JP2004277192A - Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor - Google Patents

Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor Download PDF

Info

Publication number
JP2004277192A
JP2004277192A JP2003067800A JP2003067800A JP2004277192A JP 2004277192 A JP2004277192 A JP 2004277192A JP 2003067800 A JP2003067800 A JP 2003067800A JP 2003067800 A JP2003067800 A JP 2003067800A JP 2004277192 A JP2004277192 A JP 2004277192A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
carbon
less
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003067800A
Other languages
Japanese (ja)
Inventor
Masahiro Yamauchi
雅浩 山内
Yoshibumi Nakayama
義文 中山
Masanobu Kobayashi
正信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003067800A priority Critical patent/JP2004277192A/en
Publication of JP2004277192A publication Critical patent/JP2004277192A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide carbon fibers for a carbon fiber-reinforced carbon composite material which exhibits excellent tensile strength without having its interlayer shear strength reduced, and to provide a production method therefor. <P>SOLUTION: In the carbon fibers, the arithmetic mean roughness (Ra) of the surface is 20 to 60 nm, the BET specific surface area obtained from gaseous krypton adsorption is 0.5 to 1.2 m<SP>2</SP>/g, and the oxygen concentration ratio in the carbon fiber surface obtained by X-ray photoelectron spectroscopy, O/C, is 0.03 to 0.16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維強化炭素複合材料用炭素繊維およびその製造方法に関するものである。さらに詳しくは、この発明は、炭素繊維強化炭素複合材料の層間剪断強度を低下させることなく、高い引張強度を得られる炭素繊維強化炭素複合材料用炭素繊維およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、炭素繊維強化炭素複合材料(以下C/C複合材料と記載)は、一般に、ポリアクリロニトリル系、ピッチ系又はレーヨン系等を出発原料とした長繊維、もしくは短繊維の炭素繊維にフェノール樹脂、フラン樹脂などの熱硬化性樹脂、ピッチなど熱可塑性樹脂等のバインダーを含浸、または混合して、加熱成型したものを不活性ガス等の非酸化性雰囲気において炭素化・黒鉛化する方法、あるいは化学気相蒸着法により炭素繊維間に熱分解炭素を充填する方法で製造されており、金属等では到達できない耐熱性、比強度及び軽量性を有することから構造材、摩擦材、導電材などとして注目されている。
【0003】
C/C複合材料の製造工程において、成形体の機械的特性を左右する工程は炭化処理工程である。通常、この炭化処理工程は500〜2000℃の範囲で行われる。この工程においては、バインダーがその炭素化に伴って炭素繊維よりも大きく体積収縮するため、マトリックス炭素と炭素繊維との間に熱応力が発生する。この熱応力はマトリックス炭素と炭素繊維の結合力が大きいほど大きくなり、この大きな熱応力によってマトリックス炭素と炭素繊維との界面で亀裂が生じ、さらにその亀裂が急激に成長して界面が剥離してしまうという現象が起こり易くなる。その結果、C/C複合材料の層間剪断強度を改善すると引張強度低下が起こる。
【0004】
これらの問題を解決する手法として、従来、炭素繊維に表面処理を施さない方法および表面処理を施した後に不活性ガス中で1500℃以上に加熱処理する方法が開示されている(例えば特許文献1、2参照)。これらは、炭素繊維表面に存在するマトリックス炭素との接着に有効な官能基を排除することで、マトリックス炭素と炭素繊維の界面の結合力を弱くし、炭化処理工程での熱応力を界面の部分的な剥離によって緩和させることで、界面での致命的な大きなクラックを防止し、結果的に引張強度を向上するものである。しかし、これらの方法においては、引張強度の向上は図られた一方で層間剪断強度の低下は著しく、剪断特性を要する構造材においては適用できなかった。
【0005】
すなわち、C/C複合材料の引張強度と層間剪断強度にはトレードオフの関係があり、上記従来の方法においては、引張強度と層間剪断強度の両方を同時に向上した炭素繊維は得られていないのが現状であった。
【0006】
一方で、オゾン雰囲気下で紫外線を照射することで炭素繊維表面を親水性に改質する方法(例えば特許文献3参照)、炭素繊維表面をフッ素化する方法(例えば特許文献4参照)、炭素繊維を過酸化水素処理する各種表面処理方法(例えば特許文献5参照)が開示されている。これらは、炭素繊維表面に官能基を導入して、成形体であるC/C複合材料の炭素マトリックスと炭素繊維の接着性の向上を図っている。しかし、これらの表面処理方法では、繊維束内外の処理ムラが生じ易く、成形体の強度にバラツキが起こる場合があった。さらに、これらの表面処理方法は、処理に長い時間を要するため、生産性の面からも適しているとは言えない。
【0007】
【特許文献1】特開平6−157139号公報(第3頁)
【0008】
【特許文献2】特開昭59−107913号公報(第2頁)
【0009】
【特許文献3】特開平3−8866号公報(第3頁)
【0010】
【特許文献4】特開平4−175266号公報(第2頁)
【0011】
【特許文献5】特開平1−145375号公報(第2頁)
【0012】
【発明が解決しようとする課題】
本発明は、かかる従来技術の背景に鑑み、C/C複合材料の層間剪断強度を低下させることなく、高い引張強度を得られるC/C複合材料用炭素繊維により、耐疲労性などが優れたC/C構造材、摩擦材、導電材などを提供するものである。
【0013】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、表面の算術平均粗さ(Ra)が、20nm以上60nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m/g以上1.2m/g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.03以上0.16以下である炭素繊維強化炭素複合材料用炭素繊維である。
【0014】
また、かかる課題を解決するために、次のような手段を採用するものである。すなわち、電気伝導度が15mS/cm以上100mS/cm以下の電解液中で、炭素繊維を陽極として、炭素繊維の単位重量あたりの電流値0.05A以上1A以下、かつ処理時間20秒以上240秒以下の通電により電解酸化処理して前記炭素繊維を得る、炭素繊維強化炭素複合材料用炭素繊維の製造方法である。
【0015】
さらには、前記課題を解決するために、次のような手段を採用するものである。すなわち、表面の算術平均粗さ(Ra)が、20nm以上60nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m/g以上1.2m/g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.03以上0.16以下である炭素繊維を含む炭素繊維強化炭素複合材料である。
【0016】
【発明の実施の形態】
本発明者らは、鋭意検討を重ねた結果、表面の算術平均粗さ(Ra)が、20nm以上60nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m/g以上1.2m/g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.03以上0.16以下にした炭素繊維をC/C複合材料に使用したところ、かかる課題を、一挙に解決することを究明したものである。
【0017】
本発明のC/C複合材料用炭素繊維は、表面の算術平均粗さ(Ra)が20nm以上60nm以下であることが必要である。この範囲のものは、剪断特性を要するC/C複合材料に好適である。20nmに満たない算術平均粗さの表面を有する炭素繊維は、表面の凹凸が乏しいために層間剪断強度は低いものとなる。一方、算術平均粗さが60nmを越えると、表面の凹凸が過度となるために引張強度が低くなる。より好ましくは30nm以上50nm以下、さらに好ましくは35nm以上45nm以下である。
【0018】
ここで、表面の算術平均粗さ(Ra)とは、炭素繊維表面の凹凸の指標であり、原子間力顕微鏡(AFM)により測定する600nm×600nmの3次元表面形状の像について、繊維の丸みを3次曲面で近似したものを平均線とし、得られた3次元表面形状の像を対象として、算出した値である。
【0019】
本発明のC/C複合材料用炭素繊維は、炭素繊維のクリプトンガス吸着から求めたBET法比表面積が0.5m/g以上1.2m/g以下、さらに好ましくは0.5m/g以上0.8m/g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.03以上0.16以下、さらに好ましくは、0.06以上0.13以下の範囲である。このように制御した場合、高い層間剪断強度と高い引張強度が同時に得られる。この理由は明確ではないが、炭化処理工程でのマトリックス炭素と炭素繊維との間に発生する熱応力による界面の亀裂を、炭素繊維表層の微少なボイドと官能基量のバランスを取ることで防いでいるためと推定している。比表面積が1.2m/gより大きいと、炭素繊維表面の欠陥が多く炭素繊維自体の強度低下を生じ、0.5m/g未満だと、炭素マトリックスと炭素繊維の間の接触が十分でなく接着性の良好なC/C複合材料を得ることができない。また、炭素繊維の表面酸素濃度比O/Cが0.03未満だと、マトリックス炭素と炭素繊維の親和性が不十分で接着性の良好なC/C複合材料を得ることができず、酸素濃度比O/Cが0.16より大きいと、マトリックス炭素と炭素繊維の結合力が大きくなりすぎて、マトリックス炭素と炭素繊維の一体化が起こり、C/C複合材料が脆性的となり、引張強度等の機械的特性が著しく低下する。
【0020】
ここで、本発明でいう炭素繊維の表面酸素濃度比O/Cは次の手法にて、X線光電子分光法により得ることができる。
【0021】
測定する炭素繊維にサイジング剤等の後処理剤が付着している場合は、塩化メチレン、メチルエチルケトン、アセトン、エタノールなどの溶媒で洗浄し、蒸留水で洗い流し、必要に応じて超音波洗浄するなどしてサイジング剤などを除去後、適当な長さにカットしてステンレス製の試料支持台上に拡げて並べた後、下記条件にて測定できるものである。
【0022】
また、バインダーなどと混合されている炭素繊維について測定する場合は、塩化メチレン、メチルエチルケトン、アセトン、エタノールなどの溶媒で樹脂を除去して炭素繊維を取り出し同様の方法で測定できるものである。
【0023】
・X線源:AlKα1,2あるいはMgKα1,2
なお、測定時の帯電に伴うピークの補正は、C1sの主ピークの結合エネルギー値B.E.を284.6eVに合わせることで実施できる。
【0024】
次いで、C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積[O1s]は528〜540eVの範囲で直線のベースラインを引くことにより求める。
【0025】
表面酸素/炭素比(O/C)は、上記O1sピーク面積[O1s]、C1sピーク面積[C1s]の比、及び装置固有の感度補正値より、次式により求めることができる。
【0026】
O/C=([O1s]/[C1s])/(感度補正値)
さらに、本発明のC/C複合材料用炭素繊維は、前記炭素繊維が束状になった束状の炭素繊維でもよく、好ましくは1000〜50000本、より好ましくは3000〜24000本、特に好ましくは6000〜12000本の単繊維が束になった束状の炭素繊維であることが取扱性の観点などから好ましい。また、かかる束状の炭素繊維は、そのストランド引張強度が4GPa以上7GPa以下、好ましくは4.5GPa以上6.5GPaの範囲にあることが、C/C複合材料自体の強度が高くでき、特に構造材に好適である。かかるストランド引張強度は束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS−R7601に基づいて行う引張試験により求めることができる。
【0027】
(樹脂組成)
・3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシ
ル−カルボキシレート 100重量部
・3フッ化ホウ素モノエチルアミン 3重量部
・アセトン 4重量部
また、かかる束状の炭素繊維は、そのストランド引張弾性率が200GPa以上400GPa以下であることが、高強度、高接着なC/C複合材料を得るという点で好適である。ここでいうストランド引張弾性率は、上記ストランド引張強度測定方法と同様の方法で引張試験を行い、荷重−伸び曲線の傾きから求めることができる。
【0028】
次に、本発明のC/C複合材料用炭素繊維の製造方法の1例について説明する。
【0029】
本発明のC/C複合材料用炭素繊維は、レーヨン、ポリアクリロニトリル、ピッチなどの繊維を前駆体繊維とし、それらを炭素化した繊維、あるいはそれらをさらに高温で熱処理した黒鉛化繊維が主として用いられる。高強度なC/C複合材料を得るには、高強度な炭素繊維が得られやすいポリアクリロニトリル繊維を用いるのが好ましい。前駆体繊維の紡糸方法としては、特に限定されるものではなく、乾式、湿式、乾湿式のいずれも用いることができるが、表面の算術平均粗さ(Ra)を前述の特定な範囲にコントロールしやすいという点において、湿式紡糸方法が好ましく用いられる。尚、表面の算術平均粗さ(Ra)は、紡糸工程での凝固液の種類(例えば、ジメチルスルホキシド、ジメチルホルムアミド)および温度、凝固糸の引取速度および延伸比など、さらに耐炎化、前炭化、炭化それぞれの工程での延伸比を組み合わせることによって制御することもできる。かかる方法によって、表面の算術平均粗さ(Ra)が20nm以上60nm以下、より好ましくは20nm以上50nm以下の炭素繊維とすることもできるし、更に後述する電解処理を組み合わせることにより、表面の算術平均粗さ(Ra)を更に調整することもできる。
【0030】
クリプトンガス吸着から求めたBET法比表面積、X線光電子分光法によって求められる表面酸素濃度比O/Cが特定の範囲にある本発明のC/C複合材料用炭素繊維は、電解酸化処理によって得ることができる。電解酸化処理は、処理ムラを制御し、かつ短時間で炭素繊維表層深く酸化処理ができるため、比表面積および表面酸素濃度を制御し易い。電解酸化処理に供する炭素繊維としては、特に限定されないが、前述の方法により得た、表面の算術平均粗さ(Ra)が20nm以上60nm以下、より好ましくは20nm以上50nm以下の炭素繊維が好ましい。かかる炭素繊維を用いて電解処理を施すことによりRaだけでなく、BET法比表面積、表面酸素濃度比O/Cをバランスよく前記範囲にコントロールすることができる。かかる電解酸化処理に使用される電解液は、酸性、アルカリ性のいずれでもよい。
【0031】
具体的には、電解液の電気伝導度が15mS/cm以上100mS/cm以下、好ましくは15mS/cm以上50S/cm以下に調整された電解液槽中で、炭素繊維の単位重量あたりの電流値が0.05A以上1A以下、好ましくは0.1A以上0.5A以下、より好ましくは0.1A以上0.4A以下で、かつ処理時間が20秒以上240秒以下、好ましくは60秒以上200秒以下に制御することにより、前述したクリプトンガス吸着から求めたBET法比表面積、X線光電子分光法によって求められる表面酸素濃度比O/Cを制御できる。電解液の電気伝導度が15mS/cm未満であると、電流が流れにくく電流値の制御が困難であり、100mS/cmを超えると、高濃度であるため、後の水洗工程での電解質が完全に除去できない場合がある。また、炭素繊維の単位重量あたりの電流値が0.05A未満であると処理に多くの時間がかかるため非効率であり、1Aを超えると炭素繊維表面にダメージを受けやすくなる。さらに処理時間が20秒より短いと、炭素繊維表面の官能基量が十分でなく、接着性が良好なC/C複合材料とならず、240秒より長いと、炭素繊維表面に過剰量の官能基が付着し、C/C複合材料の引張強度を低下させる要因となる場合がある。
【0032】
上記、電解酸化処理の際には、炭素繊維を陽極、白金板を陰極とし、かかる処理を行うことができる。
【0033】
電解酸化処理の後、水洗及び乾燥を行った後、炭素繊維表面の酸素濃度比O/Cが前述した値を越える場合は、さらに、不活性雰囲気中において温度を250℃以上1000℃以下、好ましくは250℃以上750℃以下、処理時間は1分以上5時間以下、好ましくは1分以上30分以下の範囲で加熱処理を行うことで酸素濃度比O/Cを既定の範囲内に制御することもできる。
【0034】
さらに必要に応じて、炭素繊維にサイジング剤を付与することもできる。サイジング剤としては、例えばエポキシ樹脂、フェノール樹脂、アルキド樹脂、ウレタン樹脂等の熱硬化性樹脂や、ポリエチレン、ポリ塩化ビニル、ポリアミド等の熱可塑性樹脂や、コールタールピッチ、石油ピッチ等のピッチを用いることができる。
【0035】
上記、本発明のC/C複合材料用炭素繊維を適用することにより、力学特性、とりわけ引張強度と層間剪断強度に優れたC/C複合材料を作製することができる。かかるC/C複合材料は強化繊維方向が実質的に一方向であるC/C複合材料とすることもできるし、強化繊維方向が90°、0°方向に交差したような二方向C/C複合材料、その他目的に応じて繊維方向を任意に設定することができる。
【0036】
ここでかかる一方向C/C複合材料の引張強度は繊維軸方向に長さ50±1mm、繊維軸方向に幅10±1mm、厚さ2.0±0.2mmに平板を切断して得られた試験片を、ゲージ部10mm、試験速度0.5mm/分として測定し、繊維体積含有率(Vf)40%に換算した場合の強度である。また、一方向C/C複合材料の層間剪断強度は上記と同様の試験片を、JIS−K7078に規定する試験方法に従って測定するものである。
【0037】
かかる本発明のC/C複合材料は前記炭素繊維に各種バインダーを含浸せしめ、加熱硬化することで得ることができる。C/C複合材料の製造に用いるバインダーの種類については特に制限はなく、フェノール樹脂、エポキシ樹脂、アルキド樹脂、ウレタン樹脂、フラン樹脂等の熱硬化性樹脂、ポリエチレン、ポリ塩化ビニル等の熱可塑性樹脂、あるいはコールタールピッチ、石油ピッチ等のピッチなどの任意のものを使用することができ、これらバインダーを炭素繊維に混合あるいは含浸させた後乾燥して炭素繊維とバインダーからなる組成物を得る。その際、バインダーはアルコール、アセトン、アントラセン油等の溶媒に溶解して適当な粘度に調整したものを使用することができる。また、加熱硬化する温度や時間はバインダーの種類によって適宜設定することができるが、例えば、フェノール樹脂を用いた場合、120〜150℃、5〜10MPaにて加圧加熱成形した後、空気中で170〜250℃まで加熱処理して後硬化を行った後、さらに窒素中500〜2000℃にて炭素化処理、2000〜3000℃にて黒鉛化処理を行う。また、C/C複合材料中の繊維体積含有率としては30〜70%が好ましく、さらには40〜60%が好ましい。かかる範囲の炭素繊維繊維含有量とすることにより、剪断強度に優れかつ、引張強度に優れたC/C複合材料とすることができる。
【0038】
【実施例】
以下、実施例により本発明を具体的に説明するが制限されるものではない。
【0039】
尚、本実施例で用いた特性の測定方法は以下の通りである。
<算術平均粗さ(Ra)の測定>
表面の算術平均粗さ(Ra)は次のようにして測定した。測定試料としては、炭素繊維を長さ数mm程度にカットしたものを使用した。銀ペーストを用いて基板(シリコンウエハ)上に固定し、原子間力顕微鏡(AFM)によって各単繊維の中央部において、3次元表面形状の像を得た。原子間力顕微鏡としてはDigital Instuments社製 NanoScope IIIaにおいてDimension 3000ステージシステムを使用した。観測条件は下記条件とした。
【0040】
・走査モード:タッピングモード
・探針:シリコンカンチレバー
・走査範囲:0.6μm×0.6μm
・走査速度:0.3Hz
・ピクセル数:512×512
・測定環境:室温、大気中
各試料について、単繊維1本から1箇所ずつ観察して得られた像について、繊維断面の丸みを3次曲面で近似し、得られた像全体を対象として、算術平均粗さ(Ra)を算出した。単繊維5本について、算術平均粗さ(Ra)を求め平均した。
<炭素繊維のBET法比表面積の測定>
炭素繊維のBET法比表面積は次のようにして測定した。試料としては炭素繊維を長さ数十cm程度にカットしたものを使用した。試料を精秤後、試験管に封入し、クリプトンガスの吸着によりBET法比表面積を測定した。ガス吸着に際しては、日本ベル(株)製高精度全自動ガス吸着装置「BELSORP 36」を使用し、測定条件は下記の通りとした。
【0041】
・吸着ガス:Kr
・死容積:He
・吸着温度:液体窒素温度(77K)
・測定前処理:200℃
・測定モード:等温での吸着
・測定範囲:相対圧(P/P)=0.01〜0.4
P:測定圧
:吸着ガスの飽和蒸気圧
・平衡時間:各平衡相対圧につき180sec.
比表面積の計算法はBET理論を適用した。同理論式に従ってBETプロットの約0.05〜0.3の相対圧域を解析して比表面積を算出した。
<ストランド引張強度の測定>
束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS−R7601に基づいて引張試験を行った。
【0042】
*樹脂組成
・3,4−エポキシシクロヘキシルメチル−3,4−エポキシ−シクロヘキシル−カルボキシレート(ERL−4221、ユニオンカーバイド社製)100重量部
・3フッ化ホウ素モノエチルアミン(ステラケミファ(株)製) 3重量部
・アセトン(和光純薬工業(株)製) 4重量部
<炭素繊維の表面酸素濃度(O/C)>
表面酸素濃度比O/Cは、次の手順に従ってX線光電子分光法により求めた。試料となる炭素繊維は、適当な長さにカットしてステンレス製の試料支持台上に拡げて並べた。光電子脱出角度を90゜とし、X線源としてMgKα1,2を用い、試料チャンバー内を1×10−8Torrの真空度に保った。測定時の帯電に伴うピークの補正として、C1sの主ピークの結合エネルギー値を284.6eVに合わせた。C1sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求めた。表面酸素濃度O/Cは、上記C1sピーク面積に対するO1sピーク面積の比を、装置固有の感度補正値で割ることにより算出した原子数比で表した。なお、本実施例ではX線光電子分光測定装置として島津製作所(株)製ESCA−750を用い、かかる装置固有の感度補正値は2.85であった。
<C/C複合材料の引張強度>
一方向C/C複合材料の平板を切断し、繊維軸方向に長さ50±1mm、繊維軸方向に幅10±1mm、厚さ2.0±0.2mmからなる試験片を作製した。試験片の中央部10mmを残して両端の両側に厚さ1mmのアルミ製タブを接着して、引張強度用の試験片とした。試験速度は0.5mm/分とした。試験数は5つとし、その平均を引張強度とした。尚、試験機には、荷重測定誤差が±1%を超えない、クロスヘッド移動速度を一定に保てる形式の適当な材料試験機を用いるが、本実施例においては、試験機としてインストロン(登録商標)試験機4208型を用いた。C/C複合材料の切断にはダイヤモンドカッターを用いた。<C/C複合材料の層間剪断強度>
一方向C/C複合材料の平板を切断し、繊維軸方向に長さ14±1mm、繊維軸方向に幅10±0.2mm、厚さ2±0.2mmの試験片を作製した。加圧くさびの曲率半径を5mmとし、支点の曲率半径を2mmとし、支点間距離は試験片厚さの5倍の10mm、試験速度1mm/分として、JIS−K7078に規定する試験方法に従って測定した。本実施例においては、試験機としてインストロン(登録商標)試験機4208型を用いた。
【0043】
(実施例1)
ストランド引張強度が4.4GPa、ストランド引張弾性率が250GPaの束状のアクリロニトリル系炭素繊維(単繊維直径6.8μm、フィラメント数6000本/束、表面の算術平均粗さ(Ra)30nm)を陽極とし、白金を陰極として、電気伝導度が15mS/cmになるように調整された硫酸水溶液中で、炭素繊維束1g当たりの電流0.1Aで100秒間電解処理した後、水洗し、150℃の加熱空気中で乾燥した。得られた炭素繊維の表面の算術平均粗さ(Ra)32nm、比表面積0.65m/g、表面酸素濃度比0.06であった。
【0044】
この束状の炭素繊維を金型中に置いた後、レゾール系フェノール樹脂(住友ベークライト製スミライトレジン(登録商標)PR−50087を含浸して、150℃で10MPaにて加圧加熱成形して、厚さ2.0mmの成形板を得た。さらにこの成形板を空気中で昇温速度3℃/hrにて250℃まで加熱処理して後硬化を行った後、窒素中にて15℃/hrで1000℃まで加熱して炭素化処理を行った。さらに15℃/hrで2000℃まで加熱して24時間保持し、黒鉛化処理を行った。このC/C複合材料の繊維体積含有率は40%、引張強度は490MPa、層間剪断強度は16.2MPaであり、優れた引張強度、層間剪断強度が得られた。
【0045】
(比較例1)
前記実施例1において、10A、1秒で電解処理した以外は実施例1と同じ製造方法により束状の炭素繊維および一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さ(Ra)が39nm、比表面積1.31m/g、表面酸素濃度比0.07であった。C/C複合材料の繊維体積含有率は40%、引張強度は390MPa、層間剪断強度は15.6MPaであった。
【0046】
(実施例2)
前記実施例1において、0.1A、200秒で電解処理した以外は実施例1と同じ製造方法により束状の炭素繊維および一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さ(Ra)33nm、比表面積0.67m/g、表面酸素濃度比0.11であった。C/C複合材料の繊維体積含有率は40%、引張強度は480MPa、層間剪断強度は16.6MPaであり、良好な引張強度、層間剪断強度が得られた。
【0047】
(比較例2)
前記実施例1において、電解処理を施さなかった以外は実施例1と同じ製造方法により束状の炭素繊維および一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さ(Ra)が30nm、比表面積0.60m/g、表面酸素濃度比0.02であった。C/C複合材料の繊維体積含有率は40%、引張強度は440MPa、層間剪断強度は14.1MPaであった。
【0048】
(比較例3)
ストランド引張強度が4.4GPa、ストランド引張弾性率が250GPaの束状の炭素繊維(単繊維直径6.8μm、フィラメント数6000本/束、表面の算術平均粗さ(Ra)13nm)を用いたこと以外は、実施例1と同じ方法により、束状の炭素繊維および一方向C/C複合材料を製造した。
【0049】
得られた炭素繊維の表面の算術平均粗さ(Ra)が15nm、比表面積0.55m/g、表面酸素濃度比0.06であった。C/C複合材料の繊維体積含有率は40%、引張強度は480MPa、層間剪断強度は14.8MPaであった。
【0050】
【表1】

Figure 2004277192
【0051】
表1から明らかなように、実施例1〜2は、比較例1〜3に比して、C/C複合材料の引張強度および層間剪断強度の両方が著しく優れていることがわかる。
【0052】
【発明の効果】
本発明によれば、層間剪断強度を低下させることなく、引張強度を向上させたC/C複合材料およびその製造方法、さらにはかかるC/C複合材料用の炭素繊維、およびその製造方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon fiber for a carbon fiber reinforced carbon composite material and a method for producing the same. More specifically, the present invention relates to a carbon fiber for a carbon fiber reinforced carbon composite material capable of obtaining a high tensile strength without lowering the interlaminar shear strength of the carbon fiber reinforced carbon composite material, and a method for producing the same.
[0002]
[Prior art]
Conventionally, carbon fiber reinforced carbon composite materials (hereinafter referred to as C / C composite materials) are generally made of polyacrylonitrile-based, pitch-based or rayon-based starting materials as long fibers or short fiber carbon fibers with phenol resin, A method of impregnating or mixing a binder such as a thermosetting resin such as furan resin or a thermoplastic resin such as pitch, and carbonizing and graphitizing the molded product by heating in a non-oxidizing atmosphere such as an inert gas, or a chemical method. It is manufactured by a method of filling pyrolytic carbon between carbon fibers by a vapor deposition method, and has attracted attention as a structural material, friction material, conductive material, etc. because it has heat resistance, specific strength and light weight that can not be reached with metals etc. Have been.
[0003]
In the manufacturing process of the C / C composite material, the process that affects the mechanical properties of the molded product is a carbonization process. Usually, this carbonization step is performed in the range of 500 to 2000 ° C. In this step, the binder shrinks in volume to a greater extent than the carbon fibers due to the carbonization thereof, so that thermal stress is generated between the matrix carbon and the carbon fibers. This thermal stress increases as the bonding force between the matrix carbon and the carbon fiber increases, and this large thermal stress causes a crack to occur at the interface between the matrix carbon and the carbon fiber, and the crack grows rapidly and the interface peels off. It is easy for this phenomenon to occur. As a result, when the interlaminar shear strength of the C / C composite material is improved, a decrease in tensile strength occurs.
[0004]
As a method for solving these problems, a method of not performing a surface treatment on carbon fibers and a method of performing a heat treatment at 1500 ° C. or more in an inert gas after performing a surface treatment have been disclosed (for example, Patent Document 1). , 2). These reduce the bonding force at the interface between the matrix carbon and the carbon fiber by eliminating functional groups effective for bonding to the matrix carbon existing on the carbon fiber surface, and reduce the thermal stress in the carbonization process at the interface. By mitigating by severe peeling, a fatal large crack at the interface is prevented, and as a result, the tensile strength is improved. However, in these methods, while the tensile strength was improved, the interlaminar shear strength was significantly reduced, and could not be applied to a structural material requiring shear characteristics.
[0005]
That is, there is a trade-off relationship between the tensile strength and the interlaminar shear strength of the C / C composite material. According to the above-mentioned conventional method, a carbon fiber in which both the tensile strength and the interlaminar shear strength are simultaneously improved has not been obtained. Was the current situation.
[0006]
On the other hand, a method of irradiating ultraviolet rays in an ozone atmosphere to modify the carbon fiber surface to be hydrophilic (for example, see Patent Document 3), a method of fluorinating the carbon fiber surface (for example, see Patent Document 4), There are disclosed various surface treatment methods for treating hydrogen with hydrogen peroxide (see, for example, Patent Document 5). These are intended to improve the adhesiveness between a carbon matrix of a C / C composite material as a molded body and carbon fibers by introducing a functional group into the carbon fiber surface. However, in these surface treatment methods, processing irregularities inside and outside the fiber bundle are liable to occur, and the strength of the molded product may vary. Furthermore, these surface treatment methods require a long time for the treatment, and thus cannot be said to be suitable in terms of productivity.
[0007]
[Patent Document 1] JP-A-6-157139 (page 3)
[0008]
[Patent Document 2] JP-A-59-107913 (page 2)
[0009]
[Patent Document 3] JP-A-3-8866 (page 3)
[0010]
[Patent Document 4] Japanese Patent Application Laid-Open No. 4-175266 (page 2)
[0011]
[Patent Document 5] Japanese Patent Application Laid-Open No. 1-145375 (page 2)
[0012]
[Problems to be solved by the invention]
In view of the background of the related art, the present invention provides a carbon fiber for a C / C composite material that can obtain a high tensile strength without lowering the interlaminar shear strength of the C / C composite material, and has excellent fatigue resistance and the like. It provides a C / C structure material, a friction material, a conductive material, and the like.
[0013]
[Means for Solving the Problems]
The present invention employs the following means in order to solve such a problem. That is, the arithmetic average roughness (Ra) of the surface is from 20 nm to 60 nm, the BET specific surface area obtained from krypton gas adsorption is from 0.5 m 2 / g to 1.2 m 2 / g, and X-ray photoelectron spectroscopy. The carbon fiber for carbon fiber reinforced carbon composite material, wherein the surface oxygen concentration ratio O / C of the carbon fiber obtained by the method is 0.03 or more and 0.16 or less.
[0014]
Further, in order to solve such a problem, the following means is adopted. That is, in an electrolytic solution having an electric conductivity of 15 mS / cm or more and 100 mS / cm or less, a current value per unit weight of the carbon fiber is 0.05 A or more and 1 A or less, and a processing time is 20 seconds or more and 240 seconds. This is a method for producing a carbon fiber for a carbon fiber reinforced carbon composite material, wherein the carbon fiber is obtained by electrolytic oxidation treatment by the following energization.
[0015]
Furthermore, in order to solve the above-mentioned problems, the following means are adopted. That is, the arithmetic average roughness (Ra) of the surface is from 20 nm to 60 nm, the BET specific surface area obtained from krypton gas adsorption is from 0.5 m 2 / g to 1.2 m 2 / g, and X-ray photoelectron spectroscopy. A carbon fiber reinforced carbon composite material containing carbon fibers having a surface oxygen concentration ratio O / C of 0.03 or more and 0.16 or less obtained by a carbon fiber method.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have made intensive studies and found that the arithmetic average roughness (Ra) of the surface is 20 nm or more and 60 nm or less, and the BET specific surface area obtained from krypton gas adsorption is 0.5 m 2 / g or more and 1.2 m or more. When a carbon fiber having a surface oxygen concentration ratio O / C of not more than 0.03 and not more than 0.16, which is not more than 2 / g and determined by X-ray photoelectron spectroscopy, was used for the C / C composite material, It is the result of solving the problem at once.
[0017]
The carbon fiber for C / C composite material of the present invention needs to have an arithmetic average roughness (Ra) of the surface of not less than 20 nm and not more than 60 nm. Those in this range are suitable for C / C composite materials requiring shear properties. Carbon fibers having a surface with an arithmetic average roughness of less than 20 nm have low interlayer shear strength due to poor surface irregularities. On the other hand, when the arithmetic average roughness exceeds 60 nm, the surface unevenness becomes excessive, and the tensile strength decreases. The thickness is more preferably 30 nm or more and 50 nm or less, and further preferably 35 nm or more and 45 nm or less.
[0018]
Here, the arithmetic mean roughness (Ra) of the surface is an index of irregularities on the surface of the carbon fiber, and the image of the three-dimensional surface shape of 600 nm × 600 nm measured by an atomic force microscope (AFM) is used to determine the roundness of the fiber. Is an average line obtained by approximating is obtained with a cubic surface, and is a value calculated for the obtained image of the three-dimensional surface shape.
[0019]
C / C composite material for carbon fiber of the present invention, the BET specific surface area determined from the krypton gas adsorption of carbon fibers 0.5 m 2 / g or more 1.2 m 2 / g or less, more preferably 0.5 m 2 / g to 0.8 m 2 / g and the carbon fiber surface oxygen concentration ratio O / C determined by X-ray photoelectron spectroscopy is 0.03 to 0.16, more preferably 0.06 to 0.1. 13 or less. With such control, high interlayer shear strength and high tensile strength can be obtained at the same time. The reason for this is not clear, but cracks at the interface due to thermal stress generated between the matrix carbon and the carbon fibers in the carbonization process are prevented by balancing the fine voids in the carbon fiber surface layer and the amount of functional groups. It is estimated that it is. When the specific surface area is larger than 1.2 m 2 / g, the carbon fiber surface has many defects and the strength of the carbon fiber itself decreases, and when the specific surface area is less than 0.5 m 2 / g, the contact between the carbon matrix and the carbon fiber is sufficient. However, a C / C composite material having good adhesiveness cannot be obtained. If the surface oxygen concentration ratio O / C of the carbon fibers is less than 0.03, a C / C composite material having an insufficient adhesion between the matrix carbon and the carbon fibers and having good adhesion cannot be obtained. If the concentration ratio O / C is larger than 0.16, the bonding force between the matrix carbon and the carbon fiber becomes too large, the matrix carbon and the carbon fiber are integrated, the C / C composite material becomes brittle, and the tensile strength is increased. And other mechanical properties.
[0020]
Here, the surface oxygen concentration ratio O / C of the carbon fiber referred to in the present invention can be obtained by X-ray photoelectron spectroscopy by the following method.
[0021]
If a post-treatment agent such as a sizing agent has adhered to the carbon fiber to be measured, wash it with a solvent such as methylene chloride, methyl ethyl ketone, acetone, ethanol, etc., rinse with distilled water, and perform ultrasonic cleaning as necessary. After removing the sizing agent and the like, the sample is cut into a suitable length, spread on a stainless steel sample support, and arranged, and then measured under the following conditions.
[0022]
In the case of measuring carbon fibers mixed with a binder or the like, the resin can be removed with a solvent such as methylene chloride, methyl ethyl ketone, acetone, or ethanol, and the carbon fibers can be taken out and measured in the same manner.
[0023]
X-ray source: AlKα1,2 or MgKα1,2
The correction of the peak due to the charging at the time of measurement is performed based on the binding energy value of the main peak of C1s. E. FIG. To 284.6 eV.
[0024]
Next, the C1s peak area [C1s] is obtained by drawing a linear base line in the range of 282 to 296 eV, and the O1s peak area [O1s] is obtained by drawing a linear base line in the range of 528 to 540 eV.
[0025]
The surface oxygen / carbon ratio (O / C) can be determined by the following equation from the ratio of the O1s peak area [O1s], the C1s peak area [C1s], and the sensitivity correction value unique to the apparatus.
[0026]
O / C = ([O1s] / [C1s]) / (sensitivity correction value)
Further, the carbon fiber for C / C composite material of the present invention may be a bundle-like carbon fiber in which the carbon fibers are bundled, preferably 1,000 to 50,000, more preferably 3,000 to 24,000, particularly preferably It is preferable from the viewpoint of handleability and the like that it is a bundle-like carbon fiber in which 6000 to 12000 single fibers are bundled. In addition, such a bundle of carbon fibers has a strand tensile strength of 4 GPa or more and 7 GPa or less, preferably 4.5 GPa or more and 6.5 GPa, so that the strength of the C / C composite material itself can be increased. Suitable for materials. Such strand tensile strength can be determined by impregnating a bundle of carbon fibers with a resin having the following composition, curing at 130 ° C. for 35 minutes, and then performing a tensile test based on JIS-R7601.
[0027]
(Resin composition)
100 parts by weight of 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate 3 parts by weight of boron trifluoride monoethylamine 4 parts by weight of acetone An elastic modulus of 200 GPa or more and 400 GPa or less is preferable in that a C / C composite material having high strength and high adhesion is obtained. The strand tensile elasticity as referred to herein can be determined from a slope of a load-elongation curve by performing a tensile test in the same manner as the above-described strand tensile strength measuring method.
[0028]
Next, an example of a method for producing a carbon fiber for a C / C composite material of the present invention will be described.
[0029]
As the carbon fiber for C / C composite material of the present invention, fibers such as rayon, polyacrylonitrile, and pitch are used as precursor fibers, and fibers obtained by carbonizing them or graphitized fibers obtained by heat-treating them at a higher temperature are mainly used. . In order to obtain a high-strength C / C composite material, it is preferable to use polyacrylonitrile fiber from which high-strength carbon fiber can be easily obtained. The method for spinning the precursor fiber is not particularly limited, and any of a dry method, a wet method, and a dry-wet method can be used. The arithmetic average roughness (Ra) of the surface is controlled to the above-mentioned specific range. In terms of ease, a wet spinning method is preferably used. The arithmetic average roughness (Ra) of the surface is determined by the type of coagulating liquid (for example, dimethyl sulfoxide, dimethylformamide) and the temperature in the spinning step, the take-up speed and drawing ratio of the coagulated yarn, flame resistance, pre-carbonization, It can also be controlled by combining the stretching ratios in each of the carbonization steps. By such a method, carbon fibers having a surface arithmetic average roughness (Ra) of 20 nm or more and 60 nm or less, more preferably 20 nm or more and 50 nm or less can be obtained. The roughness (Ra) can be further adjusted.
[0030]
The carbon fiber for a C / C composite material of the present invention in which the BET specific surface area determined from krypton gas adsorption and the surface oxygen concentration ratio O / C determined by X-ray photoelectron spectroscopy are in specific ranges are obtained by electrolytic oxidation treatment. be able to. In the electrolytic oxidation treatment, since the treatment unevenness is controlled and the oxidation treatment can be performed deeply on the carbon fiber surface layer in a short time, the specific surface area and the surface oxygen concentration are easily controlled. The carbon fiber to be subjected to the electrolytic oxidation treatment is not particularly limited, but is preferably a carbon fiber obtained by the above-described method and having a surface arithmetic average roughness (Ra) of 20 nm to 60 nm, more preferably 20 nm to 50 nm. By performing electrolytic treatment using such carbon fibers, not only Ra but also the BET specific surface area and the surface oxygen concentration ratio O / C can be controlled in the above-mentioned ranges in a well-balanced manner. The electrolytic solution used for such electrolytic oxidation treatment may be either acidic or alkaline.
[0031]
Specifically, a current value per unit weight of carbon fiber in an electrolytic bath adjusted to have an electric conductivity of 15 mS / cm or more and 100 mS / cm or less, preferably 15 mS / cm or more and 50 S / cm or less. Is 0.05A or more and 1A or less, preferably 0.1A or more and 0.5A or less, more preferably 0.1A or more and 0.4A or less, and the processing time is 20 seconds or more and 240 seconds or less, preferably 60 seconds or more and 200 seconds or less. By controlling as follows, the BET specific surface area determined from the above-described krypton gas adsorption and the surface oxygen concentration ratio O / C determined by X-ray photoelectron spectroscopy can be controlled. If the electric conductivity of the electrolytic solution is less than 15 mS / cm, it is difficult to control the current value because the current does not flow. If the electric conductivity exceeds 100 mS / cm, the electrolyte in the subsequent water washing step is completely concentrated due to the high concentration. May not be removed. If the current value per unit weight of the carbon fiber is less than 0.05 A, it takes a lot of time for the treatment, resulting in inefficiency. If it exceeds 1 A, the carbon fiber surface is easily damaged. Further, if the treatment time is shorter than 20 seconds, the amount of functional groups on the surface of the carbon fiber is not sufficient, and a C / C composite material having good adhesiveness is not obtained. In some cases, the group adheres and causes a decrease in tensile strength of the C / C composite material.
[0032]
In the above-described electrolytic oxidation treatment, such treatment can be performed using carbon fiber as an anode and a platinum plate as a cathode.
[0033]
When the oxygen concentration ratio O / C on the carbon fiber surface exceeds the above-mentioned value after performing the water washing and drying after the electrolytic oxidation treatment, the temperature is further increased to 250 ° C or more and 1000 ° C or less in an inert atmosphere. Is to control the oxygen concentration ratio O / C within a predetermined range by performing a heat treatment at a temperature of 250 ° C. or more and 750 ° C. or less and a treatment time of 1 minute or more and 5 hours or less, preferably 1 minute or more and 30 minutes or less. You can also.
[0034]
Further, if necessary, a sizing agent can be added to the carbon fibers. As the sizing agent, for example, a thermosetting resin such as an epoxy resin, a phenol resin, an alkyd resin, a urethane resin, a thermoplastic resin such as polyethylene, polyvinyl chloride, or polyamide, or a coal tar pitch or a pitch such as a petroleum pitch is used. be able to.
[0035]
By applying the carbon fiber for a C / C composite material of the present invention, a C / C composite material having excellent mechanical properties, particularly excellent tensile strength and interlaminar shear strength, can be produced. Such a C / C composite material can be a C / C composite material in which the direction of the reinforcing fiber is substantially one direction, or a bidirectional C / C in which the direction of the reinforcing fiber intersects the 90 ° and 0 ° directions. The fiber direction can be arbitrarily set according to the composite material and other purposes.
[0036]
Here, the tensile strength of the unidirectional C / C composite material is obtained by cutting a flat plate into a length of 50 ± 1 mm in a fiber axis direction, a width of 10 ± 1 mm and a thickness of 2.0 ± 0.2 mm in a fiber axis direction. The test piece was measured at a gauge portion of 10 mm and a test speed of 0.5 mm / min, and the strength was converted to a fiber volume content (Vf) of 40%. The interlaminar shear strength of the unidirectional C / C composite material is measured on the same test piece as described above in accordance with a test method specified in JIS-K7078.
[0037]
Such a C / C composite material of the present invention can be obtained by impregnating the carbon fibers with various binders and curing by heating. There are no particular restrictions on the type of binder used in the production of the C / C composite material, and thermosetting resins such as phenolic resins, epoxy resins, alkyd resins, urethane resins, and furan resins, and thermoplastic resins such as polyethylene and polyvinyl chloride. Alternatively, a pitch such as coal tar pitch or petroleum pitch can be used. These binders are mixed or impregnated with carbon fibers and then dried to obtain a composition comprising carbon fibers and a binder. At that time, a binder dissolved in a solvent such as alcohol, acetone or anthracene oil and adjusted to an appropriate viscosity can be used. In addition, the temperature and time for heat curing can be appropriately set depending on the type of the binder. For example, when a phenol resin is used, after pressure and heat molding at 120 to 150 ° C. and 5 to 10 MPa, in air, After post-curing by heat treatment to 170 to 250 ° C., further carbonization treatment at 500 to 2000 ° C. in nitrogen and graphitization treatment at 2000 to 3000 ° C. are performed. Further, the fiber volume content in the C / C composite material is preferably 30 to 70%, and more preferably 40 to 60%. By setting the carbon fiber content in this range, a C / C composite material having excellent shear strength and excellent tensile strength can be obtained.
[0038]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
[0039]
The method for measuring the characteristics used in this example is as follows.
<Measurement of arithmetic average roughness (Ra)>
The arithmetic average roughness (Ra) of the surface was measured as follows. As a measurement sample, a carbon fiber cut to a length of several mm was used. The substrate was fixed on a substrate (silicon wafer) using silver paste, and an image of a three-dimensional surface shape was obtained at the center of each single fiber by an atomic force microscope (AFM). As an atomic force microscope, a Dimension 3000 stage system was used in NanoScope IIIa manufactured by Digital Instruments. The observation conditions were as follows.
[0040]
・ Scanning mode: Tapping mode ・ Tip: Silicon cantilever ・ Scanning range: 0.6 μm × 0.6 μm
・ Scanning speed: 0.3Hz
-Number of pixels: 512 x 512
Measurement environment: At room temperature and in the air, for each sample in a single fiber, one image was obtained by observing one point at a time, and the roundness of the fiber cross section was approximated by a cubic curved surface. The arithmetic average roughness (Ra) was calculated. The arithmetic average roughness (Ra) was determined and averaged for five single fibers.
<Measurement of BET specific surface area of carbon fiber>
The BET specific surface area of the carbon fiber was measured as follows. As a sample, a carbon fiber cut to a length of about several tens cm was used. After precisely weighing the sample, it was sealed in a test tube, and the specific surface area by the BET method was measured by adsorption of krypton gas. At the time of gas adsorption, a high-precision fully automatic gas adsorption device “BELSORP 36” manufactured by Nippon Bell Co., Ltd. was used, and the measurement conditions were as follows.
[0041]
・ Adsorption gas: Kr
・ Dead volume: He
・ Adsorption temperature: liquid nitrogen temperature (77K)
・ Measurement pretreatment: 200 ° C
-Measurement mode: adsorption at isothermal temperature-Measurement range: relative pressure (P / P0) = 0.01 to 0.4
P: measured pressure P 0 : saturated vapor pressure of adsorbed gas / equilibrium time: 180 sec. For each equilibrium relative pressure
The calculation method of the specific surface area applied the BET theory. The specific surface area was calculated by analyzing the relative pressure range of about 0.05 to 0.3 on the BET plot according to the same theoretical formula.
<Measurement of strand tensile strength>
A bundle of carbon fibers was impregnated with a resin having the following composition, cured at 130 ° C. for 35 minutes, and then subjected to a tensile test based on JIS-R7601.
[0042]
* Resin composition ・ 3,4-epoxycyclohexylmethyl-3,4-epoxy-cyclohexyl-carboxylate (ERL-4221, manufactured by Union Carbide) 100 parts by weight ・ boron trifluoride monoethylamine (manufactured by Stella Chemifa Corporation) 3 parts by weight acetone (manufactured by Wako Pure Chemical Industries, Ltd.) 4 parts by weight <surface oxygen concentration of carbon fiber (O / C)>
The surface oxygen concentration ratio O / C was determined by X-ray photoelectron spectroscopy according to the following procedure. The carbon fibers used as the samples were cut to an appropriate length, spread on a stainless steel sample support, and arranged. The photoelectron escape angle was 90 °, MgKα1,2 was used as the X-ray source, and the inside of the sample chamber was kept at a vacuum of 1 × 10 −8 Torr. As a correction of the peak accompanying the charging at the time of measurement, the binding energy value of the main peak of C1s was adjusted to 284.6 eV. The C1s peak area was determined by drawing a linear baseline in the range of 282 to 296 eV, and the O1s peak area was determined by drawing a linear baseline in the range of 528 to 540 eV. The surface oxygen concentration O / C was represented by an atomic ratio calculated by dividing the ratio of the O1s peak area to the C1s peak area by a sensitivity correction value unique to the apparatus. In this embodiment, an ESCA-750 manufactured by Shimadzu Corporation was used as an X-ray photoelectron spectrometer, and the sensitivity correction value unique to the device was 2.85.
<Tensile strength of C / C composite material>
A flat plate of the unidirectional C / C composite material was cut to prepare a test piece having a length of 50 ± 1 mm in the fiber axis direction, a width of 10 ± 1 mm in the fiber axis direction, and a thickness of 2.0 ± 0.2 mm. An aluminum tab having a thickness of 1 mm was adhered to both sides of both ends except for a central portion of 10 mm of the test piece to prepare a test piece for tensile strength. The test speed was 0.5 mm / min. The number of tests was 5, and the average was taken as the tensile strength. As the testing machine, a suitable material testing machine of a type capable of keeping the crosshead moving speed constant, with a load measurement error not exceeding ± 1%, is used. In this embodiment, Instron (registered) is used as the testing machine. (Trademark) Tester Model 4208 was used. A diamond cutter was used for cutting the C / C composite material. <Interlaminar shear strength of C / C composite material>
A flat plate of the unidirectional C / C composite material was cut to prepare a test piece having a length of 14 ± 1 mm in the fiber axis direction, a width of 10 ± 0.2 mm in the fiber axis direction, and a thickness of 2 ± 0.2 mm. The radius of curvature of the pressure wedge was 5 mm, the radius of curvature of the fulcrum was 2 mm, and the distance between the fulcrums was 10 mm, which was five times the thickness of the test piece, and the test speed was 1 mm / min. The measurement was performed according to the test method specified in JIS-K7078. . In the present example, an Instron (registered trademark) test machine type 4208 was used as a test machine.
[0043]
(Example 1)
A bundle of acrylonitrile-based carbon fibers having a strand tensile strength of 4.4 GPa and a strand tensile elasticity of 250 GPa (single fiber diameter: 6.8 μm, number of filaments: 6000 filaments / bundle, surface arithmetic average roughness (Ra): 30 nm) was used as an anode. Using platinum as a cathode, in a sulfuric acid aqueous solution adjusted to have an electric conductivity of 15 mS / cm, an electrolytic treatment was performed for 100 seconds at a current of 0.1 A per 1 g of carbon fiber bundle, followed by washing with water and 150 ° C. Dry in heated air. The arithmetic average roughness (Ra) of the surface of the obtained carbon fiber was 32 nm, the specific surface area was 0.65 m 2 / g, and the surface oxygen concentration ratio was 0.06.
[0044]
After placing the bundle of carbon fibers in a mold, the bundle is impregnated with a resol-based phenol resin (Sumilite Resin (registered trademark) PR-50087 manufactured by Sumitomo Bakelite) and press-molded at 150 ° C. and 10 MPa. Further, a molded plate having a thickness of 2.0 mm was obtained, and the molded plate was subjected to post-curing by heating at 250 ° C. at a heating rate of 3 ° C./hr in air, followed by 15 ° C. in nitrogen. / Hr to a carbonization treatment by heating to 1000 ° C. Further heating to 15 ° C./hr to 2000 ° C. and holding for 24 hours to carry out a graphitization treatment The fiber volume content of this C / C composite material The rate was 40%, the tensile strength was 490 MPa, and the interlaminar shear strength was 16.2 MPa, and excellent tensile strength and interlaminar shear strength were obtained.
[0045]
(Comparative Example 1)
In Example 1, a bundle of carbon fibers and a unidirectional C / C composite material were manufactured by the same manufacturing method as in Example 1 except that the electrolytic treatment was performed at 10 A for 1 second. The arithmetic average roughness (Ra) of the surface of the obtained carbon fiber was 39 nm, the specific surface area was 1.31 m 2 / g, and the surface oxygen concentration ratio was 0.07. The fiber volume content of the C / C composite material was 40%, the tensile strength was 390 MPa, and the interlaminar shear strength was 15.6 MPa.
[0046]
(Example 2)
In Example 1, a bundle of carbon fibers and a unidirectional C / C composite material were produced by the same production method as in Example 1 except that the electrolytic treatment was performed at 0.1 A for 200 seconds. The arithmetic average roughness (Ra) of the surface of the obtained carbon fiber was 33 nm, the specific surface area was 0.67 m 2 / g, and the surface oxygen concentration ratio was 0.11. The fiber volume content of the C / C composite material was 40%, the tensile strength was 480 MPa, and the interlaminar shear strength was 16.6 MPa. Good tensile strength and interlaminar shear strength were obtained.
[0047]
(Comparative Example 2)
In Example 1, a bundle of carbon fibers and a unidirectional C / C composite material were manufactured by the same manufacturing method as in Example 1 except that the electrolytic treatment was not performed. The arithmetic average roughness (Ra) of the surface of the obtained carbon fiber was 30 nm, the specific surface area was 0.60 m 2 / g, and the surface oxygen concentration ratio was 0.02. The C / C composite material had a fiber volume content of 40%, a tensile strength of 440 MPa, and an interlayer shear strength of 14.1 MPa.
[0048]
(Comparative Example 3)
A bundle of carbon fibers having a strand tensile strength of 4.4 GPa and a strand tensile elasticity of 250 GPa (single fiber diameter 6.8 μm, number of filaments / bundle, arithmetic average roughness (Ra) of surface 13 nm) was used. Except for the above, a bundle of carbon fibers and a unidirectional C / C composite material were produced in the same manner as in Example 1.
[0049]
The arithmetic average roughness (Ra) of the surface of the obtained carbon fiber was 15 nm, the specific surface area was 0.55 m 2 / g, and the surface oxygen concentration ratio was 0.06. The fiber volume content of the C / C composite material was 40%, the tensile strength was 480 MPa, and the interlaminar shear strength was 14.8 MPa.
[0050]
[Table 1]
Figure 2004277192
[0051]
As is clear from Table 1, Examples 1 and 2 show that both the tensile strength and the interlaminar shear strength of the C / C composite material are significantly superior to Comparative Examples 1 to 3.
[0052]
【The invention's effect】
According to the present invention, there is provided a C / C composite material having improved tensile strength without lowering the interlaminar shear strength, a method for producing the same, a carbon fiber for the C / C composite material, and a method for producing the same. can do.

Claims (5)

表面の算術平均粗さ(Ra)が、20nm以上60nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m/g以上1.2m/g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.03以上0.16以下である炭素繊維強化炭素複合材料用炭素繊維。The arithmetic average roughness (Ra) of the surface is 20 nm or more and 60 nm or less, the BET specific surface area obtained from krypton gas adsorption is 0.5 m 2 / g or more and 1.2 m 2 / g or less, and X-ray photoelectron spectroscopy is used. A carbon fiber for a carbon fiber reinforced carbon composite material, wherein a required surface oxygen concentration ratio O / C of the carbon fiber is 0.03 or more and 0.16 or less. 4GPa以上7GPa以下のストランド引張強度を有する束状である請求項1記載の炭素繊維強化炭素複合材料用炭素繊維。The carbon fiber for a carbon fiber reinforced carbon composite material according to claim 1, wherein the carbon fiber is a bundle having a strand tensile strength of 4 GPa or more and 7 GPa or less. 200GPa以上400GPa以下のストランド引張弾性率を有する束状である請求項1または2記載の炭素繊維強化炭素複合材料用炭素繊維。The carbon fiber for a carbon fiber reinforced carbon composite material according to claim 1 or 2, wherein the carbon fiber is a bundle having a strand tensile modulus of 200 GPa or more and 400 GPa or less. 電気伝導度が15mS/cm以上100mS/cm以下の電解液中で、炭素繊維を陽極として、炭素繊維の単位重量あたりの電流値0.05A以上1A以下、かつ処理時間20秒以上240秒以下の通電により電解酸化処理して請求項1記載の炭素繊維を得る、炭素繊維強化炭素複合材料用炭素繊維の製造方法。In an electrolytic solution having an electric conductivity of 15 mS / cm or more and 100 mS / cm or less, a current value per unit weight of carbon fiber of 0.05 A or more and 1 A or less, and a treatment time of 20 seconds or more and 240 seconds or less, using carbon fiber as an anode. A method for producing a carbon fiber for a carbon fiber reinforced carbon composite material, wherein the carbon fiber according to claim 1 is obtained by electrolytic oxidation treatment by energization. 請求項1〜3のいずれかに記載の炭素繊維を含む炭素繊維強化炭素複合材料。A carbon fiber reinforced carbon composite material containing the carbon fiber according to claim 1.
JP2003067800A 2003-03-13 2003-03-13 Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor Pending JP2004277192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067800A JP2004277192A (en) 2003-03-13 2003-03-13 Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067800A JP2004277192A (en) 2003-03-13 2003-03-13 Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004277192A true JP2004277192A (en) 2004-10-07

Family

ID=33285304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067800A Pending JP2004277192A (en) 2003-03-13 2003-03-13 Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004277192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047865A (en) * 2008-08-21 2010-03-04 Toho Tenax Co Ltd Carbon fiber for composite material and composite material produced by using the same
CN104420008A (en) * 2013-08-30 2015-03-18 中国石油天然气股份有限公司 Coagulating bath compound ammoniation method for improving surface morphology of PAN-based carbon fiber
CN113557115A (en) * 2019-03-28 2021-10-26 东丽株式会社 Molded article of carbon fiber-reinforced composite material and method for producing same
CN114225626A (en) * 2021-11-26 2022-03-25 安徽金禾实业股份有限公司 Analysis method of carbon fiber tail gas absorption unit in hydrogen peroxide production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252719A (en) * 1984-05-30 1985-12-13 Asahi Chem Ind Co Ltd Production of carbon fiber having high elongation
JPH07279040A (en) * 1993-08-25 1995-10-24 Toray Ind Inc Carbon fiber and its production
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JPH11302086A (en) * 1998-04-22 1999-11-02 Petoca Ltd Carbon fiber-reinforced carbon composite material and its production
JP2000336191A (en) * 1999-03-23 2000-12-05 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2002327339A (en) * 2001-04-27 2002-11-15 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
JP2003064577A (en) * 2001-06-12 2003-03-05 Toray Ind Inc Method for treating carbon fiber bundle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252719A (en) * 1984-05-30 1985-12-13 Asahi Chem Ind Co Ltd Production of carbon fiber having high elongation
JPH07279040A (en) * 1993-08-25 1995-10-24 Toray Ind Inc Carbon fiber and its production
JPH09228248A (en) * 1996-02-14 1997-09-02 Toray Ind Inc Carbon fiber, its production and prepreg produced by using the carbon fiber
JPH11302086A (en) * 1998-04-22 1999-11-02 Petoca Ltd Carbon fiber-reinforced carbon composite material and its production
JP2000336191A (en) * 1999-03-23 2000-12-05 Toray Ind Inc Prepreg and fiber-reinforced composite material
JP2002327339A (en) * 2001-04-27 2002-11-15 Mitsubishi Rayon Co Ltd Carbon fiber and method for producing the same
JP2003064577A (en) * 2001-06-12 2003-03-05 Toray Ind Inc Method for treating carbon fiber bundle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047865A (en) * 2008-08-21 2010-03-04 Toho Tenax Co Ltd Carbon fiber for composite material and composite material produced by using the same
CN104420008A (en) * 2013-08-30 2015-03-18 中国石油天然气股份有限公司 Coagulating bath compound ammoniation method for improving surface morphology of PAN-based carbon fiber
CN113557115A (en) * 2019-03-28 2021-10-26 东丽株式会社 Molded article of carbon fiber-reinforced composite material and method for producing same
CN113557115B (en) * 2019-03-28 2023-05-30 东丽株式会社 Molded article of carbon fiber composite material and method for producing same
CN114225626A (en) * 2021-11-26 2022-03-25 安徽金禾实业股份有限公司 Analysis method of carbon fiber tail gas absorption unit in hydrogen peroxide production

Similar Documents

Publication Publication Date Title
EP3425091B1 (en) Bundle of carbon fibers
KR102461416B1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
Kim et al. A study on the microstructural changes and mechanical behaviors of carbon fibers induced by optimized electrochemical etching
US4600572A (en) Ultrahigh strength carbon fibers
JP5907321B1 (en) Carbon fiber bundle and method for producing the same
JP2004277192A (en) Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JP4726102B2 (en) Carbon fiber and method for producing the same
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP2009046770A (en) Acrylonitrile-based precursor fiber for carbon fiber
JP4953410B2 (en) Carbon fiber and method for producing the same
JP5226238B2 (en) Carbon fiber and composite material using the same
Yip et al. Effect of surface oxygen on adhesion of carbon fiber reinforced composites
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JPH054463B2 (en)
JP2010222739A (en) Carbon fiber and method for producing the same
JP2004277907A (en) Carbon fiber and method for producing the same
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
Mohammad et al. The effect of modification of matrix on densification efficiency of pitch based carbon composites
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP6304046B2 (en) Carbon fiber bundle and method for producing the same
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JPH0415288B2 (en)
JPH0737685B2 (en) Carbon fiber with ultra high strength composite properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013