後、トータル延伸倍率が14倍になるようにスチーム延伸を行い、0.65デニールの繊度を有するフィラメント数12,000の前駆体繊維を得た。
[Example 1]
A copolymer spinning stock solution of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid is wet-spun by a conventional method so that the total draw ratio becomes 14 times after washing with water, oiling and drying. Steam stretching was performed to obtain a precursor fiber having a filament number of 12,000 having a fineness of 0.65 denier.

得られた前駆体繊維を加熱空気中で延伸しながら、240〜250℃の温度範囲内で耐炎化処理を行い、次いで窒素雰囲気中、300〜2000℃の温度範囲内で第一、第二及び第三炭素化処理を行い、未電解処理炭素繊維を得た。 While the obtained precursor fiber is stretched in heated air, flameproofing treatment is performed within a temperature range of 240 to 250 ° C, and then in a nitrogen atmosphere, the first, second, and A third carbonization treatment was performed to obtain unelectrolyzed carbon fibers.

前記未電解処理炭素繊維を、電解質溶液として6.3質量%の硝酸水溶液を用い、電解液温度35℃、電気量が250クーロン/gの条件で3槽使用して電解処理した。電解処理を施した炭素繊維に常法によるサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度(樹脂含浸ストランド強度)と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値は表1に示したとおりであった。 The non-electrolytically treated carbon fiber was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution as an electrolyte solution, using three tanks under conditions of an electrolytic solution temperature of 35 ° C. and an electric quantity of 250 coulomb / g. The carbon fiber subjected to electrolytic treatment was subjected to sizing treatment by a conventional method and dried to obtain carbon fiber having a density of 1.77 g / cm 3 and 0.31 denier. Table 1 shows the measured carbon fiber strength (resin impregnated strand strength), elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength.

[実施例2]
実施例1で得られた未電解処理炭素繊維を、7.0質量%の硝酸水溶液を用い、電解液温度40℃、電気量が250クーロン/gの条件で3槽使用して電解処理した。電解処理を施した炭素繊維に常法によるサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値を表1に示した。
[Example 2]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to electrolytic treatment using 7.0 mass% nitric acid aqueous solution, using an electrolytic solution temperature of 40 ° C. and an electric quantity of 250 coulomb / g in three tanks. The carbon fiber subjected to electrolytic treatment was subjected to sizing treatment by a conventional method and dried to obtain carbon fiber having a density of 1.77 g / cm 3 and 0.31 denier. Table 1 shows measured values of the strength and elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength of the obtained carbon fiber.

[比較例1]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、電気量が110クーロン/gの条件で4槽使用して電解処理した後、極性を変え10クーロン/gの条件で2槽使用して電解処理した。この後、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値を表1に示した。
[Comparative Example 1]
The electrolessly treated carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution in four tanks under the condition of an electric quantity of 110 coulomb / g, and then the polarity was changed to 10 coulomb. The electrolytic treatment was performed using 2 tanks under the conditions of / g. Thereafter, sizing treatment was performed by a conventional method, followed by drying to obtain carbon fibers having a density of 1.77 g / cm 3 and 0.31 denier. Table 1 shows measured values of the strength and elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength of the obtained carbon fiber.

[比較例2]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が100クーロン/gの条件で12槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値を表1に示した。
[Comparative Example 2]
The unelectrolyzed carbon fiber obtained in Example 1 was electrolytically treated using a 6.3 mass% nitric acid aqueous solution in 12 tanks under the condition of a total electricity of 100 coulomb / g, and sizing treatment by a conventional method. It was carried out and dried to a density 1.77 g / cm 3, to obtain a 0.31 denier carbon fibers. Table 1 shows measured values of the strength and elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength of the obtained carbon fiber.

[比較例3]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が50クーロン/gの条件で6槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値を表1に示した。
[Comparative Example 3]
The unelectrolyzed carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3% by mass nitric acid aqueous solution under the condition that the total electricity was 50 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows measured values of the strength and elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength of the obtained carbon fiber.

[比較例4]
実施例1で得られた未電解処理炭素繊維を、6.3質量%の硝酸水溶液を用い、総電気量が5クーロン/gの条件で4槽使用して電解処理し、常法によりサイジング処理を行い、乾燥して密度1.77g/cm、0.31デニールの炭素繊維を得た。得られた炭素繊維の強度と弾性率、表面酸素濃度、比表面積値、D/Gと有孔引張強度の測定値を表1に示した。
[Comparative Example 4]
The electrolessly treated carbon fiber obtained in Example 1 was subjected to electrolytic treatment using a 6.3 mass% nitric acid aqueous solution in four tanks under a total electric charge of 5 coulomb / g, and sizing treatment by a conventional method. And dried to obtain a carbon fiber having a density of 1.77 g / cm 3 and a denier of 0.31. Table 1 shows measured values of the strength and elastic modulus, surface oxygen concentration, specific surface area value, D / G and perforated tensile strength of the obtained carbon fiber.

Figure 2010047865
Figure 2010047865

Claims (4)

炭素繊維の引張強度が6000MPa以上、弾性率が340GPa以上、表面酸素濃度が7〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度が600MPa以上の複合材料用炭素繊維。 For composite materials in which the tensile strength of the carbon fiber is 6000 MPa or more, the elastic modulus is 340 GPa or more, the surface oxygen concentration is in the range of 7 to 17%, and the porous tensile strength of the composite material using the carbon fiber is 600 MPa or more Carbon fiber. 炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあり、且つ、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲にある請求項1記載の複合材料用炭素繊維。 Specific surface area in BET method by krypton adsorption of the carbon fibers is in the range of 0.65~2.5m 2 / g, and, appearing in the vicinity of D band and 1580 cm -1 appearing near 1350 cm -1 in the Raman spectrum The carbon fiber for composite materials according to claim 1, wherein the G band intensity ratio D / G is in the range of 1.00 to 1.25. 炭素繊維の引張強度が6000MPa以上、弾性率が340GPa以上、表面酸素濃度が7〜17%の範囲にあり、且つ、該炭素繊維を用いた複合材料の有孔引張強度が600MPa以上の炭素繊維とマトリックス樹脂とからなる複合材料。 A carbon fiber having a tensile strength of 6000 MPa or more, an elastic modulus of 340 GPa or more, a surface oxygen concentration of 7 to 17%, and a porous material having a porous tensile strength of 600 MPa or more using the carbon fiber; A composite material consisting of a matrix resin. 炭素繊維のクリプトン吸着によるBET法での比表面積値が、0.65〜2.5m/gの範囲にあり、且つ、ラマンスペクトルの1350cm−1付近に現れるDバンドと1580cm−1付近に現れるGバンドの強度比D/Gが、1.00〜1.25の範囲にある請求項3記載の複合材料。


Specific surface area in BET method by krypton adsorption of the carbon fibers is in the range of 0.65~2.5m 2 / g, and, appearing in the vicinity of D band and 1580 cm -1 appearing near 1350 cm -1 in the Raman spectrum The composite material according to claim 3, wherein the G band intensity ratio D / G is in the range of 1.00 to 1.25.


JP2008212566A 2008-08-21 2008-08-21 Carbon fiber for composite material and composite material produced by using the same Pending JP2010047865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212566A JP2010047865A (en) 2008-08-21 2008-08-21 Carbon fiber for composite material and composite material produced by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212566A JP2010047865A (en) 2008-08-21 2008-08-21 Carbon fiber for composite material and composite material produced by using the same

Publications (1)

Publication Number Publication Date
JP2010047865A true JP2010047865A (en) 2010-03-04

Family

ID=42065159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212566A Pending JP2010047865A (en) 2008-08-21 2008-08-21 Carbon fiber for composite material and composite material produced by using the same

Country Status (1)

Country Link
JP (1) JP2010047865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115762A1 (en) 2013-01-25 2014-07-31 東レ株式会社 Sizing-agent-coated carbon fibre bundle, carbon-fibre-bundle production method, and prepreg
JP2015025221A (en) * 2013-07-26 2015-02-05 東邦テナックス株式会社 Carbon fiber and production method therefor
JP2021046629A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
US11982624B2 (en) 2020-10-26 2024-05-14 Battelle Savannah River Alliance, Llc Carbon fiber classification using raman spectroscopy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214334A (en) * 2000-02-02 2001-08-07 Toho Rayon Co Ltd Method for continuously producing carbon fiber chopped strand
JP2004277192A (en) * 2003-03-13 2004-10-07 Toray Ind Inc Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber
JP2008088577A (en) * 2006-09-29 2008-04-17 Toho Tenax Co Ltd High-strength carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001214334A (en) * 2000-02-02 2001-08-07 Toho Rayon Co Ltd Method for continuously producing carbon fiber chopped strand
JP2004277192A (en) * 2003-03-13 2004-10-07 Toray Ind Inc Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JP2007177368A (en) * 2005-12-01 2007-07-12 Toho Tenax Co Ltd Carbon fiber and precursor and method for producing carbon fiber
JP2008088577A (en) * 2006-09-29 2008-04-17 Toho Tenax Co Ltd High-strength carbon fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115762A1 (en) 2013-01-25 2014-07-31 東レ株式会社 Sizing-agent-coated carbon fibre bundle, carbon-fibre-bundle production method, and prepreg
US9435057B2 (en) 2013-01-25 2016-09-06 Toray Industries, Inc. Sizing agent-coated carbon fiber bundle, carbon fiber bundle production method, and prepreg
EP3800285A1 (en) 2013-01-25 2021-04-07 Toray Industries, Inc. Sizing-agent-coated carbon fibre bundle, carbon-fibre-bundle production method, and prepreg
JP2015025221A (en) * 2013-07-26 2015-02-05 東邦テナックス株式会社 Carbon fiber and production method therefor
JP2021046629A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JP6998923B2 (en) 2019-09-19 2022-01-18 株式会社豊田中央研究所 Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method
US11702769B2 (en) 2019-09-19 2023-07-18 Toyota Jidosha Kabushiki Kaisha Stabilized fiber, method of producing the same, and method of producing carbon fiber
US11982624B2 (en) 2020-10-26 2024-05-14 Battelle Savannah River Alliance, Llc Carbon fiber classification using raman spectroscopy

Similar Documents

Publication Publication Date Title
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
JP6211881B2 (en) Carbon fiber and method for producing the same
US20100266827A1 (en) Carbon fiber and composite material using the same
CN110300819B (en) Carbon fiber precursor acrylic fiber, carbon fiber, and processes for producing these
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5635740B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP5662113B2 (en) Carbon fiber surface treatment method
JP5849127B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP4282964B2 (en) Carbon fiber woven fabric
JP2008248424A (en) Method of multistage electrolytic treatment of carbon fiber
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JP2017137603A (en) Carbon fiber, manufacturing method of carbon fiber with sizing agent adhered
JP4870511B2 (en) High strength carbon fiber
JP2016141913A (en) Method for producing fiber bundle
JPH02104767A (en) Production of carbon fiber for producing superhigh-strength composite material
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JP7360244B2 (en) Carbon fiber manufacturing method and carbon fiber
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20100917

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416